351
|
Seo DR, Kim SY, Kim KY, Lee HG, Moon JH, Lee JS, Lee SH, Kim SU, Lee YB. Cross talk between P2 purinergic receptors modulates extracellular ATP-mediated interleukin-10 production in rat microglial cells. Exp Mol Med 2008; 40:19-26. [PMID: 18305394 DOI: 10.3858/emm.2008.40.1.19] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Previously we demonstrated that ATP released from LPS-activated microglia induced IL-10 expression in a process involving P2 receptors, in an autocrine fashion. Therefore, in the present study we sought to determine which subtype of P2 receptor was responsible for the modulation of IL-10 expression in ATP-stimulated microglia. We found that the patterns of IL-10 production were dose-dependent (1, 10, 100, 1,000 microM) and bell-shaped. The concentrations of ATP, ATP-gammaS, ADP, and ADP-betaS that showed maximal IL-10 release were 100, 10, 100, and 100 microM respectively. The rank order of agonist potency for IL-10 production was 2'-3'-O-(4-benzoyl)-benzoyl ATP (BzATP)=dATP>2-methylthio-ADP (2-meSADP). On the other hand, 2-methylthio-ATP (2-meSATP), alpha,beta-methylene ATP (alpha,beta-meATP), UTP, and UDP did not induce the release of IL-10 from microglia. Further, we obtained evidence of crosstalk between P2 receptors, in a situation where intracellular Ca(2+) release and/or cAMP-activated PKA were the main contributors to extracellular ATP-(or ADP)-mediated IL-10 expression, and IL-10 production was down-regulated by either MRS2179 (a P2Y(1) antagonist) or 5'-AMPS (a P2Y(11) antagonist), indicating that both the P2Y(1) and P2Y(11) receptors are major receptors involved in IL-10 expression. In addition, we found that inhibition of IL-10 production by high concentrations of ATP-gammaS (100 microM) was restored by TNP-ATP (an antagonist of the P2X(1), P2X(3), and P2X(4) receptors), and that IL-10 production by 2-meSADP was restored by 2meSAMP (a P2Y(12) receptor antagonist) or pertussis toxin (PTX; a Gi protein inhibitor), indicating that the P2X(1), P2X(3), P2X(4)receptor group, or the P2Y(12) receptor, negatively modulate the P2Y(11) receptor or the P2Y(1) receptor, respectively.
Collapse
Affiliation(s)
- Dong Reoyl Seo
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 443-721, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Atterbury-Thomas AE, Leon C, Gachet C, Forsythe ID, Evans RJ. Contribution of P2Y(1) receptors to ADP signalling in mouse spinal cord cultures. Neurosci Lett 2008; 435:190-3. [PMID: 18343032 PMCID: PMC2330064 DOI: 10.1016/j.neulet.2008.02.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/08/2008] [Accepted: 02/13/2008] [Indexed: 11/23/2022]
Abstract
Mixed neuronal and glial cell spinal cord cultures from neonates express ADP sensitive P2Y(1,12&13) receptors. ADP (10microM) evoked increases in intracellular calcium that were essentially abolished by the P2Y(1) receptor antagonist MRS2179 (10microM), responses were also absent in preparations from P2Y(1) receptor deficient mice however UTP (100microM) evoked calcium rises were unaffected. ADP also evoked a robust increase in extracellular signal-regulated protein kinase (ERK) phosphorylation that was of similar magnitude in the cultures from wild type and P2Y(1) receptor deficient mice. These results suggest that ADP acts through P2Y(1) receptors to mediate an increase in intracellular calcium but not to stimulate ERK phosphorylation in the spinal cord.
Collapse
Affiliation(s)
- Amelia E. Atterbury-Thomas
- Department of Cell Physiology & Pharmacology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, UK
| | - Catherine Leon
- INSERM, U311, Establissment Francais du Sang (EFS), Alsace, 67065 Strasbourg Cedex, France
| | - Christian Gachet
- INSERM, U311, Establissment Francais du Sang (EFS), Alsace, 67065 Strasbourg Cedex, France
| | - Ian D. Forsythe
- Department of Cell Physiology & Pharmacology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, UK
| | - Richard J. Evans
- Department of Cell Physiology & Pharmacology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, UK
| |
Collapse
|
353
|
Rodríguez-Miranda E, Buffone MG, Edwards SE, Ord TS, Lin K, Sammel MD, Gerton GL, Moss SB, Williams CJ. Extracellular adenosine 5'-triphosphate alters motility and improves the fertilizing capability of mouse sperm. Biol Reprod 2008; 79:164-71. [PMID: 18401012 DOI: 10.1095/biolreprod.107.065565] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Extracellular adenosine 5'-triphosphate (ATPe) treatment of human sperm has been implicated in improving in vitro fertilization (IVF) results. We used the mouse model to investigate mechanisms of action of ATPe on sperm. ATPe treatment significantly enhanced IVF success as indicated by both rate of pronuclear formation and percentage cleavage to the 2-cell stage. However, ATPe did not increase the percentage of sperm undergoing spontaneous acrosomal exocytosis nor change the pattern of protein tyrosine phosphorylation normally observed in capacitated sperm. ATPe altered sperm motility parameters; in particular, both noncapacitated and capacitated sperm swam faster and straighter. The percentage of hyperactivated sperm did not increase in capacitated ATPe-treated sperm compared to control sperm. ATPe induced a rapid increase in the level of intracellular calcium that was inhibited by two distinct P2 purinergic receptor inhibitors, confirming that these receptors have an ionotropic role in sperm function. The observed motility changes likely explain, in part, the improved fertilizing capability when ATPe-treated sperm were used in IVF procedures and suggest a mechanism by which ATPe treatment may be beneficial for artificial reproductive techniques.
Collapse
Affiliation(s)
- Esmeralda Rodríguez-Miranda
- Department of Obstetrics & Gynecology, Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
354
|
Rojas-Mayorquín AE, Torres-Ruíz NM, Ortuño-Sahagún D, Gudiño-Cabrera G. Microarray analysis of striatal embryonic stem cells induced to differentiate by ensheathing cell conditioned media. Dev Dyn 2008; 237:979-94. [DOI: 10.1002/dvdy.21489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
355
|
Buvinic S, Bravo-Zehnder M, Boyer JL, Huidobro-Toro JP, González A. Nucleotide P2Y1 receptor regulates EGF receptor mitogenic signaling and expression in epithelial cells. J Cell Sci 2008; 120:4289-301. [PMID: 18057028 DOI: 10.1242/jcs.03490] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) function is transregulated by a variety of stimuli, including agonists of certain G-protein-coupled receptors (GPCRs). One of the most ubiquitous GPCRs is the P2Y(1) receptor (P2RY1, hereafter referred to as P2Y(1)R) for extracellular nucleotides, mainly ADP. Here, we show in tumoral HeLa cells and normal FRT epithelial cells that P2Y(1)R broadcasts mitogenic signals by transactivating the EGFR. The pathway involves PKC, Src and cell surface metalloproteases. Stimulation of P2Y(1)R for as little as 15-60 minutes triggers mitogenesis, mirroring the half-life of extracellular ADP. Apyrase degradation of extracellular nucleotides and drug inhibition of P2Y(1)R, both reduced basal cell proliferation of HeLa and FRT cells, but not MDCK cells, which do not express P2Y(1)R. Thus, cell-released nucleotides constitute strong mitogenic stimuli, which act via P2Y(1)R. Strikingly, MDCK cells ectopically expressing P2Y(1)R display a highly proliferative phenotype that depends on EGFR activity associated with an increased level of EGFR, thus disclosing a novel aspect of GPCR-mediated regulation of EGFR function. These results highlight a role of P2Y(1)R in EGFR-dependent epithelial cell proliferation. P2Y(1)R could potentially mediate both trophic stimuli of basally released nucleotides and first-line mitogenic stimulation upon tissue damage. It could also contribute to carcinogenesis and serve as target for antitumor therapies.
Collapse
Affiliation(s)
- Sonja Buvinic
- Centro de Regulación Celular y Patología JV Luco, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330033, Santiago, Chile
| | | | | | | | | |
Collapse
|
356
|
G protein-coupled receptor P2Y5 and its ligand LPA are involved in maintenance of human hair growth. Nat Genet 2008; 40:329-34. [PMID: 18297070 DOI: 10.1038/ng.84] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 11/27/2007] [Indexed: 01/08/2023]
Abstract
Hypotrichosis simplex is a group of nonsyndromic human alopecias. We mapped an autosomal recessive form of this disorder to chromosome 13q14.11-13q21.33, and identified homozygous truncating mutations in P2RY5, which encodes an orphan G protein-coupled receptor. Furthermore, we identified oleoyl-L-alpha-lysophosphatidic acid (LPA), a bioactive lipid, as a ligand for P2Y5 in reporter gene and radioligand binding experiments. Homology and studies of signaling transduction pathways suggest that P2Y5 is a member of a subgroup of LPA receptors, which also includes LPA4 and LPA5. Our study is the first to implicate a G protein-coupled receptor as essential for and specific to the maintenance of human hair growth. This finding may provide opportunities for new therapeutic approaches to the treatment of hair loss in humans.
Collapse
|
357
|
The inflammatory effects of UDP-glucose in N9 microglia are not mediated by P2Y14 receptor activation. Purinergic Signal 2008; 4:73-8. [PMID: 18368535 DOI: 10.1007/s11302-008-9095-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 01/14/2008] [Indexed: 10/22/2022] Open
Abstract
In this study we evaluated the functionality and inflammatory effects of P2Y14 receptors in murine N9 microglia. The selective P2Y14 receptor agonist UDP-glucose (UDPG) derived from microbial sources dose dependently stimulated expression of cyclooxygenase-2 and inducible nitric oxide synthase, and potentiated the effects of bacterial lipopolysaccharide on nitric oxide production. However, another selective P2Y14 receptor agonist, UDP-galactose, did not affect these endpoints either alone or in combination with lipopolysaccharide. Interestingly, synthetic UDPG also had no detectable pro-inflammatory effects, although P2Y14 receptors are both expressed and functional in N9 microglia. While synthetic UDPG decreased levels of phosphorylated cyclic AMP response element binding protein, an effect that was blocked by pertussis toxin, the pro-inflammatory effects of microbial-derived UDPG were insensitive to pertussis toxin. These data suggest that the pro-inflammatory effects of microbial-derived UDPG are independent of P2Y14 receptors and imply that microbial-derived contaminants in the UDPG preparation may be involved in the observed inflammatory effects.
Collapse
|
358
|
Gergs U, Boknik P, Schmitz W, Simm A, Silber RE, Neumann J. A positive inotropic effect of ATP in the human cardiac atrium. Am J Physiol Heart Circ Physiol 2008; 294:H1716-23. [PMID: 18263715 DOI: 10.1152/ajpheart.00945.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied contractile effects in isolated electrically driven (1 Hz) atrial preparations from patients undergoing cardiac bypass surgery. ATP concentration dependently (10, 30, and 100 microM) and rapidly decreased force of contraction (negative inotropic effect, NIE) and thereafter more slowly increased force of contraction. The maximum positive inotropic effect (PIE) at 100 microM ATP amounted to 152% of the predrug value (n = 9) and was stable and could be washed out fast and completely. The PIE did not affect time parameters of contraction (time to peak tension and time of relaxation). Moreover, a similar NIE and PIE were noted with adenosine 5'-O-(2-thiotriphosphate) (100 microM). In contrast 2-methyl-thio-ATP did not exert a NIE but only a PIE. In a second set of experiments, preparations were first incubated for 30 min with purinoreceptor antagonists and, in their continuous presence, 100 microM ATP was applied. However, the PIE and NIE of ATP could neither be blocked with suramin (100 and 500 microM), pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (50 microM), nor reactive blue 2 (30, 100, and 500 microM), which are known blockers for subtypes of P(2) receptors, or 1,3-dipropyl-cyclopentvl-xanthine (1 and 10 microM), a subtype (A(1) adenosine) P(1) receptor blocker. Likewise, the inhibitor of phospholipase C (PLC) activity (U-73122) and the inhibitor of adenylate cyclase activity (SQ-022563) (10 microM each) failed to affect the NIE and the PIE of ATP. We tentatively suggest that the PIE of ATP might be mediated via P(2X4)-like receptors. In summary, we describe a novel biphasic effect of ATP on force contraction in the isolated human atrium. It is conceivable that ATP plays a physiological role in the human heart, for instance, after cardiac injury to sustain contractility.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06112 Halle, Germany
| | | | | | | | | | | |
Collapse
|
359
|
Zhu Y, Ehre C, Abdullah LH, Sheehan JK, Roy M, Evans CM, Dickey BF, Davis CW. Munc13-2-/- baseline secretion defect reveals source of oligomeric mucins in mouse airways. J Physiol 2008; 586:1977-92. [PMID: 18258655 DOI: 10.1113/jphysiol.2007.149310] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Since the airways of control mouse lungs contain few alcian blue/periodic acid-Schiff's (AB/PAS)+ staining 'goblet' cells in the absence of an inflammatory stimulus such as allergen sensitization, it was surprising to find that the lungs of mice deficient for the exocytic priming protein Munc13-2 stain prominently with AB/PAS under control conditions. Purinergic agonists (ATP/UTP) stimulated release of accumulated mucins in the Munc13-2-deficient airways, suggesting that the other airway isoform, Munc13-4, supports agonist-regulated secretion. Notably, however, not all of the mucins in Munc13-2-deficient airways were secreted, suggesting a strict Munc13-2 priming requirement for a population of secretory granules. AB/PAS+ staining of Munc13-2-deficient airways was not caused by an inflammatory, metaplastic-like response: bronchial-alveolar lavage leucocyte numbers, Muc5ac and Muc5b mRNA levels, and Clara cell ultrastructure (except for increased secretory granule numbers) were all normal. A Muc5b-specific antibody indicated the presence of this mucin in Clara cells of wildtype (WT) control mice, and increased amounts in Munc13-2-deficient mice. Munc13-2 therefore appears to prime a regulated, baseline secretory pathway, such that Clara cell Muc5b, normally secreted soon after synthesis, accumulates in the gene-deficient animals, making them stain AB/PAS+. The defective priming phenotype is widespread, as goblet cells of several mucosal tissues appear engorged and Clara cells accumulated Clara cell secretory protein (CCSP) in Munc13-2-deficient mice. Additionally, because in the human airways, MUC5AC localizes to the surface epithelium and MUC5B to submucosal glands, the finding that Muc5b is secreted by Clara cells under control conditions may indicate that it is also secreted tonically from human bronchiolar Clara cells.
Collapse
Affiliation(s)
- Yunxiang Zhu
- Cystic Fibrosis/Pulmonary Research & Treatment Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | | | | | | | | | | | | | | |
Collapse
|
360
|
Mize GJ, Harris JE, Takayama TK, Kulman JD. Regulated expression of active biotinylated G-protein coupled receptors in mammalian cells. Protein Expr Purif 2008; 57:280-9. [PMID: 18042400 DOI: 10.1016/j.pep.2007.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 09/18/2007] [Accepted: 09/19/2007] [Indexed: 11/16/2022]
Affiliation(s)
- Gregory J Mize
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
361
|
Ecke D, Hanck T, Tulapurkar ME, Schäfer R, Kassack M, Stricker R, Reiser G. Hetero-oligomerization of the P2Y11 receptor with the P2Y1 receptor controls the internalization and ligand selectivity of the P2Y11 receptor. Biochem J 2008; 409:107-16. [PMID: 17824841 DOI: 10.1042/bj20070671] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nucleotides signal through purinergic receptors such as the P2 receptors, which are subdivided into the ionotropic P2X receptors and the metabotropic P2Y receptors. The diversity of functions within the purinergic receptor family is required for the tissue-specificity of nucleotide signalling. In the present study, hetero-oligomerization between two metabotropic P2Y receptor subtypes is established. These receptors, P2Y1 and P2Y11, were found to associate together when co-expressed in HEK293 cells. This association was detected by co-pull-down, immunoprecipitation and FRET (fluorescence resonance energy transfer) experiments. We found a striking functional consequence of the interaction between the P2Y11 receptor and the P2Y1 receptor where this interaction promotes agonist-induced internalization of the P2Y11 receptor. This is remarkable because the P2Y11 receptor by itself is not able to undergo endocytosis. Co-internalization of these receptors was also seen in 1321N1 astrocytoma cells co-expressing both P2Y11 and P2Y1 receptors, upon stimulation with ATP or the P2Y1 receptor-specific agonist 2-MeS-ADP. 1321N1 astrocytoma cells do not express endogenous P2Y receptors. Moreover, in HEK293 cells, the P2Y11 receptor was found to functionally associate with endogenous P2Y1 receptors. Treatment of HEK293 cells with siRNA (small interfering RNA) directed against the P2Y1 receptor diminished the agonist-induced endocytosis of the heterologously expressed GFP-P2Y11 receptor. Pharmacological characteristics of the P2Y11 receptor expressed in HEK293 cells were determined by recording Ca2+ responses after nucleotide stimulation. This analysis revealed a ligand specificity which was different from the agonist profile established in cells expressing the P2Y11 receptor as the only metabotropic nucleotide receptor. Thus the hetero-oligomerization of the P2Y1 and P2Y11 receptors allows novel functions of the P2Y11 receptor in response to extracellular nucleotides.
Collapse
Affiliation(s)
- Denise Ecke
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
362
|
Lorier AR, Lipski J, Housley GD, Greer JJ, Funk GD. ATP sensitivity of preBötzinger complex neurones in neonatal rat in vitro: mechanism underlying a P2 receptor-mediated increase in inspiratory frequency. J Physiol 2008; 586:1429-46. [PMID: 18174215 DOI: 10.1113/jphysiol.2007.143024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
P2 receptor (R) signalling plays an important role in the central ventilatory response to hypoxia. The frequency increase that results from activation of P2Y(1)Rs in the preBötzinger complex (preBötC; putative site of inspiratory rhythm generation) may contribute, but neither the cellular nor ionic mechanism(s) underlying these effects are known. We applied whole-cell recording to rhythmically-active medullary slices from neonatal rat to define, in preBötC neurones, the candidate cellular and ionic mechanisms through which ATP influences rhythm, and tested the hypothesis that putative rhythmogenic preBötC neurones are uniquely sensitive to ATP. ATP (1 mm) evoked inward currents in all non-respiratory neurones and the majority of respiratory neurons, which included inspiratory, expiratory and putative rhythmogenic inspiratory neurones identified by sensitivity to substance P (1 microM) and DAMGO (50 microM) or by voltage-dependent pacemaker-like activity. ATP current densities were similar in all classes of preBötC respiratory neurone. Reversal potentials and input resistance changes for ATP currents in respiratory neurones suggested they resulted from either inhibition of a K(+) channel or activation of a mixed cationic conductance. The P2YR agonist 2MeSADP (1 mm) evoked only the latter type of current in inspiratory and pacemaker-like neurones. In summary, putative rhythmogenic preBötC neurones were sensitive to ATP. However, this sensitivity was not unique; ATP evoked similar currents in all types of preBötC respiratory neurone. The P2Y(1)R-mediated frequency increase is therefore more likely to reflect activation of a mixed cationic conductance in multiple types of preBötC neurone than excitation of one, highly sensitive group.
Collapse
Affiliation(s)
- A R Lorier
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | | | | | | | | |
Collapse
|
363
|
Abstract
Adenine-based purines, such as adenosine and ATP, are ubiquitous molecules that, in addition to their roles in metabolism, act as modulators of neurotransmitter release through activation of presynaptic P1 purinoceptors or adenosine receptors (activated by adenosine) and P2 receptors (activated by nucleotides). Of the latter, the P2Y receptors are G protein-coupled, whereas the P2X receptors are ligand-gated ion channels and not covered in this review.
Collapse
MESH Headings
- Adenosine/pharmacology
- Adenosine/physiology
- Animals
- Humans
- Neurotransmitter Agents/metabolism
- Purines/metabolism
- Receptor, Adenosine A1/drug effects
- Receptor, Adenosine A1/metabolism
- Receptors, Adenosine A2/drug effects
- Receptors, Adenosine A2/metabolism
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/physiology
- Receptors, Purinergic P1/drug effects
- Receptors, Purinergic P1/physiology
- Receptors, Purinergic P2/drug effects
- Receptors, Purinergic P2/physiology
Collapse
Affiliation(s)
- Jorge Gonçalves
- Department of Pharmacology, University of Porto, Porto, Portugal.
| | | |
Collapse
|
364
|
Köles L, Gerevich Z, Oliveira JF, Zadori ZS, Wirkner K, Illes P. Interaction of P2 purinergic receptors with cellular macromolecules. Naunyn Schmiedebergs Arch Pharmacol 2007; 377:1-33. [DOI: 10.1007/s00210-007-0222-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 11/12/2007] [Indexed: 02/04/2023]
|
365
|
Heinrich A, Kittel A, Csölle C, Sylvester Vizi E, Sperlágh B. Modulation of neurotransmitter release by P2X and P2Y receptors in the rat spinal cord. Neuropharmacology 2007; 54:375-86. [PMID: 18063000 DOI: 10.1016/j.neuropharm.2007.10.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/28/2007] [Accepted: 10/15/2007] [Indexed: 12/22/2022]
Abstract
In this study, the P2 receptor-mediated modulation of [3H]glutamate and [3H]noradrenaline release were examined in rat spinal cord slices. Adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and 2-methylthioadenosine 5'-diphosphate (2-MeSADP) decreased the electrical stimulation-evoked [3H]glutamate efflux with the following order of potency: ADP>2-MeSADP>ATP. The effect of ATP was antagonized by suramin (300microM), the P2Y12,13 receptor antagonist 2-methylthioadenosine 5'-monophosphate (2-MeSAMP, 10microM), and partly by 4-[[4-Formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-2-pyridinyl]azo]-1,3-benzenedisulfonic acid (PPADS, 30microM) and the P2Y1 receptor antagonist 2'-deoxy-N6-methyladenosine 3',5'-diphosphate (MRS 2179, 10muM). ATP, ADP and 2-MeSADP also decreased evoked [3H]noradrenaline outflow; the order of agonist potency was ADP> or =2-MeSADP>ATP. The effect of ATP was reversed by 2-MeSAMP (10microM), and partly by MRS 2179 (10microM). By contrast, 2-methylthioadenosine-5'-triphosphate (2-MeSATP, 10-300microM) increased resting and electrically evoked [3H]glutamate and [3H]noradrenaline efflux, and this effect was prevented by the P2X1 receptor selective antagonist 4,4',4'',4'''-[carbonylbis[imino-5,1,3-benzenetriyl bis (carbonyl-imino)]] tetrakis (benzene-1,3-disulfonic acid) octasodium salt (NF449, 100nM). Reverse transcriptase polymerase chain reaction (RT-PCR) analysis revealed that mRNAs encoding P2Y12 and P2Y13 receptors are expressed in the brainstem, whereas P2Y13 but not P2Y12 receptor mRNA is present in the dorsal root ganglion and spinal cord. P2Y1 receptor expression in the spinal cord is also demonstrated at the protein level. In conclusion, inhibitory P2Y and facilitatory P2X1-like receptors, involved in the regulation of glutamate (P2Y13 and/or P2Y1) and noradrenaline (P2Y13 and/or P2Y1, P2Y12) release have been identified, which provide novel target sites for analgesics acting at the spinal cord level.
Collapse
Affiliation(s)
- Attila Heinrich
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest POB 67, Hungary
| | | | | | | | | |
Collapse
|
366
|
Oaknin S, Rodríguez-Ferrer CR, Ramos A, Aguilar JS, Rotllán P. Binding of 5'-O-(2-thiodiphosphate) to rat brain membranes is prevented by diadenosine tetraphosphate and correlates with ecto-nucleotide pyrophosphatase phosphodiesterase 1 (NPP1) activity. Neurosci Lett 2007; 432:25-9. [PMID: 18162317 DOI: 10.1016/j.neulet.2007.11.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 11/09/2007] [Accepted: 11/29/2007] [Indexed: 10/22/2022]
Abstract
The distribution of binding sites for [(35)S]5'-O-(2-thiodiphosphate) ([(35)S]ADPbetaS), a radioligand of P2Y(1,12,13) receptors, and of ecto-nucleotide pyrophosphatase phosphodiesterase activity were analyzed in the rat forebrain. Binding sites for the radilogand are widespreadly distributed in the rat forebrain, showing the highest density in hypothalamus. K(d) values were in the range 1-2 nM. Diadenosine tetraphosphate (Ap(4)A) and diethenoadenosine tetraphosphate, epsilon-(Ap(4)A), displaced the radioligand, indicating dinucleotide binding to ADPbetaS-recognizing P2Y receptors. Activity ecto-nucleotide pyrophosphatase phosphodiesterase 1 (NPP1), able to hydrolyze Ap(4)A and other diadenosine polyphosphates, is also widely distributed through the rat forebrain, with the highest activity in hypothalamus. These results suggests that Ap(4)A signalling mediated by P2Y(1,12,13) receptors and enzymatically regulated by NPP1 activity may be particularly important in hypothalamus and add new support for neurotransmitter/neuromodulatory functions of diadenosine polyphosphates in brain.
Collapse
Affiliation(s)
- Sol Oaknin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of La Laguna, 38206 La Laguna, Tenerife, Spain
| | | | | | | | | |
Collapse
|
367
|
Stokes L, Surprenant A. Purinergic P2Y2 receptors induce increased MCP-1/CCL2 synthesis and release from rat alveolar and peritoneal macrophages. THE JOURNAL OF IMMUNOLOGY 2007; 179:6016-23. [PMID: 17947675 DOI: 10.4049/jimmunol.179.9.6016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophages play a key role in inflammation by synthesis and release of proinflammatory cytokines and chemokines. Extracellular nucleotides released at sites of tissue damage may be an early danger signal for immune cells, and ATP-gated P2X(7) receptors are well known to mediate the rapid release of proinflammatory IL-18 and IL-1beta. However, there is little direct evidence for the involvement of other purine receptor subtypes in the release of other cytokines or chemokines. We initially used protein arrays to address whether extracellular ATP can release cytokines and/or chemokines from rat NR8383 alveolar macrophage, which lack the P2X(7) receptor. ATPgammaS increased the release of the proinflammatory chemokine, MCP-1 (MCP-1/CCL2). Pharmacological profiling identified the receptor responsible as the P2Y(2) receptor. Brief activation (10 min) of P2Y(2) receptors increased MCP-1 mRNA levels within 30 min and increased its release at 60 min. Similar results were obtained from rat peritoneal macrophages. We investigated likely downstream signaling cascades that may be involved, specifically the canonical G(q)-mediated phospholipase C (PLC) and subsequent MAP kinase pathways, and G(i)/G(o)-mediated signaling. We could find no evidence for these pathways being involved in the P2Y(2)R-induced increase in mRNA levels although inhibition of PLC blocked the UTP-induced increased release of MCP-1. Thus, the PLC-activated pathway can account for the increased release of MCP-1, but a novel signaling pathway may be involved in the increase in MCP-1 mRNA by activation of P2Y(2) receptors in alveolar and peritoneal macrophage.
Collapse
Affiliation(s)
- Leanne Stokes
- Department of Biomedical Science, University of Sheffield, Addison Building Western Bank, Sheffield, United Kingdom
| | | |
Collapse
|
368
|
Hashmi-Hill MP, Graves JE, Sandock K, Bates JN, Robertson TP, Lewis SJ. Hemodynamic responses elicited by systemic injections of flavin adenine dinucleotide in anesthetized rats. J Cardiovasc Pharmacol 2007; 50:94-102. [PMID: 17666921 DOI: 10.1097/fjc.0b013e31805c162a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Flavin adenine dinucleotide (FAD) elicits an endothelium-dependent vasodilation in isolated rat mesenteric beds via activation of P2Y-purinoceptors. The aims of this study were to characterize the hemodynamic responses elicited by systemic injections of FAD and flavin mononucleotide (FMN) in anesthetized rats and to determine the role of nitric oxide synthase (NOS), cyclooxygenase, P2Y/P2X-purinoceptors, and muscarinic receptor in these responses. FAD (0.05-1.0 micromol/kg, iv) elicited dose-dependent decreases in heart rate (HR), mean arterial blood pressure (MAP), and hindquarter vascular resistance (HQR), whereas it elicited an initial increase and then a decrease in mesenteric (MR) vascular resistance. The FAD-induced responses were not affected by the P2Y/P2X-purinoceptor antagonist suramin, the muscarinic receptor antagonist methyl-atropine, or the cyclooxygenase inhibitor indomethacin. The vasodilator actions of FAD were unaffected by the NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME), whereas the bradycardia elicited by higher doses of FAD were diminished by L-NAME. FMN did not elicit hemodynamic responses in the absence or presence of L-NAME. In summary, FAD-induced bradycardia depends, in part, on the activation of NOS, whereas the vasodilator actions of FAD are not obviously due to newly synthesized nitrosyl factors. These findings and those in our companion manuscript support the concepts that the adenine moiety confers biological activity to FAD, which releases preformed pools of nitrosyl factors.
Collapse
Affiliation(s)
- Maleka P Hashmi-Hill
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602-7389, USA
| | | | | | | | | | | |
Collapse
|
369
|
Akiba Y, Mizumori M, Guth PH, Engel E, Kaunitz JD. Duodenal brush border intestinal alkaline phosphatase activity affects bicarbonate secretion in rats. Am J Physiol Gastrointest Liver Physiol 2007; 293:G1223-33. [PMID: 17916646 DOI: 10.1152/ajpgi.00313.2007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We hypothesized that duodenal HCO(3)(-) secretion alkalinizes the microclimate surrounding intestinal alkaline phosphatase (IAP), increasing its activity. We measured AP activity in rat duodenum in situ in frozen sections with the fluorogenic substrate ELF-97 phosphate and measured duodenal HCO(3)(-) secretion with a pH-stat in perfused duodenal loops. We examined the effects of the IAP inhibitors L-cysteine or L-phenylalanine (0.1-10 mM) or the tissue nonspecific AP inhibitor levamisole (0.1-10 mM) on AP activity in vitro and on acid-induced duodenal HCO(3)(-) secretion in vivo. AP activity was the highest in the duodenal brush border, decreasing longitudinally to the large intestine with no activity in stomach. Villous surface AP activity measured in vivo was enhanced by PGE(2) intravenously and inhibited by luminal L-cysteine. Furthermore, incubation with a pH 2.2 solution reduced AP activity in vivo, whereas pretreatment with the cystic fibrosis transmembrane regulator (CFTR) inhibitor CFTR(inh)-172 abolished AP activity at pH 2.2. L-Cysteine and L-phenylalanine enhanced acid-augmented duodenal HCO(3)(-) secretion. The nonselective P2 receptor antagonist suramin (1 mM) reduced acid-induced HCO(3)(-) secretion. Moreover, L-cysteine or the competitive AP inhibitor glycerol phosphate (10 mM) increased HCO(3)(-) secretion, inhibited by suramin. In conclusion, enhancement of the duodenal HCO(3)(-) secretory rate increased AP activity, whereas inhibition of AP activity increased the HCO(3)(-) secretory rate. These data support our hypothesis that HCO(3)(-) secretion increases AP activity by increasing local pH at its catalytic site and that AP hydrolyzes endogenous luminal phosphates, presumably ATP, which increases HCO(3)(-) secretion via activation of P2 receptors.
Collapse
Affiliation(s)
- Yasutada Akiba
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
370
|
Swennen ELR, Coolen EJCM, Arts ICW, Bast A, Dagnelie PC. Time-dependent effects of ATP and its degradation products on inflammatory markers in human blood ex vivo. Immunobiology 2007; 213:389-97. [PMID: 18472047 DOI: 10.1016/j.imbio.2007.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 09/19/2007] [Accepted: 10/15/2007] [Indexed: 12/20/2022]
Abstract
We recently reported that adenosine 5'-triphosphate (ATP) modulates cytokine release in lipopolysaccharide (LPS)-phytohemagglutinin (PHA)-stimulated blood. ATP inhibited tumor necrosis factor-alpha (TNF-alpha) release via activation of the P2Y(11) receptor and increased interleukin (IL)-10 release via stimulation of the P2Y(12) receptor. Because ATP is known to be broken down by various ecto-enzymes, we determined the degradation profile of ATP in time in LPS-PHA-stimulated blood. ATP slowly metabolized with 14% remaining after 6h. Simultaneously, adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP) and hypoxanthine were formed. Subsequently, we investigated the time-dependent effects of ATP and its metabolites on inflammatory markers. Results showed that ATP decreased the rise in concentrations of TNF-alpha, interferon-gamma (IFN-gamma) and IL-1beta, but increased concentrations of IL-8 and IL-10. Metabolites of ATP showed either no, similar or opposite effects on cytokine release, compared to ATP. In conclusion, ATP has rapid immunomodulatory effects on a variety of cytokines in stimulated whole blood that persist until 24h.
Collapse
Affiliation(s)
- Els L R Swennen
- Department of Epidemiology, NUTRIM, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
371
|
von Kügelgen I, Schiedel AC, Hoffmann K, Alsdorf BBA, Abdelrahman A, Müller CE. Cloning and Functional Expression of a Novel GiProtein-Coupled Receptor for Adenine from Mouse Brain. Mol Pharmacol 2007; 73:469-77. [DOI: 10.1124/mol.107.037069] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
372
|
Combinatorial synthesis of anilinoanthraquinone derivatives and evaluation as non-nucleotide-derived P2Y2 receptor antagonists. Bioorg Med Chem Lett 2007; 18:223-7. [PMID: 18006312 DOI: 10.1016/j.bmcl.2007.10.082] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 10/23/2007] [Accepted: 10/25/2007] [Indexed: 11/21/2022]
Abstract
A library of anilinoanthraquinone derivatives was synthesized by parallel Ullmann coupling reaction of bromaminic acid with aniline derivatives in solution using a compact parallel synthesizer. The products were purified by HPLC and evaluated as antagonists at mouse and human P2Y2 receptors. 4-Phenylamino-substituted 1-amino-2-sulfoanthraquinones, for example, 1-amino-4-(2-methoxyphenyl)-2-sulfoanthraquinone (PSB-716), were potent P2Y2 antagonists with IC50 values in the low micromolar range.
Collapse
|
373
|
Meng F, To W, Kirkman-Brown J, Kumar P, Gu Y. Calcium oscillations induced by ATP in human umbilical cord smooth muscle cells. J Cell Physiol 2007; 213:79-87. [PMID: 17477379 DOI: 10.1002/jcp.21092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arterial smooth muscle cells exhibit vasomotion, related to oscillations in intracellular Ca(2+) concentration, but the origin and function of these has not yet been fully determined. We measured intracellular Ca(2+) using conventional fluorescent methods in primary cultured, human umbilical cord artery smooth muscle cells (HUCASMC). Spontaneous oscillations in Ca(2+) was found in only 1% of all cells but exogenous, micromolar concentrations of ATP could induce Ca(2+) oscillations in 70% of cells with the most common pattern being one of regular amplitude and frequency with a return to basal levels between each peak. The P2Y agonist, UTP, but not the P2X agonist alphabeta-methylene ATP, could also induce Ca(2+) oscillations. Once induced, these oscillations could not be blocked by G-protein, PLC, VGCC or TRP channel antagonists applied individually, but could be prevented when antagonists were applied together. In the presence of EGTA, micromolar concentrations of ATP induced an elevation in intracellular Ca(2+) but did not induce Ca(2+) oscillations. The oscillation frequency induced by ATP was affected by bath Ca(2+) concentration. Taken together, these data suggest that external Ca(2+) entry maintains the Ca(2+) oscillation induced by activation of P2Y receptors. Once induced, multiple mechanisms are involved to maintain the oscillation and the oscillation frequency is determined by the speed of Ca(2+) refilling. Chronic hypoxia enhanced the Ca(2+) response and altered the oscillation frequency. We suggest that these oscillations may play a role in the maintenance of umbilical blood flow during situations in which GPCR are activated.
Collapse
MESH Headings
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/pharmacology
- Arachidonic Acid/pharmacology
- Calcium/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Cell Hypoxia/drug effects
- Cell Hypoxia/physiology
- Cells, Cultured
- Humans
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Purinergic P2 Receptor Agonists
- Receptors, Purinergic P2/classification
- Receptors, Purinergic P2/metabolism
- Uridine Triphosphate/pharmacology
Collapse
Affiliation(s)
- Fei Meng
- Department of Physiology, School of Medicine, University of Birmingham, Edgbaston, UK
| | | | | | | | | |
Collapse
|
374
|
Markovskaya A, Crooke A, Guzmán-Aranguez AI, Peral A, Ziganshin AU, Pintor J. Hypotensive effect of UDP on intraocular pressure in rabbits. Eur J Pharmacol 2007; 579:93-7. [PMID: 18031728 DOI: 10.1016/j.ejphar.2007.10.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 10/11/2007] [Accepted: 10/16/2007] [Indexed: 11/30/2022]
Abstract
Nucleotides can modify intraocular pressure (IOP). We have tested the ability of uridine-5'-diphosphate, UDP, for modulating IOP in New Zealand white rabbits. Uridine 5' diphosphate, UDP, reduced IOP by 82.9+/-2.6% compared to control. Dose-response analysis demonstrated a concentration dependent pattern which presented a pD(2) value of 7.57+/-1.45, equivalent to an EC(50) of 26.91 nM. Of all the tested P2 receptor antagonists, suramin, pyridoxalphosphate-6-azophenyl-2, 4-disulfonic acid (PPADS) and Reactive Blue 2 (RB-2), only the last two were able to reverse the action triggered by UDP. Altogether, UDP acting probably on P2Y(6) receptors present on the ciliary processes, can reduce intraocular pressure, indicating that this substance may be used for the treatment of ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Anna Markovskaya
- Department of Pharmacology, Kazan State Medical University, Kazan, Russia
| | | | | | | | | | | |
Collapse
|
375
|
Devader C, Drew CM, Geach TJ, Tabler J, Townsend-Nicholson A, Dale L. A novel nucleotide receptor in Xenopus activates the cAMP second messenger pathway. FEBS Lett 2007; 581:5332-6. [PMID: 17977530 DOI: 10.1016/j.febslet.2007.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 10/12/2007] [Indexed: 10/22/2022]
Abstract
We describe a Xenopus P2Y receptor that shares only weak homology with members of the mammalian P2Y family, being most similar to human P2Y(11). When activated by nucleotide analogs, it stimulates both calcium and cAMP mobilization pathways, a feature unique, among mammalian P2Y receptors, to P2Y(11). Activity can be blocked by compounds known to act as antagonists of mammalian P2Y(11). Genomic synteny between Xenopus and mammals suggests that the novel gene is a true ortholog of P2Y(11). Xenopus P2Y(11) is transcribed during embryonic development, beginning at gastrulation, and is enriched in the developing nervous system.
Collapse
Affiliation(s)
- Christelle Devader
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
376
|
Greve H, Meis S, Kassack MU, Kehraus S, Krick A, Wright AD, König GM. New Iantherans from the Marine Sponge Ianthella quadrangulata: Novel Agonists of the P2Y11 Receptor. J Med Chem 2007; 50:5600-7. [DOI: 10.1021/jm070043r] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hendrik Greve
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany, Institute of Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, Universitaetsstrasse 1, D-40225 Duesseldorf, Germany, and College of Pharmacy, University of Hawaii at Hilo
| | - Sabine Meis
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany, Institute of Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, Universitaetsstrasse 1, D-40225 Duesseldorf, Germany, and College of Pharmacy, University of Hawaii at Hilo
| | - Matthias U. Kassack
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany, Institute of Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, Universitaetsstrasse 1, D-40225 Duesseldorf, Germany, and College of Pharmacy, University of Hawaii at Hilo
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany, Institute of Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, Universitaetsstrasse 1, D-40225 Duesseldorf, Germany, and College of Pharmacy, University of Hawaii at Hilo
| | - Anja Krick
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany, Institute of Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, Universitaetsstrasse 1, D-40225 Duesseldorf, Germany, and College of Pharmacy, University of Hawaii at Hilo
| | - Anthony D. Wright
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany, Institute of Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, Universitaetsstrasse 1, D-40225 Duesseldorf, Germany, and College of Pharmacy, University of Hawaii at Hilo
| | - Gabriele M. König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany, Institute of Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, Universitaetsstrasse 1, D-40225 Duesseldorf, Germany, and College of Pharmacy, University of Hawaii at Hilo
| |
Collapse
|
377
|
Guzmán-Aranguez A, Crooke A, Peral A, Hoyle CHV, Pintor J. Dinucleoside polyphosphates in the eye: from physiology to therapeutics. Prog Retin Eye Res 2007; 26:674-87. [PMID: 17931952 DOI: 10.1016/j.preteyeres.2007.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Diadenosine polyphosphates are a family of dinucleotides with emerging biochemical, physiological, pharmacological and therapeutic properties in the eye and other tissues. These compounds are formed by two adenosine moieties linked by their ribose 5'-ends to a variable number of phosphates. Diadenosine polyphosphates are present as active components of ocular secretions such as tears and aqueous humour and they can activate P2 purinergic receptors present on the ocular surface, anterior segment and retina. Both metabotropic and ionotropic actions mediated by P2Y and P2X receptors, respectively are responsible for the control of processes such as induction of tear secretion, lysozyme production or acceleration of corneal wound healing. Inside the eye the dinucleotide Ap(4)A can reduce intraocular pressure by acting on P2Y(1) receptors present in trabecular meshwork cells and on P2X(2) receptors present on the cholinergic terminals located in the ciliary muscle. In the retina, derivatives of diadenosine polyphosphates can improve the re-absorption of fluids in retinal detachment. Altogether, diadenosine polyphosphates are not only dinucleotides with roles in the physiology of the eye but it is also possible that their properties may serve to help in the treatment of some ocular pathologies.
Collapse
Affiliation(s)
- Ana Guzmán-Aranguez
- Departamento de Bioquímica, E.U. de Optica, Universidad Complutense de Madrid (UCM), C/Arcos de Jalón s/n, 28037 Madrid, Spain
| | | | | | | | | |
Collapse
|
378
|
Sperlágh B, Heinrich A, Csölle C. P2 receptor-mediated modulation of neurotransmitter release-an update. Purinergic Signal 2007; 3:269-84. [PMID: 18404441 PMCID: PMC2072919 DOI: 10.1007/s11302-007-9080-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 08/28/2007] [Indexed: 11/26/2022] Open
Abstract
Presynaptic nerve terminals are equipped with a number of presynaptic auto- and heteroreceptors, including ionotropic P2X and metabotropic P2Y receptors. P2 receptors serve as modulation sites of transmitter release by ATP and other nucleotides released by neuronal activity and pathological signals. A wide variety of P2X and P2Y receptors expressed at pre- and postsynaptic sites as well as in glial cells are involved directly or indirectly in the modulation of neurotransmitter release. Nucleotides are released from synaptic and nonsynaptic sites throughout the nervous system and might reach concentrations high enough to activate these receptors. By providing a fine-tuning mechanism these receptors also offer attractive sites for pharmacotherapy in nervous system diseases. Here we review the rapidly emerging data on the modulation of transmitter release by facilitatory and inhibitory P2 receptors and the receptor subtypes involved in these interactions.
Collapse
Affiliation(s)
- Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, POB 67, Budapest, 1450, Hungary,
| | | | | |
Collapse
|
379
|
Heine C, Wegner A, Grosche J, Allgaier C, Illes P, Franke H. P2 receptor expression in the dopaminergic system of the rat brain during development. Neuroscience 2007; 149:165-81. [PMID: 17869006 DOI: 10.1016/j.neuroscience.2007.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/13/2007] [Accepted: 07/12/2007] [Indexed: 10/23/2022]
Abstract
Extracellular ATP facilitates the release of dopamine via P2 receptor activation in parts of the mesolimbic system. To characterize P2X/Y receptor subtypes in the developing dopaminergic system, their expression in organotypic slice co-cultures including the ventral tegmental area/substantia nigra (VTA/SN) complex and the prefrontal cortex (PFC) was studied in comparison to the receptor expression in 3-5 day-old and adult rats. Reverse transcriptase-polymerase chain reaction (RT-PCR) with specific primers for the P2X(1,2,3,4,6,7) and P2Y(1) receptors in the tissue extracts of organotypic co-cultures revealed the presence of the P2X and P2Y receptor mRNAs investigated. Multiple immunofluorescence labeling of the P2X/Y receptor protein indicated differences in the regional expression in the organotypic co-cultures after 10 days of cultivation (VTA/SN, P2X(1,2,3,4,6,7), P2Y(1,6,12); PFC, P2X(1,3,4,6,7), P2Y(1,2,4,6,12)). At postnatal days 3-5, an immunofluorescence mostly comparable to that of adult rats was observed (VTA/SN and PFC: P2X(1,2,3,4,6,7), P2Y(1,2,4,6,12)). There was one important exception: the P2X(7) receptor immunocytochemistry was not found in adult tissue, suggesting a potential role of this receptor in the development. Only few P2 receptors (e.g. P2X(1), P2Y(1)) were expressed at fibers interconnecting the dopaminergic VTA/SN with the PFC in the organotypic co-cultures. The treatment of the cultures with the ATP analogues 2-methylthio-ATP and alpha,beta-methylene-ATP induced an increase in axonal outgrowth and fiber density, which could be inhibited by pre-treatment with the P2X/Y receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid. The co-localization of the dopamine-(D1) receptor with the P2X(1) receptor in organotypic slice cultures was evident. In the PFC of the co-cultures, and that of young but not adult rats, a number of tyrosine hydroxylase (TH)-positive cells also possessed P2Y(1)-immunoreactivity (IR). Additionally, a strong P2Y(1)-IR was observed on astrocytes. The present results show a time-, region- and cell type-dependent in vitro and in vivo expression pattern of different P2 receptor subtypes in the dopaminergic system indicating the involvement of ATP and its receptors in neuronal development and growth.
Collapse
Affiliation(s)
- C Heine
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
380
|
Hur DG, Lee JH, Oh SH, Kim YH, Lee JH, Shin DH, Chang SO, Kim CS. KCNQ1/KCNE1 K+ channel and P2Y4 receptor are co-expressed from the time of birth in the apical membrane of rat strial marginal cells. Acta Otolaryngol 2007:30-5. [PMID: 17882567 DOI: 10.1080/03655230701624830] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONCLUSION KCNQ1/KCNE1 K(+) channels and P2Y(4) receptors are expressed in the apical membrane of rat strial marginal cells from postnatal day 1 (P1) and maintained throughout development. OBJECTIVES The purpose of the present study was to investigate the developmental expression of KCNQ1/KCNE1 K(+) channel and of P2Y(4), which is an important metabotropic regulator of KCNQ1/KCNE1 K(+) channel in strial marginal cells. MATERIALS AND METHODS Sprague-Dawley rats at different stages of development (P1, P3, P5, P7, P14, and P21) were studied. The spiral ligament with the stria vascularis was detached from the cartilaginous or bony cochlea and prepared for a voltage-sensitive vibrating probe and immunohistochemistry. RESULTS Chromanol 293B, a blocker of KCNQ1/KCNE1 K(+) channel, inhibited short-circuit currents (I ( sc )) from P1 to P21. Similarly, I ( sc ) were found to be decreased by uridine 5'-triphosphate at all ages. The antagonist profiles indicated that the apical P2Y receptor is P2Y(4) subtype. KCNQ1, KCNE1, and P2Y(4) were immunolocalized in the apical region of stria vascularis at P1.
Collapse
Affiliation(s)
- Dong Gu Hur
- Department of Otorhinolaryngology-Head and Neck Surgery, Gyeongsang National University Hospital, Jinju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
381
|
Zizzo MG, Mulè F, Serio R. Inhibitory purinergic transmission in mouse caecum: role for P2Y1 receptors as prejunctional modulators of ATP release. Neuroscience 2007; 150:658-64. [PMID: 17997228 DOI: 10.1016/j.neuroscience.2007.09.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 09/20/2007] [Accepted: 10/01/2007] [Indexed: 11/25/2022]
Abstract
Using conventional microelectrode recording techniques, we investigated, in the circular muscle of the mouse caecum, the neurotransmitter(s) involved in the neurally-evoked inhibitory junction potentials (IJPs) and the existence of possible prejunctional mechanisms controlling neurotransmitter release. Electrical field stimulation with single pulses elicited IJPs, consisting only of a "fast" hyperpolarization, while using train stimuli (30-50 Hz) the initial fast hyperpolarization was followed by a slower hyperpolarization. The fast and the slow component were selectively antagonized by apamin, a blocker of calcium-activated potassium channels, and N(omega)-nitro-l-arginine methyl ester (l-NAME), a nitric oxide synthase inhibitor, respectively. Fast IJPs were antagonized also by P2 purinoceptor antagonists, suramin or 4-[[4-formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-2-pyridinyl]azo]-1,3-benzenedisulfonic acid tetrasodium salt (PPADS), P2Y purinoceptor desensitization by adenosine 5'-O-2-thiodiphosphate (ADPbetaS). 2'-Deoxy-N(6)-methyl ADP diammonium salt (MRS 2179), P2Y1 purinoceptor antagonist, at the concentration of 1 microM increased the amplitude of the fast IJP, while at the concentration of 10 microM induced a reduction. 8,8'-[Carbonylbis[imino-3,1-phenylenecarbonylimino (4-fluoro-3,1-phenylene) carbonylimino]] bis-1,3,5-naphthalenetrisulfonic acid hexasodium salt (NF 157) and 2,2-dimethyl-propionic acid 3-(2-chloro-6-methylaminopurin-9-yl)-2-(2,2-dimethyl-propionyl-oxymethyl)-propyl ester (MRS 2395), P2Y11 and P2Y12 purinoceptor antagonist, were without any effect. ATP-induced hyperpolarization was affected by apamin and by P2Y purinoceptor desensitization, but not by MRS 2179. 2-(Methylthio)ATP tetrasodium salt hydrate (2-MeSATP), P2Y1 purinoceptor agonist, at a concentration which did not cause changes in the membrane potential, reduced the amplitude of the fast IJPs. This effect was prevented by MRS 2179. Paired nerve stimulation, either using single pulses or train stimuli, did not cause any alteration of the second-evoked IJP. In conclusion, in the circular muscle of the mouse caecum, ATP is responsible for the fast IJP while nitric oxide is responsible for the slow IJP. ATP-mediated response is dependent on ADPbetaS-sensitive P2Y receptors, which are in part P2Y1, but not P2Y11 or P2Y12 receptor subtypes. In addition, the most substantial finding of this study is the functional demonstration that ATP released by nerve stimulation activates P2Y1 receptors, located prejunctionally, limiting its release by motoneurons.
Collapse
Affiliation(s)
- M G Zizzo
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | | |
Collapse
|
382
|
Tabata KI, Baba K, Shiraishi A, Ito M, Fujita N. The orphan GPCR GPR87 was deorphanized and shown to be a lysophosphatidic acid receptor. Biochem Biophys Res Commun 2007; 363:861-6. [PMID: 17905198 DOI: 10.1016/j.bbrc.2007.09.063] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 09/13/2007] [Indexed: 12/31/2022]
Abstract
In CHO cells stably expressing the GPR87 fused with a G16alpha protein, lysophosphatidic acid (LPA) evoked an intracellular Ca(2+) increase in a high affinity manner. The Ca(2+) increase was reversibly blocked by the LPA receptor antagonists and inhibited by pretreatment of the cells with GPR87-specific siRNAs. GPR87 was shown to be closer to the P2Y and P2Y-related receptors than LPA receptors by ClustalW analyses. However, none of nucleotides and their derivatives activated GPR87. The human gpr87 is located on the chromosome 3q25 in a cluster containing p2y12,13,14. RT-PCR analysis showed that the mouse GPR87 was expressed in placenta, ovary, testis, prostate, brain, and skeletal muscle. The 3D model of GPR87-LPA complex indicated that the ligand interacted with R115 and K296 of GPR87, which are well conserved in the P2Y receptors. These results suggest that the GPR87 is a LPA receptor which evolved from a common ancestor of P2Y receptors.
Collapse
MESH Headings
- Animals
- Binding Sites/genetics
- CHO Cells
- Calcium/metabolism
- Cricetinae
- Cricetulus
- Electrophoresis, Polyacrylamide Gel
- Female
- GTP-Binding Protein alpha Subunits/genetics
- GTP-Binding Protein alpha Subunits/metabolism
- Gene Expression Profiling
- Humans
- Intracellular Fluid/drug effects
- Intracellular Fluid/metabolism
- Isoxazoles/pharmacology
- Lysophospholipids/metabolism
- Lysophospholipids/pharmacology
- Male
- Mice
- Mice, Inbred BALB C
- Models, Molecular
- Propionates/pharmacology
- Protein Structure, Tertiary
- RNA Interference
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Lysophosphatidic Acid/antagonists & inhibitors
- Receptors, Lysophosphatidic Acid/genetics
- Receptors, Lysophosphatidic Acid/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Uridine Triphosphate/pharmacology
Collapse
Affiliation(s)
- Ken-ichi Tabata
- Laboratory of Pharmcoinformatics, Department of Bioscience and Bioinformatics, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | | | | | | | | |
Collapse
|
383
|
ATP and acetylcholine, equal brethren. Neurochem Int 2007; 52:634-48. [PMID: 18029057 DOI: 10.1016/j.neuint.2007.09.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 09/07/2007] [Accepted: 09/10/2007] [Indexed: 12/13/2022]
Abstract
Acetylcholine was the first neurotransmitter identified and ATP is the hitherto final compound added to the list of small molecule neurotransmitters. Despite the wealth of evidence assigning a signaling role to extracellular ATP and other nucleotides in neural and non-neural tissues, the significance of this signaling pathway was accepted very reluctantly. In view of this, this short commentary contrasts the principal molecular and functional components of the cholinergic signaling pathway with those of ATP and other nucleotides. It highlights pathways of their discovery and analyses tissue distribution, synthesis, uptake, vesicular storage, receptors, release, extracellular hydrolysis as well as pathophysiological significance. There are differences but also striking similarities. Comparable to ACh, ATP is taken up and stored in synaptic vesicles, released in a Ca(2+)-dependent manner, acts on nearby ligand-gated or metabotropic receptors and is hydrolyzed extracellularly. ATP and acetylcholine are also costored and coreleased. In addition, ATP is coreleased from biogenic amine storing nerve terminals as well as from at least subpopulations of glutamatergic and GABAergic terminals. Both ACh and ATP fulfill the criteria postulated for neurotransmitters. More recent evidence reveals that the two messengers are not confined to neural functions, exerting a considerable variety of non-neural functions in non-innervated tissues. While it has long been known that a substantial number of pathologies originate from malfunctions of the cholinergic system there is now ample evidence that numerous pathological conditions have a purinergic component.
Collapse
|
384
|
Wee S, Peart JN, Headrick JP. P2 purinoceptor-mediated cardioprotection in ischemic-reperfused mouse heart. J Pharmacol Exp Ther 2007; 323:861-7. [PMID: 17855479 DOI: 10.1124/jpet.107.125815] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
P2 purinoceptor modulation of injury during ischemia-reperfusion was studied in murine hearts. Effects of P2 agonism or antagonism, and interstitial accumulation of P2 agonists (UTP, ATP, and ADP), were assessed in Langendorff perfused hearts during 20 min of ischemia and 45 min of reperfusion. In control hearts, ventricular pressure development recovered to 68 +/- 4 mm Hg (63 +/- 3% baseline), diastolic pressure remained elevated (23 +/- 2 mm Hg), and 26 +/- 4 U/g lactate dehydrogenase (LDH) was released during reperfusion, evidencing necrosis. Treatment with 250 nM UTP improved pressure development (85 +/- 5 mm Hg, or 77 +/- 2%) and reduced diastolic contracture (by approximately 70%, to 7 +/- 1 mm Hg) and LDH loss (by approximately 60%, to 11 +/- 2 U/g). In contrast, P2Y1 agonism with 50 nM 2-methyl-thio-ATP (2-MeSATP) was ineffective. In the presence of the P2Y antagonist suramin (10 or 200 microM), UTP no longer improved postischemic outcomes. Ischemia also substantially elevated interstitial [UTP], [ATP], and [ADP], potentially activating P2 receptors. This was supported in part by effects of antagonists: 200 microM suramin worsened LDH efflux (53 +/- 9 IU/g) and contractile dysfunction (41 +/- 2 mm Hg diastolic pressure; 28 +/- 3 mm Hg developed pressure), as did P2Y antagonism with either 10 or 100 microM reactive blue 2. However, a 10 microM concentration of suramin failed to alter outcome. P2X antagonism with 10 microM pyridoxal phosphate-6-azo-(benzene-2,4-disulfonic acid and P2X1-selective pyridoxal-alpha5-phosphate-6-phenylazo-4'-carboxylic acid (MRS2159) (30 microM) was ineffective. Data collectively support cardioprotection with low concentrations of UTP, and they are consistent with P2Y2 involvement. Endogenous nucleotides may also play a protective role, as evidenced by effects of P2 antagonists, although this warrants further investigation.
Collapse
Affiliation(s)
- Shirley Wee
- Heart Foundation Research Centre, School of Medical Science, Griffith University, Southport, Queensland, Australia
| | | | | |
Collapse
|
385
|
Schöneberg T, Hermsdorf T, Engemaier E, Engel K, Liebscher I, Thor D, Zierau K, Römpler H, Schulz A. Structural and functional evolution of the P2Y(12)-like receptor group. Purinergic Signal 2007; 3:255-68. [PMID: 18404440 PMCID: PMC2072910 DOI: 10.1007/s11302-007-9064-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 07/19/2007] [Indexed: 12/11/2022] Open
Abstract
Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) belong to the superfamily of G protein-coupled receptors (GPCR). They are distinguishable from adenosine receptors (P1) as they bind adenine and/or uracil nucleotide triphosphates or diphosphates depending on the subtype. Over the past decade, P2Y receptors have been cloned from a variety of tissues and species, and as many as eight functional subtypes have been characterized. Most recently, several members of the P2Y12-like receptor group, which includes the clopidogrel-sensitive ADP receptor P2Y12, have been deorphanized. The P2Y12-like receptor group comprises several structurally related GPCR which, however, display heterogeneous agonist specificity including nucleotides, their derivatives, and lipids. Besides the established function of P2Y12 in platelet activation, expression in macrophages, neuronal and glial cells as well as recent results from functional studies implicate that several members of this group may have specific functions in neurotransmission, inflammation, chemotaxis, and response to tissue injury. This review focuses specifically on the structure-function relation and shortly summarizes some aspects of the physiological relevance of P2Y12-like receptor members.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
386
|
Ehre C, Zhu Y, Abdullah LH, Olsen J, Nakayama KI, Nakayama K, Messing RO, Davis CW. nPKCepsilon, a P2Y2-R downstream effector in regulated mucin secretion from airway goblet cells. Am J Physiol Cell Physiol 2007; 293:C1445-54. [PMID: 17728398 DOI: 10.1152/ajpcell.00051.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Airway goblet cell mucin secretion is controlled by agonist activation of P2Y(2) purinoceptors, acting through Gq/PLC, inositol-1,4,5-trisphosphate (IP(3)), diacylglycerol, Ca(2+) and protein kinase C (PKC). Previously, we showed that SPOC1 cells express cPKCalpha, nPKCdelta, nPKCepsilon, and nPKCeta; of these, only nPKCdelta translocated to the membrane in correlation with mucin secretion (Abdullah LH, Bundy JT, Ehre C, Davis CW. Am J Physiol Lung Physiol 285: L149-L160, 2003). We have verified these results and pursued the identity of the PKC effector isoform by testing the effects of altered PKC expression on regulated mucin release using SPOC1 cell and mouse models. SPOC1 cells overexpressing cPKCalpha, nPKCdelta, and nPKCeta had the same levels of ATPgammaS- and phorbol-1,2-myristate-13-acetate (PMA)-stimulated mucin secretion as the levels in empty retroviral vector expressing cells. Secretagogue-induced mucin secretion was elevated only in cells overexpressing nPKCepsilon (14.6 and 23.5%, for ATPgammaS and PMA). Similarly, only SPOC1 cells infected with a kinase-deficient nPKCepsilon exhibited the expected diminution of stimulated mucin secretion, relative to wild-type (WT) isoform overexpression. ATPgammaS-stimulated mucin secretion from isolated, perfused mouse tracheas was diminished in P2Y(2)-R null mice by 82% relative to WT mice, demonstrating the utility of mouse models in studies of regulated mucin secretion. Littermate WT and nPKCdelta knockout (KO) mice had nearly identical levels of stimulated mucin secretion, whereas mucin release was nearly abolished in nPKCepsilon KO mice relative to its WT littermates. We conclude that nPKCepsilon is the effector isoform downstream of P2Y(2)-R activation in the goblet cell secretory response. The translocation of nPKCdelta observed in activated cells is likely not related to mucin secretion but to some other aspect of goblet cell biology.
Collapse
Affiliation(s)
- Camille Ehre
- CCystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599-7248, USA
| | | | | | | | | | | | | | | |
Collapse
|
387
|
Kobayashi D, Ohkubo S, Nakahata N. Cooperation of calcineurin and ERK for UTP-induced IL-6 production in HaCaT keratinocytes. Eur J Pharmacol 2007; 573:249-52. [PMID: 17761160 DOI: 10.1016/j.ejphar.2007.07.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 07/25/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
UTP causes IL-6 production in HaCaT keratinocytes, which is partially inhibited by PD98059, a mitogen-activated protein kinase kinase (MEK) inhibitor, suggesting that a pathway other than the extracellular signal-regulated kinase (ERK) pathway is involved in the production. In the present study, we examined the involvement of calcineurin in the UTP-induced interleukin (IL)-6 production in HaCaT keratinocytes. FK506 and cyclosporine A, calcineurin inhibitors, partially inhibited UTP-induced IL-6 mRNA expression and protein production. In addition, combined application of FK506 and PD98059 synergistically inhibited the UTP-induced IL-6 production. These results suggest that ERK and calcineurin are cooperatively involved in UTP-induced IL-6 production.
Collapse
Affiliation(s)
- Daisaku Kobayashi
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | | | | |
Collapse
|
388
|
Tonazzini I, Trincavelli ML, Storm-Mathisen J, Martini C, Bergersen LH. Co-localization and functional cross-talk between A1 and P2Y1 purine receptors in rat hippocampus. Eur J Neurosci 2007; 26:890-902. [PMID: 17672857 PMCID: PMC2121138 DOI: 10.1111/j.1460-9568.2007.05697.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Adenosine and ATP, via their specific P1 and P2 receptors, modulate a wide variety of cellular and tissue functions, playing a neuroprotective or neurodegenerative role in brain damage conditions. Although, in general, adenosine inhibits excitability and ATP functions as an excitatory transmitter in the central nervous system, recent data suggest the existence of a heterodimerization and a functional interaction between P1 and P2 receptors in the brain. In particular, interactions of adenosine A1 and P2Y1 receptors may play important roles in the purinergic signalling cascade. In the present work, we investigated the subcellular localization/co-localization of the receptors and their functional cross-talk at the membrane level in Wistar rat hippocampus. This is a particularly vulnerable brain area, which is sensitive to adenosine- and ATP-mediated control of glutamatergic transmission. The postembedding immunogold electron microscopy technique showed that the two receptors are co-localized at the synaptic membranes and surrounding astroglial membranes of glutamatergic synapses. To investigate the functional cross-talk between the two types of purinergic receptors, we evaluated the reciprocal effects of their activation on their G protein coupling. P2Y1 receptor stimulation impaired the potency of A1 receptor coupling to G protein, whereas the stimulation of A1 receptors increased the functional responsiveness of P2Y1 receptors. The results demonstrated an A1-P2Y1 receptor co-localization at glutamatergic synapses and surrounding astrocytes and a functional interaction between these receptors in hippocampus, suggesting ATP and adenosine can interact in purine-mediated signalling. This may be particularly important during pathological conditions, when large amounts of these mediators are released.
Collapse
Affiliation(s)
- I Tonazzini
- Department of Psychiatry Neurobiology Pharmacology and Biotechnology, University of Pisa, 56126, Pisa, Italy
| | | | | | | | | |
Collapse
|
389
|
Munkonda MN, Kauffenstein G, Kukulski F, Lévesque SA, Legendre C, Pelletier J, Lavoie EG, Lecka J, Sévigny J. Inhibition of human and mouse plasma membrane bound NTPDases by P2 receptor antagonists. Biochem Pharmacol 2007; 74:1524-34. [PMID: 17727821 DOI: 10.1016/j.bcp.2007.07.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/21/2007] [Accepted: 07/23/2007] [Indexed: 11/15/2022]
Abstract
The plasma membrane bound nucleoside triphosphate diphosphohydrolase (NTPDase)-1, 2, 3 and 8 are major ectonucleotidases that modulate P2 receptor signaling by controlling nucleotides' concentrations at the cell surface. In this report, we systematically evaluated the effect of the commonly used P2 receptor antagonists reactive blue 2, suramin, NF279, NF449 and MRS2179, on recombinant human and mouse NTPDase1, 2, 3 and 8. Enzymatic reactions were performed in a Tris/calcium buffer, commonly used to evaluate NTPDase activity, and in a more physiological Ringer modified buffer. Although there were some minor variations, there were no major changes either in the enzymatic activity or in the profile of NTPDase inhibition between the two buffers. Except for MRS2179, all other antagonists significantly inhibited these ecto-ATPases; NTPDase3 being the most sensitive to inhibition and NTPDase8 the most resistant. Estimated IC(50) showed that human NTPDases were generally more sensitive to the P2 receptor antagonists tested than the corresponding mouse isoforms. NF279 and reactive blue 2 were the most potent inhibitors of NTPDases which almost completely abrogated their activity at the concentration of 100 microM. In conclusion, reactive blue 2, suramin, NF279 and NF449, at the concentrations commonly used to antagonize P2 receptors, inhibit the four major ecto-ATPases. This information may reveal useful for the interpretation of some pharmacological studies of P2 receptors. In addition, NF279 is a most potent non-selective NTPDase inhibitor. Although P2 receptor antagonists do not display a strict selectivity toward NTPDases, their IC(50) values may help to discriminate some of these enzymes.
Collapse
Affiliation(s)
- Mercedes N Munkonda
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
390
|
Schock SC, Munyao N, Yakubchyk Y, Sabourin LA, Hakim AM, Ventureyra ECG, Thompson CS. Cortical spreading depression releases ATP into the extracellular space and purinergic receptor activation contributes to the induction of ischemic tolerance. Brain Res 2007; 1168:129-38. [PMID: 17706620 DOI: 10.1016/j.brainres.2007.06.070] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 06/14/2007] [Accepted: 06/15/2007] [Indexed: 11/29/2022]
Abstract
Cortical Spreading Depression (CSD) is a well-studied model of preconditioning that provides a high degree of tolerance to a subsequent ischemic event in the brain. The present study was undertaken in order to determine whether the release of ATP during CSD could contribute to the induction of ischemic tolerance. Direct measurement of ATP levels during CSD indicates that with each CSD wave ATP is released into the extracellular space at levels exceeding 100 microM. Cultures of rat primary cortical neurons exposed to low levels of extracellular ATP developed tolerance to subsequent oxygen-glucose deprivation (OGD) or metabolic hypoxia. The preconditioning effect requires new protein synthesis and develops with time, suggesting that a complex genomic response is required for the induction of tolerance. Multiple purinergic receptors are involved in mediating tolerance, with P2Y receptor activation having the greatest effect. Although extracellular adenosine or glutamate may make a small contribution, most of the tolerance was found to be induced independently of adenosine or glutamate receptor activation. Multiple signal transduction pathways mediate the response to extracellular ATP with the protein kinase A pathway and activation of phospholipase C contributing the most. The results are consistent with the proposal that CSD releases ATP into the extracellular space and the subsequent activation of P2Y receptors makes a major contribution to the induction of ischemic tolerance in the brain.
Collapse
Affiliation(s)
- Sarah C Schock
- Department of Cellular and Molecular Medicine, University of Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | | | |
Collapse
|
391
|
Wirkner K, Sperlagh B, Illes P. P2X3 receptor involvement in pain states. Mol Neurobiol 2007; 36:165-83. [PMID: 17952660 DOI: 10.1007/s12035-007-0033-y] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 03/19/2007] [Indexed: 12/20/2022]
Abstract
The understanding of how pain is processed at each stage in the peripheral and central nervous system is the precondition to develop new therapies for the selective treatment of pain. In the periphery, ATP can be released from various cells as a consequence of tissue injury or visceral distension and may stimulate the local nociceptors. The highly selective distribution of P2X(3) and P2X(2/3) receptors within the nociceptive system has inspired a variety of approaches to elucidate the potential role of ATP as a pain mediator. Depolarization by ATP of neurons in pain-relevant neuronal structures such as trigeminal ganglion, dorsal root ganglion, and spinal cord dorsal horn neurons are well investigated. P2X receptor-mediated afferent activation appears to have been implicated in visceral and neuropathic pain and even in migraine and cancer pain. This article reviews recently published research describing the role that ATP and P2X receptors may play in pain perception, highlighting the importance of the P2X(3) receptor in different states of pain.
Collapse
Affiliation(s)
- Kerstin Wirkner
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany.
| | | | | |
Collapse
|
392
|
Zylberg J, Ecke D, Fischer B, Reiser G. Structure and ligand-binding site characteristics of the human P2Y11 nucleotide receptor deduced from computational modelling and mutational analysis. Biochem J 2007; 405:277-86. [PMID: 17338680 PMCID: PMC1904521 DOI: 10.1042/bj20061728] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/13/2007] [Accepted: 03/06/2007] [Indexed: 11/17/2022]
Abstract
The P2Y11-R (P2Y11 receptor) is a less explored drug target. We computed an hP2Y11-R (human P2Y11) homology model with two templates, bovine-rhodopsin (2.6 A resolution; 1 A=0.1 nm) and a hP2Y1-ATP complex model. The hP2Y11-R model was refined using molecular dynamics calculations and validated by virtual screening methods, with an enrichment factor of 5. Furthermore, mutational analyses of Arg106, Glu186, Arg268, Arg307 and Ala313 confirmed the adequacy of our hP2Y11-R model and the computed ligand recognition mode. The E186A and R268A mutants reduced the potency of ATP by one and three orders of magnitude respectively. The R106A and R307A mutants were functionally inactive. We propose that residues Arg106, Arg268, Arg307 and Glu186 are involved in ionic interactions with the phosphate moiety of ATP. Arg307 is possibly also H-bonded to N6 of ATP via the backbone carbonyl. Activity of ATP at the F109I mutant revealed that the proposed p-stacking of Phe109 with the adenine ring is a minor interaction. The mutation A313N, which is part of a hydrophobic pocket in the vicinity of the ATP C-2 position, partially explains the high activity of 2-MeS-ATP at P2Y1-R as compared with the negligible activity at the P2Y11-R. Inactivity of ATP at the Y261A mutant implies that Tyr261 acts as a molecular switch, as in other G-protein-coupled receptors. Moreover, analysis of cAMP responses seen with the mutants showed that the efficacy of coupling of the P2Y11-R with Gs is more variable than coupling with Gq. Our model also indicates that Ser206 forms an H-bond with Pgamma (the gamma-phosphate of the triphosphate chain of ATP) and Met310 interacts with the adenine moiety.
Collapse
Key Words
- ligand binding
- molecular dynamics
- mutagenesis
- nucleotide receptor
- p2y receptor
- virtual screening
- atp[s], adenosine 5′-[γ-thio]triphosphate
- b-rhodopsin, bovine-rhodopsin
- [ca2+]i, intracellular ca2+ concentration
- ef, enrichment factor
- eia, enzyme-linked immunoassay
- el, extracellular loop
- fura 2/am, fura 2 acetoxymethyl ester
- gfp, green fluorescent protein
- gpcr, g-protein-coupled receptor
- p2y-r, p2y receptor
- hp2y-r, human p2y-r
- p2y11-r, p2y11 receptor
- hp2y11-r, human p2y11 receptor
- md, molecular dynamics
- tm, transmembrane
Collapse
Affiliation(s)
- Jacques Zylberg
- *Gonda-Goldschmied Medical Research Center, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Denise Ecke
- †Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Bilha Fischer
- *Gonda-Goldschmied Medical Research Center, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Georg Reiser
- †Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| |
Collapse
|
393
|
Lu W, Reigada D, Sévigny J, Mitchell CH. Stimulation of the P2Y1 receptor up-regulates nucleoside-triphosphate diphosphohydrolase-1 in human retinal pigment epithelial cells. J Pharmacol Exp Ther 2007; 323:157-64. [PMID: 17626796 PMCID: PMC5239667 DOI: 10.1124/jpet.107.124545] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stimulation of receptors for either ATP or adenosine leads to physiologic changes in retinal pigment epithelial (RPE) cells that may influence their relationship with the adjacent photoreceptors. The ectoenzyme nucleoside-triphosphate diphosphohydrolase-1 (NTPDase1) catalyzes the dual dephosphorylation of ATP and ADP to AMP. Although NTPDase1 can consequently control the balance between ATP and adenosine, it is unclear how its expression and activity are regulated. Classic negative feedback theory predicts an increase in enzyme activity in response to enhanced exposure to substrate. This study asked whether exposure to ATP increases NTPDase1 activity in RPE cells. Although levels of NTPDase1 mRNA and protein in cultured human ARPE-19 cells were generally low under control conditions, exposure to slowly hydrolyzable ATPgammaS led to a time-dependent increase in NTPDase1 mRNA that was accompanied by a rise in levels of the functional 78-kDa protein. Neither NTPDase2 nor NTPDase3 mRNA message was elevated by ATPgammaS. The ATPase activity of cells increased in parallel, indicating the up-regulation of NTPDase1 was functionally relevant. The up-regulation of NTPDase1 protein was partially blocked by P2Y1 receptor inhibitors MRS2179 (N6-methyl-2'-deoxyadenosine-3',5'-bisphosphate) and MRS2500 [2-iodo-N6-methyl-(N)-methanocarba-2'-deoxyadenosine 3',5'-bisphosphate] and increased by P2Y1 receptor agonist MRS2365 [(N)-methanocarba-2MeSADP]. In conclusion, prolonged exposure to extracellular ATPgammaS increased NTPDase1 message and protein levels and increased ecto-ATPase activity. This up-regulation reflects a feedback circuit, mediated at least in part by the P2Y1 receptor, to regulate levels of extracellular purines in subretinal space. NTPDase1 levels may thus serve as an index for increased extracellular ATP levels under certain pathologic conditions, although other mechanisms could also contribute.
Collapse
Affiliation(s)
- Wennan Lu
- Department of Physiology, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA
| | | | | | | |
Collapse
|
394
|
Abdullah LH, Davis CW. Regulation of airway goblet cell mucin secretion by tyrosine phosphorylation signaling pathways. Am J Physiol Lung Cell Mol Physiol 2007; 293:L591-9. [PMID: 17616647 DOI: 10.1152/ajplung.00150.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mucus hyperproduction in pulmonary obstructive diseases results from increased goblet cell numbers and possibly increased cellular mucin synthesis, occurring in response to inflammatory mediators acting via receptor tyrosine kinases (RYK) and tyrosine phosphorylation (Y-Pi) signaling pathways. Yet, increased mucin synthesis does not lead necessarily to increased secretion, as mucins are stored in secretory granules and secreted in response to extracellular signals, commonly assumed to be mediated by G protein-coupled receptors (GPCRs). We asked whether activation 1) of Y-Pi signaling pathways, in principal, and 2) of the novel PKC isoform, nPKCdelta, by Y-Pi, specifically, might lead to regulated mucin secretion. nPKCdelta in SPOC1 cells was tyrosine phosphorylated by exposure to purinergic agonist (ATPgammaS) or PMA, actions that were blocked by the Src kinase inhibitor, PP1. Mucin secretion, however, was not affected by PP1. Hence, activation of nPKCdelta by Y-Pi is unlikely to participate in GPCR-related mucin secretion. Mucin secretion from both SPOC1 and normal human bronchial epithelial (NHBE) cells was stimulated by generalized protein Y-Pi induced by the tyrosine phosphatase inhibitor, pervanadate (PV). PV-induced SPOC1 cell mucin secretion was not affected by inhibition of Src kinases (genistein or PP1), or of PI3 kinase (LY-294002). MAP kinase pathway inhibitors, RAF1 kinase inhibitor-I and U0126 (MEK), inhibited SPOC1 cell PV-induced secretion by approximately 50%. Significantly, the phospholipase C (PLC) inhibitor, U-73122, essentially abolished PV- and ATPgammaS-induced mucin secretion from both SPOC1 and NHBE cells. Hence, PLC signaling may play a key role in regulated mucin secretion, whether the event is initiated by mediators interacting with GPCRs or RYKs.
Collapse
Affiliation(s)
- Lubna H Abdullah
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
395
|
Lévesque SA, Lavoie ÉG, Lecka J, Bigonnesse F, Sévigny J. Specificity of the ecto-ATPase inhibitor ARL 67156 on human and mouse ectonucleotidases. Br J Pharmacol 2007; 152:141-50. [PMID: 17603550 PMCID: PMC1978278 DOI: 10.1038/sj.bjp.0707361] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE ARL 67156, 6-N,N-Diethyl-D-beta-gamma-dibromomethylene adenosine triphosphate, originally named FPL 67156, is the only commercially available inhibitor of ecto-ATPases. Since the first report on this molecule, various ectonucleotidases responsible for the hydrolysis of ATP at the cell surface have been cloned and characterized. In this work, we identified the ectonucleotidases inhibited by ARL 67156. EXPERIMENTAL APPROACH The effect of ARL 67156 on recombinant NTPDase1, 2, 3 & 8 (mouse and human), NPP1, NPP3 and ecto-5'-nucleotidase (human) have been evaluated. The inhibition of the activity of NTPDases (using the following substrates: ATP, ADP, UTP), NPPs (pnp-TMP, Ap(3)A) and ecto-5'-nucleotidase (AMP) was measured by colorimetric or HPLC assays. KEY RESULTS ARL 67156 was a weak competitive inhibitor of human NTPDase1, NTPDase3 and NPP1 with K(i) of 11+/-3, 18+/-4 and 12+/-3 microM, respectively. At concentrations used in the literature (50-100 microM), ARL 67156 partially but significantly inhibited the mouse and human forms of these enzymes. NTPDase2, NTPDase8, NPP3 and ecto-5'-nucleotidase activities were less affected. Importantly, ARL 67156 was not hydrolysed by either human NTPDase1, 2, 3, 8, NPP1 or NPP3. CONCLUSIONS AND IMPLICATIONS In cell environments where NTPDase1, NTPDase3, NPP1 or mouse NTPDase8 are present, ARL 67156 would prolong the effect of endogenously released ATP on P2 receptors. However, it does not block any ectonucleotidases efficiently when high concentrations of substrates are present, such as in biochemical, pharmacological or P2X(7) assays. In addition, ARL 67156 is not an effective inhibitor of NTPDase2, human NTPDase8, NPP3 and ecto-5'-nucleotidase.
Collapse
Affiliation(s)
- S A Lévesque
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval Québec, QC, Canada
| | - É G Lavoie
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval Québec, QC, Canada
| | - J Lecka
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval Québec, QC, Canada
| | - F Bigonnesse
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval Québec, QC, Canada
| | - J Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval Québec, QC, Canada
- Author for correspondence:
| |
Collapse
|
396
|
Van Crombruggen K, Van Nassauw L, Timmermans JP, Lefebvre RA. Inhibitory purinergic P2 receptor characterisation in rat distal colon. Neuropharmacology 2007; 53:257-71. [PMID: 17612577 DOI: 10.1016/j.neuropharm.2007.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 05/10/2007] [Accepted: 05/15/2007] [Indexed: 10/23/2022]
Abstract
The aim of this study was to characterise the P2 receptors involved in purinergic relaxant responses in rat distal colon circular muscle. Concentration-response curves for purinergic agonists were constructed on methacholine-precontracted circular muscle strips of rat distal colon in the absence and presence of the nerve blocker TTX and the ecto-nucleotidase inhibitor ARL67156. The effects of the P2 receptor antagonists RB2, PPADS, suramin, MRS2179 and NF279, the NO-synthase inhibitor L-NAME and the small conductance K(+) channel blocker apamin were investigated. The localisation of the different P2 receptors was examined immunocytochemically. Immunocytochemistry demonstrated the expression of P2Y(1), P2Y(6) and P2X(1) receptors on smooth muscle cells and P2Y(2), P2Y(12), P2X(2) and P2X(3) receptors in the myenteric plexus; almost a quarter of the P2Y(2)-immunopositive neurons co-expressed nNOS. The P2X-selective agonist alphabetameATP and the P2Y-selective agonist ADPbetaS were the most potent relaxants; their effects were abolished by apamin. The effect of ADPbetaS was antagonised by the P2Y(1)-selective antagonist MRS2179 pointing to interaction with the muscular P2Y(1)-receptors. The relaxant effect of alphabetameATP was partially reduced by TTX and concentration-dependently antagonised by PPADS, suramin, RB2 and the P2X(1)-selective antagonist NF279; this correlates with an interaction with neuronal P2X(3) and muscular P2X(1) receptors. UTP was the least potent agonist; its effect was markedly increased by ARL67156, nearly abolished by TTX and reduced by L-NAME. This points to interaction with the neuronal P2Y(2)-receptors inducing relaxation, at least partially, by NO release.
Collapse
Affiliation(s)
- K Van Crombruggen
- Heymans Institute of Pharmacology, Ghent University, De Pintelaan 185, 9000 Gent, Belgium
| | | | | | | |
Collapse
|
397
|
Benkó R, Undi S, Wolf M, Vereczkei A, Illényi L, Kassai M, Cseke L, Kelemen D, Horváth OP, Antal A, Magyar K, Barthó L. P2 purinoceptor antagonists inhibit the non-adrenergic, non-cholinergic relaxation of the human colon in vitro. Neuroscience 2007; 147:146-52. [PMID: 17509767 DOI: 10.1016/j.neuroscience.2007.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 03/19/2007] [Accepted: 04/07/2007] [Indexed: 10/23/2022]
Abstract
Neurotransmitters released by myenteric neurons regulate movements of intestinal smooth muscles. There has been little pharmacological evidence for a role of purinergic mechanisms in the non-adrenergic, non-cholinergic (NANC) relaxation of the human large intestine. We used P(2) purinoceptor antagonists to assess whether such receptors are involved in the NANC relaxation of the circular muscle of the human sigmoid colon. It was also investigated whether the guanylate cyclase enzyme mediates the NANC response. Human colonic circular strips were tested in organ bath experiments with isotonic recording. NANC, non-nitrergic relaxations induced by electrical field stimulation (1 and 10 Hz, in the presence of atropine, guanethidine, and 100 microM N(G)-nitro-L-arginine [L-NOARG]) were strongly inhibited by a combination of the P(2) purinoceptor antagonists pyridoxal-phosphate-6-azophenyl-2',4'-sulfonic acid (PPADS) (50 microM) and suramin (100 microM). PPADS plus suramin was ineffective in the absence of L-NOARG. L-NOARG alone significantly reduced the NANC relaxation to electrical stimulation. PPADS plus suramin strongly inhibited the relaxation in response to exogenous alpha,beta-methylene ATP. The guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (3 microM) inhibited the NANC relaxation, but did not add to its reduction by L-NOARG. L-NOARG was still slightly effective in the presence of ODQ. Vasoactive intestinal polypeptide tachyphylaxis failed to influence the non-nitrergic NANC relaxation. It is concluded that nitric oxide (NO) and ATP co-mediate, in a non-additive manner, the NANC relaxation. NO probably acts through the guanylate cyclase, though a small fraction of its effect might be mediated by other mechanisms. Activators of the guanylate cyclase other than NO do not seem to participate in the NANC relaxation.
Collapse
Affiliation(s)
- R Benkó
- Department of Pharmacology and Pharmacotherapy, Division of Pharmacodynamics, University of Pécs Medical School, Szigeti u 12, H-7643 Pécs, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
398
|
Ko H, Fricks I, Ivanov AA, Harden TK, Jacobson KA. Structure-activity relationship of uridine 5'-diphosphoglucose analogues as agonists of the human P2Y14 receptor. J Med Chem 2007; 50:2030-9. [PMID: 17407275 PMCID: PMC3408610 DOI: 10.1021/jm061222w] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UDP-glucose (UDPG) and derivatives are naturally occurring agonists of the Gi protein-coupled P2Y14 receptor, which occurs in the immune system. We synthesized and characterized pharmacologically novel analogues of UDPG modified on the nucleobase, ribose, and glucose moieties, as the basis for designing novel ligands in conjunction with modeling. The recombinant human P2Y14 receptor expressed in COS-7 cells was coupled to phospholipase C through an engineered Galpha-q/i protein. Most modifications of the uracil or ribose moieties abolished activity; this is among the least permissive P2Y receptors. However, a 2-thiouracil modification in 15 (EC50 49 +/- 2 nM) enhanced the potency of UDPG (but not UDP-glucuronic acid) by 7-fold. 4-Thio analogue 13 was equipotent to UDPG, but S-alkylation was detrimental. Compound 15 was docked in a rhodposin-based receptor homology model, which correctly predicted potent agonism of UDP-fructose, UDP-mannose, and UDP-inositol. The hexose moiety of UDPG interacts with multiple H-bonding and charged residues and provides a fertile region for agonist modification.
Collapse
Affiliation(s)
- Hyojin Ko
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ingrid Fricks
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Andrei A. Ivanov
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - T. Kendall Harden
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
399
|
Resende RR, Majumder P, Gomes KN, Britto LRG, Ulrich H. P19 embryonal carcinoma cells as in vitro model for studying purinergic receptor expression and modulation of N-methyl-d-aspartate–glutamate and acetylcholine receptors during neuronal differentiation. Neuroscience 2007; 146:1169-81. [PMID: 17418494 DOI: 10.1016/j.neuroscience.2007.02.041] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 02/09/2007] [Accepted: 02/12/2007] [Indexed: 10/23/2022]
Abstract
The in vitro differentiation of P19 murine embryonal carcinoma cells to neurons resembles developmental stages which are encountered during neuronal development. Three days following induction to neuronal differentiation by retinoic acid, most cells of the P19 population lost expression of the stage specific embryonic antigen (SSEA-1) and expressed the neural progenitor cell specific antigen nestin. Beginning from day 4 of differentiation nestin expression was down-regulated, and expression of neuron-specific enolase as marker of differentiated neurons increased. The molecular mechanisms underlying neuronal differentiation are poorly understood. We have characterized the participation of purinergic ionotropic (P2X) and metabotropic (P2Y) receptors at mRNA transcription and protein levels as well as ATP-induced Ca2+ transients during neuronal differentiation of P19 cells. Gene and protein expression of P2X2, P2X6, P2Y2, and P2Y6 receptors increased during the course of differentiation, whereas P2X3, P2X4, P2Y1 and P2Y4 receptor expression was high in embryonic P19 cells and then decreased following induction of P19 cells to differentiation. P2X1 receptor protein expression was only detected on days 2 and 4 of differentiation. Although P2X5 and P2X7 mRNA transcription was present, no protein expression for this receptor subunit could be detected throughout the differentiation process. In undifferentiated cells, mainly ionotropic P2X receptors contributed to the ATP-induced Ca2+-response. In neuronal-differentiated P19 cells, the ATP-induced Ca2+-response was increased and the metabotropic component predominated. Purinergic receptor function is implicated to participate in neuronal maturation, as cholinergic and glutamate-N-methyl-D-aspartate (NMDA) induced calcium responses were affected when cells were differentiated in the presence of purinergic receptor antagonists pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), suramin or reactive blue-2. Our data suggest that inhibition of P2Y1 and possibly P2X2 receptors led to a loss of NMDA receptor activity whereas blockade of possibly P2X2 and P2Y2 purinergic receptors during neuronal differentiation of P19 mouse led to inhibition of cholinergic receptor responses.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Differentiation/physiology
- Cell Line
- Embryonal Carcinoma Stem Cells
- Fluorescent Antibody Technique
- Immunohistochemistry
- Mice
- Mice, Inbred BALB C
- Microscopy, Confocal
- Neoplastic Stem Cells/metabolism
- Neurons/metabolism
- Purinergic Antagonists
- Purinergic P1 Receptor Antagonists
- Purinergic P2 Receptor Antagonists
- Pyridoxal Phosphate/analogs & derivatives
- Pyridoxal Phosphate/pharmacology
- Receptors, Cholinergic/metabolism
- Receptors, Muscarinic/biosynthesis
- Receptors, Muscarinic/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, Nicotinic/biosynthesis
- Receptors, Nicotinic/genetics
- Receptors, Purinergic/biosynthesis
- Receptors, Purinergic/genetics
- Receptors, Purinergic P1/biosynthesis
- Receptors, Purinergic P1/genetics
- Receptors, Purinergic P2/biosynthesis
- Receptors, Purinergic P2/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Suramin/pharmacology
- Triazines/pharmacology
Collapse
Affiliation(s)
- R R Resende
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
400
|
Coppi E, Pugliese AM, Urbani S, Melani A, Cerbai E, Mazzanti B, Bosi A, Saccardi R, Pedata F. ATP modulates cell proliferation and elicits two different electrophysiological responses in human mesenchymal stem cells. Stem Cells 2007; 25:1840-9. [PMID: 17446563 DOI: 10.1634/stemcells.2006-0669] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone marrow-derived human mesenchymal stem cells (hMSCs) have the potential to differentiate into several cell lines. Extracellular adenosine 5'-triphosphate (ATP) acts as a potent signaling molecule mediating cell-to-cell communication. Particular interest has been focused in recent years on the role of ATP in stem cell proliferation and differentiation. In the present work, we demonstrate that hMSCs at early stages of culture (P0-P5) spontaneously release ATP, which decreases cell proliferation. Increased hMSC proliferation is induced by the unselective P2 antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonate (PPADS) and by the selective P2Y1 antagonist 2'-deoxy-N6-methyladenosine3',5'-bisphosphate (MRS 2179). A functional role of extracellular ATP in modulating ionic conductances with the whole-cell and/or perforated patch-clamp techniques was also investigated. Exogenous ATP increased both the voltage-sensitive outward and inward currents in 47% of cells, whereas, in 31% of cells, only an increase in inward currents was found. Cells responding in this dual manner to ATP presented different resting membrane potentials. Both ATP-induced effects had varying sensitivity to the P2 antagonists PPADS and MRS 2179. Outward ATP-sensitive currents are carried by potassium ions, since they are blocked by cesium replacement and are Ca2+ -dependent because they are eliminated in the presence of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. On the basis of different electrophysiological and pharmacological characteristics, we conclude that outward ATP-sensitive currents are due to Ca2+ -dependent K+ -channel activation following stimulation of P2Y receptors, whereas inward ATP-sensitive currents are mediated by P2X receptor activation. In summary, ATP released in early life stages of hMSCs modulates their proliferation rate and likely acts as one of the early factors determining their cell fate. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|