351
|
Purushottam Dharaskar S, Paithankar K, Kanugovi Vijayavittal A, Shabbir Kara H, Amere Subbarao S. Mitochondrial chaperone, TRAP1 modulates mitochondrial dynamics and promotes tumor metastasis. Mitochondrion 2020; 54:92-101. [PMID: 32784002 DOI: 10.1016/j.mito.2020.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria play a central role in regulating cellular energy metabolism. However, the present understanding of mitochondria has changed from its unipotent functions to pluripotent and insists on understanding the role of mitochondria not only in regulating the life and death of cells, but in pathological conditions such as cancer. Unlike other cellular organelles, subtle alterations in mitochondrial organization may significantly influence the balance between metabolic networks and cellular behavior. Therefore, the delicate balance between the fusion and fission dynamics of mitochondrion can indicate cell fate. Here, we present mitochondrial chaperone TRAP1 influence on mitochondrial architecture and its correlation with tumor growth and metastasis. We show that TRAP1 overexpression (TRAP1 OE) promotes mitochondrial fission, whereas, TRAP1 knockdown (TRAP1 KD) promotes mitochondrial fusion. Interestingly, TRAP1 OE or KD had a negligible effect on mitochondrial integrity. However, TRAP1 OE cells exhibited enhanced proliferative potential, while TRAP1 KD cells showing increased doubling time. Further, TRAP1 dependent mitochondrial dynamic alterations appeared to be unique since mitochondrial localization of TRAP1 is a mandate for dynamic changes. The expression patterns of fusion and fission genes have failed to correlate with TRAP1 expression, indicating a possibility that the dynamic changes can be independent of these genes. In agreement with enhanced proliferative potential, TRAP1 OE cells also exhibited enhanced migration in vitro and tumor metastasis in vivo. Further, TRAP1 OE cells showed altered homing properties, which may challenge site-specific anticancer treatments. Our findings unravel the TRAP1 role in tumor metastasis, which is in addition to altered energy metabolism.
Collapse
Affiliation(s)
- Shrikant Purushottam Dharaskar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India; AcSIR - Academy of Scientific & Innovative Research, Government of India, India
| | - Khanderao Paithankar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India
| | | | - Hatim Shabbir Kara
- Presently at Life Sciences & Chemistry, Jacobs University Bremen gGmbh, Bremen, Germany
| | - Sreedhar Amere Subbarao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India.
| |
Collapse
|
352
|
Guo F, Wang W, Song Y, Wu L, Wang J, Zhao Y, Ma X, Ji H, Liu Y, Li Z, Qin G. LncRNA SNHG17 knockdown promotes Parkin-dependent mitophagy and reduces apoptosis of podocytes through Mst1. Cell Cycle 2020; 19:1997-2006. [PMID: 32627655 PMCID: PMC7469517 DOI: 10.1080/15384101.2020.1783481] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 10/23/2022] Open
Abstract
LncRNAs play important roles in the regulation of podocyte apoptosis in diabetic nephropathy (DN). However, the role of lncRNA SNHG17 in controlling mitophagy-induced apoptosis of podocytes in DN is unknown. This study aims to elucidate the underlying mechanism of lncRNA SNHG17 in the regulation of mitophagy-induced apoptosis of podocytes in DN. LncRNA SNHG17 and Mammalian Sterile 20-like kinase 1 (Mst1) expression were upregulated in glomeruli and podocytes of DM mice and high glucose-treated podocytes, whereas Parkin expression was downregulated. LncRNA SNHG17 overexpression suppressed mitophagy and induced apoptosis of podocytes while silencing lncRNA SNHG17 promoted mitophagy and reduced the apoptosis of podocytes. In addition, lncRNA SNHG17 interacted with Mst1 and regulated the degradation of Mst1. We further found lncRNA SNHG17 regulated Parkin expression through Mst1. Mechanistically, lncRNA SNHG17 regulated Parkin-dependent mitophagy and apoptosis of podocytes through regulating Mst1. Finally, silencing lncRNA SNHG17 promoted mitophagy and relieved DNin vivo. In conclusion, lncRNA SNHG17 knockdown promotes Parkin-dependent mitophagy and reduces apoptosis of podocytes through regulating the degradation of Mst1.
Collapse
Affiliation(s)
- Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weimin Wang
- Division of Hematology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Song
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lina Wu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiao Wang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanyan Zhao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojun Ma
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongfei Ji
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanling Liu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhizhen Li
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
353
|
Mitochondrial biogenesis: a potential therapeutic target for osteoarthritis. Osteoarthritis Cartilage 2020; 28:1003-1006. [PMID: 32417558 DOI: 10.1016/j.joca.2020.03.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/02/2023]
Abstract
Mitochondrial dysfunction of human articular chondrocytes is considered a hallmark of cartilage degradation and OA pathogenesis. Due to the huge number of cellular processes in which mitochondria is implicated, even in the closed context of cellular respiration, the term mitochondrial function can refer to a variety of features which include fusion and fission, turnover (biogenesis and mitophagy), and plasticity. Mitochondrial biogenesis and mainly mitochondrial fusion and reduced mitophagy, contribute to the metabolic disorder and inflammation that occurs during OA. Reduced MFN2 and increased PARKIN expression represent potential therapeutic targets for the treatment of joint cartilage degradation during the OA process.
Collapse
|
354
|
Maffioli E, Galli A, Nonnis S, Marku A, Negri A, Piazzoni C, Milani P, Lenardi C, Perego C, Tedeschi G. Proteomic Analysis Reveals a Mitochondrial Remodeling of βTC3 Cells in Response to Nanotopography. Front Cell Dev Biol 2020; 8:508. [PMID: 32850772 PMCID: PMC7405422 DOI: 10.3389/fcell.2020.00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, using cluster-assembled zirconia substrates with tailored roughness produced by supersonic cluster beam deposition, we demonstrated that β cells can sense nanoscale features of the substrate and can translate these stimuli into a mechanotransductive pathway capable of preserveing β-cell differentiation and function in vitro in long-term cultures of human islets. Using the same proteomic approach, we now focused on the mitochondrial fraction of βTC3 cells grown on the same zirconia substrates and characterized the morphological and proteomic modifications induced by the nanostructure. The results suggest that, in βTC3 cells, mitochondria are perturbed by the nanotopography and activate a program involving metabolism modification and modulation of their interplay with other organelles. Data were confirmed in INS1E, a different β-cell model. The change induced by the nanostructure can be pro-survival and prime mitochondria for a metabolic switch to match the new cell needs.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine, University of Milano, Milan, Italy.,Centre for Nanostructured Materials and Interfaces, University of Milano, Milan, Italy
| | - Alessandra Galli
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine, University of Milano, Milan, Italy.,Centre for Nanostructured Materials and Interfaces, University of Milano, Milan, Italy
| | - Algerta Marku
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | - Armando Negri
- Department of Veterinary Medicine, University of Milano, Milan, Italy
| | - Claudio Piazzoni
- Centre for Nanostructured Materials and Interfaces, University of Milano, Milan, Italy.,Department of Physics, University of Milano, Milan, Italy
| | - Paolo Milani
- Centre for Nanostructured Materials and Interfaces, University of Milano, Milan, Italy.,Department of Physics, University of Milano, Milan, Italy
| | - Cristina Lenardi
- Centre for Nanostructured Materials and Interfaces, University of Milano, Milan, Italy.,Department of Physics, University of Milano, Milan, Italy
| | - Carla Perego
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine, University of Milano, Milan, Italy.,Centre for Nanostructured Materials and Interfaces, University of Milano, Milan, Italy
| |
Collapse
|
355
|
Downregulation of Drp1 and Fis1 Inhibits Mitochondrial Fission and Prevents High Glucose-Induced Apoptosis in Retinal Endothelial Cells. Cells 2020; 9:cells9071662. [PMID: 32664237 PMCID: PMC7407825 DOI: 10.3390/cells9071662] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy is a prevalent microvascular complication characterized by apoptotic vascular cell loss in the retina. Previous studies have shown that high glucose (HG)-induced mitochondrial fragmentation plays a critical role in promoting retinal vascular cell apoptosis. Here, we investigated whether downregulation of mitochondrial fission genes, Fis1 and Drp1, which are overexpressed in HG condition, prevents mitochondrial fragmentation, preserves mitochondrial function, and protects retinal endothelial cells from apoptosis. Rat retinal endothelial cells (RRECs) were grown in normal (5 mM glucose) or HG (30 mM glucose) medium; in parallel, cells grown in HG medium were transfected with either Fis1 siRNA or Drp1 siRNA, or both siRNAs in combination, or scrambled siRNA as control. Live-cell confocal imaging showed decreased mitochondrial fission in cells transfected with Fis1 siRNA or Drp1 siRNA concomitant with reduced TUNEL-positive cells and a decrease in the expression of pro-apoptotic proteins, Bax and cleaved caspase 3, under HG condition. Importantly, the combined siRNA approach against Fis1 and Drp1 prevented HG-induced changes in the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). The findings from this study indicate that reducing HG-induced overexpression of mitochondrial fission genes preserves mitochondrial morphology and prevents retinal vascular cell apoptosis associated with diabetic retinopathy.
Collapse
|
356
|
Landon R, Gueguen V, Petite H, Letourneur D, Pavon-Djavid G, Anagnostou F. Impact of Astaxanthin on Diabetes Pathogenesis and Chronic Complications. Mar Drugs 2020; 18:md18070357. [PMID: 32660119 PMCID: PMC7401277 DOI: 10.3390/md18070357] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OS) plays a pivotal role in diabetes mellitus (DM) onset, progression, and chronic complications. Hyperglycemia-induced reactive oxygen species (ROS) have been shown to reduce insulin secretion from pancreatic β-cells, to impair insulin sensitivity and signaling in insulin-responsive tissues, and to alter endothelial cells function in both type 1 and type 2 DM. As a powerful antioxidant without side effects, astaxanthin (ASX), a xanthophyll carotenoid, has been suggested to contribute to the prevention and treatment of DM-associated pathologies. ASX reduces inflammation, OS, and apoptosis by regulating different OS pathways though the exact mechanism remains elusive. Based on several studies conducted on type 1 and type 2 DM animal models, orally or parenterally administrated ASX improves insulin resistance and insulin secretion; reduces hyperglycemia; and exerts protective effects against retinopathy, nephropathy, and neuropathy. However, more experimental support is needed to define conditions for its use. Moreover, its efficacy in diabetic patients is poorly explored. In the present review, we aimed to identify the up-to-date biological effects and underlying mechanisms of ASX on the ROS-induced DM-associated metabolic disorders and subsequent complications. The development of an in-depth research to better understand the biological mechanisms involved and to identify the most effective ASX dosage and route of administration is deemed necessary.
Collapse
Affiliation(s)
- Rebecca Landon
- CNRS UMR7052-INSERM U1271, Laboratory of Osteoarticular Biology, Bioengineering and Bioimaging, Paris Diderot University, 10 Avenue de Verdun, 75010 Paris, France; (R.L.); (H.P.)
| | - Virginie Gueguen
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Sorbonne University Paris Nord, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France; (V.G.); (D.L.); (G.P.-D.)
| | - Hervé Petite
- CNRS UMR7052-INSERM U1271, Laboratory of Osteoarticular Biology, Bioengineering and Bioimaging, Paris Diderot University, 10 Avenue de Verdun, 75010 Paris, France; (R.L.); (H.P.)
| | - Didier Letourneur
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Sorbonne University Paris Nord, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France; (V.G.); (D.L.); (G.P.-D.)
| | - Graciela Pavon-Djavid
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Sorbonne University Paris Nord, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France; (V.G.); (D.L.); (G.P.-D.)
| | - Fani Anagnostou
- CNRS UMR7052-INSERM U1271, Laboratory of Osteoarticular Biology, Bioengineering and Bioimaging, Paris Diderot University, 10 Avenue de Verdun, 75010 Paris, France; (R.L.); (H.P.)
- Service of Odontology, Hôpital Pitié-Salpêtrière APHP, U.F.R. of Odontology, Denis-Diderot University, 47-83 Boulevard de l’Hôpital, 75013 Paris, France
- Correspondence: ; Tel.: +33-(0)1-57-27-85-70
| |
Collapse
|
357
|
Osipovich AB, Stancill JS, Cartailler JP, Dudek KD, Magnuson MA. Excitotoxicity and Overnutrition Additively Impair Metabolic Function and Identity of Pancreatic β-Cells. Diabetes 2020; 69:1476-1491. [PMID: 32332159 PMCID: PMC7809715 DOI: 10.2337/db19-1145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/20/2020] [Indexed: 12/14/2022]
Abstract
A sustained increase in intracellular Ca2+ concentration (referred to hereafter as excitotoxicity), brought on by chronic metabolic stress, may contribute to pancreatic β-cell failure. To determine the additive effects of excitotoxicity and overnutrition on β-cell function and gene expression, we analyzed the impact of a high-fat diet (HFD) on Abcc8 knockout mice. Excitotoxicity caused β-cells to be more susceptible to HFD-induced impairment of glucose homeostasis, and these effects were mitigated by verapamil, a Ca2+ channel blocker. Excitotoxicity, overnutrition, and the combination of both stresses caused similar but distinct alterations in the β-cell transcriptome, including additive increases in genes associated with mitochondrial energy metabolism, fatty acid β-oxidation, and mitochondrial biogenesis and their key regulator Ppargc1a Overnutrition worsened excitotoxicity-induced mitochondrial dysfunction, increasing metabolic inflexibility and mitochondrial damage. In addition, excitotoxicity and overnutrition, individually and together, impaired both β-cell function and identity by reducing expression of genes important for insulin secretion, cell polarity, cell junction, cilia, cytoskeleton, vesicular trafficking, and regulation of β-cell epigenetic and transcriptional program. Sex had an impact on all β-cell responses, with male animals exhibiting greater metabolic stress-induced impairments than females. Together, these findings indicate that a sustained increase in intracellular Ca2+, by altering mitochondrial function and impairing β-cell identity, augments overnutrition-induced β-cell failure.
Collapse
Affiliation(s)
- Anna B Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | - Jennifer S Stancill
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | | | - Karrie D Dudek
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| |
Collapse
|
358
|
Mitochondrial dynamic modulation exerts cardiometabolic protection in obese insulin-resistant rats. Clin Sci (Lond) 2020; 133:2431-2447. [PMID: 31808509 DOI: 10.1042/cs20190960] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/15/2019] [Accepted: 12/06/2019] [Indexed: 12/26/2022]
Abstract
Obese insulin resistance impairs cardiac mitochondrial dynamics by increasing mitochondrial fission and decreasing mitochondrial fusion, leading to mitochondrial damage, myocardial cell death and cardiac dysfunction. Therefore, inhibiting fission and promoting fusion could provide cardioprotection in this pre-diabetic condition. We investigated the combined effects of the mitochondrial fission inhibitor (Mdivi1) and fusion promoter (M1) on cardiac function in obese insulin-resistant rats. We hypothesized that Mdivi1 and M1 protect heart against obese insulin-resistant condition, but also there will be greater improvement using Mdivi1 and M1 as a combined treatment. Wistar rats (n=56, male) were randomly assigned to a high-fat diet (HFD) and normal diet (ND) fed groups. After feeding with either ND or HFD for 12 weeks, rats in each dietary group were divided into groups to receive either the vehicle, Mdivi1 (1.2 mg/kg, i.p.), M1 (2 mg/kg, i.p.) or combined treatment for 14 days. The cardiac function, cardiac mitochondrial function, metabolic and biochemical parameters were monitored before and after the treatment. HFD rats developed obese insulin resistance which led to impaired dynamics balance and function of mitochondria, increased cardiac cell apoptosis and dysfunction. Although Mdivi1, M1 and combined treatment exerted similar cardiometabolic benefits in HFD rats, the combined therapy showed a greater reduction in mitochondrial reactive oxygen species (ROS). Mitochondrial fission inhibitor and fusion promoter exerted similar levels of cardioprotection in a pre-diabetic condition.
Collapse
|
359
|
Luo J, Shen S. Lipoic acid alleviates schistosomiasis-induced liver fibrosis by upregulating Drp1 phosphorylation. Acta Trop 2020; 206:105449. [PMID: 32194067 DOI: 10.1016/j.actatropica.2020.105449] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/16/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023]
Abstract
Lipoic acid (LA) has been shown to possess protective effects against liver fibrosis mainly by induction of apoptosis of activated hepatic stellate cells, but the mechanism of LA activity in liver fibrosis has yet to be completely explained. LA occurs naturally in mitochondria as a coenzyme. In this study, we used mice with schistosomiasis-induced liver fibrosis and mouse hepatocarcinoma cell line 1C1C7 as models to investigate the mitochondrial mechanism of LA treatment for liver fibrosis. Western blot, real-time PCR and oxygen consumption rate (OCR) test were used. In the livers of mice with liver fibrosis, the mRNA levels of LA synthetic pathway enzymes, including MCAT, OXSM, MECR, and LIAS, were significantly reduced. Livers of mice with liver fibrosis showed degenerative signs, such as mitochondrial edema, a reduced mitochondrial crest and matrix density, or vacuolation; the activities of mitochondrial complexes I, II, IV, and V were also decreased in these livers. The expression of phosphorylation Drp1 (p-Drp1) was decreased in the livers of mice with liver fibrosis, indicating increased mitochondrial fission activity, whereas OPA1 and MFN1 expression was reduced, denoting decreased activity of mitochondrial fusion. To understand the mitochondrial mechanism of LA treatment for liver fibrosis, p-Drp1, OPA1, and MFN1 expression were detected at the protein level in mouse hepatocarcinoma cell line 1C1C7 stimulated by LA. OPA1 and MFN1 were not significantly altered, but p-Drp1 was significantly increased. The results suggest that LA may alleviate liver fibrosis through upregulating p-Drp1. This study provides a new insight into the mechanism of the protective effect of LA against schistosomiasis-induced liver fibrosis, which demonstrates that LA is required for the maintenance of mitochondrial function by upregulating p-Drp1 expression to inhibit mitochondrial fission.
Collapse
|
360
|
Chen W, Sun Y, Sun Q, Zhang J, Jiang M, Chang C, Huang X, Wang C, Wang P, Zhang Z, Chen X, Wang Y. MFN2 Plays a Distinct Role from MFN1 in Regulating Spermatogonial Differentiation. Stem Cell Reports 2020; 14:803-817. [PMID: 32330448 PMCID: PMC7221103 DOI: 10.1016/j.stemcr.2020.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
Although mitochondrial morphology is well-known for its role in cellular homeostasis, there is surprisingly little knowledge on whether mitochondrial remodeling is required for postnatal germ cell development. In this study, we investigated the functions of MFN1 and MFN2, two GTPases in mitochondrial fusion, during early spermatogenesis. We observed increased MFN expressions along with increased mitochondrial and endoplasmic reticulum (ER) activities during spermatogonial differentiation. Deletion of either Mfn led to DNA oxidation and apoptosis specifically in differentiating spermatogonia and spermatocytes, which in turn caused male infertility. We further found MFN2 regulated spermatogenesis by modulating both mitochondrial and ER functions, a mechanism distinct from that of MFN1. Defects of germ cell development in MFN2 mutants were corrected by MFN2 at either mitochondria or ER but not by MFN1. Our study thus reveals an essential requirement of MFN-mediated mitochondrial and ER coordination in spermatogenesis, providing critical insights into mitochondrial determinants of male fertility.
Collapse
Affiliation(s)
- Wei Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yun Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qi Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jingjing Zhang
- Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Manxi Jiang
- Department of Animal Science, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, China
| | - Chingwen Chang
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaoli Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chuanyun Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Pengxiang Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaoran Zhang
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Xuejin Chen
- Department of Animal Science, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, China
| | - Yuan Wang
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
361
|
Ponte S, Carvalho L, Gagliardi M, Campos I, Oliveira PJ, Jacinto A. Drp1-mediated mitochondrial fission regulates calcium and F-actin dynamics during wound healing. Biol Open 2020; 9:bio048629. [PMID: 32184231 PMCID: PMC7225088 DOI: 10.1242/bio.048629] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria adapt to cellular needs by changes in morphology through fusion and fission events, referred to as mitochondrial dynamics. Mitochondrial function and morphology are intimately connected and the dysregulation of mitochondrial dynamics is linked to several human diseases. In this work, we investigated the role of mitochondrial dynamics in wound healing in the Drosophila embryonic epidermis. Mutants for mitochondrial fusion and fission proteins fail to close their wounds, indicating that the regulation of mitochondrial dynamics is required for wound healing. By live-imaging, we found that loss of function of the mitochondrial fission protein Dynamin-related protein 1 (Drp1) compromises the increase of cytosolic and mitochondrial calcium upon wounding and leads to reduced reactive oxygen species (ROS) production and F-actin defects at the wound edge, culminating in wound healing impairment. Our results highlight a new role for mitochondrial dynamics in the regulation of calcium, ROS and F-actin during epithelial repair.
Collapse
Affiliation(s)
- Susana Ponte
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Lara Carvalho
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Gagliardi
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Isabel Campos
- Animal Platforms, Champalimaud Centre for the Unknown, 1400-038 Lisboa, Portugal
| | - Paulo J Oliveira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, 3060-197 Cantanhede, Portugal
| | - António Jacinto
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
362
|
Schiffer TA, Lundberg JO, Weitzberg E, Carlström M. Modulation of mitochondria and NADPH oxidase function by the nitrate-nitrite-NO pathway in metabolic disease with focus on type 2 diabetes. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165811. [PMID: 32339643 DOI: 10.1016/j.bbadis.2020.165811] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria play fundamental role in maintaining cellular metabolic homeostasis, and metabolic disorders including type 2 diabetes (T2D) have been associated with mitochondrial dysfunction. Pathophysiological mechanisms are coupled to increased production of reactive oxygen species and oxidative stress, together with reduced bioactivity/signaling of nitric oxide (NO). Novel strategies restoring these abnormalities may have therapeutic potential in order to prevent or even treat T2D and associated cardiovascular and renal co-morbidities. A diet rich in green leafy vegetables, which contains high concentrations of inorganic nitrate, has been shown to reduce the risk of T2D. To this regard research has shown that in addition to the classical NO synthase (NOS) dependent pathway, nitrate from our diet can work as an alternative precursor for NO and other bioactive nitrogen oxide species via serial reductions of nitrate (i.e. nitrate-nitrite-NO pathway). This non-conventional pathway may act as an efficient back-up system during various pathological conditions when the endogenous NOS system is compromised (e.g. acidemia, hypoxia, ischemia, aging, oxidative stress). A number of experimental studies have demonstrated protective effects of nitrate supplementation in models of obesity, metabolic syndrome and T2D. Recently, attention has been directed towards the effects of nitrate/nitrite on mitochondrial functions including beiging/browning of white adipose tissue, PGC-1α and SIRT3 dependent AMPK activation, GLUT4 translocation and mitochondrial fusion-dependent improvements in glucose homeostasis, as well as dampening of NADPH oxidase activity. In this review, we examine recent research related to the effects of bioactive nitrogen oxide species on mitochondrial function with emphasis on T2D.
Collapse
Affiliation(s)
- Tomas A Schiffer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
363
|
Kunimoto M, Shimada K, Yokoyama M, Matsubara T, Aikawa T, Ouchi S, Shimizu M, Fukao K, Miyazaki T, Kadoguchi T, Fujiwara K, Abulimiti A, Honzawa A, Yamada M, Shimada A, Yamamoto T, Asai T, Amano A, Smit AJ, Daida H. Association between the tissue accumulation of advanced glycation end products and exercise capacity in cardiac rehabilitation patients. BMC Cardiovasc Disord 2020; 20:195. [PMID: 32326893 PMCID: PMC7178950 DOI: 10.1186/s12872-020-01484-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background Advanced glycation end products (AGEs) are associated with aging, diabetes mellitus (DM), and other chronic diseases. Recently, the accumulation of AGEs can be evaluated by skin autofluorescence (SAF). However, the relationship between SAF levels and exercise capacity in patients with cardiovascular disease (CVD) remains unclear. This study aimed to investigate the association between the tissue accumulation of AGEs and clinical characteristics, including exercise capacity, in patients with CVD. Methods We enrolled 319 consecutive CVD patients aged ≥40 years who underwent early phase II cardiac rehabilitation (CR) at our university hospital between November 2015 and September 2017. Patient background, clinical data, and the accumulation of AGEs assessed by SAF were recorded at the beginning of CR. Characteristics were compared between two patient groups divided according to the median SAF level (High SAF and Low SAF). Results The High SAF group was significantly older and exhibited a higher prevalence of DM than the Low SAF group. The sex ratio did not differ between the two groups. AGE levels showed significant negative correlations with peak oxygen uptake and ventilator efficiency (both P < 0.0001). Exercise capacity was significantly lower in the high SAF group than in the low SAF group, regardless of the presence or absence of DM (P < 0.05). A multivariate logistic regression analysis showed that SAF level was an independent factor associated with reduced exercise capacity (odds ratio 2.10; 95% confidence interval 1.13–4.05; P = 0.02). Conclusion High levels of tissue accumulated AGEs, as assessed by SAF, were significantly and independently associated with reduced exercise capacity. These data suggest that measuring the tissue accumulation of AGEs may be useful in patients who have undergone CR, irrespective of whether they have DM.
Collapse
Affiliation(s)
- Mitsuhiro Kunimoto
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kazunori Shimada
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan. .,Cardiovascular Rehabilitation and Fitness, Juntendo University Hospital, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Miho Yokoyama
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Cardiovascular Rehabilitation and Fitness, Juntendo University Hospital, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tomomi Matsubara
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tatsuro Aikawa
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shohei Ouchi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Megumi Shimizu
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kosuke Fukao
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tetsuro Miyazaki
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tomoyasu Kadoguchi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kei Fujiwara
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Abidan Abulimiti
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Akio Honzawa
- Cardiovascular Rehabilitation and Fitness, Juntendo University Hospital, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Miki Yamada
- Cardiovascular Rehabilitation and Fitness, Juntendo University Hospital, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Akie Shimada
- Department of Cardiovascular Surgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Taira Yamamoto
- Department of Cardiovascular Surgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tohru Asai
- Department of Cardiovascular Surgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Atsushi Amano
- Department of Cardiovascular Surgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Andries J Smit
- Division of Vascular Medicine, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713 GZ, Netherlands
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
364
|
Latini A, Borgiani P, De Benedittis G, D'Amato C, Greco C, Lauro D, Novelli G, Spallone V, Ciccacci C. Mitochondrial DNA Copy Number in Peripheral Blood Is Reduced in Type 2 Diabetes Patients with Polyneuropathy and Associated with a MIR499A Gene Polymorphism. DNA Cell Biol 2020; 39:1467-1472. [PMID: 32311290 DOI: 10.1089/dna.2019.5326] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Our aim was to evaluate in a cohort of 125 Italian patients with type 2 diabetes (T2D), who underwent neurological evaluation, the possible differences in the number of mitochondrial DNA copies (mtDNA) comparing positive and negative patients for cardiovascular autonomic neuropathy (CAN) or diabetic peripheral neuropathy (DPN) and comparing them with healthy controls. We also investigated a possible correlation of the number of mtDNA copies with the polymorphism rs3746444 of the MIR499A. T2D patients show a decrease in the number of mtDNA copies compared to healthy controls (p = 2 × 10-10). Dividing the T2D subjects by neurological evaluation, we found a significant mtDNA decrease in patients with DPN compared with those without (p = 0.02), while no differences were observed between subjects with and without CAN. Furthermore, the homozygous variant genotype for the polymorphism rs3746444 of MIR499A correlates with a decrease in the number of mtDNA copies, particularly in T2D patients (p = 0.009). Our data show a decrease in the number of mtDNA copies in subjects with T2D and suggest that this decrease is more evident in patients who develop DPN. Furthermore, the association of the variant allele of MIR499A with the number of mtDNA copies allows us to hypothesize a possible effect of this polymorphism in oxidative stress.
Collapse
Affiliation(s)
- Andrea Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - Giada De Benedittis
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia D'Amato
- Department of Systems Medicine, Endocrinology Section, University of Rome Tor Vergata, Rome, Italy
| | - Carla Greco
- Department of Systems Medicine, Endocrinology Section, University of Rome Tor Vergata, Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, Endocrinology Section, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy.,IRCCS NEUROMED, Pozzilli, Italy
| | - Vincenza Spallone
- Department of Systems Medicine, Endocrinology Section, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Ciccacci
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy.,UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| |
Collapse
|
365
|
Samanas NB, Engelhart EA, Hoppins S. Defective nucleotide-dependent assembly and membrane fusion in Mfn2 CMT2A variants improved by Bax. Life Sci Alliance 2020; 3:3/5/e201900527. [PMID: 32245838 PMCID: PMC7136618 DOI: 10.26508/lsa.201900527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 01/08/2023] Open
Abstract
Mfn2 CMT2A–associated variants located proximal to the hinge connecting its two extended helical bundles have impaired GTP-dependent assembly and mitochondrial fusion activity, which are both improved by cytosolic Bax. Mitofusins are members of the dynamin-related protein family of large GTPases that harness the energy from nucleotide hydrolysis to remodel membranes. Mitofusins possess four structural domains, including a GTPase domain, two extended helical bundles (HB1 and HB2), and a transmembrane region. We have characterized four Charcot-Marie-Tooth type 2A–associated variants with amino acid substitutions in Mfn2 that are proximal to the hinge that connects HB1 and HB2. A functional defect was not apparent in cells as the mitochondrial morphology of Mfn2-null cells was restored by expression of any of these variants. However, a significant fusion deficiency was observed in vitro, which was improved by the addition of crude cytosol extract or soluble Bax. All four variants had reduced nucleotide-dependent assembly in cis, but not trans, and this was also improved by the addition of Bax. Together, our data demonstrate an important role for this region in Mfn2 GTP-dependent oligomerization and membrane fusion and is consistent with a model where cytosolic factors such as Bax are masking molecular defects associated with Mfn2 disease variants in cells.
Collapse
Affiliation(s)
- Nyssa B Samanas
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Emily A Engelhart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Suzanne Hoppins
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
366
|
McKay DM, Mancini NL, Shearer J, Shutt T. Perturbed mitochondrial dynamics, an emerging aspect of epithelial-microbe interactions. Am J Physiol Gastrointest Liver Physiol 2020; 318:G748-G762. [PMID: 32116020 DOI: 10.1152/ajpgi.00031.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mitochondria exist in a complex network that is constantly remodeling via the processes of fission and fusion in response to intracellular conditions and extracellular stimuli. Excessive fragmentation of the mitochondrial network because of an imbalance between fission and fusion reduces the cells' capacity to generate ATP and can be a forerunner to cell death. Given the critical roles mitochondria play in cellular homeostasis and innate immunity, it is not surprising that many microbial pathogens can disrupt mitochondrial activity. Here we note the putative contribution of mitochondrial dysfunction to gut disease and review data showing that infection with microbial pathogens can alter the balance between mitochondrial fragmentation and fusion, preventing normal remodeling (i.e., dynamics) and can lead to cell death. Current data indicate that infection of epithelia or macrophages with microbial pathogens will ultimately result in excessive fragmentation of the mitochondrial network. Concerted research efforts are required to elucidate fully the processes that regulate mitochondrial dynamics, the mechanisms by which microbes affect epithelial mitochondrial fission and/or fusion, and the implications of this for susceptibility to infectious disease. We speculate that the commensal microbiome of the gut may be important for normal epithelial mitochondrial form and function. Drugs designed to counteract the effect of microbial pathogen interference with mitochondrial dynamics may be a new approach to infectious disease at mucosal surfaces.
Collapse
Affiliation(s)
- Derek M McKay
- Gastrointestinal Research Group (GIRG) and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole L Mancini
- Gastrointestinal Research Group (GIRG) and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Timothy Shutt
- Department of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
367
|
Role of oxidative stress in the efficacy and toxicity of herbal supplements. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
368
|
Liu X, Lu J, Liu S, Huang D, Chen M, Xiong G, Li S. Huangqi-Danshen decoction alleviates diabetic nephropathy in db/db mice by inhibiting PINK1/Parkin-mediated mitophagy. Am J Transl Res 2020; 12:989-998. [PMID: 32269729 PMCID: PMC7137035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
Huangqi-Danshen decoction (HDD) is composed of Astragali Radix (Huang-qi) and Salviae Miltiorrhizae Radix et Rhizoma (Dan-shen), both of which are the most commonly used herbs for the clinical treatment of diabetic nephropathy (DN) in traditional Chinese medicine and show good efficacy. However, the underlying mechanism of this effect is unclear. The aim of this study was to evaluate the effect and potential mechanism of HDD in the treatment of DN in a type 2 diabetic animal model, db/db mice. HDD extract was administered orally to db/db mice at a dose of 6.8 g/kg/day for 12 weeks. At the end of the study, serum, urine, and kidney samples were collected for biochemical and pathological examination. The expression of proteins associated with mitochondrial fission and mitophagy was determined by quantitative real-time PCR, Western blotting, and immunohistochemical analysis. The results showed that treatment with HDD substantially reduced urinary albumin excretion and improved renal injury in db/db mice. Moreover, mitochondrial fission was increased in the kidneys of the db/db mice, as evidenced by enhanced expression of dynamin-related protein 1 and mitochondrial morphological changes. Furthermore, PTEN-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy was activated in the db/db mice, which manifested as increased protein expression and obvious autophagic vacuole encapsulating mitochondria. HDD treatment significantly reversed the enhanced mitochondrial fission and PINK1/Parkin-mediated mitophagy in the db/db mice. In conclusion, this work suggested that HDD could protect against type 2 diabetes-induced kidney injury possibly by inhibiting PINK1/Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese MedicineShenzhen 518033, Guangdong, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese MedicineShenzhen 518033, Guangdong, China
| | - Siqi Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese MedicineShenzhen 518033, Guangdong, China
| | - Dakun Huang
- Department of Urology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese MedicineShenzhen 518033, Guangdong, China
| | - Mianxiong Chen
- Department of Urology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese MedicineShenzhen 518033, Guangdong, China
| | - Guoliang Xiong
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese MedicineShenzhen 518033, Guangdong, China
| | - Shunmin Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese MedicineShenzhen 518033, Guangdong, China
| |
Collapse
|
369
|
Cruz-Topete D, Dominic P, Stokes KY. Uncovering sex-specific mechanisms of action of testosterone and redox balance. Redox Biol 2020; 31:101490. [PMID: 32169396 PMCID: PMC7212492 DOI: 10.1016/j.redox.2020.101490] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/17/2020] [Accepted: 03/01/2020] [Indexed: 12/11/2022] Open
Abstract
The molecular and pharmacological manipulation of the endogenous redox system is a promising therapy to limit myocardial damage after a heart attack; however, antioxidant therapies have failed to fully establish their cardioprotective effects, suggesting that additional factors, including antioxidant system interactions with other molecular pathways, may alter the pharmacological effects of antioxidants. Since gender differences in cardiovascular disease (CVD) are prevalent, and sex is an essential determinant of the response to oxidative stress, it is of particular interest to understand the effects of sex hormone signaling on the activity and expression of cellular antioxidants and the pharmacological actions of antioxidant therapies. In the present review, we briefly summarize the current understanding of testosterone effects on the modulation of the endogenous antioxidant systems in the CV system, cardiomyocytes, and the heart. We also review the latest research on redox balance and sexual dimorphism, with particular emphasis on the role of the natural antioxidant system glutathione (GSH) in the context of myocardial infarction, and the pro- and antioxidant effects of testosterone signaling via the androgen receptor (AR) on the heart. Finally, we discuss future perspectives regarding the potential of using combing antioxidant and testosterone replacement therapies to protect the aging myocardium.
Collapse
Affiliation(s)
- Diana Cruz-Topete
- Department of Molecular and Cellular Physiology, Shreveport, LA, USA; Center for Cardiovascular Diseases and Sciences, Shreveport, LA, USA.
| | - Paari Dominic
- Center for Cardiovascular Diseases and Sciences, Shreveport, LA, USA; Department of Cardiology, LSU Health Sciences Center, Shreveport, LA, USA
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology, Shreveport, LA, USA; Center for Cardiovascular Diseases and Sciences, Shreveport, LA, USA
| |
Collapse
|
370
|
Yilmaz B, Terekeci H, Sandal S, Kelestimur F. Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev Endocr Metab Disord 2020; 21:127-147. [PMID: 31792807 DOI: 10.1007/s11154-019-09521-z] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endocrine Disrupting Chemicals (EDCs) are a global problem for environmental and human health. They are defined as "an exogenous chemical, or mixture of chemicals, that can interfere with any aspect of hormone action". It is estimated that there are about 1000 chemicals with endocrine-acting properties. EDCs comprise pesticides, fungicides, industrial chemicals, plasticizers, nonylphenols, metals, pharmaceutical agents and phytoestrogens. Human exposure to EDCs mainly occurs by ingestion and to some extent by inhalation and dermal uptake. Most EDCs are lipophilic and bioaccumulate in the adipose tissue, thus they have a very long half-life in the body. It is difficult to assess the full impact of human exposure to EDCs because adverse effects develop latently and manifest at later ages, and in some people do not present. Timing of exposure is of importance. Developing fetus and neonates are the most vulnerable to endocrine disruption. EDCs may interfere with synthesis, action and metabolism of sex steroid hormones that in turn cause developmental and fertility problems, infertility and hormone-sensitive cancers in women and men. Some EDCs exert obesogenic effects that result in disturbance in energy homeostasis. Interference with hypothalamo-pituitary-thyroid and adrenal axes has also been reported. In this review, potential EDCs, their effects and mechanisms of action, epidemiological studies to analyze their effects on human health, bio-detection and chemical identification methods, difficulties in extrapolating experimental findings and studying endocrine disruptors in humans and recommendations for endocrinologists, individuals and policy makers will be discussed in view of the relevant literature.
Collapse
Affiliation(s)
- Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Hakan Terekeci
- Department of Internal Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Suleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Fahrettin Kelestimur
- Department of Endocrinology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
371
|
Chen Z, Ma Y, Yang Q, Hu J, Feng J, Liang W, Ding G. AKAP1 mediates high glucose-induced mitochondrial fission through the phosphorylation of Drp1 in podocytes. J Cell Physiol 2020; 235:7433-7448. [PMID: 32108342 DOI: 10.1002/jcp.29646] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
Increasing evidence suggests that mitochondrial dysfunction plays a critical role in the development of diabetic kidney disease (DKD), however, its specific pathomechanism remains unclear. A-kinase anchoring protein (AKAP) 1 is a scaffold protein in the AKAP family that is involved in mitochondrial fission and fusion. Here, we show that rats with streptozotocin (STZ)-induced diabetes developed podocyte damage accompanied by AKAP1 overexpression and that AKAP1 closely interacted with the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). At the molecular level, high glucose (HG) promoted podocyte injury and Drp1 phosphorylation at Ser637 as proven by decreased mitochondrial membrane potential, elevated reactive oxygen species generation, reduced adenosine triphosphate synthesis, and increased podocyte apoptosis. Furthermore, the AKAP1 knockdown protected HG-induced podocyte injury and suppressed HG-induced Drp1 phosphorylation at Ser637. AKAP1 overexpression aggravated HG-induced mitochondrial fragmentation and podocyte apoptosis. The coimmunoprecipitation assay showed that HG-induced Drp1 interacted with AKAP1, revealing that AKAP1 could recruit Drp1 from the cytoplasm under HG stimulation. Subsequently, we detected the effect of drp1 phosphorylation on Ser637 by transferring several different Drp1 mutants. We demonstrated that activated AKAP1 promoted Drp1 phosphorylation at Ser637, which promoted the transposition of Drp1 to the surface of the mitochondria and accounts for mitochondrial dysfunction events. These findings indicate that AKAP1 is the main pathogenic factor in the development and progression of HG-induced podocyte injury through the destruction of mitochondrial dynamic homeostasis by regulating Drp1 phosphorylation in human podocytes.
Collapse
Affiliation(s)
- Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqiong Ma
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
372
|
Takematsu E, Spencer A, Auster J, Chen PC, Graham A, Martin P, Baker AB. Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes. PLoS One 2020; 15:e0225267. [PMID: 32084158 PMCID: PMC7034863 DOI: 10.1371/journal.pone.0225267] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases.
Collapse
Affiliation(s)
- Eri Takematsu
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Adrianne Spencer
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Jeff Auster
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Po-Chih Chen
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, United Kingdom
| | - Patricia Martin
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, United Kingdom
| | - Aaron B. Baker
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX
- The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX
- * E-mail:
| |
Collapse
|
373
|
Wang X, Lai S, Ye Y, Hu Y, Pan D, Bai X, Shen J. Conditional knockout of pyruvate dehydrogenase in mouse pancreatic β‑cells causes morphological and functional changes. Mol Med Rep 2020; 21:1717-1726. [PMID: 32319629 PMCID: PMC7057776 DOI: 10.3892/mmr.2020.10993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus is a metabolic disorder predominantly caused by the dysfunction of pancreatic β-cells. This dysfunction is partly caused by the dysregulation of pyruvate dehydrogenase (PDH), which acts as an important mediator of pyruvate oxidation after glycolysis and fuels the tricarboxylic acid cycle. Previous studies have reported decreased PDH expression in rodent models and humans with type 2 diabetes mellitus (T2DM), suggesting that PDH may play an important role in the development of T2DM. However, the mechanism by which PDH affects insulin secretion and β-cell development is poorly understood. Using immunofluorescence staining, the present study found that the expression of pyruvate dehydrogenase E1-α subunit (PDHA1; encoded by the PDHA1 gene) in the islets of type 2 diabetic mice (db/db mice) was lower than in wild-type mice, which indicated the possible association between PDHA1and diabetes. To further understand this mechanism, an inducible, islet-specific PDHA1 knockout mouse (βKO) model was established. The phenotype was authenticated, and the blood glucose levels and islet function between the βKO and control mice were compared. Though no changes were found in food intake, development status, fasting blood glucose or weight between the groups, the level of insulin secretion at 30 min after glucose injection in the βKO group was significantly lower compared with the control group. Furthermore, the performed of the βKO mice on the intraperitoneal glucose tolerance test was visibly impaired when compared with the control mice. Pancreatic tissues were collected for hematoxylin and eosin staining, immunohistochemical and confocal laser-scanning microscopy analysis. Examination of the islets from the βKO mouse model indicated that abolishing the expression of PDH caused a compensatory islet enlargement and impaired insulin secretion.
Collapse
Affiliation(s)
- Xiao Wang
- Shunde Hospital of Southern Medical University, Foshan, Guangdong 528308, P.R. China
| | - Shuchang Lai
- The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yanshi Ye
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yuanyuan Hu
- Shenzhen Nan Shan Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Daoyan Pan
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Xiaochun Bai
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Jie Shen
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
374
|
Kang L, Liu S, Li J, Tian Y, Xue Y, Liu X. The mitochondria-targeted anti-oxidant MitoQ protects against intervertebral disc degeneration by ameliorating mitochondrial dysfunction and redox imbalance. Cell Prolif 2020; 53:e12779. [PMID: 32020711 PMCID: PMC7106957 DOI: 10.1111/cpr.12779] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/03/2020] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Mitochondrial dysfunction, oxidative stress and nucleus pulposus (NP) cell apoptosis are important contributors to the development and pathogenesis of intervertebral disc degeneration (IDD). Here, we comprehensively evaluated the effects of mitochondrial dynamics, mitophagic flux and Nrf2 signalling on the mitochondrial quality control, ROS production and NP cell survival in in vitro and ex vivo compression models of IDD and explored the effects of the mitochondria‐targeted anti‐oxidant MitoQ and its mechanism. Material and methods Human NP cells were exposed to mechanical compression to mimic pathological conditions. Results Compression promoted oxidative stress, mitochondrial dysfunction and NP cell apoptosis. Mechanistically, compression disrupted the mitochondrial fission/fusion balance, inducing fatal fission. Concomitantly, PINK1/Parkin‐mediated mitophagy was activated, whereas mitophagic flux was blocked. Nrf2 anti‐oxidant pathway was insufficiently activated. These caused the damaged mitochondria accumulation and persistent oxidative damage. Moreover, MitoQ restored the mitochondrial dynamics balance, alleviated the impairment of mitophagosome‐lysosome fusion and lysosomal function and enhanced the Nrf2 activity. Consequently, damaged mitochondria were eliminated, redox balance was improved, and cell survival increased. Additionally, MitoQ alleviated IDD in an ex vivo rat compression model. Conclusions These findings suggest that comodulation of mitochondrial dynamics, mitophagic flux and Nrf2 signalling alleviates sustained mitochondrial dysfunction and oxidative stress and represents a promising therapeutic strategy for IDD; furthermore, our results provide evidence that MitoQ might serve as an effective therapeutic agent for this disorder.
Collapse
Affiliation(s)
- Liang Kang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Shiwei Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Jingchao Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,Department of Orthopedics, Tianjin Jinghai District Hospital, Tianjin, China
| | - Yueyang Tian
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Yuan Xue
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
| |
Collapse
|
375
|
Bhansali S, Bhansali A, Dutta P, Walia R, Dhawan V. Metformin upregulates mitophagy in patients with T2DM: A randomized placebo-controlled study. J Cell Mol Med 2020; 24:2832-2846. [PMID: 31975558 PMCID: PMC7077543 DOI: 10.1111/jcmm.14834] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/10/2019] [Accepted: 11/02/2019] [Indexed: 12/25/2022] Open
Abstract
Impaired mitochondrial autophagy (mitophagy) and NLRP3 inflammasome activation have been incriminated in the pathogenesis of T2DM. Metformin besides being an insulin sensitizer also induces autophagy; however, its effect on mitophagy and NLRP3 activation in patients with T2DM still remains elusive. Forty-five drug-naïve T2DM patients with HbA1C 7%-9% (53-75 mmol/mol) were randomly assigned to receive either metformin, voglibose, or placebo for 3 months, and were also recommended for lifestyle intervention programme (n = 15 each). Mitochondrial oxidative stress (MOS) parameters, qPCR and immunoblotting of mitophagy-related markers (PINK1, PARKIN, MFN2, NIX, LC3-II, LAMP2), p-AMPKα (T172), and NLRP3 proteins, as well as transmission electron microscopy (TEM) for assessing mitochondrial morphology were performed in the mononuclear cells of study patients. Both metformin and voglibose showed a similar efficacy towards the reduction in HbA1c and MOS indices. However, multivariate ANCOVA divulged that mRNA and protein expression of mitophagy markers, NLRP3 and p-AMPKα (T172), were significantly increased only with metformin therapy. Moreover, PINK1 expression displayed a significant positive association with HOMA-β indices, and TEM studies further confirmed reduced distortions in mitochondrial morphology in the metformin group only. Our observations underscore that metformin upregulates mitophagy and subsequently ameliorates the altered mitochondrial morphology and function, independent of its glucose-lowering effect. Further, restoration of normal mitochondrial phenotype may improve cellular function, including β-cells, which may prevent further worsening of hyperglycaemia in patients with T2DM.
Collapse
Affiliation(s)
- Shipra Bhansali
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anil Bhansali
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pinaki Dutta
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rama Walia
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Veena Dhawan
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
376
|
Yang X, Xue P, Chen H, Yuan M, Kang Y, Duscher D, Machens HG, Chen Z. Denervation drives skeletal muscle atrophy and induces mitochondrial dysfunction, mitophagy and apoptosis via miR-142a-5p/MFN1 axis. Theranostics 2020; 10:1415-1432. [PMID: 31938072 PMCID: PMC6956801 DOI: 10.7150/thno.40857] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/17/2019] [Indexed: 02/06/2023] Open
Abstract
Rationale: Peripheral nerve injury is common in clinic, which leads to severe atrophy and dysfunction of the denervated muscles, but the underlying mechanism is not fully understood. Recent studies advanced the causative role of mitochondrial dysfunction in muscle atrophy, while the upstream triggers remained unclear. Methods: In the present study, Atrophy of gastrocnemius and tibialis anterior (TA) were evaluated in mice sciatic nerve transection model. Transmission electron microscopy (TEM) was then used to observe the microstructure of atrophic gastrocnemius and mitochondria. Subsequently, small RNA sequencing, luciferase reporter assay and Electrophoretic Mobility Shift (EMSA) were performed to explore the potential signaling pathway involved in skeletal muscle atrophy. The effects of the corresponding pathway on mitochondrial function, mitophagy, apoptosis and muscle atrophy were further determined in C2C12 cells and denervated gastrocnemius. Results: Gastrocnemius and TA atrophied rapidly after denervation. Obvious decrease of mitochondria number and activation of mitophagy was further observed in atrophic gastrocnemius. Further, miR-142a-5p/ mitofusin-1 (MFN1) axis was confirmed to be activated in denervated gastrocnemius, which disrupted the tubular mitochondrial network, and induced mitochondrial dysfunction, mitophagy and apoptosis. Furthermore, the atrophy of gastrocnemius induced by denervation was relieved through targeting miR-142a-5p/MFN1 axis. Conclusions: Collectively, our data revealed that miR-142a-5p was able to function as an important regulator of denervation-induced skeletal muscle atrophy by inducing mitochondrial dysfunction, mitophagy, and apoptosis via targeting MFN1. Our findings provide new insights into the mechanism of skeletal muscle atrophy following denervation and propose a viable target for therapeutic intervention in individuals suffering from muscle atrophy after peripheral nerve injury.
Collapse
|
377
|
Schultz J, Warkus J, Wolke C, Waterstradt R, Baltrusch S. MiD51 Is Important for Maintaining Mitochondrial Health in Pancreatic Islet and MIN6 Cells. Front Endocrinol (Lausanne) 2020; 11:232. [PMID: 32411091 PMCID: PMC7198722 DOI: 10.3389/fendo.2020.00232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/31/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Mitochondrial dynamics are important for glucose-stimulated insulin secretion in pancreatic beta cells. The mitochondrial elongation factor MiD51 has been proposed to act as an anchor that recruits Drp1 from the cytosol to the outer mitochondrial membrane. Whether MiD51 promotes mitochondrial fusion by inactivation of Drp1 is a controversial issue. Since both the underlying mechanism and the effects on mitochondrial function remain unknown, this study was conducted to investigate the role of MiD51 in beta cells. Methods: Overexpression and downregulation of MiD51 in mouse insulinoma 6 (MIN6) and mouse islet cells was achieved using the pcDNA expression vector and specific siRNA, respectively. Expression of genes regulating mitochondrial dynamics and autophagy was analyzed by quantitative Real-Time PCR, glucose-stimulated insulin secretion by ELISA, and cellular oxygen consumption rate by optode sensor technology. Mitochondrial membrane potential and morphology were visualized after TMRE and MitoTracker Green staining, respectively. Immunofluorescence analyses were examined by confocal microscopy. Results: MiD51 is expressed in insulin-positive mouse and human pancreatic islet and MIN6 cells. Overexpression of MiD51 resulted in mitochondrial fragmentation and cluster formation in MIN6 cells. Mitochondrial membrane potential, glucose-induced oxygen consumption rate and glucose-stimulated insulin secretion were reduced in MIN6 cells with high MiD51 expression. LC3 expression remained unchanged. Downregulation of MiD51 resulted in inhomogeneity of the mitochondrial network in MIN6 cells with hyperelongated and fragmented mitochondria. Mitochondrial membrane potential, maximal and glucose-induced oxygen consumption rate and insulin secretion were diminished in MIN6 cells with low MiD51 expression. Furthermore, reduced Mfn2 and Parkin expression was observed. Based on MiD51 overexpression and downregulation, changes in the mitochondrial network structure similar to those in MIN6 cells were also observed in mouse islet cells. Conclusion: We have demonstrated that MiD51 plays a pivotal role in regulating mitochondrial function and hence insulin secretion in MIN6 cells. We propose that this anchor protein of Drp1 is important to maintain a homogeneous mitochondrial network and to avoid morphologies such as hyperelongation and clustering which are inaccessible for degradation by autophagy. Assuming that insulin granule degradation frequently suppresses autophagy in beta cells, MiD51 could be a key element maintaining mitochondrial health.
Collapse
Affiliation(s)
- Julia Schultz
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
- Julia Schultz
| | - Jeanette Warkus
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - Carmen Wolke
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Rica Waterstradt
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Rostock, Germany
- *Correspondence: Simone Baltrusch
| |
Collapse
|
378
|
Li Y, Wang X, Yang B, Wang H, Ma Z, Lu Z, Lu X, Gao B. 3 β-Hydroxysteroid- Δ24 Reductase (DHCR24) Protects Pancreatic β Cells from Endoplasmic Reticulum Stress-Induced Apoptosis by Scavenging Excessive Intracellular Reactive Oxygen Species. J Diabetes Res 2020; 2020:3426902. [PMID: 32724824 PMCID: PMC7382746 DOI: 10.1155/2020/3426902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
There is accumulating evidence showing that apoptosis induced by endoplasmic reticulum (ER) stress plays a key role in pancreatic β cell dysfunction and insulin resistance. 3β-Hydroxysteroid-Δ24 Reductase (DHCR24) is a multifunctional enzyme located in the endoplasmic reticulum (ER), which has been previously shown to protect neuronal cells from ER stress-induced apoptosis. However, the role of DHCR24 in type 2 diabetes is only incompletely understood so far. In the present study, we induced ER stress by tunicamycin (TM) treatment and showed that infection of MIN6 cells with Ad-DHCR24-myc rendered these cells resistant to caspase-3-mediated apoptosis induced by TM, while cells transfected with siRNAs targeting DHCR24 were more sensitive to TM. Western blot analysis showed that TM treatment induced upregulation of Bip protein levels in both cells infected with Ad-LacZ (the control group) and Ad-DHCR24-myc, indicating substantial ER stress. Cells infected with Ad-LacZ exhibited a rapid and strong activation of ATF6 and p38, peaking at 3 h after TM exposure. Conversely, cells infected with Ad-DHCR24-myc showed a higher and more sustained activation of ATF6 and Bip than control cells. DHCR24 overexpression also inhibited the generation of intracellular reactive oxygen species (ROS) induced by ER stress and protected cells from apoptosis caused by treatment with both cholesterol and hydrogen peroxide. In summary, these data demonstrate, for the first time, that DHCR24 protects pancreatic β cells from apoptosis induced by ER stress.
Collapse
Affiliation(s)
- Yang Li
- Department of Biochemistry and Molecular Biology, Life Science School, Liaoning University, Shenyang 110036, China
| | - Xude Wang
- Department of Biochemistry and Molecular Biology, Life Science School, Liaoning University, Shenyang 110036, China
| | - Baoyu Yang
- Department of Biochemistry and Molecular Biology, Life Science School, Liaoning University, Shenyang 110036, China
| | - Haozhen Wang
- Department of Biochemistry and Molecular Biology, Life Science School, Liaoning University, Shenyang 110036, China
| | - Zhenzhong Ma
- Department of Biochemistry and Molecular Biology, Life Science School, Liaoning University, Shenyang 110036, China
| | - Ziyin Lu
- Department of Biochemistry and Molecular Biology, Life Science School, Liaoning University, Shenyang 110036, China
| | - Xiuli Lu
- Department of Biochemistry and Molecular Biology, Life Science School, Liaoning University, Shenyang 110036, China
| | - Bing Gao
- Department of Cell Biology and Genetics, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
379
|
Kang L, Liu S, Li J, Tian Y, Xue Y, Liu X. Parkin and Nrf2 prevent oxidative stress-induced apoptosis in intervertebral endplate chondrocytes via inducing mitophagy and anti-oxidant defenses. Life Sci 2019; 243:117244. [PMID: 31891721 DOI: 10.1016/j.lfs.2019.117244] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/11/2019] [Accepted: 12/27/2019] [Indexed: 01/14/2023]
Abstract
AIMS Endplate chondrocyte apoptosis is an important contributor to the pathogenesis of cartilaginous endplate (CEP) degeneration that leads to the initiation and development of intervertebral disc degeneration (IDD). In this study, we hypothesized that Parkin-mediated mitophagy and nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant system played an important role in endplate chondrocyte survival under pathological conditions. MATERIALS AND METHODS Human endplate chondrocytes were stimulated with H2O2 to mimic pathological conditions. Western blotting, immunofluorescence staining, and flow cytometry were applied to detect the indicators related to mitochondrial dynamics, mitophagy, Nrf2 signaling, and apoptosis. The puncture-induced rat models were established to evaluate the changes in vivo. KEY FINDINGS Our results showed that H2O2 induced oxidative stress, mitochondrial dysfunction, and apoptosis in endplate chondrocytes. These H2O2-induced detrimental effects were inhibited by pretreatment with the mitochondria-targeted antioxidant Mito-TEMPO. In addition, mitochondrial dynamics, Parkin-mediated elimination of dysfunctional mitochondria, and Nrf2-mediated antioxidant system were promoted by H2O2. Knockdown of Parkin or Nrf2 increased H2O2-induced detrimental effects. Moreover, upregulation of Parkin and Nrf2 by polydatin protected endplate chondrocytes against H2O2-induced mitochondrial dysfunction, oxidative stress, and apoptosis. Finally, puncture-induced rat models showed that polydatin exerted a protective effect on CEP and disc degeneration. SIGNIFICANCE Targeting Parkin and Nrf2 to improve mitochondrial homeostasis, redox balance and endplate chondrocyte survival may represent a potential therapeutic strategy for preventing IDD.
Collapse
Affiliation(s)
- Liang Kang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin 300052, China
| | - Shiwei Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin 300052, China
| | - Jingchao Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin 300052, China; Department of Orthopedics, Tianjin Jinghai District Hospital, Tianjin 301600, China
| | - Yueyang Tian
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin 300052, China
| | - Yuan Xue
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin 300052, China.
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, China.
| |
Collapse
|
380
|
Peyravi A, Yazdanpanahi N, Nayeri H, Hosseini SA. The effect of endurance training with crocin consumption on the levels of MFN2 and DRP1 gene expression and glucose and insulin indices in the muscle tissue of diabetic rats. J Food Biochem 2019; 44:e13125. [PMID: 31849103 DOI: 10.1111/jfbc.13125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/23/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
This study aimed to investigate the effect of crocin consumption, high-intensity interval training (HIIT), and low-intensity continuous training (LICT) and their interactive effect on the gene expression of Mfn2 and Drp1 in the skeletal muscle and serum glucose and insulin indices in high-fat diet (HFD) and streptozotocin (STZ)-induced diabetic rats. Fifty-six adult rats were divided into eight groups of seven subjects: crocin consumption, HIIT, LICT, HIIT with crocin, LICT with crocin, diabetic control, healthy control, and sham (placebo). At the end of the course (5 months), metabolic indices were measured. Moreover, the Mfn2 and Drp1 gene expression levels in all groups were measured using RT-PCR. The statistical analysis showed that in the exercise training (HIIT and LICT) and the crocin consumption groups, the glucose and insulin indices significantly improved (p = .005). Moreover, in these groups, the levels of gene expression of Mfn2 and Drp1 significantly increased and decreased, respectively (p = .001). Exercise training and crocin consumption appear to, either in combination or individually, have a beneficial effect on mitochondrial dynamics and diabetes by improving the mitochondrial fusion and fission indices (Mfn2 and Drp1), and by modifying the insulin resistance index and glucose homeostasis. PRACTICAL APPLICATIONS: Mfn2 and Drp1, as the main regulators of the mitochondrial fusion and fission, play an important role in maintaining mitochondrial dynamics and type 2 diabetes. Thus, the regulation of mitochondrial dynamics is an intricate process that retains the balance between mitochondrial fission and fusion, and any disturbance in this balance can lead to mitochondrial-associated diseases including insulin resistance and T2D. There is evidence that herbal antioxidants Including crocin and exercise training help improve the mitochondrial activity and insulin sensitivity in T2D. Considering the importance of the two Drp1 and Mfn1 genes in the mitochondrial dynamic pathway and coding the proteins that play a key role in relation to T2D, this study primarily examined the interactive effects of endurance training (HIIT and LICT) along with crocin consumption on the expression the genes mentioned above; the results obtained in this study can provide a new approach to the treatment of HFD + STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Abdolnabi Peyravi
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Nasrin Yazdanpanahi
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Hashem Nayeri
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Seyyed Ali Hosseini
- Department of Sport Physiology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
381
|
Lalrohlui F, Zohmingthanga J, Hruaii V, Kumar NS. Genomic profiling of mitochondrial DNA reveals novel complex gene mutations in familial type 2 diabetes mellitus individuals from Mizo ethnic population, Northeast India. Mitochondrion 2019; 51:7-14. [PMID: 31862415 DOI: 10.1016/j.mito.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/12/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023]
Abstract
The variants reported for mitochondrial DNA (mtDNA) and type 2 diabetes (T2D) may not be accountable for the disease in certain other populations and the risk depends upon numerous factors which may include genetics, environment as well as ethnicity. This leads to a challenge in identifying, exploring and comparing the variants between diabetic cases and healthy controls in a remote unexplored tribal population. To study the possible contribution of mtDNA variants, we sequenced the entire mitochondrial genomes and the frequencies of mtSNPs, their association with familial T2D and the potential impact of non-synonymous substitutions on protein functions were determined. The mtSNP 8584 G > A (ATP6: A20T) was detected in 14.28% of the diabetic patients and none in the control groups. The mitochondrial ND3 variant 10398A > G was found to be significantly associated with the risk of T2D (OR = 9.489, 95% CI = 1.161-77.54, P value = 0.036). A novel Frame-shift substitution ND5: 81_81ins A at position 12,417 was observed in 53.57% of diabetic individuals. Majority of the variants lie in tRNA-Phe in the non-protein coding region of mtDNA for both diabetic cases and common cases. We concluded that mutations in the coding (synonymous or non-synonymous) and noncoding regions of the mitochondria might have contribution towards the development of T2D. Our study is the first to report the distinct mitochondrial variants which may be attributed to the susceptibility as well as development of type 2 diabetes in an ethnic tribe from northeast India.
Collapse
Affiliation(s)
- Freda Lalrohlui
- Department of Biotechnology, Mizoram University, Aizawl 796004, Mizoram, India
| | | | - Vanlal Hruaii
- Department of Medicine, Zoram Medical College, Aizawl 796005, Mizoram, India
| | | |
Collapse
|
382
|
Chen C, Huang J, Shen J, Bai Q. Quercetin improves endothelial insulin sensitivity in obese mice by inhibiting Drp1 phosphorylation at serine 616 and mitochondrial fragmentation. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1250-1257. [PMID: 31781748 DOI: 10.1093/abbs/gmz127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 01/20/2023] Open
Abstract
Studies have shown that endothelial insulin resistance induced by oxidative stress contributes to vascular dysfunction in metabolic disorders. Quercetin, a natural antioxidant, has been recently shown to exert protective effects on endothelial function. However, the effects of quercetin on endothelial insulin resistance and its underlying mechanism are unclear. Here, we found that chronic oral treatment of obese mice with quercetin increased vascular endothelial insulin sensitivity, accompanied by alleviated mitochondrial fragmentation as revealed by confocal imaging. In addition, western blot analysis showed that quercetin treatment suppressed the levels of dynamin-related protein 1 (Drp1) and phosphorylation at serine 616 in endothelial cells of obese mice. Mechanistically, quercetin specifically suppressed Drp1 phosphorylation at serine 616, whereas it showed little effects on the Drp1 level and its phosphorylation at serine 637 in cultured endothelial cells under oxidative stress. Furthermore, our results also showed that quercetin suppressed Drp1 phosphorylation at serine 616 by inhibiting PKCδ as revealed by western blot analysis. Knockdown of PKCδ with siRNA alleviated the protective effects of quercetin on endothelial-mitochondrial dynamics and insulin sensitivity. These results suggest that chronic oral treatment with quercetin exerts endothelial protective effects through inhibition of PKCδ and the resultant mitochondrial fragmentation.
Collapse
Affiliation(s)
- Cuirong Chen
- Department of Neurology, Renmin Hospital of Pudong New District, Shanghai 201200, China
| | - Jing Huang
- The Central Hospital of Xuhui District, Shanghai 201231, China
| | - Jian Shen
- Department of Neurology, Renmin Hospital of Pudong New District, Shanghai 201200, China
| | - Qingke Bai
- Department of Neurology, Renmin Hospital of Pudong New District, Shanghai 201200, China
| |
Collapse
|
383
|
Zhou H, Zhu P, Wang J, Toan S, Ren J. DNA-PKcs promotes alcohol-related liver disease by activating Drp1-related mitochondrial fission and repressing FUNDC1-required mitophagy. Signal Transduct Target Ther 2019; 4:56. [PMID: 31839999 PMCID: PMC6895206 DOI: 10.1038/s41392-019-0094-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/19/2019] [Accepted: 11/03/2019] [Indexed: 12/13/2022] Open
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a novel housekeeper of hepatic mitochondrial homeostasis outside the DNA repair process. In this study, DNA-PKcs was upregulated in the livers of mice that were exposed to alcohol; the expression of DNA-PKcs positively correlated with hepatic steatosis, fibrosis, apoptosis, and mitochondrial damage. Functional studies revealed that liver-specific DNA-PKcs knockout (DNA-PKcs LKO ) mice were protected from chronic ethanol-induced liver injury and mitochondrial damage. Mechanistic investigations established that DNA-PKcs promoted p53 activation, which elevated dynamin-related protein 1 (Drp1)-related mitochondrial fission but repressed FUN14 domain containing 1 (FUNDC1)-required mitophagy. Excessive fission and defective mitophagy triggered mtDNA damage, mitochondrial respiratory inhibition, mROS overproduction, cardiolipin oxidation, redox imbalance, calcium overload, and hepatic mitochondrial apoptosis. In contrast, the deletion of DNA-PKcs rescued these phenotypic alterations, which alleviated the susceptibility of hepatocytes to alcohol-induced cytotoxicity. Additionally, we also showed that orphan nuclear receptor subfamily 4 group A member 1 (NR4A1) was the upstream signal for DNA-PKcs activation and that the genetic ablation of NR4A1 ameliorated the progression of alcohol-related liver disease (ARLD); these results were similar to those obtained in DNA-PKcs knockout mice. Collectively, our results identified the NR4A1/DNA-PKcs/p53 axis as a novel signaling pathway responsible for ARLD pathogenesis that acts by activating Drp1-related mitochondrial fission and restricting FUNDC1-required mitophagy. The findings have potential implications for new approaches for ARLD therapy.
Collapse
Affiliation(s)
- Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, 100853 Beijing, China
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA
| | - Pingjun Zhu
- Chinese PLA General Hospital, Medical School of Chinese PLA, 100853 Beijing, China
| | - Jin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, 100853 Beijing, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN 55812 USA
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA
| |
Collapse
|
384
|
Ren L, Han F, Xuan L, Lv Y, Gong L, Yan Y, Wan Z, Guo L, Liu H, Xu B, Sun Y, Yang S, Liu L. Clusterin ameliorates endothelial dysfunction in diabetes by suppressing mitochondrial fragmentation. Free Radic Biol Med 2019; 145:357-373. [PMID: 31614179 DOI: 10.1016/j.freeradbiomed.2019.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
Abstract
Clusterin (CLU) is a stress-responding protein associated with cytoprotection in a broad range of pathological processes. However, clusterin's function in diabetes-induced endothelial dysfunction has not been defined. Herein, using two diabetes models, we investigated the role of clusterin in endothelial dysfunction triggered by diabetes and the molecular mechanisms involved. The results revealed that clusterin overexpression inhibited ICAM-1/VCAM-1 expression in aortas and improved endothelium-dependent vasodilatation in db/db diabetic mice and streptozotocin (STZ)-induced diabetes models. Consistently, in vitro, adenoviral clusterin overexpression reduced the expression of a range of pro-inflammatory cytokines and suppressed monocyte adhesion to endothelial cells subjected to high glucose and high palmitate. Further study indicated that clusterin overexpression mitigated mitochondrial excessive fission and reduced mitochondrial ROS production. Conversely, silencing clusterin aggravated mitochondrial fission and endothelial inflammatory activation in high glucose-exposed endothelial cells. Accumulating evidence indicates that impaired mitochondrial dynamics plays a considerable role in promoting endothelial dysfunction in diabetic subjects. Therefore, treatments targeting mitochondrial undue fission may be promising measures to prevent vascular complications of diabetes. Furthermore, AMP-activated protein kinase (AMPK) activation contributed to the modulation of mitochondrial dynamics executed by clusterin. Mechanistically, clusterin promoted the phosphorylation of AMPKα and its downstream target acetyl-CoA carboxylase (ACC), while the inhibition of AMPKα negated the improvement in mitochondrial dynamics provided by clusterin overexpression. Over all, these findings suggest that clusterin exerts beneficial effects in endothelial cells under diabetic conditions via inhibiting mitochondrial fragmentation mediated by AMPK.
Collapse
Affiliation(s)
- Lulu Ren
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Feifei Han
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lingling Xuan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yali Lv
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lili Gong
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yan Yan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zirui Wan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lifang Guo
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - He Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Benshan Xu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yuan Sun
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Song Yang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lihong Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
385
|
Yang X, Pan W, Xu G, Chen L. Mitophagy: A crucial modulator in the pathogenesis of chronic diseases. Clin Chim Acta 2019; 502:245-254. [PMID: 31730816 DOI: 10.1016/j.cca.2019.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Mitophagy is an autophagic process through which damaged or dysfunctional mitochondria are specifically degraded to maintain cellular homeostasis. It is highly regulated by various signaling pathways such as the PTEN-induced putative kinase 1 (PINK1)/Parkin and NIP3-like protein X (NIX)/BNIP3 pathways. Additionally, it plays a crucial role in inducing some pathological processes. Notably, some evidence suggesting the association of mitophagy with the occurrence of chronic diseases such as Parkinson's disease (PD), cancer, diabetes, atherosclerosis (AS), and myocardial ischemia reperfusion (MIR) injury is available. Particularly, it has been reported that mitophagy could hinder the development of PD by activating the PINK1/Parkin pathway and acting as a defense mechanism against the induction of diabetes. Conversely, the induction of mitophagy plays dual roles in driving the process of cancer, AS, and MIR injury. In this review, we have explained the role and regulatory mechanisms through which mitophagy plays a role in these chronic pathologies. Importantly, the pharmacological targeting of mitophagy might prove to be a potential alternative for the treatment of these chronic diseases.
Collapse
Affiliation(s)
- Xiao Yang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China, Hengyang 421001, China
| | - Weinan Pan
- Hunan Food and Drug Vocational College, No.345 Bachelor's Road, Yue Lu Science and Technology Industrial Park, Changsha City, Hunan Province, China
| | - Gaosheng Xu
- Department of Breast Surgery, Yueyang Maternal and Child Health-Care Hospital, Yueyang 414000, Hunan Province, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
386
|
Evolutionary genomics analysis of human nucleus-encoded mitochondrial genes: implications for the roles of energy production and metabolic pathways in the pathogenesis and pathophysiology of demyelinating diseases. Neurosci Lett 2019; 715:134600. [PMID: 31726178 DOI: 10.1016/j.neulet.2019.134600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/19/2019] [Accepted: 10/28/2019] [Indexed: 02/02/2023]
Abstract
The myelin sheath is a plasma membrane extension that lines nerve fibers to protect, support and insulate neurons. The myelination of axons in vertebrates enables fast, saltatory impulse propagation, and this process relies on organelles, especially on mitochondria to supply energy. Approximately 99% of mitochondrial proteins are encoded in the nucleus. Since mitochondria play a central role in the energy production and metabolic pathways, which are essential for myelinogenesis, studying these nucleus-encoded genes (nMGs) may provide new insights into the roles of energy metabolism in demyelinating diseases. In this work, a multiomics-based approach was employed to 1) construct a 1,740 human nMG subset with mitochondrial localization evidence obtained from the Integrated Mitochondrial Protein Index (IMPI) and MitoCarta databases, 2) conduct an evolutionary genomics analysis across mouse, rat, monkey, chimp, and human models, 3) examine dysmyelination phenotype-related genes (nMG subset genes with oligodendrocyte- and myelin-related phenotypes, OMP-nMGs) in MGI mouse lines and human patients, 4) determine the expression discrepancy of OMP-nMGs in brain tissues of cuprizone-treated mice, multiple sclerosis patients, and normal controls, and 5) conduct literature data mining to explore OMP-nMG-associated disease impacts. By contrasting OMP-nMGs with other genes, OMP-nMGs were found to be more ubiquitously expressed (59.1% vs. 16.1%), disease-associated (67.3% vs. 20.2%), and evolutionarily conserved within the human populations. Our multiomics-based analysis identified 110 OMP-nMGs implicated in energy production and lipid and glycan biosynthesis in the pathogenesis and pathophysiology of demyelinating disorders. Future targeted characterization of OMP-nMGs in abnormal myelination conditions may allow the discovery of novel nMG mediated mechanisms underlying myelinogenesis and related diseases.
Collapse
|
387
|
Astaxanthin: A Potential Mitochondrial-Targeted Antioxidant Treatment in Diseases and with Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3849692. [PMID: 31814873 PMCID: PMC6878783 DOI: 10.1155/2019/3849692] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/30/2019] [Indexed: 12/23/2022]
Abstract
Oxidative stress is characterized by an imbalance between prooxidant and antioxidant species, leading to macromolecular damage and disruption of redox signaling and cellular control. It is a hallmark of various diseases including metabolic syndrome, chronic fatigue syndrome, neurodegenerative, cardiovascular, inflammatory, and age-related diseases. Several mitochondrial defects have been considered to contribute to the development of oxidative stress and known as the major mediators of the aging process and subsequent age-associated diseases. Thus, mitochondrial-targeted antioxidants should prevent or slow down these processes and prolong longevity. This is the reason why antioxidant treatments are extensively studied and newer and newer compounds with such an effect appear. Astaxanthin, a xanthophyll carotenoid, is the most abundant carotenoid in marine organisms and is one of the most powerful natural compounds with remarkable antioxidant activity. Here, we summarize its antioxidant targets, effects, and benefits in diseases and with aging.
Collapse
|
388
|
Soares CD, Carlos R, Mota MVB, de Carvalho MGF, de Lima Morais TM, de Almeida OP, Altemani A. Bilateral multiple oncocytic cysts of the parotid gland in type 2 diabetes patients. Histopathology 2019; 76:613-624. [PMID: 31677302 DOI: 10.1111/his.14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/31/2019] [Indexed: 11/27/2022]
Abstract
AIMS The hallmarks of type 2 diabetes (T2D) are hyperglycaemia and insulin resistance. These factors, at the cellular level, are associated with mitochondrial dysfunction and increased glucose uptake. Such events are poorly explored in the context of the salivary glands. In this study, we present a series of eight cases of a distinct salivary gland lesion characterised by multiple oncocytic cysts, and we provide new pathological insights regarding its pathogenesis. METHODS AND RESULTS Seven patients (87.5%) had confirmed T2D, and obesity was identified in five (62.5%) patients. Clinically, the patients showed bilateral parotid gland swelling with recurrent episodes of pain and enlargement. Imaging examination revealed multiple cystic lesions in both parotid glands. Microscopically, the parotid glands showed multiple cysts of different sizes, lined by oncocytic epithelial cells. Intraluminally, strongly eosinophilic glass-like crystalloid material was observed. Immunohistochemical studies were performed, and the most notable finding was glucose transporter 1 (GLUT1) overexpression in the oncocytic cysts which is not observed in any other oncocytic lesion of patients without T2D. In addition, high expressions of mitochondrial antigen, fission 1 protein and mitofusin-2 were observed in the oncocytic epithelium of the cysts. Furthermore, most of the oncocytic cysts showed a pattern of cytokeratin expression consistent with striated ducts. CONCLUSIONS These results strongly suggest that T2D is associated with alterations in GLUT1 expression in the cells of striated ducts with mitochondrial dysfunction, causing a hyperplastic process characterised by multiple oncocytic cysts. For this lesion, the designation of 'diabetes-associated-bilateral multiple oncocytic cysts of the parotid gland' is proposed.
Collapse
Affiliation(s)
- Ciro D Soares
- Oral Pathology Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Roman Carlos
- Pathology Division, Centro Clínico de Cabeza y Cuello/Hospital Herrera Llerandi, Guatemala City, Guatemala
| | - Marcelo V B Mota
- Pathology Department, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Maria G F de Carvalho
- Oral Pathology Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Thayná M de Lima Morais
- Oral Pathology Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Oslei P de Almeida
- Oral Pathology Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Albina Altemani
- Pathology Department, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
389
|
Pirzeh L, Babapour V, Badalzadeh R, Panahi N. Pretreatment with vildagliptin boosts ischemic-postconditioning effects on cardioprotection and expression profile of genes regulating autophagy and mitochondrial fission/fusion in diabetic heart with reperfusion injury. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2019; 392:1371-1382. [PMID: 31230090 DOI: 10.1007/s00210-019-01660-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/26/2019] [Indexed: 12/16/2022]
Abstract
The burden of myocardial ischemia/reperfusion (IR) injury is 2-3-folds higher in diabetic patients, so protecting diabetic hearts is clinically important. Here, we investigated the effect of combinational therapy with vildagliptin and ischemic postconditioning (IPostC) on cardioprotection and the expression of genes regulating autophagy and mitochondrial function in diabetic hearts with IR injury. Type 2 diabetes was induced through high-fat diet and streptozotocin protocol in Wistar rats. Vildagliptin was orally administered to diabetic rats 5 weeks before IR injury. Myocardial-IR injury was modeled by ligation of left the coronary artery for 30 min followed by 60-min reperfusion, on a Langendorff-perfusion system. IPostC was applied at early reperfusion as 6 alternative cycles of 10-s reperfusion/ischemia. Creatine-kinase levels were measured spectrometrically, and infarct size was evaluated by TTC staining method. Left ventricles were harvested for assessing the expression levels of autophagy and mitochondrial-related genes using real-time PCR. Induction of diabetes significantly increased creatine-kinase release in comparison to healthy rats, and all treatments significantly reduced the release of enzyme toward control levels (P < 0.05). Only the combination therapy (IPostC + vildagliptin) could significantly reduce the infarct size of diabetic hearts as compared to untreated diabetic-IR group (P < 0.01). The levels of autophagy genes LC3 and p62 were significantly higher in diabetic groups than healthy ones. Induction of IR injury in diabetic hearts enhanced mitochondrial fission (drp-1) and reduced mitochondrial fusion (mfn1 and mfn2) genes. IPostC alone had no significant effect on the gene expression and vildagliptin alone could only affect LC3-II and mfn2 expressions. Nevertheless, administration of combination therapy significantly reduced the expression of both autophagy genes and increased both LC3-II/I and mfn2/1 ratios as compared with diabetic-IR hearts (P < 0.01-0.05). Application of this combination therapy could overcome the diabetes-induced failure of cardioprotection by individual treatments and improve mitochondrial dynamic and autophagy flux.
Collapse
MESH Headings
- Animals
- Autophagy/drug effects
- Autophagy/genetics
- Cardiotonic Agents/pharmacology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/pathology
- Heart/drug effects
- Ischemic Postconditioning
- Male
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/pathology
- Mitochondrial Dynamics/drug effects
- Mitochondrial Dynamics/genetics
- Myocardial Reperfusion Injury/genetics
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocardium/pathology
- Rats, Wistar
- Streptozocin
- Transcriptome/drug effects
- Vildagliptin/pharmacology
Collapse
Affiliation(s)
- Lale Pirzeh
- Department Basic Sciences, Faculty of Veterinary Medicine, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahab Babapour
- Department Basic Sciences, Faculty of Veterinary Medicine, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Negar Panahi
- Department Basic Sciences, Faculty of Veterinary Medicine, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
390
|
Su Z, Nie Y, Huang X, Zhu Y, Feng B, Tang L, Zheng G. Mitophagy in Hepatic Insulin Resistance: Therapeutic Potential and Concerns. Front Pharmacol 2019; 10:1193. [PMID: 31649547 PMCID: PMC6795753 DOI: 10.3389/fphar.2019.01193] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/17/2019] [Indexed: 12/23/2022] Open
Abstract
Metabolic syndrome, characterized by central obesity, hypertension, and hyperlipidemia, increases the morbidity and mortality of cardiovascular disease, type 2 diabetes, nonalcoholic fatty liver disease, and other metabolic diseases. It is well known that insulin resistance, especially hepatic insulin resistance, is a risk factor for metabolic syndrome. Current research has shown that hepatic fatty acid accumulation can cause hepatic insulin resistance through increased gluconeogenesis, lipogenesis, chronic inflammation, oxidative stress and endoplasmic reticulum stress, and impaired insulin signal pathway. Mitochondria are the major sites of fatty acid β-oxidation, which is the major degradation mechanism of fatty acids. Mitochondrial dysfunction has been shown to be involved in the development of hepatic fatty acid–induced hepatic insulin resistance. Mitochondrial autophagy (mitophagy), a catabolic process, selectively degrades damaged mitochondria to reverse mitochondrial dysfunction and preserve mitochondrial dynamics and function. Therefore, mitophagy can promote mitochondrial fatty acid oxidation to inhibit hepatic fatty acid accumulation and improve hepatic insulin resistance. Here, we review advances in our understanding of the relationship between mitophagy and hepatic insulin resistance. Additionally, we also highlight the potential value of mitophagy in the treatment of hepatic insulin resistance and metabolic syndrome.
Collapse
Affiliation(s)
- Zuqing Su
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yutong Nie
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiufang Huang
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Zhu
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bing Feng
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lipeng Tang
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
391
|
Mo Y, Deng S, Zhang L, Huang Y, Li W, Peng Q, Liu Z, Ai Y. SS-31 reduces inflammation and oxidative stress through the inhibition of Fis1 expression in lipopolysaccharide-stimulated microglia. Biochem Biophys Res Commun 2019; 520:171-178. [PMID: 31582222 DOI: 10.1016/j.bbrc.2019.09.077] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022]
Abstract
SS-31 is a kind of mitochondrion-targeted peptide. Recent studies indicated significant neuroprotective effects of SS-31. In this study, we investigated that SS-31 protected the murine cultured microglial cells (BV-2) against lipopolysaccharide (LPS)-induced inflammation and oxidative stress through stabilizing mitochondrial morphology. The morphological study showed that SS-31 preserved LPS-induced mitochondrial ultrastructure by reducing the fission protein 1 (Fis1) expression. Flow cytometry and Western blot verified that SS-31 defended the BV-2 cells against LPS-stimulated inflammation and oxidative stress via suppressing Fis1. To sum up, our study represents that SS-31 preserves BV-2 cells from LPS-stimulated inflammation and oxidative stress by down-regulating the Fis1 expression.
Collapse
Affiliation(s)
- Yunan Mo
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Songyun Deng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Yan Huang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Wenchao Li
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Qianyi Peng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Zhiyong Liu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Yuhang Ai
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
392
|
Mitochondria Lysine Acetylation and Phenotypic Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:59-70. [PMID: 31452135 DOI: 10.1007/978-981-13-8367-0_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondria have a central role in cellular metabolism and reversible post-translational modifications regulate activity of mitochondrial proteins. Thanks to advances in proteomics, lysine acetylation has arisen as an important post-translational modification in the mitochondrion. During acetylation an acetyl group is covalently attached to the epsilon amino group in the side chain of lysine residues using acetyl-CoA as the substrate donor. Therefore the positive charge is neutralized, and this can affect the function of proteins thereby regulating enzyme activity, protein interactions, and protein stability. The major deacetylase in mitochondria is SIRT3 whose activity regulates many mitochondrial enzymes. The method of choice for the analysis of acetylated proteins foresees the combination of mass spectrometry-based proteomics with affinity enrichment techniques. Beyond the identification of lysine-acetylated proteins, many studies are moving towards the characterization of acetylated patterns in different diseases. Indeed, modifications in lysine acetylation status can directly alter mitochondrial function and, therefore, be linked to human diseases such as metabolic diseases, cancer, myocardial injury and neurodegenerative diseases. Despite the progress in the characterization of different lysine acetylation sites, additional studies are needed to differentiate the specific changes with a significant biological relevance.
Collapse
|
393
|
Catalpol in Diabetes and its Complications: A Review of Pharmacology, Pharmacokinetics, and Safety. Molecules 2019; 24:molecules24183302. [PMID: 31514313 PMCID: PMC6767014 DOI: 10.3390/molecules24183302] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
This review aimed to provide a general view of catalpol in protection against diabetes and diabetic complications, as well as its pharmacokinetics and safety concerns. The following databases were consulted with the retrieval of more than 100 publications through June 2019: PubMed, Chinese National Knowledge Infrastructure, WanFang Data, and web of science. Catalpol exerts an anti-diabetic effect in different animal models with an oral dosage ranging from 2.5 to 200 mg/kg in rats and 10 to 200 mg/kg in mice. Besides, catalpol may prevent the development of diabetic complications in kidney, heart, central nervous system, and bone. The underlying mechanism may be associated with an inhibition of inflammation, oxidative stress, and apoptosis through modulation of various cellular signaling, such as AMPK/PI3K/Akt, PPAR/ACC, JNK/NF-κB, and AGE/RAGE/NOX4 signaling pathways, as well as PKCγ and Cav-1 expression. The pharmacokinetic profile reveals that catalpol could pass the blood-brain barrier and has a potential to be orally administrated. Taken together, catalpol is a well-tolerated natural compound with promising pharmacological actions in protection against diabetes and diabetic complications via multi-targets, offering a novel scaffold for the development of anti-diabetic drug candidate. Further prospective and well-designed clinical trials will shed light on the potential of clinical usage of catalpol.
Collapse
|
394
|
Merdzo I, Rutkai I, Sure VNLR, Katakam PVG, Busija DW. Effects of prolonged type 2 diabetes on mitochondrial function in cerebral blood vessels. Am J Physiol Heart Circ Physiol 2019; 317:H1086-H1092. [PMID: 31490734 DOI: 10.1152/ajpheart.00341.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One of the major characteristics of hyperglycemic states such as type 2 diabetes is increased reactive oxygen species (ROS) generation. Since mitochondria are a major source of ROS, it is vital to understand the involvement of these organelles in the pathogenesis of ROS-mediated conditions. Therefore, we investigated mitochondrial function and ROS production in cerebral blood vessels of 21-wk-old Zucker diabetic fatty obese rats and their lean controls. We have previously shown that in the early stages of insulin resistance, and short periods of type 2 diabetes mellitus, only mild differences exist in mitochondrial function. In the present study, we examined mitochondrial respiration, mitochondrial protein expression, and ROS production in large-surface cerebral arteries. We used 21-wk-old animals exposed to peak glucose levels for 7 wk and compared them with our previous studies on younger diabetic animals. We found that the same segments of mitochondrial respiration (basal respiration and proton leak) were diminished in diabetic groups as they were in younger diabetic animals. Levels of rattin, a rat humanin analog, tended to decrease in the diabetic group but did not reach statistical significance (P = 0.08). Other mitochondrial proteins were unaffected, which might indicate the existence of compensatory mechanisms with extension of this relatively mild form of diabetes. Superoxide levels were significantly higher in large cerebral vessels of diabetic animals compared with the control group. In conclusion, prolonged dietary diabetes leads to stabilization, rather than deterioration, of metabolic status in the cerebral circulation, despite continued overproduction of ROS.NEW & NOTEWORTHY We have characterized for the first time the dynamics of mitochondrial function during the progression of type 2 diabetes mellitus with regard to mitochondrial respiration, protein expression, and reactive oxygen species production. In addition, this is the first measurement of rattin levels in the cerebral vasculature, which could potentially lead to novel treatment options.
Collapse
Affiliation(s)
- Ivan Merdzo
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana.,Department of Pharmacology, University of Mostar, School of Medicine, Mostar, Bosnia and Herzegovina
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Venkata N L R Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
395
|
Helfenberger KE, Castillo AF, Mele PG, Fiore A, Herrera L, Finocchietto P, Podestá EJ, Poderoso C. Angiotensin II stimulation promotes mitochondrial fusion as a novel mechanism involved in protein kinase compartmentalization and cholesterol transport in human adrenocortical cells. J Steroid Biochem Mol Biol 2019; 192:105413. [PMID: 31202858 DOI: 10.1016/j.jsbmb.2019.105413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 05/10/2019] [Accepted: 06/13/2019] [Indexed: 01/22/2023]
Abstract
In steroid-producing cells, cholesterol transport from the outer to the inner mitochondrial membrane is the first and rate-limiting step for the synthesis of all steroid hormones. Cholesterol can be transported into mitochondria by specific mitochondrial protein carriers like the steroidogenic acute regulatory protein (StAR). StAR is phosphorylated by mitochondrial ERK in a cAMP-dependent transduction pathway to achieve maximal steroid production. Mitochondria are highly dynamic organelles that undergo replication, mitophagy and morphology changes, all processes allowed by mitochondrial fusion and fission, known as mitochondrial dynamics. Mitofusin (Mfn) 1 and 2 are GTPases involved in the regulation of fusion, while dynamin-related protein 1 (Drp1) is the major regulator of mitochondrial fission. Despite the role of mitochondrial dynamics in neurological and endocrine disorders, little is known about fusion/fission in steroidogenic tissues. In this context, the present work aimed to study the role of angiotensin II (Ang II) in protein subcellular compartmentalization, mitochondrial dynamics and the involvement of this process in the regulation of aldosterone synthesis. We demonstrate here that Ang II stimulation promoted the recruitment and activation of PKCε, ERK and its upstream kinase MEK to the mitochondria, all of them essential for steroid synthesis. Moreover, Ang II prompted a shift from punctate to tubular/elongated (fusion) mitochondrial shape, in line with the observation of hormone-dependent upregulation of Mfn2 levels. Concomitantly, mitochondrial Drp1 was diminished, driving mitochondria toward fusion. Moreover, Mfn2 expression is required for StAR, ERK and MEK mitochondrial localization and ultimately for aldosterone synthesis. Collectively, this study provides fresh insights into the importance of hormonal regulation in mitochondrial dynamics as a novel mechanism involved in aldosterone production.
Collapse
Affiliation(s)
- Katia E Helfenberger
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Ana F Castillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Pablo G Mele
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Ana Fiore
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Lucía Herrera
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Paola Finocchietto
- Universidad de Buenos Aires, Facultad de Medicina, Hospital de Clínicas "José de San Martín", Laboratorio del Metabolismo del Oxígeno, Av. Córdoba 2351, C1121ABJ, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Ciudad de Buenos Aires, Argentina
| | - Ernesto J Podestá
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Cecilia Poderoso
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
396
|
Mitochondrial Structural Changes in the Pathogenesis of Diabetic Retinopathy. J Clin Med 2019; 8:jcm8091363. [PMID: 31480638 PMCID: PMC6780143 DOI: 10.3390/jcm8091363] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
At the core of proper mitochondrial functionality is the maintenance of its structure and morphology. Physical changes in mitochondrial structure alter metabolic pathways inside mitochondria, affect mitochondrial turnover, disturb mitochondrial dynamics, and promote mitochondrial fragmentation, ultimately triggering apoptosis. In high glucose condition, increased mitochondrial fragmentation contributes to apoptotic death in retinal vascular and Müller cells. Although alterations in mitochondrial morphology have been detected in several diabetic tissues, it remains to be established in the vascular cells of the diabetic retina. From a mechanistic standpoint, our current work supports the notion that increased expression of fission genes and decreased expression of fusion genes are involved in promoting excessive mitochondrial fragmentation. While mechanistic insights are only beginning to reveal how high glucose alters mitochondrial morphology, the consequences are clearly seen as release of cytochrome c from fragmented mitochondria triggers apoptosis. Current findings raise the prospect of targeting excessive mitochondrial fragmentation as a potential therapeutic strategy for treatment of diabetic retinopathy. While biochemical and epigenetic changes have been reported to be associated with mitochondrial dysfunction, this review focuses on alterations in mitochondrial morphology, and their impact on mitochondrial function and pathogenesis of diabetic retinopathy.
Collapse
|
397
|
Abstract
PURPOSE OF REVIEW This review summarizes the alterations in the β-cell observed in type 2 diabetes (T2D), focusing on changes in β-cell identity and mass and changes associated with metabolism and intracellular signaling. RECENT FINDINGS In the setting of T2D, β-cells undergo changes in gene expression, reverting to a more immature state and in some cases transdifferentiating into other islet cell types. Alleviation of metabolic stress, ER stress, and maladaptive prostaglandin signaling could improve β-cell function and survival. The β-cell defects leading to T2D likely differ in different individuals and include variations in β-cell mass, development, β-cell expansion, responses to ER and oxidative stress, insulin production and secretion, and intracellular signaling pathways. The recent recognition that some β-cells undergo dedifferentiation without dying in T2D suggests strategies to revive these cells and rejuvenate their functionality.
Collapse
Affiliation(s)
- Ashley A Christensen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Ave, MRB IV 7465, Nashville, TN, 37232, USA.
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, 37232, USA.
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
398
|
Ma Y, Chen Z, Tao Y, Zhu J, Yang H, Liang W, Ding G. Increased mitochondrial fission of glomerular podocytes in diabetic nephropathy. Endocr Connect 2019; 8:1206-1212. [PMID: 31349216 PMCID: PMC6709540 DOI: 10.1530/ec-19-0234] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
AIMS Previous studies showed that abnormal mitochondrial structure and function were involved in the pathological process of diabetic nephropathy (DN). The dynamic mitochondrial processes, including fusion and fission, maintain the mass and quantity of mitochondria. Podocyte injury is a critical factor in the development and progression of DN. The present study evaluated the mitochondrial fission of podocytes in patients with DN. METHODS We recruited 31 patients with biopsy-confirmed DN. A quantitative analysis of the mitochondrial morphology was conducted with electron microscopy using a computer-assisted morphometric analysis application to calculate the aspect ratio values. Immunofluorescence assays were used to evaluate protein colocalization in the glomeruli of patients. RESULTS The urine protein level was significantly increased in DN patients compared to non-DN patients (P < 0.001), and the mitochondria in the podocytes from DN patients were more fragmentated than those from patients without DN. The mitochondrial aspect ratio values were negatively correlated with the proteinuria levels (r = -0.574, P = 0.01), and multiple regression analysis verified that the mitochondrial aspect ratio was significantly and independently associated with the urine protein level (β = -0.519, P = 0.007). In addition, Drp1, a mitochondrial fission factor, preferentially combines with AKAP1, which is located in the mitochondrial membrane. CONCLUSIONS In the podocytes of DN patients, mitochondrial fragmentation was increased, and mitochondrial aspect ratio values were correlated with the proteinuria levels. The AKAP1-Drp1 pathway may contribute to mitochondrial fission in the pathogenesis of DN.
Collapse
Affiliation(s)
- Yiqiong Ma
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yu Tao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Jili Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Hongxia Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Correspondence should be addressed to G Ding:
| |
Collapse
|
399
|
Marín-Royo G, Rodríguez C, Le Pape A, Jurado-López R, Luaces M, Antequera A, Martínez-González J, Souza-Neto FV, Nieto ML, Martínez-Martínez E, Cachofeiro V. The role of mitochondrial oxidative stress in the metabolic alterations in diet-induced obesity in rats. FASEB J 2019; 33:12060-12072. [PMID: 31370681 DOI: 10.1096/fj.201900347rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The impact of the mitochondria-targeted antioxidant MitoQ was evaluated in the metabolic alterations and the adipose tissue remodeling associated with obesity. Male Wistar rats were fed either a high-fat diet (HFD; 35% fat) or a standard diet (3.5% fat) for 7 wk and treated with MitoQ (200 µM). A proteomic analysis of visceral adipose tissue from patients with obesity and patients without obesity was performed. MitoQ partially prevented the increase in body weight, adiposity, homeostasis model assessment index, and adipose tissue remodeling in HFD rats. It also ameliorated protein level changes of factors involved in insulin signaling observed in adipose tissue of obese rats: reductions in adiponectin and glucose transporter 4 (GLUT 4) and increases in dipeptidylpeptidase 4, suppressor of cytokine signaling 3 (SOCS3), and insulin receptor substrate 1 phosphorylation. MitoQ prevented down-regulation of adiponectin and GLUT 4 and increases in SOCS3 levels in a TNF-α-induced insulin-resistant 3T3-L1 adipocyte model. MitoQ also ameliorated alterations in mitochondrial proteins observed in obese rats: increases in cyclophylin F and carnitine palmitoyl transferase 1A and reductions in mitofusin1, peroxiredoxin 4, and fumarate hydratase. The proteomic analysis of the visceral adipose tissue from patients with obesity show alterations in mitochondrial proteins similar to those observed in obese rats. Therefore, the data show the beneficial effect of MitoQ in the metabolic dysfunction induced by obesity.-Marín-Royo, G., Rodríguez, C., Le Pape, A., Jurado-López, R., Luaces, M., Antequera, A., Martínez-González, J., Souza-Neto, F. V., Nieto, M. L., Martínez-Martínez, E., Cachofeiro, V. The role of mitochondrial oxidative stress in the metabolic alterations in diet-induced obesity in rats.
Collapse
Affiliation(s)
- Gema Marín-Royo
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Cristina Rodríguez
- Institut de Recerca del Hospital de la Santa Creu i Sant Pau, Instituto de Investigaciones Biomédicas (IIB)-Sant Pau, Barcelona, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Aliaume Le Pape
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Raquel Jurado-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María Luaces
- Servicio de Cardiología, Instituto Cardiovascular, Hospital Clínico San Carlos, Madrid, Spain
| | - Alfonso Antequera
- Surgery Department, St. Bernard's Hospital, Gibraltar, United Kingdom
| | - José Martínez-González
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Biomédicas de Barcelona (IIBB) Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Investigaciones Biomédicas (IIB)-Sant Pau, Barcelona, Spain
| | - Francisco V Souza-Neto
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María Luisa Nieto
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Valladolid, Valladolid, Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
400
|
Kostyniuk DJ, Marandel L, Jubouri M, Dias K, de Souza RF, Zhang D, Martyniuk CJ, Panserat S, Mennigen JA. Profiling the rainbow trout hepatic miRNAome under diet-induced hyperglycemia. Physiol Genomics 2019; 51:411-431. [PMID: 31282806 DOI: 10.1152/physiolgenomics.00032.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Carnivorous rainbow trout exhibit prolonged postprandial hyperglycemia when fed a diet exceeding 20% carbohydrate content. This poor capacity to utilize carbohydrates has led to rainbow trout being classified as "glucose-intolerant" (GI). The metabolic phenotype has spurred research to identify the underlying cellular and molecular mechanisms of glucose intolerance, largely because carbohydrate-rich diets provide economic and ecological advantages over traditionally used fish meal, considered unsustainable for rainbow trout aquaculture operations. Evidence points to a contribution of hepatic intermediary carbohydrate and lipid metabolism, as well as upstream insulin signaling. Recently, microRNAs (miRNAs), small noncoding RNAs acting as negative posttranscriptional regulators affecting target mRNA stability and translation, have emerged as critical regulators of hepatic control of glucose-homeostasis in mammals, revealing that dysregulated hepatic miRNAs might play a role in organismal hyperglycemia in metabolic disease. To determine whether hepatic regulatory miRNA networks may contribute to GI in rainbow trout, we induced prolonged postprandial hyperglycemia in rainbow trout by using a carbohydrate-rich diet and profiled genome-wide hepatic miRNAs in hyperglycemic rainbow trout compared with fasted trout and trout fed a diet devoid of carbohydrates. Using small RNA next-generation sequencing and real-time RT-PCR validation, we identified differentially regulated hepatic miRNAs between these groups and used an in silico approach to predict bona fide mRNA targets and enriched pathways. Diet-induced hyperglycemia resulted in differential regulation of hepatic miRNAs compared with fasted fish. Some of the identified miRNAs, such as miRNA-27b-3p and miRNA-200a-3p, are known to be responsive to hyperglycemia in the liver of hyperglycemic glucose-tolerant fish and mammals, suggesting an evolutionary conserved regulation. Using Gene Ontology term-based enrichment analysis, we identify intermediate carbohydrate and lipid metabolism and insulin signaling as potential targets of posttranscriptional regulation by hyperglycemia-regulated miRNAs and provide correlative expression analysis of specific predicted miRNA-target pairs. This study identifies hepatic miRNAs in rainbow trout that exhibit differential postprandial expression in response to diets with different carbohydrate content and predicts posttranscriptionally regulated target mRNAs enriched for pathways involved in glucoregulation. Together, these results provide a framework for testable hypotheses of functional involvement of specific hepatic miRNAs in GI in rainbow trout.
Collapse
Affiliation(s)
| | - Lucie Marandel
- INRA, Université de Pau et Pays d'Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, E2S UPPA, Saint Pée-sur-Nivelle, France
| | - Mais Jubouri
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Karine Dias
- INRA, Université de Pau et Pays d'Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, E2S UPPA, Saint Pée-sur-Nivelle, France
| | - Robson F de Souza
- Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dapeng Zhang
- Department of Biology, Saint Louis University, Saint Louis, Missouri
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Stéphane Panserat
- INRA, Université de Pau et Pays d'Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, E2S UPPA, Saint Pée-sur-Nivelle, France
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|