351
|
Teboul M, Gréchez-Cassiau A, Guillaumond F, Delaunay F. How nuclear receptors tell time. J Appl Physiol (1985) 2009; 107:1965-71. [PMID: 19628724 DOI: 10.1152/japplphysiol.00515.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Most organisms adapt their behavior and physiology to the daily changes in their environment through internal ( approximately 24 h) circadian clocks. In mammals, this time-keeping system is organized hierarchically, with a master clock located in the suprachiasmatic nuclei of the hypothalamus that is reset by light, and that, in turn, coordinates the oscillation of local clocks found in all cells. Central and peripheral clocks control, in a highly tissue-specific manner, hundreds of target genes, resulting in the circadian regulation of most physiological processes. A great deal of knowledge has accumulated during the last decade regarding the molecular basis of mammalian circadian clocks. These studies have collectively demonstrated how a set of clock genes and their protein products interact together in complex feedback transcriptional/translational loops to generate 24-h oscillations at the molecular, cellular, and organism levels. In recent years, a number of nuclear receptors (NRs) have been implicated as important regulators of the mammalian clock mechanism. REV-ERB and retinoid-related orphan receptor NRs regulate directly the core feedback loop and increase its robustness. The glucocorticoid receptor mediates the synchronizing effect of glucocorticoid hormones on peripheral clocks. Other NR family members, including the orphan NR EAR2, peroxisome proliferator activated receptors-alpha/gamma, estrogen receptor-alpha, and retinoic acid receptors, are also linked to the clockwork mechanism. These findings together establish nuclear hormone receptor signaling as an integral part of the circadian timing system.
Collapse
Affiliation(s)
- Michèle Teboul
- Laboratoire de Biologie et Physiopathologie des Systèmes Intégrés, Université de Nice Sophia Antipolis and Centre National de la Recherche Scientifique, Nice, France
| | | | | | | |
Collapse
|
352
|
Torres-Farfan C, Abarzua-Catalan L, Valenzuela FJ, Mendez N, Richter HG, Valenzuela GJ, Serón-Ferré M. Cryptochrome 2 expression level is critical for adrenocorticotropin stimulation of cortisol production in the capuchin monkey adrenal. Endocrinology 2009; 150:2717-22. [PMID: 19246533 DOI: 10.1210/en.2008-1683] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Timely production of glucocorticoid hormones in response to ACTH is essential for survival by coordinating energy intake and expenditure and acting as homeostatic regulators against stress. Adrenal cortisol response to ACTH is clock time dependent, suggesting that an intrinsic circadian oscillator in the adrenal cortex contributes to modulate the response to ACTH. Circadian clock gene expression has been reported in the adrenal cortex of several species. However, there are no reports accounting for potential involvement of adrenal clock proteins on cortisol response to ACTH. Here we explored whether the clock protein cryptochrome 2 (CRY2) knockdown modifies the adrenal response to ACTH in a primate. Adrenal gland explants from adult capuchin monkey (n = 5) were preincubated for 6 h with transfection vehicle (control) or with two different Cry2 antisense and sense probes followed by 48 h incubation in medium alone (no ACTH) or with 100 nm ACTH. Under control and sense conditions, ACTH increased cortisol production, whereas CRY2 suppression inhibited ACTH-stimulated cortisol production. Expression of the steroidogenic enzymes steroidogenic acute regulatory protein and 3beta-hydroxysteroid dehydrogenase at 48 h of incubation was increased by ACTH in control explants and suppressed by Cry2 knockdown. Additionally, we found that Cry2 knockdown decreased the expression of the clock gene brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (Bmal1) at the mRNA and protein levels. Altogether these results strongly support that the clock protein CRY2 is involved in the mechanism by which ACTH increases the expression of steroidogenic acute regulatory protein and 3beta-hydroxysteroid dehydrogenase. Thus, adequate expression levels of components of the adrenal circadian clock are required for an appropriate cortisol response to ACTH.
Collapse
Affiliation(s)
- C Torres-Farfan
- Facultad de Medicina, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
353
|
Debono M, Ross RJ, Newell-Price J. Inadequacies of glucocorticoid replacement and improvements by physiological circadian therapy. Eur J Endocrinol 2009; 160:719-29. [PMID: 19168600 DOI: 10.1530/eje-08-0874] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Patients with adrenal insufficiency need lifelong glucocorticoid replacement, but many suffer from poor quality of life, and overall there is increased mortality. Moreover, it appears that use of glucocorticoids at the higher end of the replacement dose range is associated with increased risk for cardiovascular and metabolic bone disease. These data highlight some of the inadequacies of current regimes. The cortisol production rate is estimated to be equivalent to 5.7-7.4 mg/m(2) per day, and a major difficulty for replacement regimes is the inability to match the distinct circadian rhythm of circulating cortisol levels, which are low at the time of sleep onset, rise between 0200 and 0400 h, peaking just after waking and then fall during the day. Another issue is that current dose equivalents of glucocorticoids used for replacement are based on anti-inflammatory potency, and few data exist as to doses needed for equivalent cardiovascular and bone effects. Weight-adjusted, thrice-daily dosing using hydrocortisone (HC) reduces glucocorticoid overexposure and represents the most refined regime for current oral therapy, but does not replicate the normal cortisol rhythm. Recently, proof-of-concept studies have shown that more physiological circadian glucocorticoid therapy using HC infusions and newly developed oral formulations of HC have the potential for better biochemical control in patients with adrenal insufficiency. Whether such physiological replacement will have an impact on the complications seen in patients with adrenal insufficiency will need to be analysed in future clinical trials.
Collapse
Affiliation(s)
- Miguel Debono
- Academic Unit of Diabetes, Endocrinology and Metabolism, School of Medicine & Biomedical Sciences, Royal Hallamshire Hospital, University of Sheffield, Room OU142, O Floor, Sheffield S10 2RX, UK
| | | | | |
Collapse
|
354
|
Yang S, Liu A, Weidenhammer A, Cooksey RC, McClain D, Kim MK, Aguilera G, Abel ED, Chung JH. The role of mPer2 clock gene in glucocorticoid and feeding rhythms. Endocrinology 2009; 150:2153-60. [PMID: 19179447 PMCID: PMC2671901 DOI: 10.1210/en.2008-0705] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The circadian clock synchronizes the activity level of an organism to the light-dark cycle of the environment. Energy intake, as well as energy metabolism, also has a diurnal rhythm. Although the role of the clock genes in the sleep-wake cycle is well characterized, their role in the generation of the metabolic rhythms is poorly understood. Here, we use mice deficient in the clock protein mPer2 to study how the circadian clock regulates two critical metabolic rhythms: glucocorticoid and food intake rhythms. Our findings indicate that mPer2-/- mice do not have a glucocorticoid rhythm even though the corticosterone response to hypoglycemia, ACTH, and restraint stress is intact. In addition, the diurnal feeding rhythm is absent in mPer2-/- mice. On high-fat diet, they eat as much during the light period as they do during the dark period and develop significant obesity. The diurnal rhythm of neuroendocrine peptide alphaMSH, a major effector of appetite control, is disrupted in the hypothalamus of mPer2-/- mice even though the diurnal rhythm of ACTH, the alphaMSH precursor, is intact. Peripheral injection of alphaMSH, which has been shown to enter the brain, restored the feeding rhythm and induced weight loss in mPer2-/- mice. These findings emphasize the requirement of mPer2 in appetite control during the inactive period and the potential role of peripherally administered alphaMSH in restoring night-day eating pattern in individuals with circadian eating disorders such as night-eating syndrome, which is also associated with obesity.
Collapse
Affiliation(s)
- Shutong Yang
- Laboratory of Biochemical Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Abstract
Sleep is regulated by both homeostatic and circadian mechanisms. The latter, termed 'process c', helps synchronize sleep-wake patterns to the appropriate time of the day. However, in the absence of a circadian clock, overall sleep-wake rhythmicity is preserved and remains synchronized to the external light-dark cycle, indicating that there is an additional, clock-independent photic input to sleep. We found that the direct photic regulation of sleep in mice is predominantly mediated by melanopsin (OPN4)-based photoreception of photosensitive retinal ganglion cells (pRGCs). Moreover, OPN4-dependent sleep regulation was correlated with the activation of sleep-promoting neurons in the ventrolateral preoptic area and the superior colliculus. Collectively, our findings describe a previously unknown pathway in sleep regulation and identify the pRGC/OPN4 signaling system as a potentially new pharmacological target for the selective manipulation of sleep and arousal states.
Collapse
|
356
|
Girotti M, Weinberg MS, Spencer RL. Diurnal expression of functional and clock-related genes throughout the rat HPA axis: system-wide shifts in response to a restricted feeding schedule. Am J Physiol Endocrinol Metab 2009; 296:E888-97. [PMID: 19190255 PMCID: PMC2670633 DOI: 10.1152/ajpendo.90946.2008] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The diurnal rhythm of glucocorticoid secretion depends on the suprachiasmatic (SCN) and dorsomedial (putative food-entrainable oscillator; FEO) nuclei of the hypothalamus, two brain regions critical for coordination of physiological responses to photoperiod and feeding cues, respectively. In both cases, time keeping relies upon diurnal oscillations in clock gene (per1, per2, and bmal) expression. Glucocorticoids may play a key role in synchronization of the rest of the body to photoperiod and food availability. Thus glucocorticoid secretion may be both a target and an important effector of SCN and FEO output. Remarkably little, however, is known about the functional diurnal rhythms of the individual components of the hypothalamic-pituitary-adrenal (HPA) axis. We examined the 24-h pattern of hormonal secretion (ACTH and corticosterone), functional gene expression (c-fos, crh, pomc, star), and clock gene expression (per1, per2 and bmal) in each compartment of the HPA axis under a 12:12-h light-dark cycle and compared with relevant SCN gene expression. We found that each anatomic component of the HPA axis has a unique circadian signature of functional and clock gene expression. We then tested the susceptibility of these measures to nonphotic entrainment cues by restricting food availability to only a portion of the light phase of a 12:12-h light-dark cycle. Restricted feeding is a strong zeitgeber that can dramatically alter functional and clock gene expression at all levels of the HPA axis, despite ongoing photoperiod cues and only minor changes in SCN clock gene expression. Thus the HPA axis may be an important mediator of the body entrainment to the FEO.
Collapse
Affiliation(s)
- Milena Girotti
- Department of Pharmacology, MC 7764, University of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
357
|
Abstract
Glucocorticoids, hormones produced by the adrenal gland cortex, perform numerous functions in body homeostasis and the response of the organism to external stressors. One striking feature of their regulation is a diurnal release pattern, with peak levels linked to the start of the activity phase. This release is under control of the circadian clock, an endogenous biological timekeeper that acts to prepare the organism for daily changes in its environment. Circadian control of glucocorticoid production and secretion involves a central pacemaker in the hypothalamus, the suprachiasmatic nucleus, as well as a circadian clock in the adrenal gland itself. Central circadian regulation is mediated via the hypothalamic-pituitary-adrenal axis and the autonomic nervous system, while the adrenal gland clock appears to control sensitivity of the gland to the adrenocorticopic hormone (ACTH). The rhythmically released glucocorticoids in turn might contribute to synchronisation of the cell-autonomous clocks in the body and interact with them to time physiological dynamics in their target tissues around the day.
Collapse
Affiliation(s)
- Thomas Dickmeis
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
358
|
Son GH, Chung S, Choe HK, Kim HD, Baik SM, Lee H, Lee HW, Choi S, Sun W, Kim H, Cho S, Lee KH, Kim K. Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. Proc Natl Acad Sci U S A 2008; 105:20970-5. [PMID: 19091946 PMCID: PMC2634940 DOI: 10.1073/pnas.0806962106] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoid (GC) is an adrenal steroid with diverse physiological effects. It undergoes a robust daily oscillation, which has been thought to be driven by the master circadian clock in the suprachiasmatic nucleus of the hypothalamus via the hypothalamus-pituitary-adrenal axis. However, we show that the adrenal gland has its own clock and that the peripheral clockwork is tightly linked to steroidogenesis by the steroidogenic acute regulatory protein. Examination of mice with adrenal-specific knockdown of the canonical clock protein BMAL1 reveals that the adrenal clock machinery is required for circadian GC production. Furthermore, behavioral rhythmicity is drastically affected in these animals, together with altered expression of Period1, but not Period2, in several peripheral organs. We conclude that the adrenal peripheral clock plays an essential role in harmonizing the mammalian circadian timing system by generating a robust circadian GC rhythm.
Collapse
Affiliation(s)
- Gi Hoon Son
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Sooyoung Chung
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Han Kyoung Choe
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hee-Dae Kim
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Sun-Mee Baik
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hankyu Lee
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Han-Woong Lee
- Department of Biochemistry, Yonsei University, Seoul 120-749, Korea
| | - Sukwoo Choi
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Seoul 136-705, Korea; and
| | - Hyun Kim
- Department of Anatomy, Korea University College of Medicine, Seoul 136-705, Korea; and
| | - Sehyung Cho
- Department of Life and Nanopharmaceutical Science and Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 130-701, Korea
| | - Kun Ho Lee
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Kyungjin Kim
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
359
|
Rahman SA, Kollara A, Brown TJ, Casper RF. Selectively filtering short wavelengths attenuates the disruptive effects of nocturnal light on endocrine and molecular circadian phase markers in rats. Endocrinology 2008; 149:6125-35. [PMID: 18687787 DOI: 10.1210/en.2007-1742] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Various physiological processes exhibit a circadian rhythm synchronized to the geophysical light/dark cycle. Our study using a rat model demonstrated that exposure to light at night suppressed the expected nocturnal rise in melatonin, increased plasma corticosterone, and disrupted core clock gene expression in the hypothalamus and the adrenal gland. These effects were prevented by filtration of a 10-nm bandwidth of light between 470 and 480 nm, whereas filtration of light between 452 and 462 nm prevented the rise of corticosterone without restoring normal melatonin secretion or hypothalamic clock gene expression. This is the first demonstration of a wavelength dependency of glucocorticoid secretion and clock gene expression. Our results in an animal model suggest that filtering a narrow bandwidth of light from nocturnal lighting may efficiently attenuate overall disruption of circadian endocrine rhythms and clock gene expression in the hypothalamus and adrenal gland. Because a narrow bandwidth of light is filtered, the color distribution of the illumination source is not altered, and this may be of practical importance for potential future studies in shift workers.
Collapse
Affiliation(s)
- Shadab A Rahman
- Fran and Lawrence Bloomberg Department of Obstetrics and Gynecology and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | | | | | | |
Collapse
|
360
|
Abstract
The circadian system orchestrates the temporal organization of many aspects of physiology, including metabolism, in synchrony with the 24 hr rotation of the Earth. Like the metabolic system, the circadian system is a complex feedback network that involves interactions between the central nervous system and peripheral tissues. Emerging evidence suggests that circadian regulation is intimately linked to metabolic homeostasis and that dysregulation of circadian rhythms can contribute to disease. Conversely, metabolic signals also feed back into the circadian system, modulating circadian gene expression and behavior. Here, we review the relationship between the circadian and metabolic systems and the implications for cardiovascular disease, obesity, and diabetes.
Collapse
|
361
|
Pilorz V, Steinlechner S, Oster H. Age and oestrus cycle-related changes in glucocorticoid excretion and wheel-running activity in female mice carrying mutations in the circadian clock genes Per1 and Per2. Physiol Behav 2008; 96:57-63. [PMID: 18786554 DOI: 10.1016/j.physbeh.2008.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 08/12/2008] [Accepted: 08/14/2008] [Indexed: 10/21/2022]
Abstract
In mammals, numerous physiological and behavioural functions are controlled by an endogenous circadian clock located in the suprachiasmatic nuclei (SCN). Within the SCN neurons, clock genes such as Per1 and Per2 interact in a molecular clockwork regulating the expression of hundreds of output genes. Through the timed release of humoral and neuronal signals, the rhythmicity of numerous biological processes, including reproductive behaviour, the oestrus cycle and endocrine parameters is controlled by the SCN. Mutations in Per genes in mice affect a wide array of physiological functions. Interestingly, most of these studies use only male animals, thus neglecting potential gender-specificities in clock function. In an attempt to broaden this perspective we have investigated the impact of Per1 and Per2 mutations on both glucocorticoid (GC) metabolite excretion and locomotor activity in relation to age and oestrus cycle stage of female mice. We show that the Per2 mutation dampens daily GC rhythms in young adult females. While locomotor activity does not vary along the different oestrus stages in Per2 mutant females, oestrus effects on GC excretion and locomotor activity are largely comparable between Per1 mutants and wild-type animals. 20 month-old, acyclic Per1 and wild-type females show reduced GC levels when compared to young adults while aged Per2 mutants retain their normal GC rhythmicity. Correlating with this, onsets of locomotor activity do not change with age in Per2 mutant females. Together, our data highlight specific roles for Per1 and Per2 in both the regulation of locomotor activity and endocrine functions in the female organism.
Collapse
Affiliation(s)
- Violetta Pilorz
- Department of Zoology, University of Veterinary Medicine Hannover, Hanover, Germany.
| | | | | |
Collapse
|
362
|
Teboul M, Guillaumond F, Gréchez-Cassiau A, Delaunay F. The nuclear hormone receptor family round the clock. Mol Endocrinol 2008; 22:2573-82. [PMID: 18653780 DOI: 10.1210/me.2007-0521] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Daily rhythms in behavior and physiology are observed in most organisms. These rhythms are controlled by internal self-sustained circadian ( approximately 24 h) clocks, which are present in virtually all cells. The 24-h oscillations are generated by a molecular mechanism entrained by external or internal time cues and which, in turn, regulate rhythmic outputs. In mammals, the circadian system comprises a master clock located in the hypothalamus that is directly entrained by the light-dark cycle and which coordinates the phases of local clocks in the periphery in order to ensure optimal timing of the physiology. Nuclear receptors (NRs) form a large family of transcription factors that include both ligand-inducible and orphan receptors. These NRs are key regulators of major biological processes such as reproduction, development, cell growth and death, inflammation, immunity, and metabolic homeostasis. Recent observations indicate that several NR signaling pathways play a critical role in central and peripheral circadian clocks. The REV-ERB/retinoid-related orphan receptor orphan NR subfamily regulates the expression of core clock genes and contributes to the robustness of the clock mechanism. Glucocorticoid and retinoic acid receptors are involved in the resetting of peripheral clocks. Several other NRs such as peroxisome proliferator-activated receptor-alpha, short heterodimer partner, and constitutive androstane receptor act as molecular links between clock genes and specific rhythmic metabolic outputs. The expanding functional links between NRs and circadian clocks open novel perspectives for understanding the hormonal regulation of the mammalian circadian system as well as for exploring the role of circadian clocks in the pathogenesis of NR-related diseases such as cancer and metabolic syndrome.
Collapse
Affiliation(s)
- Michèle Teboul
- Laboratoire de Biologie et Physiopathologie des Systèmes Intégrés, Université de Nice Sophia Antipolis, Centre National de la Recherche Scientifique, Nice, France
| | | | | | | |
Collapse
|
363
|
Droste SK, de Groote L, Atkinson HC, Lightman SL, Reul JMHM, Linthorst ACE. Corticosterone levels in the brain show a distinct ultradian rhythm but a delayed response to forced swim stress. Endocrinology 2008; 149:3244-53. [PMID: 18356272 DOI: 10.1210/en.2008-0103] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Circulating corticosterone levels show an ultradian rhythm resulting from the pulsatile release of glucocorticoid hormone by the adrenal cortex. Because the pattern of hormone availability to corticosteroid receptors is of functional significance, it is important to determine whether there is also a pulsatile pattern of corticosterone concentration within target tissues such as the brain. Furthermore, it is unclear whether measurements of plasma corticosterone levels accurately reflect corticosterone levels in the brain. Given that the hippocampus is a principal site of glucocorticoid action, we investigated in male rats hippocampal extracellular corticosterone concentrations under baseline and stress conditions using rapid-sampling in vivo microdialysis. We found that hippocampal extracellular corticosterone concentrations show a distinct circadian and ultradian rhythm. The PULSAR algorithm revealed that the pulse frequency of hippocampal corticosterone is 1.03 +/- 0.07 pulses/h between 0900 and 1500 h and is significantly higher between 1500 and 2100 h (1.31 +/- 0.05). The hippocampal corticosterone response to stress is stressor dependent but resumes a normal ultradian pattern rapidly after the termination of the stress response. Similar observations were made in the caudate putamen. Importantly, simultaneous measurements of plasma and hippocampal glucocorticoid levels showed that under stress conditions corticosterone in the brain peaks 20 min later than in plasma but clears concurrently, resulting in a smaller exposure of the brain to stress-induced hormone than would be predicted by plasma hormone concentrations. These data are the first to demonstrate that the ultradian rhythm of corticosterone is maintained over the blood-brain barrier and that tissue responses cannot be reliably predicted from the measurement of plasma corticosterone levels.
Collapse
Affiliation(s)
- Susanne K Droste
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Clinical Science South Bristol, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, United Kingdom
| | | | | | | | | | | |
Collapse
|
364
|
Revsin Y, van Wijk D, Saravia FE, Oitzl MS, De Nicola AF, de Kloet ER. Adrenal hypersensitivity precedes chronic hypercorticism in streptozotocin-induced diabetes mice. Endocrinology 2008; 149:3531-9. [PMID: 18420743 DOI: 10.1210/en.2007-1340] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies have demonstrated that type 1 diabetes is characterized by hypercorticism and lack of periodicity in adrenal hormone secretion. In the present study, we tested the hypothesis that hypercorticism is initiated by an enhanced release of ACTH leading subsequently to adrenocortical growth and increased output of adrenocortical hormones. To test this hypothesis, we used the streptozotocin (STZ)-induced diabetes mouse model and measured hypothalamic-pituitary-adrenal axis activity at different time points. The results showed that the expected rise in blood glucose levels induced by STZ treatment preceded the surge in corticosterone secretion, which took place 1 d after diabetes onset. Surprisingly, circulating ACTH levels were not increased and even below control levels until 1 d after diabetes onset and remained low until d 11 during hypercorticism. In response to ACTH (but not vasopressin), cultures of adrenal gland cells from 11-d diabetic mice secreted higher amounts of corticosterone than control cells. Real-time quantitative PCR revealed increased expression of melanocortin 2 and melanocortin 5 receptors in the adrenal glands at 2 and 11 d of STZ-induced diabetes. AVP mRNA expression in the paraventricular nucleus of the hypothalamus was increased, whereas hippocampal MR mRNA was decreased in 11-d diabetic animals. GR and CRH mRNAs remained unchanged in hippocampus and paraventricular nucleus of diabetic mice at all time points studied. These results suggest that sensitization of the adrenal glands to ACTH rather than an increase in circulating ACTH level is the primary event leading to hypercorticism in the STZ-induced diabetes mouse model.
Collapse
Affiliation(s)
- Yanina Revsin
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Einsteinweg 55, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
365
|
James FO, Boivin DB, Charbonneau S, Bélanger V, Cermakian N. Expression of clock genes in human peripheral blood mononuclear cells throughout the sleep/wake and circadian cycles. Chronobiol Int 2008; 24:1009-34. [PMID: 18075796 DOI: 10.1080/07420520701800736] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The rhythmic expression of circadian clock genes in the neurons of the suprachiasmatic nucleus (SCN) underlies the manifestation of endogenous circadian rhythmicity in behavior and physiology. Recent evidence demonstrating rhythmic clock gene expression in non-SCN tissues suggests that functional clocks exist outside the central circadian pacemaker of the brain. In this investigation, the nature of an oscillator in peripheral blood mononuclear cells (PBMCs) is evaluated by assessing clock gene expression throughout both a typical sleep/wake cycle (LD) and during a constant routine (CR). Six healthy men and women aged (mean+/-SEM) 23.7+/-1.6 yrs participated in this five-day investigation in temporal isolation. Core body temperature and plasma melatonin concentration were measured as markers of the central circadian pacemaker. The expression of HPER1, HPER2, and HBMAL1 was quantified in PBMCs sampled throughout an uninterrupted 72 h period. The core body temperature minimum and the midpoint of melatonin concentration measured during the CR occurred 2:17+/-0:20 and 3:24 +/-0:09 h before habitual awakening, respectively, and were well aligned to the sleep/wake cycle. HPER1 and HPER2 expression in PBMCs demonstrated significant circadian rhythmicity that peaked early after wake-time and was comparable under LD and CR conditions. HBMAL1 expression was more variable, and peaked in the middle of the wake period under LD conditions and during the habitual sleep period under CR conditions. For the first time, bi-hourly sampling over three consecutive days is used to compare clock gene expression in a human peripheral oscillator under different sleep/wake conditions.
Collapse
Affiliation(s)
- Francine O James
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
366
|
Affiliation(s)
- Charles W Wilkinson
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System (S-182 GRECC), 1660 South Columbian Way, Seattle, WA 98108, USA.
| |
Collapse
|
367
|
Valenzuela FJ, Torres-Farfan C, Richter HG, Mendez N, Campino C, Torrealba F, Valenzuela GJ, Serón-Ferré M. Clock gene expression in adult primate suprachiasmatic nuclei and adrenal: is the adrenal a peripheral clock responsive to melatonin? Endocrinology 2008; 149:1454-61. [PMID: 18187542 DOI: 10.1210/en.2007-1518] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The circadian production of glucocorticoids involves the concerted action of several factors that eventually allow an adequate adaptation to the environment. Circadian rhythms are controlled by the circadian timing system that comprises peripheral oscillators and a central rhythm generator located in the suprachiasmatic nucleus (SCN) of the hypothalamus, driven by the self-regulatory interaction of a set of proteins encoded by genes named clock genes. Here we describe the phase relationship between the SCN and adrenal gland for the expression of selected core clock transcripts (Per-2, Bmal-1) in the adult capuchin monkey, a New World, diurnal nonhuman primate. In the SCN we found a higher expression of Bmal-1 during the h of darkness (2000-0200 h) and Per-2 during daytime h (1400 h). The adrenal gland expressed clock genes in oscillatory fashion, with higher values for Bmal-1 during the day (1400-2000 h), whereas Per-2 was higher at nighttime (about 0200 h), resulting in a 9- to 12-h antiphase pattern. In the adrenal gland, the oscillation of clock genes was accompanied by rhythmic expression of a functional output, the steroidogenic enzyme 3beta-hydroxysteroid dehydrogenase. Furthermore, we show that adrenal explants maintained oscillatory expression of Per-2 and Bmal-1 for at least 36 h in culture. The acrophase of both transcripts, but not its overall expression along the incubation, was blunted by 100 nm melatonin. Altogether, these results demonstrate oscillation of clock genes in the SCN and adrenal gland of a diurnal primate and support an oscillation of clock genes in the adrenal gland that may be modulated by the neurohormone melatonin.
Collapse
Affiliation(s)
- F J Valenzuela
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla, Santiago 9, Chile
| | | | | | | | | | | | | | | |
Collapse
|
368
|
Richter HG, Torres-Farfan C, Garcia-Sesnich J, Abarzua-Catalan L, Henriquez MG, Alvarez-Felmer M, Gaete F, Rehren GE, Seron-Ferre M. Rhythmic expression of functional MT1 melatonin receptors in the rat adrenal gland. Endocrinology 2008; 149:995-1003. [PMID: 18039783 DOI: 10.1210/en.2007-1009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously demonstrated that melatonin is involved in the regulation of adrenal glucocorticoid production in diurnal primates through activation of MT1 membrane-bound melatonin receptors. However, whether melatonin has a similar role in nocturnal rodents remains unclear. Using an integrative approach, here we show that the adult rat adrenal gland expresses a functional MT1 melatonin receptor in a rhythmic fashion. We found that: 1) expression of the cognate mRNA encoding for the MT1 membrane-bound melatonin receptor, displaying higher levels in the day/night transition (1800-2200 h); 2) expression of the predicted 37-kDa MT1 polypeptide in immunoblots from adrenals collected at 2200 h but not 1000 h; 3) no expression of the MT2 melatonin receptor mRNA and protein; 4) specific high-affinity 2-[(125)I]iodomelatonin binding in membrane fractions and frozen sections from adrenals collected at 2200 h but not 0800 h (dissociation constant = 14.22 +/- 1.23 pm; maximal binding capacity = 0.88 +/- 0.02 fmol/mg protein); and 5) in vitro clock time-dependent inhibition of ACTH-stimulated corticosterone production by 1-100 nm melatonin, which was reversed by 1 microm luzindole (a melatonin membrane receptor antagonist). Our findings indicate not only expression but also high amplitude diurnal variation of functional MT1 melatonin receptors in the rat adrenal gland. It is conceivable that plasma melatonin may play a role to fine-tune corticosterone production in nocturnal rodents, probably contributing to the down slope of the corticosterone rhythm.
Collapse
Affiliation(s)
- Hans G Richter
- Instituto de Anatomia, Histologia, y Patologia, Facultad de Medicina, Universidad Austral de Chile, Casilla (P.O. Box) 567, Valdivia, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
369
|
Fahrenkrug J, Hannibal J, Georg B. Diurnal rhythmicity of the canonical clock genes Per1, Per2 and Bmal1 in the rat adrenal gland is unaltered after hypophysectomy. J Neuroendocrinol 2008; 20:323-9. [PMID: 18208549 DOI: 10.1111/j.1365-2826.2008.01651.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Circadian rhythms are generated by endogenous clocks in the central brain oscillator, the suprachiasmatic nucleus (SCN), and peripheral tissues. The molecular basis for the circadian clock consists of a number of genes and proteins that form transcriptional/translational feedback loops. Rhythmic expression of clock genes in the adrenal glands has previously been reported. Since the central clock in the SCN communicates with the adrenal glands via circadian release of adrenocorticotrophic hormone, we quantified the mRNAs for the canonical clock genes, Per1, Per2 and Bmal1 in the adrenal glands by real-time reverse transcription-polymerase chain reaction during a 24-h-cycle in normal and hypophysectomised rats. The mRNAs for all the three clock genes disclosed rhythmic oscillations with a period of 24 h and the phase did not differ between the hypophysectomised and intact rats. The expression pattern of Per1 and Bmal1 was in antiphase in both groups of animals. In situ hybridisation histochemistry using antisense RNA probes demonstrated that, at times of peak expression, mRNAs for all the three clock genes were expressed in the adrenal cortex with a particularly strong labelling in the zona reticularis. In accordance with the mRNA localisation, immunostaining for PER1 protein was visualised in cells of the adrenal cortex, being most intense in the inner zone. The immunostaining also demonstrated a translocation of PER1 protein from the cytoplasm to the nucleus during the daily cycle, supporting the existence of a core oscillator in the individual adrenal gland cells. Our findings support the existence of a circadian core oscillator in cells of the rat adrenal cortex and indicate that the activity of the oscillator is independent of SCN signalling via the pituitary gland. The adrenal cortical clock could be involved in rhythmic transcriptional activation of genes associated with hormonal biosynthesis, involved in gating of the response of the adrenal cortex to external cues or involved in apoptosis of adrenal cortical cells.
Collapse
Affiliation(s)
- J Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
370
|
Hazard D, Liaubet L, Sancristobal M, Mormède P. Gene array and real time PCR analysis of the adrenal sensitivity to adrenocorticotropic hormone in pig. BMC Genomics 2008; 9:101. [PMID: 18304307 PMCID: PMC2289818 DOI: 10.1186/1471-2164-9-101] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 02/27/2008] [Indexed: 11/27/2022] Open
Abstract
Background Variability in hypothalamic-pituitary-adrenal (HPA) axis activity has been shown to be influenced by genetic factors and related to great metabolic differences such as obesity. The aim of this study was to investigate molecular bases of genetic variability of the adrenal sensitivity to ACTH, a major source of variability, in Meishan (MS) and Large White (LW) pigs, MS being reported to exhibit higher basal cortisol levels, response to ACTH and fatness than LW. A pig cDNA microarray was used to identify changes in gene expression in basal conditions and in response to ACTH stimulation. Results Genotype and/or ACTH affected the expression of 211 genes related to transcription, cell growth/maintenance, signal transduction, cell structure/adhesion/extra cellular matrix and protein kinase/phosphatase activity. No change in the expression of known key regulator proteins of the ACTH signaling pathway or of steroidogenic enzymes was found. However, Mdh2, Sdha, Suclg2, genes involved in the tricarboxylic acid (TCA) pathway, were over-expressed in MS pigs. Higher TCA cycle activity in MS than in LW may thus result in higher steroidogenic activity and thus explain the typically higher cortisol levels in MS compared to LW. Moreover, up-regulation of Star and Ldlr genes in MS and/or in response to ACTH suggest that differences in the adrenal function between MS and LW may also involve mechanisms requisite for cholesterol supply to steroidogenesis. Conclusion The present study provides new potential candidate genes to explain genetic variations in the adrenal sensitivity to ACTH and better understand relationship between HPA axis activity and obesity.
Collapse
Affiliation(s)
- Dominique Hazard
- Laboratoire PsyNuGen, INRA UMR1286, CNRS UMR5226, Université de Bordeaux 2, 146 rue Léo-Saignat, F-33076 Bordeaux, France.
| | | | | | | |
Collapse
|
371
|
James FO, Cermakian N, Boivin DB. Circadian rhythms of melatonin, cortisol, and clock gene expression during simulated night shift work. Sleep 2008; 30:1427-36. [PMID: 18041477 DOI: 10.1093/sleep/30.11.1427] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES The synchronization of peripheral circadian oscillators in humans living on atypical sleep/wake schedules is largely unknown. In this night shift work simulation, we evaluate clock gene expression in peripheral blood mononuclear cells (PBMCs) relative to reliable markers of the central circadian pacemaker. DESIGN Participants were placed on a 10-hr delayed sleep/wake schedule simulating nighttime work followed by a daytime sleep episode. SETTING Baseline, intermediate and final circadian evaluations were performed in the temporal isolation laboratory. PARTICIPANTS Five healthy candidates, 18-30 years. INTERVENTIONS Polychromatic white light of (mean +/-SEM) 6,036 +/-326 lux (approximately 17,685 +/-955 W/m2) during night shifts; dim light exposure after each night shift; an 8-hr sleep/darkness episode beginning 2 hrs after the end of each night shift. MEASUREMENTS Melatonin and cortisol in plasma; clock genes HPER1, HPER2 and HBMAL1 RNA in PBMCs. RESULTS Following 9 days on the night schedule, hormonal rhythms were adapted to the shifted schedule. HPER1 and HPER2 expression in PBMCs displayed significant circadian rhythmicity, which was in a conventional relationship with the shifted sleep/wake schedule. Changes in the pattern of clock gene expression were apparent as of 3 days on the shifted sleep/wake schedule. CONCLUSIONS This preliminary study is the first documentation of the effects of a shifted sleep/wake schedule on the circadian expression of both peripheral circadian oscillators in PBMCs and centrally-driven hormonal rhythms. In light of evidence associating clock gene expression with tissue function, the study of peripheral circadian oscillators has important implications for understanding medical disorders affecting night shift workers.
Collapse
Affiliation(s)
- Francine O James
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Montréal, Québec, Canada
| | | | | |
Collapse
|
372
|
Ni YH, Wu T, Wang L, Xia LQ, Zhang DP. [Advances in interactions between glucocorticoid hormones and circadian gene expression]. YI CHUAN = HEREDITAS 2008; 30:135-41. [PMID: 18244916 DOI: 10.3724/sp.j.1005.2008.00135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Circadian rhythm, which is internally generated by cell autonomous biological clocks, has been greatly concerned in recent years. This circadian system in mammals is composed of a master pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus and slave clocks in most peripheral cell types. The clock genes and their coding proteins compose the feed-back loops of the circadian system. Light and food are two major Zeitgebers to synchronize circadian clocks. Light can induce clock genes expression and glucocorticoids release in the adrenal gland, while glucocorticoids can slow down the food-induced phase-shifting of peripheral circadian oscillators, suggesting that a close relationships may exist between glucocorticoids and the circadian gene expression. This article briefly reviews the recent progress in the interactions between them and suggests the direction of future researches.
Collapse
Affiliation(s)
- Yin-Hua Ni
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | | | | | | | | |
Collapse
|
373
|
Loh DH, Abad C, Colwell CS, Waschek JA. Vasoactive intestinal peptide is critical for circadian regulation of glucocorticoids. Neuroendocrinology 2008; 88:246-55. [PMID: 18562786 PMCID: PMC2590621 DOI: 10.1159/000140676] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 02/21/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Circadian control of behavior and physiology is a central characteristic of all living organisms. The master clock in mammals resides in the hypothalamus, where the suprachiasmatic nucleus (SCN) synchronizes daily rhythms. A variety of recent evidence indicates that the neuropeptide vasoactive intestinal peptide (VIP) is critical for normal functioning of the SCN. The aim of our study was to examine the possible role of VIP in driving circadian rhythms in the hypothalamic-pituitary-adrenal axis. METHODS Circulating ACTH and corticosterone concentrations were determined by round-the-clock sampling under diurnal and circadian conditions. The responsive aspects of the hypothalamic-pituitary-adrenal axis were tested by application of acute stress by footshock and light. RESULTS We demonstrate that the circadian rhythms in ACTH and corticosterone are lost in VIP-deficient mice. The ability of light to induce a corticosterone response was also compromised in the mutant mice, as was photic induction of Per1 in the adrenal glands. In contrast, the acute stress response was apparently unaltered by the loss of VIP. CONCLUSION Thus, our data demonstrate that VIP is essential for the circadian regulation of an otherwise intact hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Dawn H Loh
- Semel Institute for Neuroscience, Mental Retardation Research Center, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Calif 90024-1759, USA
| | | | | | | |
Collapse
|
374
|
Seron-Ferre M, Valenzuela GJ, Torres-Farfan C. Circadian clocks during embryonic and fetal development. ACTA ACUST UNITED AC 2007; 81:204-14. [PMID: 17963275 DOI: 10.1002/bdrc.20101] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Circadian rhythmicity is a fundamental characteristic of organisms, which helps ensure that vital functions occur in an appropriate and precise temporal sequence and in accordance with cyclic environmental changes. Living beings are endowed with a system of biological clocks that measure time on a 24-hr basis, termed the circadian timing system. In mammals, the system is organized as a master clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus, commanding peripheral clocks located in almost every tissue of the body. At the cell level, interlocking transcription/translation feedback loops of the genes Bmal-1, Clock, Per1-2, and Cry1-2, named clock genes, and their protein products results in circadian oscillation of clock genes and of genes involved in almost every cellular function. During gestation, the conceptus follows a complex and dynamic program by which it is simultaneously fit to develop and live in a circadian environment provided by its mother and to prepare for the very different environment that it will experience after birth. It has been known for a number of years that the mother tells the fetus the time of day and season of the year, and that the fetus uses this information to set the phase of fetal and neonatal circadian rhythms. There is evidence that the maternal rhythm of melatonin is one of the time signals to the fetus. In the last few years, the study of the development of the circadian system has turned to the investigation of the oscillatory expression of clock genes and their possible role in development, and to answering questions on the organization of the fetal circadian system. Emerging evidence shows that clock genes are expressed in the oocyte and during early and late development in embryo/fetal organs in the rat and in a fetal primate. The data available raise the intriguing possibility that the fetal SCN and fetal tissues may be peripheral clocks commanded by separate maternal signals. The rapid methodological and conceptual advances on chronobiology may help to unravel how the developing embryo and fetus faces time in this plastic period of life.
Collapse
Affiliation(s)
- Maria Seron-Ferre
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM) Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | | | |
Collapse
|
375
|
Lemos DR, Goodspeed L, Tonelli L, Antoch MP, Ojeda SR, Urbanski HF. Evidence for circadian regulation of activating transcription factor 5 but not tyrosine hydroxylase by the chromaffin cell clock. Endocrinology 2007; 148:5811-21. [PMID: 17823250 DOI: 10.1210/en.2007-0610] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In mammals, adrenal medulla chromaffin cells constitute a fundamental component of the sympathetic nervous system outflow, producing most of the circulating adrenaline. We recently found that the rhesus monkey adrenal gland expresses several genes in a 24-h rhythmic pattern, including TH (the rate-limiting enzyme in catecholamine synthesis) and Atf5 (a transcription factor involved in apoptosis and neural cell differentiation) together with the core-clock genes. To examine whether these core-clock genes play a role in adrenal circadian function, we exposed rat pheochromocytoma PC12 cells to a serum shock and found that it triggered rhythmic oscillation of the clock genes rBmal1, rPer1, rRev-erbalpha, and rCry1 and induced the circadian expression of Atf5 but not TH. Furthermore, we found that the CLOCK/brain and muscle Arnt-like protein-1 (BMAL1) heterodimer could regulate Atf5 expression by binding to an E-box motif and repressing activity of its promoter. The physiological relevance of this interaction was evident in Bmal1 -/- mice, in which blunted circadian rhythm of Atf5 mRNA was observed in the liver, together with significantly higher expression levels in both liver and adrenal glands. Although we found no compelling evidence for rhythmic expression of TH in chromaffin cells being regulated by an intrinsic molecular clock mechanism, the Atf5 results raise the possibility that other aspects of chromaffin cell physiology, such as cell survival and cell differentiation, may well be intrinsically regulated.
Collapse
Affiliation(s)
- Dario R Lemos
- Division of Neuroscience, Oregon National Primate Research Center, 505 Northwest 185th Avenue, Beaverton, OR 97006, USA
| | | | | | | | | | | |
Collapse
|
376
|
Reilly DF, Curtis AM, Cheng Y, Westgate EJ, Rudic RD, Paschos G, Morris J, Ouyang M, Thomas SA, FitzGerald GA. Peripheral circadian clock rhythmicity is retained in the absence of adrenergic signaling. Arterioscler Thromb Vasc Biol 2007; 28:121-6. [PMID: 17975121 DOI: 10.1161/atvbaha.107.152538] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The incidence of heart attack and stroke undergo diurnal variation. Molecular clocks have been described in the heart and the vasculature; however it is largely unknown how the suprachiasmatic nucleus (SCN) entrains these peripheral oscillators. METHODS AND RESULTS Norepinephrine and epinephrine, added to aortic smooth muscle cells (ASMCs) in vitro, altered Per1, E4bp4, and dbp expression and altered the observed oscillations in clock gene expression. However, oscillations of Per1, E4bp4, dbp, and Per2 were preserved ex vivo in the aorta, heart, and liver harvested from dopamine beta-hydroxylase knockout mice (Dbh-/-) that cannot synthesize either norepinephrine or epinephrine. Furthermore, clock gene oscillations in heart, liver, and white adipose tissue phase shifted identically in Dbh-/- mice and in Dbh+/- controls in response to daytime restriction of feeding. Oscillation of clock genes was similarly preserved ex vivo in tissues from Dbh+/- and Dbh-/- chronically treated with both propranolol and terazosin, thus excluding compensation by dopamine in Dbh-/- mice. CONCLUSIONS Although adrenergic signaling can influence circadian timing in vitro, peripheral circadian rhythmicity is retained despite its ablation in vivo.
Collapse
Affiliation(s)
- Dermot F Reilly
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
377
|
Sewer MB, Dammer EB, Jagarlapudi S. Transcriptional regulation of adrenocortical steroidogenic gene expression. Drug Metab Rev 2007; 39:371-88. [PMID: 17786627 DOI: 10.1080/03602530701498828] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
By serving as ligands for nuclear and plasma membrane receptors, steroid hormones are key regulators of a diverse array of physiological processes. These hormones are synthesized from cholesterol in tissues such as the adrenal cortex, ovaries, testes, and placenta. Because steroid hormones control the expression of numerous genes, steroidogenic cells utilize multiple mechanisms that ensure tight control of the synthesis of these molecules. This review will give an overview of the molecular mechanisms by which the expression of steroidogenic genes is regulated in the human adrenal cortex.
Collapse
Affiliation(s)
- Marion B Sewer
- School of Biology and Parker H. Petit Institute for Bioengineering & Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA.
| | | | | |
Collapse
|
378
|
Oster H, Damerow S, Hut RA, Eichele G. Transcriptional profiling in the adrenal gland reveals circadian regulation of hormone biosynthesis genes and nucleosome assembly genes. J Biol Rhythms 2007; 21:350-61. [PMID: 16998155 DOI: 10.1177/0748730406293053] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The master circadian pacemaker of the suprachiasmatic nuclei coordinates behavioral and physiological rhythms via synchronization of subordinate peripheral oscillators in the central nervous system and organs throughout the body. Among these organs, the adrenal glands hold a prime position because of their regulatory influence on numerous physiological functions via rhythmic secretion of catecholamines and corticoid hormones into the bloodstream. In this report, the authors perform whole genome microarray hybridization to characterize the circadian transcriptome of the murine adrenal. They show that ~5% of the mouse genome is under circadian control in this gland. Using gene ontology analysis, they identify classes of transcripts that may synchronize adrenal hormone production. The authors' expression profiling also revealed that multiple histone genes implicated in either DNA replication or transcriptional regulation are clock controlled, suggesting a novel way by which the circadian clock may regulate the chromatin state.
Collapse
Affiliation(s)
- Henrik Oster
- Max Planck Institute of Biophysical Chemistry, Göttingen, Germany.
| | | | | | | |
Collapse
|
379
|
Torres-Farfan C, Valenzuela FJ, Ebensperger R, Méndez N, Campino C, Richter HG, Valenzuela GJ, Serón-Ferré M. Circadian cortisol secretion and circadian adrenal responses to ACTH are maintained in dexamethasone suppressed capuchin monkeys (Cebus apella). Am J Primatol 2007; 70:93-100. [PMID: 17620278 DOI: 10.1002/ajp.20461] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We tested the hypothesis that the capuchin monkey adrenal (Cebus apella) gland has oscillatory properties that are independent of adrenocorticotropic hormone (ACTH) by exploring under ACTH suppression by dexamethasone: (i) maintenance of a circadian rhythm of plasma cortisol and (ii) clock time dependency of plasma cortisol response to exogenous ACTH. The capuchin monkey had a clear ACTH and plasma cortisol rhythm. Dexamethasone treatment resulted in low non-rhythmic ACTH levels and decreased cortisol to 1/10 of control values; nevertheless, the circadian rhythm of plasma cortisol persisted. We found that cortisol response to exogenous ACTH was clock time-dependent. The maximal response to ACTH occurred at the acrophase of the cortisol rhythm (0800 h). These results suggest that the capuchin monkey adrenal cortex may possess intrinsic oscillatory properties that participate in the circadian rhythm of adrenal cortisol secretion and in the circadian cortisol response to ACTH.
Collapse
Affiliation(s)
- Claudia Torres-Farfan
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|