351
|
Wearable strain sensor for real-time sweat volume monitoring. iScience 2020; 24:102028. [PMID: 33490926 PMCID: PMC7809499 DOI: 10.1016/j.isci.2020.102028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/13/2020] [Accepted: 12/29/2020] [Indexed: 01/05/2023] Open
Abstract
Reliably monitoring sweat volume has attracted much attention due to its important role in the assessment of physiological health conditions and the prevention of dehydration. Here, we present the first example of wearable strain sensor for real-time sweat volume monitoring. Such sweat volume monitoring sensor is simply fabricated via embedding strain sensing fabric in super-absorbent hydrogels, the hydrogels can wick sweat up off the skin surface to swell and then trigger the strain sensing fabrics response. This sensor can realize real-time detection of sweat volume (0.15-700 μL), shows excellent repeatability and stability against movement or light interference, reliability in the non-pathological range (pH: 4-9 and salinity: 0-100 mM NaCl) in addition. Such sensor combing swellable hydrogels with strain sensing fabrics provides a novel measurement method of wearable devices for sweat volume monitoring.
Collapse
|
352
|
Josa‐Culleré L, Llebaria A. In the Search for Photocages Cleavable with Visible Light: An Overview of Recent Advances and Chemical Strategies. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000253] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Laia Josa‐Culleré
- Laboratory of Medicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Amadeu Llebaria
- Laboratory of Medicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| |
Collapse
|
353
|
Lukas H, Xu C, Yu Y, Gao W. Emerging Telemedicine Tools for Remote COVID-19 Diagnosis, Monitoring, and Management. ACS NANO 2020; 14:16180-16193. [PMID: 33314910 PMCID: PMC7754783 DOI: 10.1021/acsnano.0c08494] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The management of the COVID-19 pandemic has relied on cautious contact tracing, quarantine, and sterilization protocols while we await a vaccine to be made widely available. Telemedicine or mobile health (mHealth) is well-positioned during this time to reduce potential disease spread and prevent overloading of the healthcare system through at-home COVID-19 screening, diagnosis, and monitoring. With the rise of mass-fabricated electronics for wearable and portable sensors, emerging telemedicine tools have been developed to address shortcomings in COVID-19 diagnostics, monitoring, and management. In this Perspective, we summarize current implementations of mHealth sensors for COVID-19, highlight recent technological advances, and provide an overview on how these tools may be utilized to better control the COVID-19 pandemic.
Collapse
Affiliation(s)
- Heather Lukas
- Andrew and Peggy Cherng Department
of Medical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Changhao Xu
- Andrew and Peggy Cherng Department
of Medical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - You Yu
- Andrew and Peggy Cherng Department
of Medical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department
of Medical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| |
Collapse
|
354
|
Huang W, Jiao H, Huang Q, Zhang J, Zhang M. Ultra-high drivability, high-mobility, low-voltage and high-integration intrinsically stretchable transistors. NANOSCALE 2020; 12:23546-23555. [PMID: 33074278 DOI: 10.1039/d0nr05486k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Realizing intrinsically stretchable transistors with high current drivability, high mobility, small feature size, low power and the potential for mass production is essential for advancing stretchable electronics a critical step forward. However, it is challenging to realize these requirements simultaneously due to the limitations of the existing fabrication technologies when integrating intrinsically stretchable materials into transistors. Here, we propose a removal-transfer-photolithography method (RTPM), combined with adopting poly(urea-urethane) (PUU) as a dielectric, to realize integratable intrinsically stretchable carbon nanotube thin-film transistors (IIS-CNT-TFTs). The realized IIS-CNT-TFTs achieve excellent electrical and mechanical properties simultaneously, showing high field-effect-mobility up to 221 cm2 V-1 s-1 and high current density up to 810 μA mm-1 at a low driving voltage of -1 V, which are both the highest values for intrinsically stretchable transistors today to the best of our knowledge. At the same time, the transistors can survive 2000 cycles of repeated stretching by 50%, indicating their promising applicability to stretchable circuits, displays, and wearable electronics. The achieved intrinsically stretchable thin-film transistors show higher electrical performance, higher stretching durability, and smaller feature size simultaneously compared with the state-of-the-art works, providing a novel solution to integratable intrinsically stretchable electronics. Besides, the proposed RTPM involves adopting removable sacrificial layers to protect the PDMS substrate and PUU dielectric during the photolithography and patterning steps, and finally removing the sacrificial layers to improve the electrical and mechanical performance. This method is generally applicable to further enhance the performance of the existing transistors and devices with a similar structure in soft electronics.
Collapse
Affiliation(s)
- Weihong Huang
- School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China.
| | | | | | | | | |
Collapse
|
355
|
Baker LB, Model JB, Barnes KA, Anderson ML, Lee SP, Lee KA, Brown SD, Reimel AJ, Roberts TJ, Nuccio RP, Bonsignore JL, Ungaro CT, Carter JM, Li W, Seib MS, Reeder JT, Aranyosi AJ, Rogers JA, Ghaffari R. Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. SCIENCE ADVANCES 2020; 6:6/50/eabe3929. [PMID: 33310859 PMCID: PMC7732194 DOI: 10.1126/sciadv.abe3929] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/22/2020] [Indexed: 05/18/2023]
Abstract
Advanced capabilities in noninvasive, in situ monitoring of sweating rate and sweat electrolyte losses could enable real-time personalized fluid-electrolyte intake recommendations. Established sweat analysis techniques using absorbent patches require post-collection harvesting and benchtop analysis of sweat and are thus impractical for ambulatory use. Here, we introduce a skin-interfaced wearable microfluidic device and smartphone image processing platform that enable analysis of regional sweating rate and sweat chloride concentration ([Cl-]). Systematic studies (n = 312 athletes) establish significant correlations for regional sweating rate and sweat [Cl-] in a controlled environment and during competitive sports under varying environmental conditions. The regional sweating rate and sweat [Cl-] results serve as inputs to algorithms implemented on a smartphone software application that predicts whole-body sweating rate and sweat [Cl-]. This low-cost wearable sensing approach could improve the accessibility of physiological insights available to sports scientists, practitioners, and athletes to inform hydration strategies in real-world ambulatory settings.
Collapse
Affiliation(s)
- Lindsay B Baker
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, IL 60010, USA.
| | - Jeffrey B Model
- Epicore Biosystems Inc, Cambridge, MA 02139, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Kelly A Barnes
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, IL 60010, USA
| | - Melissa L Anderson
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Bradenton, FL 34210, USA
| | - Stephen P Lee
- Epicore Biosystems Inc, Cambridge, MA 02139, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Khalil A Lee
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Bradenton, FL 34210, USA
| | - Shyretha D Brown
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, IL 60010, USA
| | - Adam J Reimel
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, IL 60010, USA
| | - Timothy J Roberts
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Bradenton, FL 34210, USA
| | - Ryan P Nuccio
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, IL 60010, USA
| | - Justina L Bonsignore
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Bradenton, FL 34210, USA
| | - Corey T Ungaro
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, IL 60010, USA
| | - James M Carter
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Leicester, UK
| | - Weihua Li
- Epicore Biosystems Inc, Cambridge, MA 02139, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | | | - Jonathan T Reeder
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Knight Campus for Accelerating Scientific Impact, 6231 University of Oregon, Eugene, OR 97403, USA
| | - Alexander J Aranyosi
- Epicore Biosystems Inc, Cambridge, MA 02139, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - John A Rogers
- Epicore Biosystems Inc, Cambridge, MA 02139, USA.
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Departments of Mechanical Engineering, Electrical and Computer Engineering, and Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Roozbeh Ghaffari
- Epicore Biosystems Inc, Cambridge, MA 02139, USA.
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
356
|
Silva AF, Tavakoli M. Domiciliary Hospitalization through Wearable Biomonitoring Patches: Recent Advances, Technical Challenges, and the Relation to Covid-19. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6835. [PMID: 33260466 PMCID: PMC7729497 DOI: 10.3390/s20236835] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/10/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
This article reviews recent advances and existing challenges for the application of wearable bioelectronics for patient monitoring and domiciliary hospitalization. More specifically, we focus on technical challenges and solutions for the implementation of wearable and conformal bioelectronics for long-term patient biomonitoring and discuss their application on the Internet of medical things (IoMT). We first discuss the general architecture of IoMT systems for domiciliary hospitalization and the three layers of the system, including the sensing, communication, and application layers. In regard to the sensing layer, we focus on current trends, recent advances, and challenges in the implementation of stretchable patches. This includes fabrication strategies and solutions for energy storage and energy harvesting, such as printed batteries and supercapacitors. As a case study, we discuss the application of IoMT for domiciliary hospitalization of COVID 19 patients. This can be used as a strategy to reduce the pressure on the healthcare system, as it allows continuous patient monitoring and reduced physical presence in the hospital, and at the same time enables the collection of large data for posterior analysis. Finally, based on the previous works in the field, we recommend a conceptual IoMT design for wearable monitoring of COVID 19 patients.
Collapse
Affiliation(s)
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, 3030-290 Coimbra, Portugal;
| |
Collapse
|
357
|
Liu YL, Huang WH. Stretchable Electrochemical Sensors for Cell and Tissue Detection. Angew Chem Int Ed Engl 2020; 60:2757-2767. [PMID: 32632992 DOI: 10.1002/anie.202007754] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/04/2020] [Indexed: 12/21/2022]
Abstract
Electrochemical sensing based on conventional rigid electrodes has great restrictions for characterizing biomolecules in deformed cells or soft tissues. The recent emergence of stretchable sensors allows electrodes to conformally contact to curved surfaces and perfectly comply with the deformation of living cells and tissues. This provides a powerful strategy to monitor biomolecules from mechanically deformed cells, tissues, and organisms in real time, and opens up new opportunities to explore the mechanotransduction process. In this minireview, we first summarize the fabrication of stretchable electrodes with emphasis on the nanomaterial-enabled strategies. We then describe representative applications of stretchable sensors in the real-time monitoring of mechanically sensitive cells and tissues. Finally, we present the future possibilities and challenges of stretchable electrochemical sensing in cell, tissue, and in vivo detection.
Collapse
Affiliation(s)
- Yan-Ling Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
358
|
Liu Y, Huang W. Stretchable Electrochemical Sensors for Cell and Tissue Detection. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yan‐Ling Liu
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Wei‐Hua Huang
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| |
Collapse
|
359
|
Fang Y, Meng L, Prominski A, Schaumann E, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020; 49:7978-8035. [PMID: 32672777 PMCID: PMC7674226 DOI: 10.1039/d0cs00333f] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in bioelectronics is highly interdisciplinary, with many new developments being based on techniques from across the physical and life sciences. Advances in our understanding of the fundamental chemistry underlying the materials used in bioelectronic applications have been a crucial component of many recent discoveries. In this review, we highlight ways in which a chemistry-oriented perspective may facilitate novel and deep insights into both the fundamental scientific understanding and the design of materials, which can in turn tune the functionality and biocompatibility of bioelectronic devices. We provide an in-depth examination of several developments in the field, organized by the chemical properties of the materials. We conclude by surveying how some of the latest major topics of chemical research may be further integrated with bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Erik Schaumann
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Seebald
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
360
|
Lin PH, Chang WL, Sheu SC, Li BR. A Noninvasive Wearable Device for Real-Time Monitoring of Secretion Sweat Pressure by Digital Display. iScience 2020; 23:101658. [PMID: 33117969 PMCID: PMC7582050 DOI: 10.1016/j.isci.2020.101658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023] Open
Abstract
Sweat-based wearable devices have attracted increasing attention by providing abundant physiological information and continuous measurement through noninvasive healthcare monitoring. Sweat pressure generated via sweat glands to the skin surface associated with osmotic effects may help to elucidate such parameters as physiological conditions and psychological factors. This study introduces a wearable device for measuring secretion sweat pressure through noninvasive, continuous monitoring. Secretion pressure is detected by a microfluidic chip that shows the resistance variance from a paired electrode pattern and transfers digital signals to a smartphone for real-time display. A human study demonstrates this measurement with different exercise activities, showing the pressure ranges from 1.3 to 2.5 kPa. This device is user-friendly and applicable to exercise training and personal health care. The convenience and easy-to-wear characteristics of this device may establish a foundation for future research investigating sweat physiology and personal health care.
Collapse
Affiliation(s)
- Pei-Heng Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Wei-Lun Chang
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Sian-Chen Sheu
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Bor-Ran Li
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
361
|
Affiliation(s)
- Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
362
|
Sun X, Agate S, Salem KS, Lucia L, Pal L. Hydrogel-Based Sensor Networks: Compositions, Properties, and Applications—A Review. ACS APPLIED BIO MATERIALS 2020; 4:140-162. [DOI: 10.1021/acsabm.0c01011] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaohang Sun
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Sachin Agate
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
| | - Khandoker Samaher Salem
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
| | - Lucian Lucia
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
| | - Lokendra Pal
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
| |
Collapse
|
363
|
Ghora M, Majumdar P, Anas M, Varghese S. Enabling Control over Mechanical Conformity and Luminescence in Molecular Crystals: Interaction Engineering in Action. Chemistry 2020; 26:14488-14495. [PMID: 32761653 DOI: 10.1002/chem.202003311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 11/11/2022]
Abstract
Molecular crystals of π-conjugated molecules are of great interest as the highly ordered dense packing offers superior charge and exciton transport compared with its amorphous counterparts. However, integration into optoelectronic devices remains a major challenge owing to its inherently brittle nature. Herein, control over the mechanical conformity in single crystals of pyridine-appended thiazolothiazole derivatives is reported by modulating the molecular packing through interaction engineering. Two polymorphs were prepared by achieving control over the thermodynamic/kinetic factors of crystallization; one of the polymorphs exhibits elastic bending whereas the other is brittle. The control over the bending ability was achieved by forming co-crystals with hydrogen/halogen bond donors. A seamless extended crisscross pattern with respect to the bend plane through a ditopic hydrogen-bonding motif showed the highest compliance towards mechanical bending, whereas the co-crystals with a layered crisscross arrangement with segregated layers of co-formers exhibit slightly lower bending conformity. These results update the rationale behind the plastic/elastic bending in molecular crystals. The co-crystals of ditopic halogen bond co-assemblies are particularly appealing for waveguiding applications as the co-crystals blend high mechanical flexibility and luminescence properties. The hydrogen bonded co-crystals are non-emissive in nature owing to excited state proton transfer dynamics. The rationale behind the fluorescence properties of these materials was also established from DFT calculations in a quantum mechanics/molecular mechanics (QM/MM) framework.
Collapse
Affiliation(s)
- Madhubrata Ghora
- Technical Research Centre and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of, Science, Kolkata, 700032, India
| | - Prabhat Majumdar
- Technical Research Centre and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of, Science, Kolkata, 700032, India
| | - Mohammed Anas
- Technical Research Centre and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of, Science, Kolkata, 700032, India
| | - Shinto Varghese
- Technical Research Centre and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of, Science, Kolkata, 700032, India
| |
Collapse
|
364
|
Hernández-Rodríguez JF, Rojas D, Escarpa A. Electrochemical Sensing Directions for Next-Generation Healthcare: Trends, Challenges, and Frontiers. Anal Chem 2020; 93:167-183. [PMID: 33174738 DOI: 10.1021/acs.analchem.0c04378] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juan F Hernández-Rodríguez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Daniel Rojas
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Chemical Research Institute Andres M. del Rio, University of Alcalá, E-28871 Madrid, Spain
| |
Collapse
|
365
|
Qiao Y, Li X, Jian J, Wu Q, Wei Y, Shuai H, Hirtz T, Zhi Y, Deng G, Wang Y, Gou G, Xu J, Cui T, Tian H, Yang Y, Ren TL. Substrate-Free Multilayer Graphene Electronic Skin for Intelligent Diagnosis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49945-49956. [PMID: 33090758 DOI: 10.1021/acsami.0c12440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Current wearable sensors are fabricated with substrates, which limits the comfort, flexibility, stretchability, and induces interface mismatch. In addition, the substrate prevents the evaporation of sweat and is harmful to skin health. In this work, we have enabled the substrate-free laser scribed graphene (SFG) electronic skin (e-skin) with multifunctions. Compared with the e-skin with the substrate, the SFG has good gas permeability, low impedance, and flexibility. Only assisted using water, the SFG can be transferred to almost any objects including silicon and human skin and it can even be suspended. Many through-holes like stomas in leaf can be formed in the SFG, which make it breathable. After designing the pattern, the gauge factor (GF) of graphene electronic skin (GES) can be designed as the strain sensor. Physiological signals such as respiration, human motion, and electrocardiogram (ECG) can be detected. Moreover, the suspended SFG detect vibrations with high sensitivity. Due to the substrate-free structure, the impedance between SFG e-skin and the human body decreases greatly. Finally, an ECG detecting system has been designed based on the GES, which can monitor the body condition in real time. To analyze the ECG signals automatically, a convolutional neural network (CNN) was built and trained successfully. This work has high potential in the field of health telemonitoring.
Collapse
Affiliation(s)
- Yancong Qiao
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xiaoshi Li
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jinming Jian
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Qi Wu
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yuhong Wei
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Hua Shuai
- Department of Physics, Engineering Physics, The Ohio State University, 191 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Thomas Hirtz
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yao Zhi
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Ge Deng
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yunfan Wang
- Institute of Electronics, Tsinghua University, Beijing 100084, China
| | - Guangyang Gou
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jiandong Xu
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tianrui Cui
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - He Tian
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yi Yang
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tian-Ling Ren
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| |
Collapse
|
366
|
Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proc Natl Acad Sci U S A 2020; 117:27906-27915. [PMID: 33106394 PMCID: PMC7668081 DOI: 10.1073/pnas.2012700117] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Soft microfluidic systems that capture, store, and perform biomarker analysis of microliter volumes of sweat, in situ, as it emerges from the surface of the skin, represent an emerging class of wearable technology with powerful capabilities that complement those of traditional biophysical sensing devices. Recent work establishes applications in the real-time characterization of sweat dynamics and sweat chemistry in the context of sports performance and healthcare diagnostics. This paper presents a collection of advances in biochemical sensors and microfluidic designs that support multimodal operation in the monitoring of physiological signatures directly correlated to physical and mental stresses. These wireless, battery-free, skin-interfaced devices combine lateral flow immunoassays for cortisol, fluorometric assays for glucose and ascorbic acid (vitamin C), and digital tracking of skin galvanic responses. Systematic benchtop evaluations and field studies on human subjects highlight the key features of this platform for the continuous, noninvasive monitoring of biochemical and biophysical correlates of the stress state.
Collapse
|
367
|
Dahiya AS, Shakthivel D, Kumaresan Y, Zumeit A, Christou A, Dahiya R. High-performance printed electronics based on inorganic semiconducting nano to chip scale structures. NANO CONVERGENCE 2020; 7:33. [PMID: 33034776 PMCID: PMC7547062 DOI: 10.1186/s40580-020-00243-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/15/2020] [Indexed: 05/05/2023]
Abstract
The Printed Electronics (PE) is expected to revolutionise the way electronics will be manufactured in the future. Building on the achievements of the traditional printing industry, and the recent advances in flexible electronics and digital technologies, PE may even substitute the conventional silicon-based electronics if the performance of printed devices and circuits can be at par with silicon-based devices. In this regard, the inorganic semiconducting materials-based approaches have opened new avenues as printed nano (e.g. nanowires (NWs), nanoribbons (NRs) etc.), micro (e.g. microwires (MWs)) and chip (e.g. ultra-thin chips (UTCs)) scale structures from these materials have been shown to have performances at par with silicon-based electronics. This paper reviews the developments related to inorganic semiconducting materials based high-performance large area PE, particularly using the two routes i.e. Contact Printing (CP) and Transfer Printing (TP). The detailed survey of these technologies for large area PE onto various unconventional substrates (e.g. plastic, paper etc.) is presented along with some examples of electronic devices and circuit developed with printed NWs, NRs and UTCs. Finally, we discuss the opportunities offered by PE, and the technical challenges and viable solutions for the integration of inorganic functional materials into large areas, 3D layouts for high throughput, and industrial-scale manufacturing using printing technologies.
Collapse
Affiliation(s)
- Abhishek Singh Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Dhayalan Shakthivel
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yogeenth Kumaresan
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ayoub Zumeit
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Adamos Christou
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
368
|
Teymourian H, Barfidokht A, Wang J. Electrochemical glucose sensors in diabetes management: an updated review (2010-2020). Chem Soc Rev 2020; 49:7671-7709. [PMID: 33020790 DOI: 10.1039/d0cs00304b] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While over half a century has passed since the introduction of enzyme glucose biosensors by Clark and Lyons, this important field has continued to be the focus of immense research activity. Extensive efforts during the past decade have led to major scientific and technological innovations towards tight monitoring of diabetes. Such continued progress toward advanced continuous glucose monitoring platforms, either minimal- or non-invasive, holds considerable promise for addressing the limitations of finger-prick blood testing toward tracking glucose trends over time, optimal therapeutic interventions, and improving the life of diabetes patients. However, despite these major developments, the field of glucose biosensors is still facing major challenges. The scope of this review is to present the key scientific and technological advances in electrochemical glucose biosensing over the past decade (2010-present), along with current obstacles and prospects towards the ultimate goal of highly stable and reliable real-time minimally-invasive or non-invasive glucose monitoring. After an introduction to electrochemical glucose biosensors, we highlight recent progress based on using advanced nanomaterials at the electrode-enzyme interface of three generations of glucose sensors. Subsequently, we cover recent activity and challenges towards next-generation wearable non-invasive glucose monitoring devices based on innovative sensing principles, alternative body fluids, advanced flexible materials, and novel platforms. This is followed by highlighting the latest progress in the field of minimally-invasive continuous glucose monitoring (CGM) which offers real-time information about interstitial glucose levels, by focusing on the challenges toward developing biocompatible membrane coatings to protect electrochemical glucose sensors against surface biofouling. Subsequent sections cover new analytical concepts of self-powered glucose sensors, paper-based glucose sensing and multiplexed detection of diabetes-related biomarkers. Finally, we will cover the latest advances in commercially available devices along with the upcoming future technologies.
Collapse
Affiliation(s)
- Hazhir Teymourian
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
369
|
Silva RR, Raymundo-Pereira PA, Campos AM, Wilson D, Otoni CG, Barud HS, Costa CA, Domeneguetti RR, Balogh DT, Ribeiro SJ, Oliveira Jr. ON. Microbial nanocellulose adherent to human skin used in electrochemical sensors to detect metal ions and biomarkers in sweat. Talanta 2020; 218:121153. [DOI: 10.1016/j.talanta.2020.121153] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/04/2023]
|
370
|
Zhou G, Yang L, Li W, Chen C, Liu Q. A Regenerable Hydrogel Electrolyte for Flexible Supercapacitors. iScience 2020; 23:101502. [PMID: 32916631 PMCID: PMC7490843 DOI: 10.1016/j.isci.2020.101502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Easy regenerability of core components such as electrode and electrolyte is highly required in advanced electrochemical devices. This work reports a reliable, regenerable, and stretchable hydrogel electrolyte based on ionic bonds between polyacrylic acid (PAA) and polyallylamine (PAH). PAA-PAH electrolyte (1M LiCl addition) exhibits high ionic conductivity (0.050 S·cm-1) and excellent mechanical property (fracture strain of 1,688%). Notably, the electrolyte can be regenerated to any desired shape under mild conditions and remains 96% and 90% of the initial ionic conductivity after the first and second regeneration, respectively. PAA-PAH/LiCl-based supercapacitor exhibits nearly 100% capacitance retention upon rolling, stretching, and 5,000 charge-discharge cycles, whereas the regenerated device holds 97.6% capacitance of the initial device and 90.9% after 5,000 cycles. This low-cost, high-efficiency, and regenerable hydrogel electrolyte reveals very promising use in solid-state/flexible supercapacitors and possibly becomes a standard commercial hydrogel electrolyte for sustainable electrochemical energy devices.
Collapse
Affiliation(s)
- Guanbing Zhou
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Leyi Yang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Weijun Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chongyi Chen
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Qiao Liu
- Institute of Materials, Ningbo University of Technology, Ningbo 315016, China
| |
Collapse
|
371
|
Teymourian H, Parrilla M, Sempionatto JR, Montiel NF, Barfidokht A, Van Echelpoel R, De Wael K, Wang J. Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs. ACS Sens 2020; 5:2679-2700. [PMID: 32822166 DOI: 10.1021/acssensors.0c01318] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wearable electrochemical sensors capable of noninvasive monitoring of chemical markers represent a rapidly emerging digital-health technology. Recent advances toward wearable continuous glucose monitoring (CGM) systems have ignited tremendous interest in expanding such sensor technology to other important fields. This article reviews for the first time wearable electrochemical sensors for monitoring therapeutic drugs and drugs of abuse. This rapidly emerging class of drug-sensing wearable devices addresses the growing demand for personalized medicine, toward improved therapeutic outcomes while minimizing the side effects of drugs and the related medical expenses. Continuous, noninvasive monitoring of therapeutic drugs within bodily fluids empowers clinicians and patients to correlate the pharmacokinetic properties with optimal outcomes by realizing patient-specific dose regulation and tracking dynamic changes in pharmacokinetics behavior while assuring the medication adherence of patients. Furthermore, wearable electrochemical drug monitoring devices can also serve as powerful screening tools in the hands of law enforcement agents to combat drug trafficking and support on-site forensic investigations. The review covers various wearable form factors developed for noninvasive monitoring of therapeutic drugs in different body fluids and toward on-site screening of drugs of abuse. The future prospects of such wearable drug monitoring devices are presented with the ultimate goals of introducing accurate real-time drug monitoring protocols and autonomous closed-loop platforms toward precise dose regulation and optimal therapeutic outcomes. Finally, current unmet challenges and existing gaps are discussed for motivating future technological innovations regarding personalized therapy. The current pace of developments and the tremendous market opportunities for such wearable drug monitoring platforms are expected to drive intense future research and commercialization efforts.
Collapse
Affiliation(s)
- Hazhir Teymourian
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Marc Parrilla
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Juliane R. Sempionatto
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Noelia Felipe Montiel
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Abbas Barfidokht
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Robin Van Echelpoel
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Karolien De Wael
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
372
|
Recent Advances of Wearable Antennas in Materials, Fabrication Methods, Designs, and Their Applications: State-of-the-Art. MICROMACHINES 2020; 11:mi11100888. [PMID: 32987793 PMCID: PMC7598725 DOI: 10.3390/mi11100888] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/03/2023]
Abstract
The demand for wearable technologies has grown tremendously in recent years. Wearable antennas are used for various applications, in many cases within the context of wireless body area networks (WBAN). In WBAN, the presence of the human body poses a significant challenge to the wearable antennas. Specifically, such requirements are required to be considered on a priority basis in the wearable antennas, such as structural deformation, precision, and accuracy in fabrication methods and their size. Various researchers are active in this field and, accordingly, some significant progress has been achieved recently. This article attempts to critically review the wearable antennas especially in light of new materials and fabrication methods, and novel designs, such as miniaturized button antennas and miniaturized single and multi-band antennas, and their unique smart applications in WBAN. Finally, the conclusion has been drawn with respect to some future directions.
Collapse
|
373
|
Song Y, Min J, Yu Y, Wang H, Yang Y, Zhang H, Gao W. Wireless battery-free wearable sweat sensor powered by human motion. SCIENCE ADVANCES 2020; 6:6/40/eaay9842. [PMID: 32998888 PMCID: PMC7527225 DOI: 10.1126/sciadv.aay9842] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/14/2020] [Indexed: 05/18/2023]
Abstract
Wireless wearable sweat biosensors have gained huge traction due to their potential for noninvasive health monitoring. As high energy consumption is a crucial challenge in this field, efficient energy harvesting from human motion represents an attractive approach to sustainably power future wearables. Despite intensive research activities, most wearable energy harvesters suffer from complex fabrication procedures, poor robustness, and low power density, making them unsuitable for continuous biosensing. Here, we propose a highly robust, mass-producible, and battery-free wearable platform that efficiently extracts power from body motion through a flexible printed circuit board (FPCB)-based freestanding triboelectric nanogenerator (FTENG). The judiciously engineered FTENG displays a high power output of ~416 mW m-2 Through seamless system integration and efficient power management, we demonstrate a battery-free triboelectrically driven system that is able to power multiplexed sweat biosensors and wirelessly transmit data to the user interfaces through Bluetooth during on-body human trials.
Collapse
Affiliation(s)
- Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- National Key Lab of Micro/Nano Fabrication Technology, Peking University, Beijing 100871, China
| | - Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - You Yu
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Haobin Wang
- National Key Lab of Micro/Nano Fabrication Technology, Peking University, Beijing 100871, China
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Haixia Zhang
- National Key Lab of Micro/Nano Fabrication Technology, Peking University, Beijing 100871, China
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
374
|
Ardalan S, Hosseinifard M, Vosough M, Golmohammadi H. Towards smart personalized perspiration analysis: An IoT-integrated cellulose-based microfluidic wearable patch for smartphone fluorimetric multi-sensing of sweat biomarkers. Biosens Bioelectron 2020; 168:112450. [PMID: 32877780 DOI: 10.1016/j.bios.2020.112450] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 01/30/2023]
Abstract
Practical obstacles, such as intricate designs and expensive equipment/materials, in the fabrication of wearable sweat sensors, have limited their feasibility as a personalized healthcare device. Herein, we have fabricated a cellulose-based wearable patch, which further paired with a smartphone-based fluorescence imaging module and a self-developed smartphone app for non-invasive and in situ multi-sensing of sweat biomarkers including glucose, lactate, pH, chloride, and volume. The developed Smart Wearable Sweat Patch (SWSP) sensor comprises highly fluorescent sensing probes embedded in paper substrates, and microfluidic channels consisted of cotton threads to harvest sweat from the skin surface and to transport it to the paper-based sensing probes. The imaging module was fabricated by a 3D printer, equipped with UV-LED lamps and an optical filter to provide the in situ capability of capturing digital images of the sensors via a smartphone. A smartphone app was also designed to quantify the concentration of the biomarkers via a detection algorithm. Additionally, we have recommended an Internet of Things (IoT)-based model for our developed SWSP sensor to promote its potential application for the future. The field studies on human subjects were also conducted to investigate the feasibility of our developed SWSP sensor for the analysis of sweat biomarkers. Our findings convincingly demonstrated the applicability of our developed SWSP sensor as a smart, user-friendly, ultra-low-cost (~0.03 $ per sweat patch), portable, selective, rapid, and non-invasive healthcare monitoring device for immense applications in health personalization, sports performance monitoring, and medical diagnostics.
Collapse
Affiliation(s)
- Sina Ardalan
- Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Mohammad Hosseinifard
- Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| | - Maryam Vosough
- Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Hamed Golmohammadi
- Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| |
Collapse
|
375
|
Advanced Nanomaterials, Printing Processes, and Applications for Flexible Hybrid Electronics. MATERIALS 2020; 13:ma13163587. [PMID: 32823736 PMCID: PMC7475884 DOI: 10.3390/ma13163587] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
Abstract
Recent advances in nanomaterial preparation and printing technologies provide unique opportunities to develop flexible hybrid electronics (FHE) for various healthcare applications. Unlike the costly, multi-step, and error-prone cleanroom-based nano-microfabrication, the printing of nanomaterials offers advantages, including cost-effectiveness, high-throughput, reliability, and scalability. Here, this review summarizes the most up-to-date nanomaterials, methods of nanomaterial printing, and system integrations to fabricate advanced FHE in wearable and implantable applications. Detailed strategies to enhance the resolution, uniformity, flexibility, and durability of nanomaterial printing are summarized. We discuss the sensitivity, functionality, and performance of recently reported printed electronics with application areas in wearable sensors, prosthetics, and health monitoring implantable systems. Collectively, the main contribution of this paper is in the summary of the essential requirements of material properties, mechanisms for printed sensors, and electronics.
Collapse
|
376
|
Al-Qatatsheh A, Morsi Y, Zavabeti A, Zolfagharian A, Salim N, Z. Kouzani A, Mosadegh B, Gharaie S. Blood Pressure Sensors: Materials, Fabrication Methods, Performance Evaluations and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4484. [PMID: 32796604 PMCID: PMC7474433 DOI: 10.3390/s20164484] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
Advancements in materials science and fabrication techniques have contributed to the significant growing attention to a wide variety of sensors for digital healthcare. While the progress in this area is tremendously impressive, few wearable sensors with the capability of real-time blood pressure monitoring are approved for clinical use. One of the key obstacles in the further development of wearable sensors for medical applications is the lack of comprehensive technical evaluation of sensor materials against the expected clinical performance. Here, we present an extensive review and critical analysis of various materials applied in the design and fabrication of wearable sensors. In our unique transdisciplinary approach, we studied the fundamentals of blood pressure and examined its measuring modalities while focusing on their clinical use and sensing principles to identify material functionalities. Then, we carefully reviewed various categories of functional materials utilized in sensor building blocks allowing for comparative analysis of the performance of a wide range of materials throughout the sensor operational-life cycle. Not only this provides essential data to enhance the materials' properties and optimize their performance, but also, it highlights new perspectives and provides suggestions to develop the next generation pressure sensors for clinical use.
Collapse
Affiliation(s)
- Ahmed Al-Qatatsheh
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Yosry Morsi
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville VIC 3010, Australia;
| | - Ali Zolfagharian
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Nisa Salim
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Abbas Z. Kouzani
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Bobak Mosadegh
- Dalio Institute of Cardiovascular Imaging, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Saleh Gharaie
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| |
Collapse
|
377
|
Mazzaracchio V, Fiore L, Nappi S, Marrocco G, Arduini F. Medium-distance affordable, flexible and wireless epidermal sensor for pH monitoring in sweat. Talanta 2020; 222:121502. [PMID: 33167215 DOI: 10.1016/j.talanta.2020.121502] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/21/2020] [Accepted: 08/02/2020] [Indexed: 11/17/2022]
Abstract
In the last decade, wearable sensors have gained a key role on biomedical research field for reliable health state monitoring. A wide plethora of physics marker sensors is already commercially available, including activity tracker, heart rate devices, and fitness smartwatch. On the contrary, wearable and epidermal sensors for chemical biomarker monitoring in several biofluids are not ready yet. Herein, we report a wireless and flexible epidermal device for pH monitoring in sweat, fabricated by encompassing a screen-printed potentiometric sensor, an integrated circuit, and antenna embedded onto the same Kapton substrate. An iridium oxide film was electrodeposited onto the graphite working electrode providing the pH sensitive layer, while the integrated circuit board allows for data acquisition and storing. Furthermore, a radio frequency identification antenna surrounding the entire system enables data transmission to an external reader up to nearly 2 m in the most favourable case. The potentiometric sensor was firstly characterised by cyclic voltammetry experiments, then the iridium oxide electrodeposition procedure was optimised. Next, the sensor was tested toward pH detection in buffer solutions with a near-Nernstian response equal to -0.079 ± 0.002 V for unit of pH. Interference studies of common sweat ions, including Na+, K+ and Cl-, showed any influence on the pH sensor response. Finally, the integrated epidermal device was tested for real-time on-body pH sweat monitoring during a running activity. Data recorded for a running subject were wireless transmitted to an external receiver, showing a pH value close to 5.5, in agreement with value obtained by pH-meter reference measurement.
Collapse
Affiliation(s)
- Vincenzo Mazzaracchio
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Luca Fiore
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Simone Nappi
- Department of Civil Engineering and Informatics, University of Rome Tor Vergata, Via del Politecnico,1, 00133, Rome, Italy
| | - Gaetano Marrocco
- Department of Civil Engineering and Informatics, University of Rome Tor Vergata, Via del Politecnico,1, 00133, Rome, Italy; RADIO6ENSE, Via del Politecnico, 1, 00133, Rome, Italy.
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy; SENSE4MED, via Renato Rascel 30, 00128, Rome, Italy.
| |
Collapse
|
378
|
Qiao L, Benzigar MR, Subramony JA, Lovell NH, Liu G. Advances in Sweat Wearables: Sample Extraction, Real-Time Biosensing, and Flexible Platforms. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34337-34361. [PMID: 32579332 DOI: 10.1021/acsami.0c07614] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Wearable biosensors for sweat-based analysis are gaining wide attention due to their potential use in personal health monitoring. Flexible wearable devices enable sweat analysis at the molecular level, facilitating noninvasive monitoring of physiological states via real-time monitoring of chemical biomarkers. Advances in sweat extraction technology, real-time biosensors, stretchable materials, device integration, and wireless digital technologies have led to the development of wearable sweat-biosensing devices that are light, flexible, comfortable, aesthetic, affordable, and informative. Herein, we summarize recent advances of sweat wearables from the aspects of sweat extraction, fabrication of stretchable biomaterials, and design of biosensing modules to enable continuous biochemical monitoring, which are essential for a biosensing device. Key chemical components of sweat, sweat capture methodologies, and considerations of flexible substrates for integrating real-time biosensors with electronics to bring innovations in the art of wearables are elaborated. The strategies and challenges involved in improving the wearable biosensing performance and the perspectives for designing sweat-based wearable biosensing devices are discussed.
Collapse
Affiliation(s)
- Laicong Qiao
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mercy Rose Benzigar
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - J Anand Subramony
- Antibody Discovery and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
379
|
Chen L, Lu M, Yang H, Salas Avila JR, Shi B, Ren L, Wei G, Liu X, Yin W. Textile-Based Capacitive Sensor for Physical Rehabilitation via Surface Topological Modification. ACS NANO 2020; 14:8191-8201. [PMID: 32520522 DOI: 10.1021/acsnano.0c01643] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Wearable sensor technologies, especially continuous monitoring of various human health conditions, are attracting increased attention. However, current rigid sensors present obvious drawbacks, like lower durability and poor comfort. Here, a strategy is proposed to efficiently yield wearable sensors using cotton fabric as an essential component, and conductive materials conformally coat onto the cotton fibers, leading to a highly electrically conductive interconnecting network. To improve the conductivity and durability of conductive coatings, a topographical modification approach is developed with genus-3 and genus-5 structures, and topological genus structures enable cage metallic seeds on the surface of substrates. A textile-based capacitive sensor with flexible, comfortable, and durable properties has been demonstrated. High sensitivity and convenience of signal collection have been achieved by the excellent electrical conductivity of this sensor. Based on results of deep investigation on capacitance, effects of distance and angles between two conductive fabrics contribute to the capacitive sensitivity. In addition, the textile-based capacitive sensor has successfully been used for real-time monitoring human breathing, speaking, blinking, and joint motions during physical rehabilitation exercises.
Collapse
Affiliation(s)
- Liming Chen
- Department of Electrical and Electronic Engineering, University of Manchester, Sackville Street Building, Manchester M13 9PL, United Kingdom
| | - Mingyang Lu
- Department of Electrical and Electronic Engineering, University of Manchester, Sackville Street Building, Manchester M13 9PL, United Kingdom
| | - Haosen Yang
- Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Sackville Street Building, Manchester M13 9PL, United Kingdom
| | - Jorge Ricardo Salas Avila
- Department of Electrical and Electronic Engineering, University of Manchester, Sackville Street Building, Manchester M13 9PL, United Kingdom
| | - Bowen Shi
- Department of Materials, University of Manchester, Sackville Street Building, Manchester M13 9PL, United Kingdom
| | - Lei Ren
- Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Sackville Street Building, Manchester M13 9PL, United Kingdom
| | - Guowu Wei
- School of Computing, Science and Engineering, University of Salford, Salford M5 4WT, United Kingdom
| | - Xuqing Liu
- Department of Materials, University of Manchester, Sackville Street Building, Manchester M13 9PL, United Kingdom
| | - Wuliang Yin
- Department of Electrical and Electronic Engineering, University of Manchester, Sackville Street Building, Manchester M13 9PL, United Kingdom
| |
Collapse
|
380
|
Abstract
With the rapid development of high technology, chemical science is not as it used to be a century ago. Many chemists acquire and utilize skills that are well beyond the traditional definition of chemistry. The digital age has transformed chemistry laboratories. One aspect of this transformation is the progressing implementation of electronics and computer science in chemistry research. In the past decade, numerous chemistry-oriented studies have benefited from the implementation of electronic modules, including microcontroller boards (MCBs), single-board computers (SBCs), professional grade control and data acquisition systems, as well as field-programmable gate arrays (FPGAs). In particular, MCBs and SBCs provide good value for money. The application areas for electronic modules in chemistry research include construction of simple detection systems based on spectrophotometry and spectrofluorometry principles, customizing laboratory devices for automation of common laboratory practices, control of reaction systems (batch- and flow-based), extraction systems, chromatographic and electrophoretic systems, microfluidic systems (classical and nonclassical), custom-built polymerase chain reaction devices, gas-phase analyte detection systems, chemical robots and drones, construction of FPGA-based imaging systems, and the Internet-of-Chemical-Things. The technology is easy to handle, and many chemists have managed to train themselves in its implementation. The only major obstacle in its implementation is probably one's imagination.
Collapse
Affiliation(s)
- Gurpur Rakesh D Prabhu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu, 300, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| |
Collapse
|
381
|
Mechanically driven strategies to improve electromechanical behaviour of printed stretchable electronic systems. Sci Rep 2020; 10:12037. [PMID: 32694563 PMCID: PMC7374727 DOI: 10.1038/s41598-020-68871-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/23/2020] [Indexed: 11/09/2022] Open
Abstract
Stretchable electronics promise to extend the application range of conventional electronics by enabling them to keep their electrical functionalities under system deformation. Within this framework, development of printable silver-polymer composite inks is making possible to realize several of the expected applications for stretchable electronics, which range from seamless sensors for human body measurement (e.g. health patches) to conformable injection moulded structural electronics. However, small rigid electric components are often incorporated in these devices to ensure functionality. Under mechanical loading, these rigid elements cause strain concentrations and a general deterioration of the system's electrical performance. This work focuses on different strategies to improve electromechanical performance by investigating the deformation behaviour of soft electronic systems comprising rigid devices through Finite Element analyses. Based on the deformation behaviour of a simple stretchable device under tensile loading, three general strategies were proposed: local component encapsulation, direct component shielding, and strain dispersion. The FE behaviour achieved using these strategies was then compared with the experimental results obtained for each design, highlighting the reasons for their different resistance build-up. Furthermore, crack formation in the conductive tracks was analysed under loading to highlight its link with the evolution of the system electrical performance.
Collapse
|
382
|
Abstract
Pencils and papers are ubiquitous in our society and have been widely used for writing and drawing, because they are easy to use, low-cost, widely accessible, and disposable. However, their applications in emerging skin-interfaced health monitoring and interventions are still not well explored. Herein, we report a variety of pencil-paper-based on-skin electronic devices, including biophysical (temperature, biopotential) sensors, sweat biochemical (pH, uric acid, glucose) sensors, thermal stimulators, and humidity energy harvesters. Among these devices, pencil-drawn graphite patterns (or combined with other compounds) serve as conductive traces and sensing electrodes, and office-copy papers work as flexible supporting substrates. The enabled devices can perform real-time, continuous, and high-fidelity monitoring of a range of vital biophysical and biochemical signals from human bodies, including skin temperatures, electrocardiograms, electromyograms, alpha, beta, and theta rhythms, instantaneous heart rates, respiratory rates, and sweat pH, uric acid, and glucose, as well as deliver programmed thermal stimulations. Notably, the qualities of recorded signals are comparable to those measured with conventional methods. Moreover, humidity energy harvesters are prepared by creating a gradient distribution of oxygen-containing groups on office-copy papers between pencil-drawn electrodes. One single-unit device (0.87 cm2) can generate a sustained voltage of up to 480 mV for over 2 h from ambient humidity. Furthermore, a self-powered on-skin iontophoretic transdermal drug-delivery system is developed as an on-skin chemical intervention example. In addition, pencil-paper-based antennas, two-dimensional (2D) and three-dimensional (3D) circuits with light-emitting diodes (LEDs) and batteries, reconfigurable assembly and biodegradable electronics (based on water-soluble papers) are explored.
Collapse
|
383
|
A Self-Powered Biosensor for Monitoring Maximal Lactate Steady State in Sport Training. BIOSENSORS-BASEL 2020; 10:bios10070075. [PMID: 32650462 PMCID: PMC7399796 DOI: 10.3390/bios10070075] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
A self-powered biosensor for monitoring the maximal lactate steady state (MLSS) during exercise has been developed for intelligently assisting training system. It has been presented to create poly (vinylidene fluoride) (PVDF)/Tetrapod-shaped ZnO (T-ZnO)/enzyme-modified nanocomposite film through an efficient and cost-effective fabrication process. This sensor can be readily attached to the skin surface of the tester. Due to the piezoelectric surface coupling effect, this biosensor can monitor/sense and analyze physical information in real-time under the non-invasive condition and work independently without any battery. By actively outputting piezoelectric signals, it can quickly and sensitively detect body movements (changes of joint angle, frequency relative humidity during exercise) and physiological information (changes of lactate concentration in sweat). A practical application has been demonstrated by an excellent professional speed skater (male). The purpose of this study is to increase the efficiency of MLSS evaluation, promote the development of piezoelectric surface coupling effect and motion monitoring application, develop an intelligently assisting training system, which has opened up a new direction for human motion monitoring.
Collapse
|
384
|
Gomes NO, Carrilho E, Machado SAS, Sgobbi LF. Bacterial cellulose-based electrochemical sensing platform: A smart material for miniaturized biosensors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136341] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
385
|
Matzeu G, Mogas-Soldevila L, Li W, Naidu A, Turner TH, Gu R, Blumeris PR, Song P, Pascal DG, Guidetti G, Li M, Omenetto FG. Large-Scale Patterning of Reactive Surfaces for Wearable and Environmentally Deployable Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001258. [PMID: 32462737 DOI: 10.1002/adma.202001258] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 05/20/2023]
Abstract
Wearable interfaces are central to multiple healthcare and wellness strategies encompassing diet and nutrition, personalized health monitoring, and performance optimization. Specifically, the advent of flexible electronic formats coupled with microfluidic interfaces has resulted in sophisticated conformal devices for biofluid sampling and quantification. Here, a complementary approach is presented to wearable sensing by using a large-scale, conformal, distributed format that relies on the use of biomaterial-based inks to print and stabilize deterministic patterns of biochemical reporters with high resolution. Colorimetric devices can vary in size and a sensing T-shirt based on a colorimetric pattern is developed to illustrate the utility that such formats can add to the wearable interface space. Image analysis allows parameter variation to be tracked in real-time, yielding a map-like format of distributed biophysical response.
Collapse
Affiliation(s)
- Giusy Matzeu
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- Center for Applied Brain and Cognitive Science, Tufts University, Medford, MA, 02155, USA
| | - Laia Mogas-Soldevila
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Wenyi Li
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Arin Naidu
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Trent H Turner
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Roger Gu
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Patricia R Blumeris
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Patrick Song
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Daniel G Pascal
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Giulia Guidetti
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Meng Li
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Fiorenzo G Omenetto
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- Center for Applied Brain and Cognitive Science, Tufts University, Medford, MA, 02155, USA
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA
- Department of Physics, Tufts University, Medford, MA, 02155, USA
- Laboratory for Living Devices, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
386
|
He X, Yang S, Pei Q, Song Y, Liu C, Xu T, Zhang X. Integrated Smart Janus Textile Bands for Self-Pumping Sweat Sampling and Analysis. ACS Sens 2020; 5:1548-1554. [PMID: 32466645 DOI: 10.1021/acssensors.0c00563] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wearable sweat sensors have spearheaded the thrust toward personalized health monitoring with continuous, real-time, and molecular-level insight in a noninvasive manner. However, effective sweat sampling still remains a huge challenge. Here, we introduce an intelligent Janus textile band that bridges the gap between self-pumping sweat collection, comfortable epidemic microclimate, and sensitive electrochemical biosensing via an integrated wearable platform. The dominant sweat sampling configuration is a textile with Janus wettability, which is fabricated by electrospinning a hydrophobic polyurethane (PU) nanofiber array onto superhydrophilic gauze. Based on a contact-pumping model, the Janus textile can unidirectionally and thoroughly transport sweat from skin (hydrophobic side) to embedded electrode surface (hydrophilic side) with epidemic comfort. On-body experimentation reveals that the sensitive detection of multiple biomarkers including glucose, lactate, K+, and Na+ is achieved in the pumped sweat. Such smart Janus textile bands can effectively drain epidermal sweat to targeted assay sites via interface modifications, representing a reinforced and controlled biofluids analysis pathway with physiological comfort.
Collapse
Affiliation(s)
- Xuecheng He
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P. R. China
| | - Shijie Yang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P. R. China
| | - Quanbing Pei
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P. R. China
| | - Yongchao Song
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P. R. China
| | - Conghui Liu
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Tailin Xu
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P. R. China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P. R. China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| |
Collapse
|
387
|
Xiang L, Zeng X, Xia F, Jin W, Liu Y, Hu Y. Recent Advances in Flexible and Stretchable Sensing Systems: From the Perspective of System Integration. ACS NANO 2020; 14:6449-6469. [PMID: 32479071 DOI: 10.1021/acsnano.0c01164] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Biological signals generated during various biological processes are critically important for providing insight into the human physiological status. Recently, there have been many great efforts in developing flexible and stretchable sensing systems to provide biological signal monitoring platforms with intimate integration with biological surfaces. Here, this review summarizes the recent advances in flexible and stretchable sensing systems from the perspective of electronic system integration. A comprehensive general sensing system architecture is described, which consists of sensors, sensor interface circuits, memories, and digital processing units. The subsequent content focuses on the integration requirements and highlights some advanced progress for each component. Next, representative examples of flexible and stretchable sensing systems for electrophysiological, physical, and chemical information monitoring are introduced. This review concludes with an outlook on the remaining challenges and opportunities for future fully flexible or stretchable sensing systems.
Collapse
Affiliation(s)
- Li Xiang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, Frontiers Science Center for Nano-optoelectronics, and Department of Electronics, Peking University, Beijing 100871, China
| | - Xiangwen Zeng
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, Frontiers Science Center for Nano-optoelectronics, and Department of Electronics, Peking University, Beijing 100871, China
| | - Fan Xia
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, Frontiers Science Center for Nano-optoelectronics, and Department of Electronics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wanlin Jin
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, Frontiers Science Center for Nano-optoelectronics, and Department of Electronics, Peking University, Beijing 100871, China
| | - Youdi Liu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, Frontiers Science Center for Nano-optoelectronics, and Department of Electronics, Peking University, Beijing 100871, China
| | - Youfan Hu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, Frontiers Science Center for Nano-optoelectronics, and Department of Electronics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, China
| |
Collapse
|
388
|
Pauliukaite R, Voitechovič E. Multisensor Systems and Arrays for Medical Applications Employing Naturally-Occurring Compounds and Materials. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3551. [PMID: 32585936 PMCID: PMC7349305 DOI: 10.3390/s20123551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022]
Abstract
The significant improvement of quality of life achieved over the last decades has stimulated the development of new approaches in medicine to take into account the personal needs of each patient. Precision medicine, providing healthcare customization, opens new horizons in the diagnosis, treatment and prevention of numerous diseases. As a consequence, there is a growing demand for novel analytical devices and methods capable of addressing the challenges of precision medicine. For example, various types of sensors or their arrays are highly suitable for simultaneous monitoring of multiple analytes in complex biological media in order to obtain more information about the health status of a patient or to follow the treatment process. Besides, the development of sustainable sensors based on natural chemicals allows reducing their environmental impact. This review is concerned with the application of such analytical platforms in various areas of medicine: analysis of body fluids, wearable sensors, drug manufacturing and screening. The importance and role of naturally-occurring compounds in the development of electrochemical multisensor systems and arrays are discussed.
Collapse
Affiliation(s)
- Rasa Pauliukaite
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania;
| | | |
Collapse
|
389
|
Piezoelectric Energy Harvesting from a Ferroelectric Hybrid Salt [Ph
3
MeP]
4
[Ni(NCS)
6
] Embedded in a Polymer Matrix. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
390
|
Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat Commun 2020; 11:2868. [PMID: 32513912 PMCID: PMC7280288 DOI: 10.1038/s41467-020-16642-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 05/15/2020] [Indexed: 01/02/2023] Open
Abstract
Combining traditional textiles with triboelectric nanogenerators (TENGs) gives birth to self-powered electronic textiles (e-textiles). However, there are two bottlenecks in their widespread application, low power output and poor sensing capability. Herein, by means of the three-dimensional five-directional braided (3DB) structure, a TENG-based e-textile with the features of high flexibility, shape adaptability, structural integrity, cyclic washability, and superior mechanical stability, is designed for power and sensing. Due to the spatial frame-column structure formed between the outer braided yarn and inner axial yarn, the 3DB-TENG is also endowed with high compression resilience, enhanced power output, improved pressure sensitivity, and vibrational energy harvesting ability, which can power miniature wearable electronics and respond to tiny weight variations. Furthermore, an intelligent shoe and an identity recognition carpet are demonstrated to verify its performance. This study hopes to provide a new design concept for high-performance textile-based TENGs and expand their application scope in human-machine interfacing.
Collapse
|
391
|
Xu C, Yang Y, Gao W. Skin-interfaced sensors in digital medicine: from materials to applications. MATTER 2020; 2:1414-1445. [PMID: 32510052 PMCID: PMC7274218 DOI: 10.1016/j.matt.2020.03.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The recent advances in skin-interfaced wearable sensors have enabled tremendous potential towards personalized medicine and digital health. Compared with traditional healthcare, wearable sensors could perform continuous and non-invasive data collection from the human body and provide an insight into both fitness monitoring and medical diagnostics. In this review, we summarize the latest progress of skin-interfaced wearable sensors along with their integrated systems. We first introduce the strategies of materials selection and structure design that can be accommodated for intimate contact with human skin. Current development of physical and biochemical sensors is then classified and discussed with an emphasis on their sensing mechanisms. System-level integration including power supply, wireless communication and data analysis are also briefly discussed. We conclude with an outlook of this field and identify the key challenges and opportunities for future wearable devices and systems.
Collapse
Affiliation(s)
- Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
- Lead Contact
- Correspondence:
| |
Collapse
|
392
|
Ng JKG, Rybchenko SI, Lukaschuk S. Magnetic array-templated method for fabrication of polymer nanoporous films. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab970b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
This paper describes the development of a novel method of producing nanoporous polymeric membranes in a cost-effective and reproducible manner. The novelty of the technique hinges on the exploitation of a new type of sacrificial material & structures - self-assembled arrays of magnetic nanoparticles. The arrays are obtained through application of an external magnetic field to a thin layer of colloidal solution of superparamagnetic nanoparticles in a polymerizable monomer; this is followed by photopolymerisation. The resulting columnar structures form the pore templates which when selectively etched away leave an array of nanopores spanning across the polymeric film. The morphological characterisation of the nanopores by scanning electron microscopy and ionic conductivity revealed a very unusual sponge-like pore morphology. The applications which would benefit from the specific pore morphology and arrayed manufacturing are discussed.
Collapse
|
393
|
Zhang M, Xue J, Zhu Y, Yao C, Yang D. Multiresponsive White-Light Emitting Aerogel Prepared with Codoped Lanthanide/Thymidine/Carbon Dots. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22191-22199. [PMID: 32320198 DOI: 10.1021/acsami.0c04253] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aerogels hold great promise as a lightweight replacement in materials fields. Dynamic fluorochromic aerogels that possess reversible stimuli responsiveness have been particularly attractive recently for new design opportunities in practical solid-state lighting and wide applications in advanced sensors/probe. In this study, we report a reversibly multiresponsive white-light-emitting (WLE) aerogel prepared with codoped lanthanide, thymidine, and carbon dots. By precisely modulating the stoichiometric ratio of lanthanide complexes and carbon dots, broad-spectrum output from purple to red is obtained, including pure white light (CIE (0.33, 0.32)). The freeze-drying process contributes to the elimination of hydration between water molecules and lanthanide ions, further preventing the quenching of lanthanide luminescence and preserving the high quantum yield (47.4%) of our aerogel. Moreover, the dynamic coordination bond between lanthanide (europium and terbium) and thymidine endows the aerogel with reversible responsiveness upon five different stimuli, including halide anions, metal ions, pH, temperature, and humidity. We envision that our WLE aerogel has considerable potential for use in various fields such as display devices, advanced sensors, and environmentally friendly probes where multiresponsiveness is required.
Collapse
Affiliation(s)
- Meng Zhang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Juan Xue
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Yi Zhu
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Chi Yao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Dayong Yang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| |
Collapse
|
394
|
Masson JF. Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst 2020; 145:3776-3800. [PMID: 32374303 DOI: 10.1039/d0an00316f] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plasmonic sensors are ideally suited for the design of small, integrated, and portable devices that can be employed in situ for the detection of analytes relevant to environmental sciences, clinical diagnostics, infectious diseases, food, and industrial applications. To successfully deploy plasmonic sensors, scaled-down analytical devices based on surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) must integrate optics, plasmonic materials, surface chemistry, fluidics, detectors and data processing in a functional instrument with a small footprint. The field has significantly progressed from the implementation of the various components in specifically designed prism-based instruments to the use of nanomaterials, optical fibers and smartphones to yield increasingly portable devices, which have been shown for a number of applications in the laboratory and deployed on site for environmental, biomedical/clinical, and food applications. A roadmap to deploy plasmonic sensors is provided by reviewing the current successes and by laying out the directions the field is currently taking to increase the use of field-deployed plasmonic sensors at the point-of-care, in the environment and in industries.
Collapse
Affiliation(s)
- Jean-Francois Masson
- Departement de chimie, Centre Québécois sur les Matériaux Fonctionnels (CQMF) and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, QC, CanadaH3C 3J7.
| |
Collapse
|
395
|
Lou D, Pang Q, Pei X, Dong S, Li S, Tan WQ, Ma L. Flexible wound healing system for pro-regeneration, temperature monitoring and infection early warning. Biosens Bioelectron 2020; 162:112275. [PMID: 32392156 DOI: 10.1016/j.bios.2020.112275] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/21/2022]
Abstract
To break the "Black-Box" status of the wound healing process under traditional dressing, which cannot achieve satisfactory repair outcome of skin wounds, a wound healing system with the abilities of pro-regeneration and real-time monitoring of wound status has become a considerable necessity. Here, by integrating the emerging bioelectronics and software, we created a flexible wound healing system. The hardware system was designed as Band-Aid shaped with a double-layer structure; the upper is the flexible temperature-sensing layer comprising the temperature sensor STH21, power manager circuit and data processing circuit, and the lower is a collagen-chitosan dermal equivalent for skin regeneration. A customized software application (app) installed on a smartphone to receive data from the sensing layer by BLE4.0 can display and analyze real-time wound temperature. Our system had high monitoring sensitivity and stability, good stretchability, excellent reliability and biocompatibility. It was applied to a pig skin wound model to reveal temperature fluctuation during the entire wound regeneration process. As a credible reference and foundation for further early warning of an adverse event, three main phases of temperature fluctuation were found: the rising phase (below 39 °C), plateau phase (39-39.5 °C), and falling phase (below 39 °C), which were accompanied by significant wound biological events, including inflammatory cell infiltration, angiogenesis and wound healing. Furthermore, verified by wound infection models of different healing phases and wound Gram's staining, early warning ahead of serious infection was realized with the use of a customized app's alarm.
Collapse
Affiliation(s)
- Dong Lou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China; Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Qian Pang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Xiachuan Pei
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Shurong Dong
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| | - Shijian Li
- College of Computer Science and Technology, Zhejiang University, Hangzhou, 310027, PR China.
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China.
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| |
Collapse
|
396
|
Ling Y, An T, Yap LW, Zhu B, Gong S, Cheng W. Disruptive, Soft, Wearable Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904664. [PMID: 31721340 DOI: 10.1002/adma.201904664] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/18/2019] [Indexed: 05/23/2023]
Abstract
The wearable industry is on the rise, with a myriad of technical applications ranging from real-time health monitoring, the Internet of Things, and robotics, to name but a few. However, there is a saying "wearable is not wearable" because the current market-available wearable sensors are largely bulky and rigid, leading to uncomfortable wearing experience, motion artefacts, and poor data accuracy. This has aroused a world-wide intensive research quest for novel materials, with the aim of fabricating next-generation ultra-lightweight and soft wearable devices. Such disruptive second-skin-like biosensing technologies may enable a paradigm shift from current wearable 1.0 to future wearable 2.0 products. Here, the state-of-the-art progress made in the key phases for future wearable technology, namely, wear → sense → communicate → analyze → interpret → decide, is summarized. Without a doubt, materials innovation is the key, which is the main focus of the discussion. In addition, emphasis is also given to wearable energy, multicomponent integration, and wireless communication.
Collapse
Affiliation(s)
- Yunzhi Ling
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
- The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, Victoria, 3800, Australia
| | - Tiance An
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
- The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, Victoria, 3800, Australia
| | - Lim Wei Yap
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
- The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, Victoria, 3800, Australia
| | - Bowen Zhu
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
- The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, Victoria, 3800, Australia
| | - Shu Gong
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
- The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, Victoria, 3800, Australia
| | - Wenlong Cheng
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
- The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, Victoria, 3800, Australia
| |
Collapse
|
397
|
Ejehi F, Mohammadpour R, Asadian E, Sasanpour P, Fardindoost S, Akhavan O. Graphene Oxide Papers in Nanogenerators for Self-Powered Humidity Sensing by Finger Tapping. Sci Rep 2020; 10:7312. [PMID: 32355191 PMCID: PMC7192944 DOI: 10.1038/s41598-020-64490-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/17/2020] [Indexed: 11/09/2022] Open
Abstract
Triboelectric nanogenerators (TENGs) offer an emerging market of self-sufficient power sources, converting the mechanical energy of the environment to electricity. Recently reported high power densities for the TENGs provide new applications opportunities, such as self-powered sensors. Here in this research, a flexible graphene oxide (GO) paper was fabricated through a straightforward method and utilized as the electrode of TENGs. Outstanding power density as high as 1.3 W.m-2, an open-circuit voltage up to 870 V, and a current density of 1.4 µA.cm-2 has been extracted in vertical contact-separation mode. The all-flexible TENG has been employed as a self-powered humidity sensor to investigate the effect of raising humidity on the output voltage and current by applying mechanical agitation in two forms of using a tapping device and finger tapping. Due to the presence of superficial functional groups on the GO paper, water molecules are inclined to be adsorbed, resulting in a considerable reduction in both generated voltage (from 144 V to 14 V) and current (from 23 µA to 3.7 µA) within the range of relative humidity of 20% to 99%. These results provide a promising applicability of the first suggested sensitive self-powered GO TENG humidity sensor in portable/wearable electronics.
Collapse
Affiliation(s)
- Faezeh Ejehi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran
| | - Raheleh Mohammadpour
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran.
| | - Elham Asadian
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Nanoscience, Institute for Research in Fundamental Sciences (IPM), P. O. Box, 19395-5531, Tehran, Iran
| | - Somayeh Fardindoost
- Department of Physics, Sharif University of Technology, Tehran, 11155-9161, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran, 11155-9161, Iran
| |
Collapse
|
398
|
Liang C, Ruan K, Zhang Y, Gu J. Multifunctional Flexible Electromagnetic Interference Shielding Silver Nanowires/Cellulose Films with Excellent Thermal Management and Joule Heating Performances. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18023-18031. [PMID: 32208670 DOI: 10.1021/acsami.0c04482] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Flexible electromagnetic interference (EMI) shielding materials with excellent thermal conductivities and Joule heating performances are of urgent demand in the communication industry, artificial intelligence, and wearable electronics. In this work, highly conductive silver nanowires (AgNWs) were prepared using the polyol method. Cellulose sheets were then prepared by dissolving natural cotton in a green and efficient NaOH/urea aqueous solution. Finally, multifunctional flexible EMI shielding AgNWs/cellulose films were fabricated based on vacuum-assisted filtration and hot-pressing. AgNWs are evenly embedded in the inner cellulose matrix and overlap with each other to form a 3D network. AgNWs/cellulose films, with a thickness of 44.5 μm, obtain the superior EMI shielding effectiveness of 101 dB, which is the highest value ever reported for shielding materials with the same thickness. In addition, AgNWs/cellulose films present excellent tensile strength (60.7 MPa) and tensile modulus (3.35 GPa), ultrahigh electrical conductivity (σ, 5571 S/cm), and excellent in-plane thermal conductivity coefficient (λ∥, 10.55 W/mK), which can effectively dissipate the heat accumulation. Interestingly, AgNWs/cellulose films also show outstanding Joule heating performances, good stability, and sensitive temperature response at driving voltages, absolutely safe for the human body. Therefore, our fabricated multifunctional flexible AgNWs/cellulose films have broad prospects in the fields of EMI shielding and protection of outdoor large-scale power transformers and wearable electronics.
Collapse
Affiliation(s)
- Chaobo Liang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| |
Collapse
|
399
|
Liang X, Li L, Tang J, Komiyama M, Ariga K. Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200012] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Jiaxuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
400
|
Vijayakanth T, Ram F, Praveenkumar B, Shanmuganathan K, Boomishankar R. Piezoelectric Energy Harvesting from a Ferroelectric Hybrid Salt [Ph
3
MeP]
4
[Ni(NCS)
6
] Embedded in a Polymer Matrix. Angew Chem Int Ed Engl 2020; 59:10368-10373. [DOI: 10.1002/anie.202001250] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/09/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Thangavel Vijayakanth
- Department of Chemistry and Centre for Energy Science Indian Institute of Science Education and Research, Pune Dr. Homi Bhabha Road Pune 411008 India
| | - Farsa Ram
- Polymer Science and Engineering Division and Academy of Scientific and Innovative Research CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
| | - Balu Praveenkumar
- PZT Centre Armament Research and Development Establishment Dr. Homi Bhabha Road Pune 411021 India
| | - Kadhiravan Shanmuganathan
- Polymer Science and Engineering Division and Academy of Scientific and Innovative Research CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
| | - Ramamoorthy Boomishankar
- Department of Chemistry and Centre for Energy Science Indian Institute of Science Education and Research, Pune Dr. Homi Bhabha Road Pune 411008 India
| |
Collapse
|