351
|
Freitas RL, Carvalho CM, Fietto LG, Loureiro ME, Almeida AM, Fontes EPB. Distinct repressing modules on the distal region of the SBP2 promoter contribute to its vascular tissue-specific expression in different vegetative organs. PLANT MOLECULAR BIOLOGY 2007; 65:603-14. [PMID: 17710554 DOI: 10.1007/s11103-007-9225-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 08/08/2007] [Indexed: 05/16/2023]
Abstract
The Glycine max sucrose binding protein (GmSBP2) promoter directs vascular tissue-specific expression of reporter genes in transgenic tobacco. Here we showed that an SBP2-GFP fusion protein under the control of the GmSBP2 promoter accumulates in the vascular tissues of vegetative organs, which is consistent with the proposed involvement of SBP in sucrose transport-dependent physiological processes. Through gain-of-function experiments we confirmed that the tissue-specific determinants of the SBP2 promoter reside in the distal cis-regulatory domain A, CRD-A (position -2000 to -700) that is organized into a modular configuration to suppress promoter activity in tissues other than vascular tissues. The four analyzed CRD-A sub-modules, designates Frag II (-1785/-1508), Frag III (-1507/-1237), Frag IV (-1236/-971) and Frag V (-970/-700), act independently to alter the constitutive pattern of -92pSBP2-mediated GUS expression in different organs. Frag V fused to -92pSBP2-GUS restored the tissue-specific pattern of the full-length promoter in the shoot apex, but not in other organs. Likewise, Frag IV confined GUS expression to the vascular bundle of leaves, whereas Frag II mediated vascular specific expression in roots. Strong stem expression-repressing elements were located at positions -1485 to -1212, as Frag III limited GUS expression to the inner phloem. We have also mapped a procambium silencer to the consensus sequence CAGTTnCaAccACATTcCT which is located in both distal and proximal upstream modules. Fusion of either repressing element-containing module to the constitutive -92pSBP2 promoter suppresses GUS expression in the elongation zone of roots. Together our results demonstrate the unusual aspect of distal sequences negatively controlling tissue-specificity of a plant promoter.
Collapse
Affiliation(s)
- Rejane L Freitas
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36571-000 Vicosa, MG, Brazil
| | | | | | | | | | | |
Collapse
|
352
|
Burrell MR, Just VJ, Bowater L, Fairhurst SA, Requena L, Lawson DM, Bornemann S. Oxalate Decarboxylase and Oxalate Oxidase Activities Can Be Interchanged with a Specificity Switch of up to 282 000 by Mutating an Active Site Lid,. Biochemistry 2007; 46:12327-36. [DOI: 10.1021/bi700947s] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthew R. Burrell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Victoria J. Just
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Laura Bowater
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Shirley A. Fairhurst
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Laura Requena
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - David M. Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Stephen Bornemann
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
353
|
Berreau LM. COORDINATION AND BIOINORGANIC CHEMISTRY OF ARYL-APPENDED TRIS(2-PYRIDYLMETHYL)AMINE LIGANDS. COMMENT INORG CHEM 2007. [DOI: 10.1080/02603590701572940] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
354
|
Radauer C, Breiteneder H. Evolutionary biology of plant food allergens. J Allergy Clin Immunol 2007; 120:518-25. [PMID: 17689599 DOI: 10.1016/j.jaci.2007.07.024] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 07/18/2007] [Accepted: 07/18/2007] [Indexed: 11/20/2022]
Abstract
The majority of plant food allergens can be grouped into just 4 protein families. This review summarizes the evolutionary relationships of allergenic and nonallergenic members of these families. Proteins from the prolamin superfamily have been described in vascular plants. This superfamily contains several allergenic (2S albumins, nonspecific lipid transfer proteins, and cereal amylase and protease inhibitors) and nonallergenic (hybrid proline-rich proteins, cereal indolines, and alpha-globulins) member families. The cupin superfamily comprises numerous functionally highly diverse protein families from all groups of organisms. However, allergenicity within the cupins is confined to the vicilin and legumin seed storage proteins. Profilins are ubiquitous eukaryotic proteins that are nonallergenic, with the exception of profilins from flowering plants. Finally, the Bet v 1 superfamily contains the pathogenesis-related proteins 10 family, the family of major latex proteins and ripening-related proteins, the norcoclaurine synthases, and the cytokinin-binding proteins, with pathogenesis-related proteins 10 family members from certain taxa being the only allergenic members. The study of the distribution of allergenic and nonallergenic members of protein families will provide new insights into the evolution of allergenicity and the factors that make proteins allergenic.
Collapse
Affiliation(s)
- Christian Radauer
- Department of Pathophysiology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
355
|
Bertosa B, Kojić-Prodić B, Wade RC, Tomić S. Mechanism of auxin interaction with Auxin Binding Protein (ABP1): a molecular dynamics simulation study. Biophys J 2007; 94:27-37. [PMID: 17766341 PMCID: PMC2134879 DOI: 10.1529/biophysj.107.109025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Auxin Binding Protein 1 (ABP1) is ubiquitous in green plants. It binds the phytohormone auxin with high specificity and affinity, but its role in auxin-induced processes is unknown. To understand the proposed receptor function of ABP1 we carried out a detailed molecular modeling study. Molecular dynamics simulations showed that ABP1 can adopt two conformations differing primarily in the position of the C-terminus and that one of them is stabilized by auxin binding. This is in agreement with experimental evidence that auxin induces changes at the ABP1 C-terminus. Simulations of ligand egress from ABP1 revealed three main routes by which an auxin molecule can enter or leave the ABP1 binding site. Assuming the previously proposed orientation of ABP1 to plant cell membranes, one of the routes leads to the membrane and the other two to ABP1's aqueous surroundings. A network of hydrogen-bonded water molecules leading from the bulk water to the zinc-coordinated ligands in the ABP1 binding site was formed in all simulations. Water entrance into the zinc coordination sphere occurred simultaneously with auxin egress. These results suggest that the hydrogen-bonded water molecules may assist in protonation and deprotonation of auxin molecules and their egress from the ABP1 binding site.
Collapse
|
356
|
Straganz GD, Nidetzky B. Variations of the 2-His-1-carboxylate theme in mononuclear non-heme FeII oxygenases. Chembiochem 2007; 7:1536-48. [PMID: 16858718 DOI: 10.1002/cbic.200600152] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A facial triad of two histidine side chains and one aspartate or glutamate side chain forms the canonical metal-coordinating motif in the catalytic centers of various mononuclear non-heme Fe(II) enzymes. Although these active sites are based on totally unrelated protein folds and bring about a wide range of chemical transformations, most of them share the ability to couple dioxygen reduction with the oxygenation of an organic substrate. With the increasing number of protein structures now solved, it has become clear that the 2-His-1-carboxylate signature is less of a paradigm for non-heme Fe(II) active sites than had long been thought and that it can be replaced by alternative metal centers in various oxygenases, the structure-function relationships and proposed catalytic mechanisms of which are reviewed here. Metal coordination through three histidines and one glutamate constitutes the classical motif described for enzyme members of the cupin protein superfamily, such as aci-reductone dioxygenase and quercetin dioxygenase, multiple metal forms of which (including the Fe(II) type) are found in nature. Cysteine dioxygenase and diketone dioxygenase, which are strictly Fe(II)-dependent oxygenases based on the cupin fold, bind the catalytic metal through the homologous triad of histidines, but lack the fourth glutamate ligand. An alpha-ketoglutarate-dependent Fe(II) halogenase shows metal coordination by two histidines as the only protein-derived ligands, whilst carotene oxygenase, from a different protein fold family, features an Fe(II) site consisting of four histidine side chains. These recently discovered metallocenters are discussed with respect to their metal-binding properties and the reaction coordinates of the O(2)-dependent conversions they catalyze.
Collapse
Affiliation(s)
- G D Straganz
- Institute of Biotechnology and Biochemical Engineering Graz University of Technology Petersgasse 12/I, 8010 Graz, Austria.
| | | |
Collapse
|
357
|
Angerhofer A, Moomaw EW, García-Rubio I, Ozarowski A, Krzystek J, Weber RT, Richards NGJ. Multifrequency EPR Studies on the Mn(II) Centers of Oxalate Decarboxylase. J Phys Chem B 2007; 111:5043-6. [PMID: 17444678 DOI: 10.1021/jp0715326] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxalate decarboxylase from Bacillus subtilis is composed of two cupin domains, each of which contains a Mn(II) ion coordinated by four identical conserved residues. The similarity between the two Mn(II) sites has precluded previous attempts to distinguish them spectroscopically and complicated efforts to understand the catalytic mechanism. A multifrequency cw-EPR approach has now enabled us to show that the two Mn ions can be distinguished on the basis of their differing fine structure parameters and to observe that acetate and formate bind to Mn(II) in only one of the two sites. The EPR evidence is consistent with the hypothesis that this Mn-binding site is located in the N-terminal domain, in agreement with predictions based on a recent X-ray structure of the enzyme.
Collapse
|
358
|
Gotoh I, Uekita T, Seiki M. Regulated nucleo-cytoplasmic shuttling of human aci-reductone dioxygenase (hADI1) and its potential role in mRNA processing. Genes Cells 2007; 12:105-17. [PMID: 17212658 DOI: 10.1111/j.1365-2443.2006.01035.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial aci-reductone dioxygenase (ARD), a member of the cupin superfamily, has evolutionarily primitive protein folding and functions in the methionine recycling pathway. Recently, a human ARD orthologue (human ADI1, hADI1) has been identified and exhibits functions other than ARD activity. The hADI1 localizes mainly to the cytoplasm, but a substantial fraction is nuclear, suggesting functions in both cellular compartments. In this study, we report that nucleo-cytoplasmic transport of hADI1 is regulated by a non-canonical nuclear export signal (NES) located in the N-terminal region of hADI1. The NES is composed of multiple basic amino-acid residues instead of the canonical leucine-rich sequence. Nuclear export of hADI1 was not mediated by CRM1, a major transporter that binds to leucine-rich NES. Substitution of the basic residues with alanines abolished NES activity. Mutant hADI1 accumulated in the nucleus and formed speckles frequently observed with splicing factors and some transcription factors. Indeed, hADI1 specifically co-localized with the splicing factor U1-70K to the nucleus but not with another splicing factor, SC35. U1-70K over-expression induced nuclear accumulation of hADI1. Nuclear hADI1 expression significantly altered the splicing pattern of the adenovirus E1A mini-gene, which generates multiple alternatively spliced transcripts. Thus, hADI1 may have acquired a novel role in nuclear mRNA processing possibly by modulating U1-70K-related functions, an activity negatively regulated by a non-classical NES sequence.
Collapse
Affiliation(s)
- Isamu Gotoh
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | | | | |
Collapse
|
359
|
Svedružić D, Liu Y, Reinhardt LA, Wroclawska E, Cleland WW, Richards NGJ. Investigating the roles of putative active site residues in the oxalate decarboxylase from Bacillus subtilis. Arch Biochem Biophys 2007; 464:36-47. [PMID: 17459326 PMCID: PMC2041844 DOI: 10.1016/j.abb.2007.03.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/11/2007] [Accepted: 03/16/2007] [Indexed: 12/17/2022]
Abstract
Oxalate decarboxylase (OxDC) catalyzes the conversion of oxalate into CO(2) and formate using a catalytic mechanism that remains poorly understood. The Bacillus subtilis enzyme is composed of two cupin domains, each of which contains Mn(II) coordinated by four conserved residues. We have measured heavy atom isotope effects for a series of Bacillus subtilis OxDC mutants in which Arg-92, Arg-270, Glu-162, and Glu-333 are conservatively substituted in an effort to define the functional roles of these residues. This strategy has the advantage that observed isotope effects report directly on OxDC molecules in which the active site manganese center(s) is (are) catalytically active. Our results support the proposal that the N-terminal Mn-binding site can mediate catalysis, and confirm the importance of Arg-92 in catalytic activity. On the other hand, substitution of Arg-270 and Glu-333 affects both Mn(II) incorporation and the ability of Mn to bind to the OxDC mutants, thereby precluding any definitive assessment of whether the metal center in the C-terminal domain can also mediate catalysis. New evidence for the importance of Glu-162 in controlling metal reactivity has been provided by the unexpected observation that the E162Q OxDC mutant exhibits a significantly increased oxalate oxidase and a concomitant reduction in decarboxylase activities relative to wild type OxDC. Hence the reaction specificity of a catalytically active Mn center in OxDC can be perturbed by relatively small changes in local protein environment, in agreement with a proposal based on prior computational studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Nigel G. J. Richards
- *Correspondence to Department of Chemistry, Box 117200, University of Florida, Gainesville, Fl 32611-7200, 352-392-3601 (Office); 352-392-7918 (Fax),
| |
Collapse
|
360
|
Warpeha KM, Upadhyay S, Yeh J, Adamiak J, Hawkins SI, Lapik YR, Anderson MB, Kaufman LS. The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in Arabidopsis. PLANT PHYSIOLOGY 2007; 143:1590-600. [PMID: 17322342 PMCID: PMC1851835 DOI: 10.1104/pp.106.089904] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Different classes of biotic (e.g. plant hormones) and abiotic (e.g. different wavelengths of light) signals act through specific signal transduction mechanisms to coordinate higher plant development. While a great deal of progress has been made, full signal transduction chains have not yet been described for most blue light- or abscisic acid-mediated events. Based on data derived from T-DNA insertion mutants and yeast (Saccharomyces cerevisiae) two-hybrid and coprecipitation assays, we report a signal transduction chain shared by blue light and abscisic acid leading to light-harvesting chlorophyll a/b-binding protein expression in etiolated Arabidopsis (Arabidopsis thaliana) seedlings. The chain consists of GCR1 (the sole Arabidopsis protein coding for a potential G-protein-coupled receptor), GPA1 (the sole Arabidopsis Galpha-subunit), Pirin1 (PRN1; one of four members of an iron-containing subgroup of the cupin superfamily), and a nuclear factor Y heterotrimer comprised of A5, B9, and possibly C9. We also demonstrate that this mechanism is present in imbibed seeds wherein it affects germination rate.
Collapse
Affiliation(s)
- Katherine M Warpeha
- Laboratory for Molecular Biology, Department of Biological Sciences , University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | | | | | | | | | |
Collapse
|
361
|
Malkhasian AYS, Finch ME, Nikolovski B, Menon A, Kucera BE, Chavez FA. N,N‘-Dimethylformamide-Derived Products from Catalytic Oxidation of 3-Hydroxyflavone. Inorg Chem 2007; 46:2950-2. [PMID: 17378555 DOI: 10.1021/ic062408o] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biomimetic conversion of 3-hydroxyflavone in the presence of a copper(II) catalyst, dioxygen, and N,N'-dimethylformamide to oxidation products as well as two previously unreported solvent-derived products is seen. The two solvent-derived products were characterized, and their crystal structures were determined.
Collapse
|
362
|
Mtwisha L, Farrant JM, Brandt W, Hlongwane C, Lindsey GG. ASP53, a thermostable protein from Acacia erioloba seeds that protects target proteins against thermal denaturation. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:139-149. [PMID: 32689340 DOI: 10.1071/fp06135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 01/18/2007] [Indexed: 05/27/2023]
Abstract
ASP53, a 53 kDa heat soluble protein, was identified as the most abundant protein in the mature seeds of Acacia erioloba E.Mey. Immunocytochemistry showed that ASP53 was present in the vacuoles and cell walls of the axes and cotyledons of mature seeds and disappeared coincident with loss of desiccation tolerance. The sequence of the ASP53 transcript was determined and found to be homologous to the double cupin domain-containing vicilin class of seed storage proteins. Mature seeds survived heating to 60°C and this may be facilitated by the presence of ASP53. Circular dichroism spectroscopy demonstrated that the protein displayed defined secondary structure, which was maintained even at high temperature. ASP53 was found to inhibit all three stages of protein thermal denaturation. ASP53 decreased the rate of loss of alcohol dehydrogenase activity at 55°C, decreased the rate of temperature-dependent loss of secondary structure of haemoglobin and completely inhibited the temperature-dependent aggregation of egg white protein.
Collapse
Affiliation(s)
- Linda Mtwisha
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag 7725, Rondebosch, South Africa
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag 7725, Rondebosch, South Africa
| | - Wolf Brandt
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag 7725, Rondebosch, South Africa
| | | | - George G Lindsey
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag 7725, Rondebosch, South Africa
| |
Collapse
|
363
|
Merkens H, Sielker S, Rose K, Fetzner S. A new monocupin quercetinase of Streptomyces sp. FLA: identification and heterologous expression of the queD gene and activity of the recombinant enzyme towards different flavonols. Arch Microbiol 2007; 187:475-87. [PMID: 17516049 DOI: 10.1007/s00203-007-0215-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2006] [Revised: 11/18/2006] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
The gene queD encoding quercetinase of Streptomyces sp. FLA, a soil isolate related to S. eurythermus (T), was identified. Quercetinases catalyze the 2,4-dioxygenolytic cleavage of 3,5,7,3',4'-pentahydroxyflavone to 2-protocatechuoylphloroglucinol carboxylic acid and carbon monoxide. The queD gene was expressed in S. lividans and E. coli, and the recombinant hexahistidine-tagged protein (QueDHis(6)) was purified. Several flavonols were converted by QueDHis(6), whereas CO formation from the 2,3-dihydroflavonol taxifolin and the flavone luteolin were not observed. In contrast to bicupin quercetinases from Aspergillus japonicus and Bacillus subtilis, and bicupin pirins showing quercetinase activity, QueD of strain FLA is a monocupin exhibiting 35.9% sequence identity to the C-terminal domain of B. subtilis quercetinase. Its native molecular mass of 63 kDa suggests a multimeric protein. A queD-specific probe hybridized with fragments of genomic DNA of four other quercetin degrading Streptomyces strains, but not with DNA of B. subtilis. Potential ORFs upstream of queD probably code for a serine protease and an endoribonuclease; two ORFs downstream of queD may encode an amidohydrolase and a carboxylesterase. This arrangement suggests that queD is not part of a catabolic gene cluster. Quercetinases might play a major role as detoxifying rather than catabolic enzymes.
Collapse
Affiliation(s)
- Hedda Merkens
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstr. 3, 48149 Münster, Germany
| | | | | | | |
Collapse
|
364
|
Ye S, Wu X, Wei L, Tang D, Sun P, Bartlam M, Rao Z. An Insight into the Mechanism of Human Cysteine Dioxygenase. J Biol Chem 2007; 282:3391-402. [PMID: 17135237 DOI: 10.1074/jbc.m609337200] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine dioxygenase is a non-heme mononuclear iron metalloenzyme that catalyzes the oxidation of cysteine to cysteine sulfinic acid with addition of molecular dioxygen. This irreversible oxidative catabolism of cysteine initiates several important metabolic pathways related to diverse sulfurate compounds. Cysteine dioxygenase is therefore very important for maintaining the proper hepatic concentration of intracellular free cysteine. Mechanisms for mouse and rat cysteine dioxygenases have recently been reported based on their crystal structures in the absence of substrates, although there is still a lack of direct evidence. Here we report the first crystal structure of human cysteine dioxygenase in complex with its substrate L-cysteine to 2.7A, together with enzymatic activity and metal content assays of several single point mutants. Our results provide an insight into a new mechanism of cysteine thiol dioxygenation catalyzed by cysteine dioxygenase, which is tightly associated with a thioether-bonded tyrosine-cysteine cofactor involving Tyr-157 and Cys-93. This cross-linked protein-derived cofactor plays several key roles different from those in galactose oxidase. This report provides a new potential target for therapy of diseases related to human cysteine dioxygenase, including neurodegenerative and autoimmune diseases.
Collapse
Affiliation(s)
- Sheng Ye
- Tsinghua-IBP Joint Research Group for Structural Biology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
365
|
Abstract
In 2006 we celebrated the centenary of a remarkable year that saw the birth of genetics as a scientific discipline. This birth had its origins in horticulture and was supervised by a remarkable Cambridge academic, accompanied by a loyal group of female colleagues who worked together in underfunded conditions with little institutional support. Despite this deprivation, they established the foundations of an ongoing revolution, with huge academic and commercial consequences that we can recognize today in the shape of genomics and its application to biomedicine.
Collapse
Affiliation(s)
- Jim M Dunwell
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK.
| |
Collapse
|
366
|
Chin KH, Chou CC, Wang AHJ, Chou SH. Crystal structure of XC5357 from Xanthomonas campestris: a putative tetracenomycin polyketide synthesis protein adopting a novel cupin subfamily structure. Proteins 2006; 65:1046-50. [PMID: 17029242 DOI: 10.1002/prot.21142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ko-Hsin Chin
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan 40227, Republic of China
| | | | | | | |
Collapse
|
367
|
Zimmermann G, Bäumlein H, Mock HP, Himmelbach A, Schweizer P. The multigene family encoding germin-like proteins of barley. Regulation and function in Basal host resistance. PLANT PHYSIOLOGY 2006; 142:181-92. [PMID: 16844832 PMCID: PMC1557593 DOI: 10.1104/pp.106.083824] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Germin-like proteins (GLPs) have been shown to be encoded by multigene families in several plant species and a role of some subfamily members in defense against pathogen attack has been proposed based on gene regulation studies and transgenic approaches. We studied the function of six GLP subfamilies of barley (Hordeum vulgare) by selecting single mRNAs for gene expression studies as well as overexpression and gene-silencing experiments in barley and Arabidopsis (Arabidopsis thaliana). Expression of all six subfamilies was high in very young seedlings, including roots. The expression pattern gradually changed from developmental to conditional with increasing plant age, whereby pathogen attack and exogenous hydrogen peroxide application were found to be the strongest signals for induction of several GLP subfamilies. Transcripts of four of five GLP subfamilies that are expressed in shoots were predominantly accumulating in the leaf epidermis. Transient overexpression of HvGER4 or HvGER5 as well as transient silencing by RNA interference of HvGER3 or HvGER5 protected barley epidermal cells from attack by the appropriate powdery mildew fungus Blumeria graminis f. sp. hordei. Silencing of HvGER4 induced hypersusceptibility. Transient and stable expression of subfamily members revealed HvGER5 as a new extracellular superoxide dismutase, and protection by overexpression could be demonstrated to be dependent on superoxide dismutase activity of the encoded protein. Data suggest a complex interplay of HvGER proteins in fine regulation of basal resistance against B. graminis.
Collapse
Affiliation(s)
- Grit Zimmermann
- Leibniz-Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | | | | | | | | |
Collapse
|
368
|
Ju T, Goldsmith RB, Chai SC, Maroney MJ, Pochapsky SS, Pochapsky TC. One protein, two enzymes revisited: a structural entropy switch interconverts the two isoforms of acireductone dioxygenase. J Mol Biol 2006; 363:823-34. [PMID: 16989860 PMCID: PMC1808343 DOI: 10.1016/j.jmb.2006.08.060] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 08/22/2006] [Accepted: 08/23/2006] [Indexed: 12/01/2022]
Abstract
Acireductone dioxygenase (ARD) catalyzes different reactions between O2 and 1,2-dihydroxy-3-oxo-5-(methylthio)pent-1-ene (acireductone) depending upon the metal bound in the active site. Ni2+ -ARD cleaves acireductone to formate, CO and methylthiopropionate. If Fe2+ is bound (ARD'), the same substrates yield methylthioketobutyrate and formate. The two forms differ in structure, and are chromatographically separable. Paramagnetism of Fe2+ renders the active site of ARD' inaccessible to standard NMR methods. The structure of ARD' has been determined using Fe2+ binding parameters determined by X-ray absorption spectroscopy and NMR restraints from H98S ARD, a metal-free diamagnetic protein that is isostructural with ARD'. ARD' retains the beta-sandwich fold of ARD, but a structural entropy switch increases order at one end of a two-helix system that bisects the beta-sandwich and decreases order at the other upon interconversion of ARD and ARD', causing loss of the C-terminal helix in ARD' and rearrangements of residues involved in substrate orientation in the active site.
Collapse
Affiliation(s)
- Tingting Ju
- Department of Chemistry, Brandeis University MS 015, 415 South St., Waltham, MA 02454-9110 USA
| | | | - Sergio C. Chai
- Department of Chemistry, University of Massachusetts Amherst, MA 01003-9336 USA
| | - Michael J. Maroney
- Department of Chemistry, University of Massachusetts Amherst, MA 01003-9336 USA
| | - Susan Sondej Pochapsky
- Department of Chemistry, Brandeis University MS 015, 415 South St., Waltham, MA 02454-9110 USA
| | - Thomas C. Pochapsky
- Department of Chemistry, Brandeis University MS 015, 415 South St., Waltham, MA 02454-9110 USA
- Department of Biochemistry, Brandeis University
- Rosensteil Basic Medical Sciences Institute, Brandeis University
- Correspondence should be addressed to TCP: Phone 781-736-2559, Fax 781-736-2516 , Website http://www.chem.brandeis.edu/pochapsky
| |
Collapse
|
369
|
Sundheim O, Vågbø CB, Bjørås M, Sousa MML, Talstad V, Aas PA, Drabløs F, Krokan HE, Tainer JA, Slupphaug G. Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage. EMBO J 2006; 25:3389-97. [PMID: 16858410 PMCID: PMC1523172 DOI: 10.1038/sj.emboj.7601219] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 06/09/2006] [Indexed: 01/07/2023] Open
Abstract
Methylating agents are ubiquitous in the environment, and central in cancer therapy. The 1-methyladenine and 3-methylcytosine lesions in DNA/RNA contribute to the cytotoxicity of such agents. These lesions are directly reversed by ABH3 (hABH3) in humans and AlkB in Escherichia coli. Here, we report the structure of the hABH3 catalytic core in complex with iron and 2-oxoglutarate (2OG) at 1.5 A resolution and analyse key site-directed mutants. The hABH3 structure reveals the beta-strand jelly-roll fold that coordinates a catalytically active iron centre by a conserved His1-X-Asp/Glu-X(n)-His2 motif. This experimentally establishes hABH3 as a structural member of the Fe(II)/2OG-dependent dioxygenase superfamily, which couples substrate oxidation to conversion of 2OG into succinate and CO2. A positively charged DNA/RNA binding groove indicates a distinct nucleic acid binding conformation different from that predicted in the AlkB structure with three nucleotides. These results uncover previously unassigned key catalytic residues, identify a flexible hairpin involved in nucleotide flipping and ss/ds-DNA discrimination, and reveal self-hydroxylation of an active site leucine that may protect against uncoupled generation of dangerous oxygen radicals.
Collapse
Affiliation(s)
- Ottar Sundheim
- Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway
- Department of Molecular Biology, The Scripps Research Institute, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA
| | - Cathrine B Vågbø
- Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway
| | - Magnar Bjørås
- Department of Molecular Biology, The Scripps Research Institute, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, University of Oslo, Oslo, Norway
| | - Mirta M L Sousa
- Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway
| | - Vivi Talstad
- Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway
| | - Per A Aas
- Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway
| | - Finn Drabløs
- Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway
| | - Hans E Krokan
- Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway
| | - John A Tainer
- Department of Molecular Biology, The Scripps Research Institute, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway
| |
Collapse
|
370
|
Mathieu M, Lelu-Walter MA, Blervacq AS, David H, Hawkins S, Neutelings G. Germin-like genes are expressed during somatic embryogenesis and early development of conifers. PLANT MOLECULAR BIOLOGY 2006; 61:615-27. [PMID: 16897479 DOI: 10.1007/s11103-006-0036-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 03/01/2006] [Indexed: 05/11/2023]
Abstract
Germins and germin-like proteins (GLPs) are members of a superfamily of proteins widely distributed in plants. Their localization within the extracellular matrix and in some cases their hydrogen peroxide-producing activity suggests that these proteins are involved in cell wall metabolism during stress responses and developmental processes. Several very highly conserved conifer GLPs have been identified in somatic embryo tissues. In order to gain more knowledge on their potential involvement in the development of this particular tissue, we have characterized a new GLP gene, LmGER1 in hybrid larch. Anti-GLP immunserum and in-gel activity analyses suggested the presence of superoxide dismutase activity in apoplastic proteins from larch somatic embryos. These results could indicate a possible role for LmGER1 in this physiological process. The expression of LmGER1 has been followed during the maturation of somatic embryos and in different organs of young plantlets by homologous transformation with a promoter-gus construct. This promoter was activated in the root cap of young embryos and, later on, in the cotyledons and in the vascular procambium and xylem. Furthermore, the importance of this gene in embryo development was evaluated by transforming embryonal masses with a gene construct encoding a hairpin RNA leading to gene silencing. The potential role of LmGER1 in cross-linking of cell wall components is discussed.
Collapse
Affiliation(s)
- M Mathieu
- Laboratoire de Physiologie des Parois Végétales UPRES EA3568-USC INRA, Université des Sciences et Technologies de Lille, Bât SN2, 59655, Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | |
Collapse
|
371
|
Kahramanoglou C, Webster CL, El-Robh MS, Belyaeva TA, Busby SJW. Mutational analysis of the Escherichia coli melR gene suggests a two-state concerted model to explain transcriptional activation and repression in the melibiose operon. J Bacteriol 2006; 188:3199-207. [PMID: 16621812 PMCID: PMC1447455 DOI: 10.1128/jb.188.9.3199-3207.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the Escherichia coli melAB operon is regulated by the MelR protein, an AraC family member whose activity is modulated by the binding of melibiose. In the absence of melibiose, MelR is unable to activate the melAB promoter but autoregulates its own expression by repressing the melR promoter. Melibiose triggers MelR-dependent activation of the melAB promoter and relieves MelR-dependent repression of the melR promoter. Twenty-nine single amino acid substitutions in MelR that result in partial melibiose-independent activation of the melAB promoter have been identified. Combinations of different substitutions result in almost complete melibiose-independent activation of the melAB promoter. MelR carrying each of the single substitutions is less able to repress the melR promoter, while MelR carrying some combinations of substitutions is completely unable to repress the melR promoter. These results argue that different conformational states of MelR are responsible for activation of the melAB promoter and repression of the melR promoter. Supporting evidence for this is provided by the isolation of substitutions in MelR that block melibiose-dependent activation of the melAB promoter while not changing melibiose-independent repression of the melR promoter. Additional experiments with a bacterial two-hybrid system suggest that interactions between MelR subunits differ according to the two conformational states.
Collapse
Affiliation(s)
- Christina Kahramanoglou
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | |
Collapse
|
372
|
Gomes-Junior RA, Moldes CA, Delite FS, Gratão PL, Mazzafera P, Lea PJ, Azevedo RA. Nickel elicits a fast antioxidant response in Coffea arabica cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:420-9. [PMID: 16806955 DOI: 10.1016/j.plaphy.2006.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Indexed: 05/10/2023]
Abstract
The antioxidant responses of coffee (Coffea arabica L.) cell suspension cultures to nickel (Ni) were investigated. Ni was very rapidly accumulated in the cells and the accumulation could be directly correlated with the increase of NiCl(2) concentration in the medium. At 0.05 mM NiCl(2) growth was stimulated, but at 0.5 mM NiCl(2), the growth rate was reduced. An indication of alterations in the presence of reactive oxygen species was detected by an increase in lipid peroxidation at 0.5 mM NiCl(2). Catalase (CAT; EC 1.11.1.6), glutathione reductase (GR; EC 1.6.4.2), ascorbate peroxidase (APX; EC 1.11.1.11), guaiacol peroxidase (GOPX; EC 1.11.1.7) and superoxide dismutase (SOD; EC 1.15.1.1) activities were increased, particularly at earlier NiCl(2) exposure times and the activities were higher at 0.5 mM NiCl(2) for most of exposure times tested. Non-denaturing PAGE revealed one CAT isoenzyme, nine SOD isoenzymes and four GR isoenzymes. The SOD isoenzymes were differentially affected by NiCl(2) treatment and one GR isoenzyme was increased by NiCl(2). NiCl(2) at 0.05 mM did not induce lipid peroxidation and the main response appeared to be via the induction of SOD, CAT, GOPX and APX activities for the removal of the reactive oxygen species and through the induction of GR to ensure the availability of reduced glutathione.
Collapse
Affiliation(s)
- R A Gomes-Junior
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba 13418-900, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
373
|
Exploring the cupin-type metal-coordinating signature of acetylacetone dioxygenase Dke1 with site-directed mutagenesis: Catalytic reaction profile and Fe2+ binding stability of Glu-69→Gln mutant. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.molcatb.2006.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
374
|
Badescu GO, Napier RM. Receptors for auxin: will it all end in TIRs? TRENDS IN PLANT SCIENCE 2006; 11:217-23. [PMID: 16564202 DOI: 10.1016/j.tplants.2006.03.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/20/2006] [Accepted: 03/09/2006] [Indexed: 05/08/2023]
Abstract
The role of TIR1 in ubiquitination and regulated degradation of Aux/IAA transcription factors has been recognized for some years, but recent results have shown that TIR1 itself is also the binding site for auxin. The affinity and specificity of TIR1 match properties anticipated of a nuclear auxin receptor and we look at how they compare with the properties of ABP1. We also consider the mechanism of auxin action via TIR1 and the likelihood that the TIR1 family could account for all auxin responses. It seems likely that the TIR1 system can account for a large part of the repertoire of auxin-mediated responses, but maybe not all.
Collapse
Affiliation(s)
- George O Badescu
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | | |
Collapse
|
375
|
Schaab MR, Barney BM, Francisco WA. Kinetic and spectroscopic studies on the quercetin 2,3-dioxygenase from Bacillus subtilis. Biochemistry 2006; 45:1009-16. [PMID: 16411777 DOI: 10.1021/bi051571c] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quercetin 2,3-dioxygenase from Bacillus subtilis (QueD) converts the flavonol quercetin and molecular oxygen to 2-protocatechuoylphloroglucinolcarboxylic acid and carbon monoxide. QueD, the only known quercetin 2,3-dioxygenase from a prokaryotic organism, has been described as an Fe2+-dependent bicupin dioxygenase. Metal-substituted QueDs were generated by expressing the enzyme in Escherichia coli grown on minimal media in the presence of a number of divalent metals. The addition of Mn2+, Co2+, and Cu2+ generated active enzymes, but the addition of Zn2+, Fe2+, and Cd2+ did not increase quercetinase activity to any significant level over a control in which no divalent ions were added to the media. The Mn2+- and Co2+-containing QueDs were purified, characterized by metal analysis and EPR spectroscopy, and studied by steady-state kinetics. Mn2+ was found to be incorporated nearly stoichiometrically to the two cupin motifs. The hyperfine coupling constant of the g = 2 signal in the EPR spectra of the Mn2+-containing enzyme showed that the two Mn2+ ions are ligated in an octahedral coordination. The turnover number of this enzyme was found to be in the order of 25 s(-1), nearly 40-fold higher than that of the Fe2+-containing enzyme and similar in magnitude to that of the Cu2+-containing quercertin 2,3-dioxygenase from Aspergillus japonicus. In addition, kinetic and spectroscopic data suggest that the catalytic mechanism of QueD is different from that of the Aspergillus quercetinases but similar to that proposed for the extradiol catechol dioxygenases. This study provides evidence that Mn2+ might be the preferred cofactor for this enzyme and identifies QueD as a new member of the manganese dioxygenase family.
Collapse
Affiliation(s)
- Matthew R Schaab
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| | | | | |
Collapse
|
376
|
Crowther RL, Georgiadis MM. The crystal structure of 5-keto-4-deoxyuronate isomerase from Escherichia coli. Proteins 2006; 61:680-4. [PMID: 16152643 DOI: 10.1002/prot.20598] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Robert L Crowther
- The Waksman Institute, Rutgers University, Piscataway, New Jersey, USA
| | | |
Collapse
|
377
|
Li X, Guo M, Fan J, Tang W, Wang D, Ge H, Rong H, Teng M, Niu L, Liu Q, Hao Q. Crystal structure of 3-hydroxyanthranilic acid 3,4-dioxygenase from Saccharomyces cerevisiae: a special subgroup of the type III extradiol dioxygenases. Protein Sci 2006; 15:761-73. [PMID: 16522801 PMCID: PMC2242480 DOI: 10.1110/ps.051967906] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
3-Hydroxyanthranilic acid 3,4-dioxygenase (3HAO) is a non-heme ferrous extradiol dioxygenase in the kynurenine pathway from tryptophan. It catalyzes the conversion of 3-hydroxyanthranilate (HAA) to quinolinic acid (QUIN), an endogenous neurotoxin, via the activation of N-methyl-D-aspartate (NMDA) receptors and the precursor of NAD(+) biosynthesis. The crystal structure of 3HAO from S. cerevisiae at 2.4 A resolution shows it to be a member of the functionally diverse cupin superfamily. The structure represents the first eukaryotic 3HAO to be resolved. The enzyme forms homodimers, with two nickel binding sites per molecule. One of the bound nickel atoms occupies the proposed ferrous-coordinated active site, which is located in a conserved double-strand beta-helix domain. Examination of the structure reveals the participation of a series of residues in catalysis different from other extradiol dioxygenases. Together with two iron-binding residues (His49 and Glu55), Asp120, Asn51, Glu111, and Arg114 form a hydrogen-bonding network; this hydrogen-bond network is key to the catalysis of 3HAO. Residues Arg101, Gln59, and the substrate-binding hydrophobic pocket are crucial for substrate specificity. Structure comparison with 3HAO from Ralstonia metallidurans reveals similarities at the active site and suggests the same catalytic mechanism in prokaryotic and eukaryotic 3HAO. Based on sequence comparison, we suggest that bicupin of human 3HAO is the first example of evolution from a monocupin dimer to bicupin monomer in the diverse cupin superfamilies. Based on the model of the substrate HAA at the active site of Y3HAO, we propose a mechanism of catalysis for 3HAO.
Collapse
Affiliation(s)
- Xiaowu Li
- Hefei National Laboratory for Physical Sciences at Microsale and School of Life Sciences, University of Science & Technology of China, Hefei, Anhui 230027, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
378
|
Opaleye O, Rose RS, Whittaker MM, Woo EJ, Whittaker JW, Pickersgill RW. Structural and Spectroscopic Studies Shed Light on the Mechanism of Oxalate Oxidase. J Biol Chem 2006; 281:6428-33. [PMID: 16291738 DOI: 10.1074/jbc.m510256200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxalate oxidase (EC 1.2.3.4) catalyzes the conversion of oxalate and dioxygen to hydrogen peroxide and carbon dioxide. In this study, glycolate was used as a structural analogue of oxalate to investigate substrate binding in the crystalline enzyme. The observed monodentate binding of glycolate to the active site manganese ion of oxalate oxidase is consistent with a mechanism involving C-C bond cleavage driven by superoxide anion attack on a monodentate coordinated substrate. In this mechanism, the metal serves two functions: to organize the substrates (oxalate and dioxygen) and to transiently reduce dioxygen. The observed structure further implies important roles for specific active site residues (two asparagines and one glutamine) in correctly orientating the substrates and reaction intermediates for catalysis. Combined spectroscopic, biochemical, and structural analyses of mutants confirms the importance of the asparagine residues in organizing a functional active site complex.
Collapse
Affiliation(s)
- Olaniyi Opaleye
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | | | | | | | | | | |
Collapse
|
379
|
Warpeha KM, Lateef SS, Lapik Y, Anderson M, Lee BS, Kaufman LS. G-protein-coupled receptor 1, G-protein Galpha-subunit 1, and prephenate dehydratase 1 are required for blue light-induced production of phenylalanine in etiolated Arabidopsis. PLANT PHYSIOLOGY 2006; 140:844-55. [PMID: 16415218 PMCID: PMC1400578 DOI: 10.1104/pp.105.071282] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 12/15/2005] [Accepted: 12/19/2005] [Indexed: 05/06/2023]
Abstract
Different classes of plant hormones and different wavelengths of light act through specific signal transduction mechanisms to coordinate higher plant development. A specific prephenate dehydratase protein (PD1) was discovered to have a strong interaction with the sole canonical G-protein Galpha-subunit (GPA1) in Arabidopsis (Arabidopsis thaliana). PD1 is a protein located in the cytosol, present in etiolated seedlings, with a specific role in blue light-mediated synthesis of phenylpyruvate and subsequently of phenylalanine (Phe). Insertion mutagenesis confirms that GPA1 and the sole canonical G-protein-coupled receptor (GCR1) in Arabidopsis also have a role in this blue light-mediated event. In vitro analyses indicate that the increase in PD1 activity is the direct and specific consequence of its interaction with activated GPA1. Because of their shared role in the light-mediated synthesis of phenylpyruvate and Phe, because they are iteratively interactive, and because activated GPA1 is directly responsible for the activation of PD1; GCR1, GPA1, and PD1 form all of or part of a signal transduction mechanism responsible for the light-mediated synthesis of phenylpyruvate, Phe, and those metabolites that derive from that Phe. Data are also presented to confirm that abscisic acid can act through the same pathway. An additional outcome of the work is the confirmation that phenylpyruvate acts as the intermediate in the synthesis of Phe in etiolated plants, as it commonly does in bacteria and fungi.
Collapse
Affiliation(s)
- Katherine Mary Warpeha
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois, Chicago, 60607, USA
| | | | | | | | | | | |
Collapse
|
380
|
McCoy JG, Bailey LJ, Bitto E, Bingman CA, Aceti DJ, Fox BG, Phillips GN. Structure and mechanism of mouse cysteine dioxygenase. Proc Natl Acad Sci U S A 2006; 103:3084-9. [PMID: 16492780 PMCID: PMC1413891 DOI: 10.1073/pnas.0509262103] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Indexed: 11/18/2022] Open
Abstract
Cysteine dioxygenase (CDO) catalyzes the oxidation of l-cysteine to cysteine sulfinic acid. Deficiencies in this enzyme have been linked to autoimmune diseases and neurological disorders. The x-ray crystal structure of CDO from Mus musculus was solved to a nominal resolution of 1.75 Angstroms. The sequence is 91% identical to that of a human homolog. The structure reveals that CDO adopts the typical beta-barrel fold of the cupin superfamily. The NE2 atoms of His-86, -88, and -140 provide the metal binding site. The structure further revealed a covalent linkage between the side chains of Cys-93 and Tyr-157, the cysteine of which is conserved only in eukaryotic proteins. Metal analysis showed that the recombinant enzyme contained a mixture of iron, nickel, and zinc, with increased iron content associated with increased catalytic activity. Details of the predicted active site are used to present and discuss a plausible mechanism of action for the enzyme.
Collapse
Affiliation(s)
- Jason G. McCoy
- Center for Eukaryotic Structural Genomics and Department of Biochemistry, University of Wisconsin, Madison, WI 53706-1544
| | - Lucas J. Bailey
- Center for Eukaryotic Structural Genomics and Department of Biochemistry, University of Wisconsin, Madison, WI 53706-1544
| | - Eduard Bitto
- Center for Eukaryotic Structural Genomics and Department of Biochemistry, University of Wisconsin, Madison, WI 53706-1544
| | - Craig A. Bingman
- Center for Eukaryotic Structural Genomics and Department of Biochemistry, University of Wisconsin, Madison, WI 53706-1544
| | - David J. Aceti
- Center for Eukaryotic Structural Genomics and Department of Biochemistry, University of Wisconsin, Madison, WI 53706-1544
| | - Brian G. Fox
- Center for Eukaryotic Structural Genomics and Department of Biochemistry, University of Wisconsin, Madison, WI 53706-1544
| | - George N. Phillips
- Center for Eukaryotic Structural Genomics and Department of Biochemistry, University of Wisconsin, Madison, WI 53706-1544
| |
Collapse
|
381
|
Abstract
Beta-rolls and beta-helices belong to a larger group of topologically similar proteins with solenoid folds: because their regular secondary structure elements are exclusively beta-strands, they are referred to as beta-solenoids. The number of beta-solenoids whose structures are known is now large enough to support a systematic analysis. Here we survey the distinguishing structural features of beta-solenoids, also documenting their notable diversity. Appraisal of these structures suggests a classification based on handedness, twist, oligomerization state, and coil shape. In addition, beta-solenoids are distinguished by the number of chains that wind around a common axis: the majority are single-stranded but there is a recently discovered subset of triple-stranded beta-solenoids. This survey has revealed some relationships of the amino acid sequences of beta-solenoids with their structures and functions-in particular, the repetitive character of the coil sequences and conformations that recur in tracts of tandem repeats. We have proposed the term beta-arc for the distinctive turns found in beta-solenoids and beta-arch for the corresponding strand-turn-strand motifs. The evolutionary mechanisms underlying these proteins are also discussed. This analysis has direct implications for sequence-based detection, structural prediction, and de novo design of other beta-solenoid proteins. The abundance of virulence factors, toxins and allergens among beta-solenoids, as well as commonalities of beta-solenoids with amyloid fibrils, imply that this class of folds may have a broader role in human diseases than was previously recognized. Thus, identification of genes with putative beta-solenoid domains promises to be a fertile direction in the search for viable targets in the development of new antibiotics and vaccines.
Collapse
Affiliation(s)
- Andrey V Kajava
- Centre de Recherches de Biochimie Macromoléculaire, CNRS FRE-2593, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | | |
Collapse
|
382
|
Abstract
The enzymatic cleavage of C-C bonds in beta-diketones is, comparatively, a little studied biochemical process, but one that has important relevance to human metabolism, bioremediation and preparative biocatalysis. In recent studies, four types of enzymes have come to light that cleave C-C bonds in the beta-diketone functionality using different chemical mechanisms. OPH [oxidized poly(vinyl alcohol) hydrolase from Pseudomonas sp. strain VM15C], which cleaves nonane-4,6-dione to butyrate and pentan-2-one is a serine-triad hydrolase. Dke1 (diketone-cleaving enzyme from Acinetobacter johnsonii) is a dioxygenase, cleaving acetylacetone to methylglyoxal and acetate. Fumarylacetoacetate hydrolase cleaves fumarylacetoacetate to fumarate and acetoacetate using a water molecule, activated by a catalytic His/Asp dyad, aided by a calcium ion that both chelates the enol acid form of the substrate and indirectly positions the water for nucleophilic attack at a carbonyl group. 6-oxocamphor hydrolase cleaves nonenolizable cyclic beta-diketones and is a homologue of the crotonase superfamily, employing a catalytic His/Asp dyad to activate a water molecule for nucleophilic attack at a carbonyl group on one prochiral face of the diketone substrate, effecting desymmetrizations of symmetrical substrates.
Collapse
Affiliation(s)
- Gideon Grogan
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5YW, UK.
| |
Collapse
|
383
|
Castillo J, Genovés A, Franco L, Rodrigo MI. A multifunctional bicupin serves as precursor for a chromosomal protein of Pisum sativum seeds. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:3159-69. [PMID: 16263906 DOI: 10.1093/jxb/eri313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The fact that the psp54 gene codes for p16, a seed chromatin protein of Pisum sativum, has been described previously. In the present paper it is shown that p54, the p16 precursor, also exists as a free polypeptide in pea and that it also yields p38, a second polypeptide from the N-terminal region of p54, which is co-localized at a subcellular level with p16. By using antibodies against pea p16 and p38, it was found that these proteins are present in the members of the tribe Viciae examined. Sequence analysis and 3D modelling indicates that p54 proteins belong to the cupin superfamily, and that they are related to sucrose binding proteins and, to a lesser extent, to vicilin-type seed storage proteins. Nevertheless, several distinctive characteristics of psp54 expression have been found: (i) the gene is differentially induced by ABA and several stress situations, in accordance with the presence of putative separate ABA and stress responsive elements in its promoter; (ii) the proteins are present in pods and seed coats, tissues of maternal origin; and (iii) p54 mRNA accumulates in the dry seeds. In view of both the functional properties of p54-derived proteins and the features of the psp54 gene expression, it is concluded that p54 represents a novel class within the cupin superfamily.
Collapse
Affiliation(s)
- Josefa Castillo
- Department of Biochemistry and Molecular Biology, University of Valencia, E-46100, Burjassot, Valencia, Spain
| | | | | | | |
Collapse
|
384
|
Hansen T, Schlichting B, Grötzinger J, Swan MK, Davies C, Schönheit P. Mutagenesis of catalytically important residues of cupin type phosphoglucose isomerase from Archaeoglobus fulgidus. FEBS J 2005; 272:6266-75. [PMID: 16336264 DOI: 10.1111/j.1742-4658.2005.05007.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recently, cupin type phosphoglucose isomerases have been described as a novel protein family representing a separate lineage in the evolution of phosphoglucose isomerases. The importance of eight active site residues completely conserved within the cPGI family has been assessed by site-directed mutagenesis using the cPGI from Archaeoglobus fulgidus (AfcPGI) as a model. The mutants T63A, G79A, G79L, H80A, H80D, H82A, E93A, E93D, Y95F, Y95K, H136A, and Y160F were constructed, purified, and the impact of the respective mutation on catalysis and/or metal ion binding as well as thermostability was analyzed. The variants G79A, G79L, and Y95F exhibited a lower thermostability. The catalytic efficiency of the enzyme was reduced by more than 100-fold in the G79A, G79L, H80A, H80D, E93D, Y95F variants and more than 15-fold in the T63A, H82A, Y95K, Y160F variants, but remained about the same in the H136A variant at Ni2+ saturating conditions. Further, the Ni2+ content of the mutants H80A, H80D, H82A, E93A, E93D and their apparent Ni2+ binding ability was reduced, resulting in an almost complete loss of activity and thus underlining the crucial role of the metal ion for catalysis. Evidence is presented that H80, H82 and E93 play an additional role in catalysis besides metal ion binding. E93 appears to be the key catalytic residue of AfcPGI, as the E93A mutant did not show any catalytic activity at all.
Collapse
Affiliation(s)
- Thomas Hansen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Germany
| | | | | | | | | | | |
Collapse
|
385
|
Sauter M, Lorbiecke R, Ouyang B, Pochapsky TC, Rzewuski G. The immediate-early ethylene response gene OsARD1 encodes an acireductone dioxygenase involved in recycling of the ethylene precursor S-adenosylmethionine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:718-29. [PMID: 16297065 DOI: 10.1111/j.1365-313x.2005.02564.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Methylthioadenosine (MTA) is formed as a by-product of ethylene biosynthesis from S-adenosyl-L-methionine (AdoMet). The methionine cycle regenerates AdoMet from MTA. In two independent differential screens for submergence-induced genes and for 1-aminocyclopropane-1-carboxylic acid (ACC)-induced genes from deepwater rice (Oryza sativa L.) we identified an acireductone dioxygenase (ARD). OsARD1 is a metal-binding protein that belongs to the cupin superfamily. Acireductone dioxygenases are unique proteins that can acquire two different activities depending on the metal ion bound. Ectopically expressed apo-OsARD1 preferentially binds Fe(2+) and reconstituted Fe-OsARD1 catalyzed the formation of 2-keto-pentanoate and formate from the model substrate 1,2-dihydroxy-3-ketopent-1-ene and dioxygen, indicating that OsARD1 is capable of catalyzing the penultimate step in the methionine cycle. Two highly homologous ARD genes were identified in rice. OsARD1 mRNA levels showed a rapid, early and transient increase upon submergence and after treatment with ethylene-releasing compounds. The second gene from rice, OsARD2, is constitutively expressed. Accumulation of OsARD1 transcript was observed in the same internodal tissues, i.e. the meristem and elongation zone, which were previously shown to synthesize ethylene. OsARD1 transcripts accumulated in the presence of cycloheximide, an inhibitor of protein synthesis, indicating that OsARD1 is a primary ethylene response gene. Promoter analysis suggests that immediate-early regulation of OsARD1 by ethylene may involve an EIN3-like transcription factor. OsARD1 is induced by low levels of ethylene. We propose that early feedback activation of the methionine cycle by low levels of ethylene ensures the high and continuous rates of ethylene synthesis required for long-term ethylene-mediated submergence adaptation without depleting the tissue of AdoMet.
Collapse
|
386
|
Tranchimand S, Tron T, Gaudin C, Iacazio G. Evaluation of phenolics and sugars as inducers of quercetinase activity inPenicillium olsonii. FEMS Microbiol Lett 2005; 253:289-94. [PMID: 16288837 DOI: 10.1016/j.femsle.2005.09.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 09/23/2005] [Accepted: 09/28/2005] [Indexed: 11/29/2022] Open
Abstract
Quercetinase is produced by various filamentous fungi when grown on rutin as sole carbon and energy source. We investigated on the effect of 10 phenolics and two sugars, structurally related to substrates and products of the rutin catabolic pathway, on the induction of a quercetinase activity in Penicillium olsonii. Neither the sugars (glucose and rhamnose, two constituents of rutin), nor phenolics such as protocatechuic acid, salicylic acid, 4-hydroxy-benzoic acid and phloroglucinol were inducers. Rutin (maximum activity 150 nmol/min/mL after 5 days), quercetin (70 nmol/min/mL, 3 days), phloroglucinol carboxylic acid (60 nmol/min/mL, 3 days), 2-protocatechuoylphloroglucinolcarboxylic acid (50 nmol/min/mL, 5 days), 2,6-dihydroxy-carboxylic acid (90 nmol/min/mL, 7 days) and 2,4-dihydroxy-carboxylic acid (30 nmol/min/mL, 7 days) were demonstrated to be quercetinase inducers. We propose that rutin, quercetin and 2-protocatechuoyl-phloroglucinol carboxylic acid, the product of the reaction catalysed by quercetinase, act as inducers after their catabolic transformation in phloroglucinol carboxylic acid.
Collapse
Affiliation(s)
- Sylvain Tranchimand
- Laboratoire de Bioinorganique Structurale, Case 432, Faculté des Sciences et Techniques, Université Paul Cézanne Aix-Marseille III, avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
387
|
Hwang DR, Lai HY, Chang ML, Hsu JTA, Yeh CT. Emergence of mutation clusters in the HCV genome during sequential viral passages in Sip-L expressing cells. J Virol Methods 2005; 129:170-7. [PMID: 16005986 DOI: 10.1016/j.jviromet.2005.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 05/26/2005] [Accepted: 05/31/2005] [Indexed: 01/22/2023]
Abstract
Sip-L, a member of the Cupin superfamily, is a hepatic factor capable of supporting hepatitis C virus (HCV) replication in an otherwise non-permissive cell line. HCV-positive serum was used to infect Huh-7 and 293 cells stably expressing Sip-L. Using the culture medium of the infected cells as an infection source, sequential viral passages were carried out in both cell lines. Efficient viral passage was observed in 293-Sip-L cells but not in Huh-7-Sip-L cells. The viral concentrations in the culture medium increased gradually from less than 10(2) copies/mL to 5.3 x 10(4) copies/mL after 25 sequential passages in 293-Sip-L cells. Sequence analysis of the viral genomes obtained from both the initial and final inocula revealed emergence of mutation clusters in NS2, NS3, and NS5A coding regions. Immunofluorescence study revealed that only a small percentage of infected cells expressed a detectable level of viral protein. Caspase 3 activities in the infected cells increased progressively during the viral passages. In conclusion, perpetual propagation of HCV was achieved using Sip-L expressing cells, allowing for the development of mutation clusters in the genome. The mutant HCV can be used as an infection source to study the molecular mechanism of HCV replication.
Collapse
Affiliation(s)
- Der-Ren Hwang
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
388
|
McLuskey K, Cameron S, Hammerschmidt F, Hunter WN. Structure and reactivity of hydroxypropylphosphonic acid epoxidase in fosfomycin biosynthesis by a cation- and flavin-dependent mechanism. Proc Natl Acad Sci U S A 2005; 102:14221-6. [PMID: 16186494 PMCID: PMC1234900 DOI: 10.1073/pnas.0504314102] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 08/19/2005] [Indexed: 01/11/2023] Open
Abstract
The biosynthesis of fosfomycin, an oxirane antibiotic in clinical use, involves a unique epoxidation catalyzed by (S)-2-hydroxypropylphosphonic acid epoxidase (HPPE). The reaction is essentially dehydrogenation of a secondary alcohol. A high-resolution crystallographic analysis reveals that the HPPE subunit displays a two-domain combination. The C-terminal or catalytic domain has the cupin fold that binds a divalent cation, whereas the N-terminal domain carries a helix-turn-helix motif with putative DNA-binding helices positioned 34 A apart. The structure of HPPE serves as a model for numerous proteins, of ill-defined function, predicted to be transcription factors but carrying a cupin domain at the C terminus. Structure-reactivity analyses reveal conformational changes near the catalytic center driven by the presence or absence of ligand, that HPPE is a Zn(2+)/Fe(2+)-dependent epoxidase, proof that flavin mononucleotide is required for catalysis, and allow us to propose a simple mechanism that is compatible with previous experimental data. The participation of the redox inert Zn(2+) in the mechanism is surprising and indicates that Lewis acid properties of the metal ions are sufficient to polarize the substrate and, aided by flavin mononucleotide reduction, facilitate the epoxidation.
Collapse
Affiliation(s)
- Karen McLuskey
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | |
Collapse
|
389
|
Teplyakov A, Obmolova G, Toedt J, Galperin MY, Gilliland GL. Crystal structure of the bacterial YhcH protein indicates a role in sialic acid catabolism. J Bacteriol 2005; 187:5520-7. [PMID: 16077096 PMCID: PMC1196062 DOI: 10.1128/jb.187.16.5520-5527.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yhcH gene is part of the nan operon in bacteria that encodes proteins involved in sialic acid catabolism. Determination of the crystal structure of YhcH from Haemophilus influenzae was undertaken as part of a structural genomics effort in order to assist with the functional assignment of the protein. The structure was determined at 2.2-A resolution by multiple-wavelength anomalous diffraction. The protein fold is a variation of the double-stranded beta-helix. Two antiparallel beta-sheets form a funnel opened at one side, where a putative active site contains a copper ion coordinated to the side chains of two histidine and two carboxylic acid residues. A comparison to other proteins with a similar fold and analysis of the genomic context suggested that YhcH may be a sugar isomerase involved in processing of exogenous sialic acid.
Collapse
Affiliation(s)
- Alexey Teplyakov
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute and National Institute of Standards and Technology, Rockville, Maryland, USA.
| | | | | | | | | |
Collapse
|
390
|
Gechev TS, Minkov IN, Hille J. Hydrogen peroxide-induced cell death in Arabidopsis: transcriptional and mutant analysis reveals a role of an oxoglutarate-dependent dioxygenase gene in the cell death process. IUBMB Life 2005; 57:181-8. [PMID: 16036580 DOI: 10.1080/15216540500090793] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hydrogen peroxide is a major regulator of plant programmed cell death (PCD) but little is known about the downstream genes from the H(2)O(2)-signaling network that mediate the cell death. To address this question, a novel system for studying H(2)O(2)-induced programmed cell death in Arabidopsis thaliana was used. The catalase inhibitor aminotriazole (AT) reduced the catalase activity and caused endogenous accumulation of hydrogen peroxide that eventually triggered cell death. Microarray analysis with a DNA chip representing 21500 genes and subsequent comparison with other PCD-related expression studies revealed a set of new H(2)O(2)-responsive genes that were highly regulated in a common fashion during different types of PCD. These included an oxoglutarate-dependent dioxygenase and various oxidoreductases, the transcription factors Zat11, WRKY75 and NAM, proteasomal components, a heterologous group of genes with diverse functions, and genes encoding proteins with unknown functions. Knockout lines of the oxoglutarate-dependent dioxygenase exhibited significantly reduced death symptoms and chlorophyll loss upon H(2)O(2)-induced cell death, indicating a role for this gene in the cell death network.
Collapse
Affiliation(s)
- Tsanko S Gechev
- Department of Plant Physiology and Plant Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria.
| | | | | |
Collapse
|
391
|
Zhang Y, Colabroy KL, Begley TP, Ealick SE. Structural studies on 3-hydroxyanthranilate-3,4-dioxygenase: the catalytic mechanism of a complex oxidation involved in NAD biosynthesis. Biochemistry 2005; 44:7632-43. [PMID: 15909978 DOI: 10.1021/bi047353l] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3-Hydroxyanthranilate-3,4-dioxygenase (HAD) catalyzes the oxidative ring opening of 3-hydroxyanthranilate in the final enzymatic step of the biosynthetic pathway from tryptophan to quinolinate, the universal de novo precursor to the pyridine ring of nicotinamide adenine dinucleotide. The enzyme requires Fe2+ as a cofactor and is inactivated by 4-chloro-3-hydroxyanthranilate. HAD from Ralstonia metallidurans was crystallized, and the structure was determined at 1.9 A resolution. The structures of HAD complexed with the inhibitor 4-chloro-3-hydroxyanthranilic acid and either molecular oxygen or nitric oxide were determined at 2.0 A resolution, and the structure of HAD complexed with 3-hydroxyanthranilate was determined at 3.2 A resolution. HAD is a homodimer with a subunit topology that is characteristic of the cupin barrel fold. Each monomer contains two iron binding sites. The catalytic iron is buried deep inside the beta-barrel with His51, Glu57, and His95 serving as ligands. The other iron site forms an FeS4 center close to the solvent surface in which the sulfur atoms are provided by Cys125, Cys128, Cys162, and Cys165. The two iron sites are separated by 24 A. On the basis of the crystal structures of HAD, mutagenesis studies were carried out in order to elucidate the enzyme mechanism. In addition, a new mechanism for the enzyme inactivation by 4-chloro-3-hydroxyanthranilate is proposed.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
392
|
Higgins LJ, Yan F, Liu P, Liu HW, Drennan CL. Structural insight into antibiotic fosfomycin biosynthesis by a mononuclear iron enzyme. Nature 2005; 437:838-44. [PMID: 16015285 DOI: 10.1038/nature03924] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Accepted: 06/15/2005] [Indexed: 11/08/2022]
Abstract
The biosynthetic pathway of the clinically important antibiotic fosfomycin uses enzymes that catalyse reactions without precedent in biology. Among these is hydroxypropylphosphonic acid epoxidase, which represents a new subfamily of non-haem mononuclear iron enzymes. Here we present six X-ray structures of this enzyme: the apoenzyme at 2.0 A resolution; a native Fe(II)-bound form at 2.4 A resolution; a tris(hydroxymethyl)aminomethane-Co(II)-enzyme complex structure at 1.8 A resolution; a substrate-Co(II)-enzyme complex structure at 2.5 A resolution; and two substrate-Fe(II)-enzyme complexes at 2.1 and 2.3 A resolution. These structural data lead us to suggest how this enzyme is able to recognize and respond to its substrate with a conformational change that protects the radical-based intermediates formed during catalysis. Comparisons with other family members suggest why substrate binding is able to prime iron for dioxygen binding in the absence of alpha-ketoglutarate (a co-substrate required by many mononuclear iron enzymes), and how the unique epoxidation reaction of hydroxypropylphosphonic acid epoxidase may occur.
Collapse
Affiliation(s)
- Luke J Higgins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
393
|
Barre A, Borges JP, Rougé P. Molecular modelling of the major peanut allergen Ara h 1 and other homotrimeric allergens of the cupin superfamily: a structural basis for their IgE-binding cross-reactivity. Biochimie 2005; 87:499-506. [PMID: 15935274 DOI: 10.1016/j.biochi.2005.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 11/05/2004] [Accepted: 02/23/2005] [Indexed: 11/17/2022]
Abstract
Three-dimensional models of the major vicilin allergens from peanut (Ara h 1), lentil (Len c 1) and pea (Pis s 1), were built by homology-based modelling from the X-ray coordinates of the structurally closely related soybean beta-conglycinin. All the allergen monomers exhibit the typical cupin motif made of two modules related by a pseudo-dyad axis. Each module consists of a beta-barrel core domain associated to a loop domain which mainly contains alpha-helices. The three cupin motifs are assumed to be arranged in a homotrimeric structure similar to that observed in beta-conglycinin, phaseolin or canavalin. Most of the sequential B-cell epitopes characterized on the C-terminus of the Ara h 1 allergen are well conserved in both Len c 1 and Pis s 1 allergens. They occupy very comparable areas on the molecular surface of the allergens and exhibit a similar three-dimensional conformation. This antigenic community readily accounts for the IgE-binding cross-reactivity commonly observed between the vicilin allergens from edible legume seeds. The clinical implication of this cross-reactivity is addressed for a definite diagnosis of legume seed allergy.
Collapse
Affiliation(s)
- Annick Barre
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR-CNRS 5546, Pôle de Biotechnologie végétale, 24, chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | | | | |
Collapse
|
394
|
Borowski T, Bassan A, Richards NGJ, Siegbahn PEM. Catalytic Reaction Mechanism of Oxalate Oxidase (Germin). A Hybrid DFT Study. J Chem Theory Comput 2005; 1:686-93. [DOI: 10.1021/ct050041r] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tomasz Borowski
- Department of Physics, Stockholm Center for Physics, Astronomy and Biotechnology, Stockholm University, S-106 91, Stockholm, Sweden, and Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | - Arianna Bassan
- Department of Physics, Stockholm Center for Physics, Astronomy and Biotechnology, Stockholm University, S-106 91, Stockholm, Sweden, and Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | - Nigel G. J. Richards
- Department of Physics, Stockholm Center for Physics, Astronomy and Biotechnology, Stockholm University, S-106 91, Stockholm, Sweden, and Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | - Per E. M. Siegbahn
- Department of Physics, Stockholm Center for Physics, Astronomy and Biotechnology, Stockholm University, S-106 91, Stockholm, Sweden, and Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| |
Collapse
|
395
|
Hansen T, Schlichting B, Felgendreher M, Schönheit P. Cupin-type phosphoglucose isomerases (Cupin-PGIs) constitute a novel metal-dependent PGI family representing a convergent line of PGI evolution. J Bacteriol 2005; 187:1621-31. [PMID: 15716432 PMCID: PMC1063998 DOI: 10.1128/jb.187.5.1621-1631.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cupin-type phosphoglucose isomerases (cPGIs) were identified in some archaeal and bacterial genomes and the respective coding function of cpgi's from the euryarchaeota Archaeoglobus fulgidus and Methanosarcina mazei, as well as the bacteria Salmonella enterica serovar Typhimurium and Ensifer meliloti, was proven by functional overexpression. These cPGIs and the cPGIs from Pyrococcus and Thermococcus spp. represent the cPGI family and were compared with respect to kinetic, inhibitory, thermophilic, and metal-binding properties. cPGIs showed a high specificity for the substrates fructose-6-phosphate and glucose-6-phosphate and were inhibited by millimolar concentrations of sorbitol-6-phosphate, erythrose-4-phosphate, and 6-phosphogluconate. Treatment of cPGIs with EDTA resulted in a complete loss of catalytic activity, which could be regained by the addition of some divalent cations, most effectively by Fe2+ and Ni2+, indicating a metal dependence of cPGI activity. The motifs TX3PX3GXEX3TXGHXHX6-11EXY and PPX3HX3N were deduced as the two signature patterns of the novel cPGI family. Phylogenetic analysis suggests lateral gene transfer for the bacterial cPGIs from euryarchaeota.
Collapse
Affiliation(s)
- Thomas Hansen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | | | | | | |
Collapse
|
396
|
Funa N, Funabashi M, Yoshimura E, Horinouchi S. A novel quinone-forming monooxygenase family involved in modification of aromatic polyketides. J Biol Chem 2005; 280:14514-23. [PMID: 15701630 DOI: 10.1074/jbc.m500190200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RppA is a type III polyketide synthase (PKS) that catalyzes condensation of five molecules of malonyl-CoA to form 1,3,6,8-tetrahydroxynaphthalene (THN). In Streptomyces antibioticus IFO13271 and several other Streptomyces species, an open reading frame, named momA, is present as a neighbor of rppA. MomA belonged to the "cupin" superfamily because it contained a set of two motifs that is responsible for binding one equivalent of metal ions. MomA catalyzed monooxygenation of the THN produced from malonyl-CoA by the action of RppA to form flaviolin. In addition, it used several polyketides as substrates and formed the corresponding quinones. MomA required redox-active transition metal ions (Ni(2+), Cu(2+), Fe(3+), Fe(2+), Mn(2+), and Co(2+)) for its activity, whereas it was inhibited by a redox-inert transition metal ion (Zn(2+)). MomA neither possessed any flavin prosthetic group nor required nicotinamide cofactors for monooxygenation, which shows that MomA as a member of the cupin superfamily is a novel monooxygenase. Consistent with the catalytic property of MomA, WhiE-ORFII showing similarity in amino acid sequence to MomA and containing a cupin domain also catalyzed monooxygenation of THN. whiE-ORFII is located immediately upstream of the "minimal PKS" gene within the whiE type II PKS gene cluster for biosynthesis of a gray spore pigment in Streptomyces coelicolor A3(2), and a number of whiE-ORFII homologues are present in the biosynthetic gene cluster for polyketides of type II in various Streptomyces species. These findings show that a novel class of quinone-forming monooxygenases is involved in modification of aromatic polyketides synthesized by PKSs of types II and III.
Collapse
Affiliation(s)
- Nobutaka Funa
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
397
|
Dani V, Simon WJ, Duranti M, Croy RRD. Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics 2005; 5:737-45. [PMID: 15682462 DOI: 10.1002/pmic.200401119] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Indexed: 11/10/2022]
Abstract
The apoplast of plant cells is a dynamic compartment involved in many processes, including maintenance of tissue shape, development, nutrition, signalling, detoxification and defence. In this work we used Nicotiana tabacum plants as a model to investigate changes in the soluble apoplast composition induced in response to salt stress. Apoplastic fluid was extracted from leaves of control plants and plants exposed to salt stress, using a vacuum infiltration procedure. Two-dimension electrophoretic analyses revealed about 150 polypeptide spots in the pH range of 3.0 to 10.0, in independent protein extracts, with a high level of reproducibility between the two sample sets. Quantitative evaluation and statistical analyses of the resolved spots in treated and untreated samples revealed 20 polypeptides whose abundance changed in response to salt stress. Mass spectroscopic peptide separation and sequencing was used to identify polypeptides affected by salt stress. While the levels of some proteins were reduced by salt-treatment, an enhanced accumulation of protein species known to be induced by biotic and abiotic stresses was observed. In particular, two chitinases and a germin-like protein increased significantly and two lipid transfer proteins were expressed entirely de novo. Some apoplastic polypeptides, involved in cell wall modifications during plant development, remained largely unchanged. The significance of these components is discussed in the context of stress responses in plants.
Collapse
Affiliation(s)
- Valeria Dani
- Department of Agrifood Molecular Sciences, University of Milan, Milan, Italy.
| | | | | | | |
Collapse
|
398
|
Svedruzić D, Jónsson S, Toyota CG, Reinhardt LA, Ricagno S, Lindqvist Y, Richards NGJ. The enzymes of oxalate metabolism: unexpected structures and mechanisms. Arch Biochem Biophys 2005; 433:176-92. [PMID: 15581576 DOI: 10.1016/j.abb.2004.08.032] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 08/31/2004] [Indexed: 10/26/2022]
Abstract
Oxalate degrading enzymes have a number of potential applications, including medical diagnosis and treatments for hyperoxaluria and other oxalate-related diseases, the production of transgenic plants for human consumption, and bioremediation of the environment. This review seeks to provide a brief overview of current knowledge regarding the major classes of enzymes and related proteins that are employed in plants, fungi, and bacteria to convert oxalate into CO(2) and/or formate. Not only do these enzymes employ intriguing chemical strategies for cleaving the chemically unreactive C-C bond in oxalate, but they also offer the prospect of providing new insights into the molecular processes that underpin the evolution of biological catalysts.
Collapse
Affiliation(s)
- Drazenka Svedruzić
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | | | | | | | | | | | | |
Collapse
|
399
|
Nakata M, Watanabe Y, Sakurai Y, Hashimoto Y, Matsuzaki M, Takahashi Y, Satoh T. Germin-like protein gene family of a moss, Physcomitrella patens, phylogenetically falls into two characteristic new clades. PLANT MOLECULAR BIOLOGY 2004; 56:381-395. [PMID: 15604751 DOI: 10.1007/s11103-004-3475-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We identified 77 EST clones encoding germin-like proteins (GLPs) from a moss, Physcomitrella patens in a database search. These Physcomitrella GLPs ( PpGLP s) were separated into seven groups based on DNA sequence homology. Phylogenetic analysis showed that these groups were divided into two novel clades clearly distinguishable from higher plant germins and GLPs, named bryophyte subfamilies 1 and 2. PpGLPs belonging to bryophyte subfamilies 1 lacked two cysteines at the conserved positions observed in higher plant germins or GLPs. PpGLPs belonging to bryophyte subfamily 2 contained two cysteines as observed in higher plant germins and GLPs. In bryophyte subfamily 1, 12 amino acids, in which one of two cysteines is included, were deleted between boxes A and B. Further, we determined the genomic structure of all of seven PpGLP genes. The sequences of PpGLP s of bryophyte subfamily 1 contained one or two introns, whereas those of bryophyte subfamily 2 contained no introns. Other GLPs from bryophytes, a liverwort GLP from Marchantia polymorpha , and two moss GLPs from Barbula unguiculata and Ceratodon purpureus also fell into bryophyte subfamily 1 and bryophyte subfamily 2, respectively. No higher plant germins and GLPs were grouped into the bryophyte subfamilies 1 and 2 by our analysis. Moreover, we revealed that PpGLP6 had manganese-containing extracellular superoxide dismutase activity. These results indicated that bryophyte possess characteristic GLPs, which phylogenetically are clearly distinguishable from higher plant GLPs.
Collapse
Affiliation(s)
- Masaru Nakata
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, 739-8526, Japan.
| | | | | | | | | | | | | |
Collapse
|