351
|
Abstract
DNA-packaging and the control of gene expression constitute a major challenge for bacteria to survive and adapt to environmental changes. The use of multiple strategies to solve these problems could explain the presence of various nucleoid-associated proteins in bacteria. H-NS, one of these proteins, has been extensively studied in Escherichia coli, and a variety of phenotypes have been associated with a mutation in its structural gene. However, the role of H-NS in bacterial physiology and its mechanism of action are still a matter of debate. The expanding number of H-NS-related proteins identified in Gram-negative bacteria reveals interesting clues about their structure-function-evolution relationship.
Collapse
Affiliation(s)
- Christian Tendeng
- MRC Centre for Dev. Neurobiology, New Hunt's House, Guy's Campus, London, SE1 9RT, UK
| | | |
Collapse
|
352
|
Kline KA, Sechman EV, Skaar EP, Seifert HS. Recombination, repair and replication in the pathogenic Neisseriae: the 3 R's of molecular genetics of two human-specific bacterial pathogens. Mol Microbiol 2003; 50:3-13. [PMID: 14507359 DOI: 10.1046/j.1365-2958.2003.03679.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most of the detailed mechanisms that have been established for the molecular biological processes that mediate recombination, repair and replication of DNA have come from studies of the Escherichia coli paradigm. The human specific pathogens, Neisseria gonorrhoeae and N. meningitidis, are Gram-negative bacteria that have some molecular processes that are similar to E. coli and others that appear to be divergent. We propose that the pathogenic Neisseriae have evolved a specialized collection of molecular mechanisms to adapt to life limited to human hosts. In this MicroReview, we explore what is known about the basic processes of DNA repair, DNA recombination (genetic exchange and pilin variation) and DNA replication in these human specific pathogens.
Collapse
Affiliation(s)
- Kimberly A Kline
- Northwestern University Feinberg School of Medicine, Department of Microbiology and Immunology, Chicago, IL, 60611 USA
| | | | | | | |
Collapse
|
353
|
Bricks LF. Critical analysis of old and new vaccines against N. meningitidis serogroup C, considering the meningococcal disease epidemiology in Brazil. ACTA ACUST UNITED AC 2003; 58:231-40. [PMID: 14534678 DOI: 10.1590/s0041-87812003000400009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UNLABELLED Worldwide, the impact of meningococcal disease is substantial, and the potential for the introduction and spread of more virulent strains of N. meningitidis or strains with increased resistance to current antibiotics causes concern, making prevention essential. OBJECTIVES Review the indications for meningococcal disease vaccines, considering the epidemiological status in Brazil. METHODS A critical literature review on this issue using the Medline and Lilacs databases. RESULTS In Brazil, MenB and MenC were the most important serogroups identified in the 1990s. Polysaccharide vaccines available against those serogroups can offer only limited protection for infants, the group at highest risk for meningococcal disease. Additionally, polysaccharide vaccines may induce a hypo-responsive state to MenC. New meningococcal C conjugate vaccines could partially solve these problems, but it is unlikely that in the next few years a vaccine against MenB that can promote good protection against multiple strains of MenB responsible for endemic and epidemic diseases will become available. CONCLUSIONS In order to make the best decision about recommendations on immunization practices, better quality surveillance data are required. In Brazil, MenC was responsible for about 2,000 cases per year during the last 10 years. New conjugate vaccines against MenC are very effective and immunogenic, and they should be recommended, especially for children less than 5 years old. Polysaccharide vaccines should be indicated only in epidemic situations and for high-risk groups. Until new vaccines against MenC and MenB are available for routine immunization programs, the most important measure for controlling meningococcal disease is early diagnosis of these infections in order to treat patients and to offer chemoprophylaxis to contacts.
Collapse
Affiliation(s)
- Lucia Ferro Bricks
- Children's Institute, Hospital das Clínicas, Faculty of Medicine, University of São Paulo
| |
Collapse
|
354
|
The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc Natl Acad Sci U S A 2003; 100:11660-5. [PMID: 14500782 PMCID: PMC208814 DOI: 10.1073/pnas.1832124100] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2003] [Indexed: 11/18/2022] Open
Abstract
Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) approximately 500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) widespread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications.
Collapse
|
355
|
De Gregorio E, Abrescia C, Carlomagno MS, Di Nocera PP. Ribonuclease III-mediated processing of specific Neisseria meningitidis mRNAs. Biochem J 2003; 374:799-805. [PMID: 12826014 PMCID: PMC1223648 DOI: 10.1042/bj20030533] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Revised: 06/16/2003] [Accepted: 06/25/2003] [Indexed: 11/17/2022]
Abstract
Approx. 2% of the Neisseria meningitidis genome consists of small DNA insertion sequences known as Correia or nemis elements, which feature TIRs (terminal inverted repeats) of 26-27 bp in length. Elements interspersed with coding regions are co-transcribed with flanking genes into mRNAs, processed at double-stranded RNA structures formed by TIRs. N. meningitidis RNase III (endoribonuclease III) is sufficient to process nemis+ RNAs. RNA hairpins formed by nemis with the same termini (26/26 and 27/27 repeats) are cleaved. By contrast, bulged hairpins formed by 26/27 repeats inhibit cleavage, both in vitro and in vivo. In electrophoretic mobility shift assays, all hairpin types formed similar retarded complexes upon incubation with RNase III. The levels of corresponding nemis+ and nemis- mRNAs, and the relative stabilities of RNA segments processed from nemis+ transcripts in vitro, may both vary significantly.
Collapse
Affiliation(s)
- Eliana De Gregorio
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy
| | | | | | | |
Collapse
|
356
|
Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MTG, Churcher CM, Bentley SD, Mungall KL, Cerdeño-Tárraga AM, Temple L, James K, Harris B, Quail MA, Achtman M, Atkin R, Baker S, Basham D, Bason N, Cherevach I, Chillingworth T, Collins M, Cronin A, Davis P, Doggett J, Feltwell T, Goble A, Hamlin N, Hauser H, Holroyd S, Jagels K, Leather S, Moule S, Norberczak H, O'Neil S, Ormond D, Price C, Rabbinowitsch E, Rutter S, Sanders M, Saunders D, Seeger K, Sharp S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Unwin L, Whitehead S, Barrell BG, Maskell DJ. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 2003; 35:32-40. [PMID: 12910271 DOI: 10.1038/ng1227] [Citation(s) in RCA: 737] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Accepted: 07/23/2003] [Indexed: 11/10/2022]
Abstract
Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica are closely related Gram-negative beta-proteobacteria that colonize the respiratory tracts of mammals. B. pertussis is a strict human pathogen of recent evolutionary origin and is the primary etiologic agent of whooping cough. B. parapertussis can also cause whooping cough, and B. bronchiseptica causes chronic respiratory infections in a wide range of animals. We sequenced the genomes of B. bronchiseptica RB50 (5,338,400 bp; 5,007 predicted genes), B. parapertussis 12822 (4,773,551 bp; 4,404 genes) and B. pertussis Tohama I (4,086,186 bp; 3,816 genes). Our analysis indicates that B. parapertussis and B. pertussis are independent derivatives of B. bronchiseptica-like ancestors. During the evolution of these two host-restricted species there was large-scale gene loss and inactivation; host adaptation seems to be a consequence of loss, not gain, of function, and differences in virulence may be related to loss of regulatory or control functions.
Collapse
Affiliation(s)
- Julian Parkhill
- The Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
357
|
Antignac A, Boneca IG, Rousselle JC, Namane A, Carlier JP, Vázquez JA, Fox A, Alonso JM, Taha MK. Correlation between alterations of the penicillin-binding protein 2 and modifications of the peptidoglycan structure in Neisseria meningitidis with reduced susceptibility to penicillin G. J Biol Chem 2003; 278:31529-35. [PMID: 12799360 DOI: 10.1074/jbc.m304607200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reduced susceptibility to penicillin G in Neisseria meningitidis is directly correlated with alterations in the penA gene, which encodes the penicillin-binding protein 2 (PBP2). Using purified PBP2s from different backgrounds, we confirmed that the reduced susceptibility to penicillin G is associated with a decreased affinity of altered PBP2s for penicillin G. Infrared spectroscopy analysis using isogenic penicillin-susceptible strains and strains with reduced susceptibility to penicillin G suggested that the meningococcal cell wall is also modified in a penA-dependent manner. Moreover, reverse-phase high pressure liquid chromatography and mass spectrometry analysis of these meningococcal strains confirmed the modifications of peptidoglycan components and showed an increase in the peaks corresponding to pentapeptide-containing muropeptides. These results suggest that the D,D-transpeptidase and/or D,D-carboxypeptidase activities of PBP2 are modified by the changes in penA gene.
Collapse
Affiliation(s)
- Aude Antignac
- Unité des Neisseria and Centre National de Référence des Méningocoques, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
358
|
Antignac A, Rousselle JC, Namane A, Labigne A, Taha MK, Boneca IG. Detailed structural analysis of the peptidoglycan of the human pathogen Neisseria meningitidis. J Biol Chem 2003; 278:31521-8. [PMID: 12799361 DOI: 10.1074/jbc.m304749200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used reverse-phase high pressure liquid chromatography (HPLC), matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and post source decay analysis (MALDI-PSD) to determine the muropeptide composition of the human pathogen Neisseria meningitidis. Structural assignment was determined for 28 muropeptide species isolated after HPLC separation and purification. Fourteen of these muropeptides were O-acetylated to different degrees. We identified the entire O-acetylation spectrum of dimers and trimers both in muropeptides and 1,6-anhydromuropeptides. On average, one of three disaccharides was O-acetylated. Furthermore, the degree of cross-linking of the N. meningitidis peptidoglycan was around 39% in all the strains analyzed. MALDI-PSD analysis of several muropeptide species indicated that meningococci only synthesize D-alanyl-meso-diaminopimelate cross-bridges. No muropeptides representative of covalent linkages of lipoproteins to the peptidoglycan could be identified, unlike in Escherichia coli. Finally, comparison of the muropeptide composition of penicillin-susceptible and penicillin-intermediate clinical strains of meningococci showed a positive correlation between the minimum inhibitory concentration (MIC) of penicillin G and the amount of muropeptides carrying an intact pentapeptide chain in the peptidoglycan. This suggests that reduced susceptibility to penicillin G in N. meningitidis is associated with a decrease in d,d-carboxypeptidase activity and/or D,D-transpeptidase activity.
Collapse
Affiliation(s)
- Aude Antignac
- Unité des Neisseria and Centre National de Référence des Méningocoques, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
359
|
Power PM, Roddam LF, Rutter K, Fitzpatrick SZ, Srikhanta YN, Jennings MP. Genetic characterization of pilin glycosylation and phase variation in Neisseria meningitidis. Mol Microbiol 2003; 49:833-47. [PMID: 12864863 DOI: 10.1046/j.1365-2958.2003.03602.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pili of Neisseria meningitidis are a key virulence factor, being the major adhesin of this capsulate organism and contributing to specificity for the human host. Pili are post-translationally modified by addition of either an O-linked trisaccharide, Gal (beta1-4) Gal (alpha1-3) 2,4-diacetamido-2,4,6-trideoxyhexose or an O-linked disaccharide Gal (alpha1,3) GlcNAc. The role of these structures in meningococcal pathogenesis has not been resolved. In previous studies we identified two separate genetic loci, pglA and pglBCD, involved in pilin glycosylation. Putative functions have been allocated to these genes; however, there are not enough genes to account for the complete biosynthesis of the described structures, suggesting additional genes remain to be identified. In addition, it is not known why some strains express the trisaccharide structure and some the disaccharide structure. In order to find additional genes involved in the biosynthesis of these structures, we used the recently published group A strain Z2491 and group B strain MC58 Neisseria meningitidis genomes and the unfinished Neisseria meningitidis group C strain FAM18 and Neisseria gonorrhoeae strain FA1090 genomes to identify novel genes involved in pilin glycosylation, based on homology to known oligosaccharide biosynthetic genes. We identified a new gene involved in pilin glycosylation designated pglE and examined four additional genes pglB/B2, pglF, pglG and pglH. A strain survey revealed that pglE and pglF were present in each strain examined. The pglG, pglH and pglB2 polymorphisms were not found in strain C311 musical sharp 3 but were present in a large number of clinical isolates. Insertional mutations were constructed in pglE and pglF in N. meningitidis strain C311 musical sharp 3, a strain with well-defined lipopolysaccharide (LPS) and pilin-linked glycan structures. Increased gel migration of the pilin subunit molecules of pglE and pglF mutants was observed by Western analysis, indicating truncation of the trisaccharide structure. Antisera specific for the C311 musical sharp 3 trisaccharide failed to react with pilin from these pglE and pglF mutants. GC-MS analysis of the sugar composition of the pglE mutant showed a reduction in galactose compared with C311 musical sharp 3 wild type. Analysis of amino acid sequence homologies has suggested specific roles for pglE and pglF in the biosynthesis of the trisaccharide structure. Further, we present evidence that pglE, which contains heptanucleotide repeats, is responsible for the phase variation between trisaccharide and disaccharide structures in strain C311 musical sharp 3 and other strains. We also present evidence that pglG, pglH and pglB2 are potentially phase variable.
Collapse
Affiliation(s)
- P M Power
- Department of Microbiology and Parasitology, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
360
|
Abstract
The first decade of the millennium should mark the beginning of a new era in vaccine development, reaping the rewards of advances in genome characterization, antigen identification, understanding the molecular bases of protective immune responses, and adjuvant design and development. Advances in all of these areas have culminated in vaccine candidates entering clinical testing. These include vaccines against two of humankind's oldest and deadliest diseases, tuberculosis and malaria. Several vaccine candidates for each of these diseases will be tested in humans during the next few years. A candidate vaccine for leishmaniasis, an infection that has taught us much about T-cell regulation of protection and disease in animal models, has been developed and is now in the clinic. There are indications both in animal models and in patients that vaccines may be used not only to protect but also to treat leishmania infections.
Collapse
Affiliation(s)
- Steven G Reed
- Infectious Disease Research Institute, Seattle, WA 98104, USA.
| | | |
Collapse
|
361
|
De Gregorio E, Abrescia C, Carlomagno MS, Di Nocera PP. Asymmetrical distribution of Neisseria miniature insertion sequence DNA repeats among pathogenic and nonpathogenic Neisseria strains. Infect Immun 2003; 71:4217-21. [PMID: 12819122 PMCID: PMC161981 DOI: 10.1128/iai.71.7.4217-4221.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria miniature insertion sequences (nemis) are miniature DNA insertion sequences found in Neisseria species. Out of 57 elements closely flanking cellular genes analyzed by PCR, most were conserved in Neisseria meningitidis but not in N. lactamica strains. Since mRNAs spanning nemis are processed by RNase III at hairpins formed by element termini, gene sets could selectively be regulated in meningococci at the posttranscriptional level.
Collapse
Affiliation(s)
- Eliana De Gregorio
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, L. Califano, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | | | | | | |
Collapse
|
362
|
Abstract
The genome sequencing approach has proved to be highly effective and invaluable for gaining an insight on structure of bacteria genomes and the biology and evolution of bacteria. The diversity of bacteria genomes is beyond expectation. Gaining a full understanding of the biology and pathogenic mechanisms of these pathogens will be a major task because on an average only approximately 69% of the encoded proteins in each genome have known functions. Genome sequence analyses have identified novel putative virulence genes, vaccine candidates, targets for antibacterial drugs, and specific diagnostic probes. Microarray technology that makes use of the genomic sequences of human and bacterial pathogens will be a major tool for gaining full understanding of the complexity of host-pathogen interactions and mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Voon Loong Chan
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
363
|
Abstract
Molecular genetics and genomics have become highly relevant tools in the field of pediatric critical care medicine. The most immediate examples involve the use of molecular genetics as routine diagnostic tests (eg, detection of herpes simplex virus by PCR). Perhaps the most exciting and promising examples involve the research efforts based in these fields, which hold the potential to gain novel insight regarding the complex mechanisms involved in critical illness. Ultimately, the generation of more comprehensive and fundamental knowledge can lead to the design of more effective and specific therapeutic strategies.
Collapse
Affiliation(s)
- Thomas P Shanley
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | | |
Collapse
|
364
|
Stafford GP, Scanlan J, McDonald IR, Murrell JC. rpoN, mmoR and mmoG, genes involved in regulating the expression of soluble methane monooxygenase in Methylosinus trichosporium OB3b. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1771-1784. [PMID: 12855729 DOI: 10.1099/mic.0.26060-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The methanotrophic bacterium Methylosinus trichosporium OB3b converts methane to methanol using two distinct forms of methane monooxygenase (MMO) enzyme: a cytoplasmic soluble form (sMMO) and a membrane-bound form (pMMO). The transcription of these two operons is known to proceed in a reciprocal fashion with sMMO expressed at low copper-to-biomass ratios and pMMO at high copper-to-biomass ratios. Transcription of the smmo operon is initiated from a sigma(N) promoter 5' of mmoX. In this study the genes encoding sigma(N) (rpoN) and a typical sigma(N)-dependent transcriptional activator (mmoR) were cloned and sequenced. mmoR, a regulatory gene, and mmoG, a gene encoding a GroEL homologue, lie 5' of the structural genes for the sMMO enzyme. Subsequent mutation of rpoN and mmoR by marker-exchange mutagenesis resulted in strains Gm1 and JS1, which were unable to express functional sMMO or initiate transcription of mmoX. An rpoN mutant was also unable to fix nitrogen or use nitrate as sole nitrogen source, indicating that sigma(N) plays a role in both nitrogen and carbon metabolism in Ms. trichosporium OB3b. The data also indicate that mmoG is transcribed in a sigma(N)- and MmoR-independent manner. Marker-exchange mutagenesis of mmoG revealed that MmoG is necessary for smmo gene transcription and activity and may be an MmoR-specific chaperone required for functional assembly of transcriptionally competent MmoR in vivo. The data presented allow the proposal of a more complete model for copper-mediated regulation of smmo gene expression.
Collapse
Affiliation(s)
- Graham P Stafford
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Julie Scanlan
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Ian R McDonald
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - J Colin Murrell
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
365
|
Abstract
Bacterial genome nucleotide sequences are being completed at a rapid and increasing rate. Integrated virus genomes (prophages) are common in such genomes. Fifty-one of the 82 such genomes published to date carry prophages, and these contain 230 recognizable putative prophages. Prophages can constitute as much as 10-20% of a bacterium's genome and are major contributors to differences between individuals within species. Many of these prophages appear to be defective and are in a state of mutational decay. Prophages, including defective ones, can contribute important biological properties to their bacterial hosts. Therefore, if we are to comprehend bacterial genomes fully, it is essential that we are able to recognize accurately and understand their prophages from nucleotide sequence analysis. Analysis of the evolution of prophages can shed light on the evolution of both bacteriophages and their hosts. Comparison of the Rac prophages in the sequenced genomes of three Escherichia coli strains and the Pnm prophages in two Neisseria meningitidis strains suggests that some prophages can lie in residence for very long times, perhaps millions of years, and that recombination events have occurred between related prophages that reside at different locations in a bacterium's genome. In addition, many genes in defective prophages remain functional, so a significant portion of the temperate bacteriophage gene pool resides in prophages.
Collapse
Affiliation(s)
- Sherwood Casjens
- Department of Pathology, University of Utah Medical School, Salt Lake City, UT 84132-2501, USA.
| |
Collapse
|
366
|
Dove JE, Yasukawa K, Tinsley CR, Nassif X. Production of the signalling molecule, autoinducer-2, by Neisseria meningitidis: lack of evidence for a concerted transcriptional response. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1859-1869. [PMID: 12855737 DOI: 10.1099/mic.0.26185-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neisseria meningitidis is a Gram-negative bacterium which is an important causative agent of septicaemia and meningitis. LuxS has been shown to be involved in the biosynthesis of a quorum sensing molecule, autoinducer-2 (AI-2), known to play a role in virulence in Escherichia coli, as well as other bacteria. Evidence that serogroup B of N. meningitidis produces AI-2, along with the observation that a luxS mutant of this strain had attenuated virulence in an infant rat model of bacteraemia, led to further investigation of the role of this quorum sensing molecule in N. meningitidis. In this study, it is demonstrated that AI-2 is not involved in regulating growth of meningococci, either in culture or in contact with epithelial cells. Furthermore, transcriptional profiling using DNA microarrays shows an absence of the concerted regulation seen in other bacteria. Taken together, these data suggest that in N. meningitidis, AI-2 may be a metabolic by-product and not a cell-to-cell signalling molecule.
Collapse
Affiliation(s)
- Joanne E Dove
- Laboratoire de Microbiologie, INSERM U570, Faculté de Médecine Necker-Enfants Malades, 75015 Paris, France
| | - Kazutoyo Yasukawa
- Laboratoire de Microbiologie, INSERM U570, Faculté de Médecine Necker-Enfants Malades, 75015 Paris, France
| | - Colin R Tinsley
- Laboratoire de Microbiologie, INSERM U570, Faculté de Médecine Necker-Enfants Malades, 75015 Paris, France
| | - Xavier Nassif
- Laboratoire de Microbiologie, INSERM U570, Faculté de Médecine Necker-Enfants Malades, 75015 Paris, France
| |
Collapse
|
367
|
Stollenwerk N, Jansen VAA. Meningitis, pathogenicity near criticality: the epidemiology of meningococcal disease as a model for accidental pathogens. J Theor Biol 2003; 222:347-59. [PMID: 12732481 DOI: 10.1016/s0022-5193(03)00041-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We formulate and analyse a model for infectious diseases transmitted by asymptomatic carriers finding, that if harmless and pathogenic strains of the infected agent compete, frequent outbreaks of the pathogenic strains can occur. A counterintuitively high number of clustered outbreaks at low pathogenicity in our model compares well with observations in diseases with severe and often fatal results for the host, as for example in meningitis. These clustered outbreaks can be described by the typical scaling behaviour around criticality. The epidemic model is a susceptible-infected-recovered system (SIR) for the harmless infective agent, acting as a background to a mutant strain Y which occasionally creates severely affected hosts X. The full system of SIRYX is described in the master equation framework, confirming limiting assumptions about a reduced YX-system with the SIR-system in stationarity. In this limiting case we can analytically show convergence to power law scaling typical for critical states, as well as the divergence of the variance of outbreaks near criticality. These large fluctuations of outbreaks of accidental pathogens as mutants of otherwise harmless commensal organisms is the challenging new feature of our model for future epidemiology of diseases like meningococcal disease.
Collapse
Affiliation(s)
- Nico Stollenwerk
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK.
| | | |
Collapse
|
368
|
Deghmane AE, Larribe M, Giorgini D, Sabino D, Taha MK. Differential expression of genes that harbor a common regulatory element in Neisseria meningitidis upon contact with target cells. Infect Immun 2003; 71:2897-901. [PMID: 12704165 PMCID: PMC153214 DOI: 10.1128/iai.71.5.2897-2901.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of several genes in Neisseria meningitidis upon contact with epithelial cells was associated with the presence of the contact regulatory elements of NEISSERIA: These genes are involved in various aspects of meningococcal biology and could be coordinately regulated upon contact with target cells.
Collapse
|
369
|
Jose J, Otto GW, Meyer TF. The integration site of the iga gene in commensal Neisseria sp. Mol Genet Genomics 2003; 269:197-204. [PMID: 12720087 DOI: 10.1007/s00438-002-0799-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2002] [Accepted: 12/04/2002] [Indexed: 11/30/2022]
Abstract
An IgA1 protease is produced by the human pathogens Neisseria gonorrhoeae and N. meningitidis but not by related non-pathogenic, commensal, Neisseria species. In this study, the chromosomal iga locus was characterized in the N. gonorrhoeae strain MS11 and compared to corresponding loci in N. meningitidis and commensal Neisseria species. In N. gonorrhoeae, the genes trpB and ksgA were found immediately downstream of iga. In addition to comL and comA, a homolog of the Escherichia coli YFII gene was identified upstream of iga. Each gene in the iga region (YFII and comL, comA and iga, and trpB and ksgA) is transcribed in the opposite direction to its neighbors. The comL/ comA and iga/ trpB pairs each have a transcriptional terminator in the correct position for joint use. These terminators contain the common gonococcal DNA uptake sequence (DUS). A highly conserved direct repeat of 25 bp located immediately adjacent to the iga gene in N. gonorrhoeae was also found in N. meningitidis. In Southern hybridization experiments, no homology to iga was detectable in the chromosomal DNAs of the commensal species N. mucosa, N. lactamica, N. flavescens, N. cinerea, N. subflava, N. flava, N. sicca or N. elongata. When N. gonorrhoeae comL and trpB were used as probes, signals were detected on the same restriction fragment in six of the eight species. This indicated that commensal Neisseria species share a possible integration site for the iga gene between comA and trpB. The region between comA and trpB was therefore amplified by PCR. The fragment obtained from N. lactamica showed a high degree of homology to gonococcal comA and trpB, respectively, but iga was replaced by a sequence of 13 bp that shows no homology to any known gonococcal sequence. Our data suggest that iga was acquired by a common ancestor of N. gonorrhoeae and N. meningitidis rather than being distributed by horizontal gene transfer. N. lactamica, which is more closely related to N. gonorrhoeae than other commensals, may have lost iga by deletion.
Collapse
Affiliation(s)
- J Jose
- Abteilung Molekulare Biologie, Max-Planck-Institut für Infektionsbiologie, Schumannstrasse 20/21, 10117 Berlin, Germany
| | | | | |
Collapse
|
370
|
Morelle S, Carbonnelle E, Nassif X. The REP2 repeats of the genome of Neisseria meningitidis are associated with genes coordinately regulated during bacterial cell interaction. J Bacteriol 2003; 185:2618-27. [PMID: 12670987 PMCID: PMC152611 DOI: 10.1128/jb.185.8.2618-2627.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interaction with host cells is essential in meningococcal pathogenesis especially at the blood-brain barrier. This step is likely to involve a common regulatory pathway allowing coordinate regulation of genes necessary for the interaction with endothelial cells. The analysis of the genomic sequence of Neisseria meningitidis Z2491 revealed the presence of many repeats. One of these, designated REP2, contains a -24/-12 type promoter and a ribosome binding site 5 to 13 bp before an ATG. In addition most of these REP2 sequences are located immediately upstream of an ORF. Among these REP2-associated genes are pilC1 and crgA, described as being involved in steps essential for the interaction of N. meningitidis with host cells. Furthermore, the REP2 sequences located upstream of pilC1 and crgA correspond to the previously identified promoters known to be induced during the initial localized adhesion of N. meningitidis with human cells. This characteristic led us to hypothesize that at least some of the REP2-associated genes were upregulated under the same circumstances as pilC1 and crgA. Quantitative PCR in real time demonstrated that the expression of 14 out of 16 REP2-associated genes were upregulated during the initial localized adhesion of N. meningitidis. Taken together, these data suggest that these repeats control a set of genes necessary for the efficient interaction of this pathogen with host cells. Subsequent mutational analysis was performed to address the role of these genes during meningococcus-cell interaction.
Collapse
Affiliation(s)
- Sandrine Morelle
- INSERM U570, Faculté de Médecine Necker-Enfants Malades, Université René Descartes, Paris, France
| | | | | |
Collapse
|
371
|
Zhu P, Klutch MJ, Derrick JP, Prince SM, Tsang RSW, Tsai CM. Identification of opcA gene in Neisseria polysaccharea: interspecies diversity of Opc protein family. Gene 2003; 307:31-40. [PMID: 12706886 DOI: 10.1016/s0378-1119(02)01208-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The gene encoding the outer membrane adhesin/invasin protein OpcA was previously described in the genomes of two pathogenic Neisseria species, N. meningitidis (Nm) and N. gonorrhoeae (Ng). In order to understand the presence or absence of opcA in nonpathogenic Neisseria species, 13 strains of N. polysaccharea (Np), four strains of N. lactamica, three strains of N. subflava and nine strains of other species were examined by DNA hybridization, polymerase chain reaction (PCR) and nucleotide sequencing. The opcA gene was found in two Np strains (85322 and 89357). The Np-opcA gene is a novel member of this gene family with 93% homology to Ng-opcA. Comparison of opcA-surrounding regions among eight Neisseria strains revealed five types of genetic organization at the opcA locus in Neisseria, which result from insertion or deletion of genetic elements at the upstream region of opcA. Comparison of the deduced peptide sequences from two Np strains, two representative Ng strains, two representative Nm strains and 13 Nm sequence variants demonstrates interspecies diversity of the OpcA protein family with conserved transmembrane regions and species-specific polymorphism at the surface-exposed loops and periplasmic turns. Reverse transcription-PCR analysis and Northern blotting showed that Np-opcA was transcribable. From an alignment of the Np-OpcA and Ng-OpcA sequences against the three-dimensional crystal structure of Nm-OpcA we conclude that there is no obvious structural reason why these proteins would not be able to form stable, folded, outer membrane proteins. The data presented here provide additional information for understanding the distribution, variation and expression of opcA in Neisseria.
Collapse
Affiliation(s)
- Peixuan Zhu
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, FDA, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
372
|
Masignani V, Comanducci M, Giuliani MM, Bambini S, Adu-Bobie J, Arico B, Brunelli B, Pieri A, Santini L, Savino S, Serruto D, Litt D, Kroll S, Welsch JA, Granoff DM, Rappuoli R, Pizza M. Vaccination against Neisseria meningitidis using three variants of the lipoprotein GNA1870. J Exp Med 2003; 197:789-99. [PMID: 12642606 PMCID: PMC2193853 DOI: 10.1084/jem.20021911] [Citation(s) in RCA: 338] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sepsis and meningitis caused by serogroup B meningococcus are devastating diseases of infants and young adults, which cannot yet be prevented by vaccination. By genome mining, we discovered GNA1870, a new surface-exposed lipoprotein of Neisseria meningitidis that induces high levels of bactericidal antibodies. The antigen is expressed by all strains of N. meningitidis tested. Sequencing of the gene in 71 strains representative of the genetic and geographic diversity of the N. meningitidis population, showed that the protein can be divided into three variants. Conservation within each variant ranges between 91.6 to 100%, while between the variants the conservation can be as low as 62.8%. The level of expression varies between strains, which can be classified as high, intermediate, and low expressors. Antibodies against a recombinant form of the protein elicit complement-mediated killing of the strains that carry the same variant and induce passive protection in the infant rat model. Bactericidal titers are highest against those strains expressing high yields of the protein; however, even the very low expressors are efficiently killed. The novel antigen is a top candidate for the development of a new vaccine against meningococcus.
Collapse
|
373
|
Gold R. Epidemiology of meningococcal disease in light of recent Hajj-associated outbreaks. Clin Infect Dis 2003; 36:684-6. [PMID: 12627351 DOI: 10.1086/367863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2002] [Accepted: 11/18/2002] [Indexed: 11/03/2022] Open
|
374
|
Geoffroy MC, Floquet S, Métais A, Nassif X, Pelicic V. Large-scale analysis of the meningococcus genome by gene disruption: resistance to complement-mediated lysis. Genome Res 2003; 13:391-8. [PMID: 12618369 PMCID: PMC430250 DOI: 10.1101/gr.664303] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Accepted: 12/04/2002] [Indexed: 11/24/2022]
Abstract
The biologic role of a majority of the Neisseria meningitidis 2100 predicted coding regions is still to be assigned or experimentally confirmed. Determining the phenotypic effect of gene disruption being a fundamental approach to understanding gene function, we used high-density signature-tagged transposon mutagenesis, followed by a large-scale sequencing of the transposon insertion sites, to construct a genome-wide collection of mutants. The sequencing results for the first half of the 4548 mutants composing the library suggested that we have mutations in 80%-90% of N. meningitidis nonessential genes. This was confirmed by a whole-genome identification of the genes required for resistance to complement-mediated lysis, a key to meningococcal virulence. We show that all the genes we identified, including four previously uncharacterized, were important for the synthesis of the polysialic acid capsule or the lipooligosaccharide (LOS), suggesting that these are likely to be the only meningococcal attributes necessary for serum resistance. Our work provides a valuable and lasting resource that may lead to a global map of gene function in N. meningitidis.
Collapse
|
375
|
Segal S, Pollard AJ. The future of meningitis vaccines. HOSPITAL MEDICINE (LONDON, ENGLAND : 1998) 2003; 64:161-7. [PMID: 12669483 DOI: 10.12968/hosp.2003.64.3.1799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Without effective vaccines meningitis remains a substantial worldwide threat with major health-care implications. A number of advances have been made in vaccine design and implementation over the last decade, with new vaccine initiatives providing substantial promise for the future reduction of global disease burden.
Collapse
Affiliation(s)
- S Segal
- Department of Paediatrics, John Radcliffe Hospital, Oxford OX3 9DU
| | | |
Collapse
|
376
|
Bentley SD, Maiwald M, Murphy LD, Pallen MJ, Yeats CA, Dover LG, Norbertczak HT, Besra GS, Quail MA, Harris DE, von Herbay A, Goble A, Rutter S, Squares R, Squares S, Barrell BG, Parkhill J, Relman DA. Sequencing and analysis of the genome of the Whipple's disease bacterium Tropheryma whipplei. Lancet 2003; 361:637-44. [PMID: 12606174 DOI: 10.1016/s0140-6736(03)12597-4] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Whipple's disease is a rare multisystem chronic infection, involving the intestinal tract as well as various other organs. The causative agent, Tropheryma whipplei, is a Gram-positive bacterium about which little is known. Our aim was to investigate the biology of this organism by generating and analysing the complete DNA sequence of its genome. METHODS We isolated and propagated T whipplei strain TW08/27 from the cerebrospinal fluid of a patient diagnosed with Whipple's disease. We generated the complete sequence of the genome by the whole genome shotgun method, and analysed it with a combination of automatic and manual bioinformatic techniques. FINDINGS Sequencing revealed a condensed 925938 bp genome with a lack of key biosynthetic pathways and a reduced capacity for energy metabolism. A family of large surface proteins was identified, some associated with large amounts of non-coding repetitive DNA, and an unexpected degree of sequence variation. INTERPRETATION The genome reduction and lack of metabolic capabilities point to a host-restricted lifestyle for the organism. The sequence variation indicates both known and novel mechanisms for the elaboration and variation of surface structures, and suggests that immune evasion and host interaction play an important part in the lifestyle of this persistent bacterial pathogen.
Collapse
Affiliation(s)
- Stephen D Bentley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
377
|
Abstract
Mapping, and ultimately preventing, the dissemination of infectious agents is an important topic in public health. Newly developed molecular-microbiological methods have contributed significantly to recent advances in the efficient tracking of the nosocomial and environmental spread of microbial pathogens. Not only has the application of novel technologies led to improved understanding of microbial epidemiology, but the concepts of population structure and dynamics of many of the medically significant microorganisms have advanced significantly also. Currently, genetic identification of microbes is also within the reach of clinical microbiology laboratory professionals including those without specialized technology research interests. This review summarizes the possibilities for high-throughput molecular-microbiological typing in adequately equipped medical microbiology laboratories from both clinical and fundamental research perspectives. First, the development and application of methods for large-scale comparative typing of serially isolated microbial strains are discussed. The outcome of studies employing these methods allows for long-term epidemiologic surveillance of infectious diseases. Second, recent methods enable an almost nucleotide-by-nucleotide genetic comparison of smaller numbers of strains, thereby facilitating the identification of the genetic basis of, for instance, medically relevant microbiological traits. Whereas the first approach provides insights into the dynamic spread of infectious agents, the second provides insights into intragenomic dynamics and genetic functionality. The current state of technology is summarized, and future perspectives are sketched.
Collapse
Affiliation(s)
- A van Belkum
- Erasmus MC, Department of Medical Microbiology & Infectious Diseases, Rotterdam, The Netherlands.
| |
Collapse
|
378
|
Goulding JN, Stanley J, Olver W, Neal KR, Ala'Aldeen DAA, Arnold C. Independent subsets of amplified fragments from the genome of Neisseria meningitidis identify the same invasive clones of ET37 and ET5. J Med Microbiol 2003; 52:151-154. [PMID: 12543921 DOI: 10.1099/jmm.0.05012-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To determine whether fluorescent amplified-fragment length polymorphism (FAFLP) analysis is an unbiased genome sampling technique, data were analysed from three different primer combinations, amplifying three independent fragment subsets from 123 isolates of Neisseria meningitidis. Using these data, dendrograms were generated with near-identical topologies that identified the same invasive clones of ET37 and ET5 and also identified the same outbreak clusters.
Collapse
Affiliation(s)
- Jonathan N Goulding
- Department of Academic Paediatrics, Imperial College at St Mary's Hospital, London, UK 2Molecular Biology Unit, Virus Reference Division, Central Public Health Laboratory, 61 Colindale Avenue, London NW9 5HT, UK 3,4Molecular Bacteriology and Immunology Group, Division of Microbiology3 and Department of Public Health Medicine and Epidemiology4, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - John Stanley
- Department of Academic Paediatrics, Imperial College at St Mary's Hospital, London, UK 2Molecular Biology Unit, Virus Reference Division, Central Public Health Laboratory, 61 Colindale Avenue, London NW9 5HT, UK 3,4Molecular Bacteriology and Immunology Group, Division of Microbiology3 and Department of Public Health Medicine and Epidemiology4, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Will Olver
- Department of Academic Paediatrics, Imperial College at St Mary's Hospital, London, UK 2Molecular Biology Unit, Virus Reference Division, Central Public Health Laboratory, 61 Colindale Avenue, London NW9 5HT, UK 3,4Molecular Bacteriology and Immunology Group, Division of Microbiology3 and Department of Public Health Medicine and Epidemiology4, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Keith R Neal
- Department of Academic Paediatrics, Imperial College at St Mary's Hospital, London, UK 2Molecular Biology Unit, Virus Reference Division, Central Public Health Laboratory, 61 Colindale Avenue, London NW9 5HT, UK 3,4Molecular Bacteriology and Immunology Group, Division of Microbiology3 and Department of Public Health Medicine and Epidemiology4, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Dlawer A A Ala'Aldeen
- Department of Academic Paediatrics, Imperial College at St Mary's Hospital, London, UK 2Molecular Biology Unit, Virus Reference Division, Central Public Health Laboratory, 61 Colindale Avenue, London NW9 5HT, UK 3,4Molecular Bacteriology and Immunology Group, Division of Microbiology3 and Department of Public Health Medicine and Epidemiology4, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Catherine Arnold
- Department of Academic Paediatrics, Imperial College at St Mary's Hospital, London, UK 2Molecular Biology Unit, Virus Reference Division, Central Public Health Laboratory, 61 Colindale Avenue, London NW9 5HT, UK 3,4Molecular Bacteriology and Immunology Group, Division of Microbiology3 and Department of Public Health Medicine and Epidemiology4, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
379
|
Rouquette-Loughlin C, Dunham SA, Kuhn M, Balthazar JT, Shafer WM. The NorM efflux pump of Neisseria gonorrhoeae and Neisseria meningitidis recognizes antimicrobial cationic compounds. J Bacteriol 2003; 185:1101-6. [PMID: 12533487 PMCID: PMC142806 DOI: 10.1128/jb.185.3.1101-1106.2003] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Neisseria gonorrhoeae and Neisseria meningitidis, we identified a gene that would encode a protein highly similar to NorM of Vibrio parahaemolyticus (Y. Morita et al., Antimicrob. Agents Chemother. 42:1778-1782, 1998). A nonpolar insertional mutation in either the gonococcal or meningococcal norM gene resulted in increased bacterial sensitivity to compounds harboring a quaternary ammonium on an aromatic ring (e.g., ethidium bromide, acriflavine hydrochloride, 2-N-methylellipticinium, and berberine). The presence of point mutations within the -35 region of a putative norM promoter or a likely ribosome binding site resulted in an increased resistance of gonococci and meningococci to the same compounds, as well as to norfloxacin and ciprofloxacin. Structure-activity relationship studies with putative NorM substrates have found that a cationic moiety is essential for NorM recognition.
Collapse
|
380
|
Guo M, Harvey I, Yang W, Coghill L, Campopiano DJ, Parkinson JA, MacGillivray RTA, Harris WR, Sadler PJ. Synergistic anion and metal binding to the ferric ion-binding protein from Neisseria gonorrhoeae. J Biol Chem 2003; 278:2490-502. [PMID: 12372824 DOI: 10.1074/jbc.m208776200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 34-kDa periplasmic iron-transport protein (FBP) from Neisseria gonorrhoeae (nFBP) contains Fe(III) and (hydrogen)phosphate (synergistic anion). It has a characteristic ligand-to-metal charge-transfer absorption band at 481 nm. Phosphate can be displaced by (bi)carbonate to give Fe.CO(3).nFBP (lambda(max) 459 nm). The local structures of native Fe-PO(4)-nFBP and Fe.CO(3).nFBP were determined by EXAFS at the FeK edge using full multiple scattering analysis. The EXAFS analysis reveals that both phosphate and carbonate ligands bind to FBP in monodentate mode in contrast to transferrins, which bind carbonate in bidentate mode. The EXAFS analysis also suggests an alternative to the crystallographically determined position of the Glu ligand, and this in turn suggests that an H-bonding network may help to stabilize monodentate binding of the synergistic anion. The anions oxalate, pyrophosphate, and nitrilotriacetate also appear to serve as synergistic anions but not sulfate or perchlorate. The oxidation of Fe(II) in the presence of nFBP led to a weak Fe(III).nFBP complex (lambda(max) 471 nm). Iron and phosphate can be removed from FBP at low pH (pH 4.5) in the presence of a large excess of citrate. Apo-FBP is less soluble and less stable than Fe.nFBP and binds relatively weakly to Ga(III) and Bi(III) but not to Co(III) ions, all of which bind strongly to apo-human serum transferrin.
Collapse
Affiliation(s)
- Maolin Guo
- School of Chemistry, University of Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
381
|
Affiliation(s)
- William C Nierman
- Institute for Genomic Research, 9712 Medical Center Drive, Rockville, Maryland 20850, USA
| | | |
Collapse
|
382
|
Tinsley CR, Perrin A, Borezée E, Nassif X. Neisseria microarrays. Methods Enzymol 2003; 358:188-207. [PMID: 12474388 DOI: 10.1016/s0076-6879(02)58090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Colin R Tinsley
- INSERM U570, Faculté de Médecine Necker-Enfants Malades, 75730 Paris, France
| | | | | | | |
Collapse
|
383
|
Abstract
Bacterial systematics has not yet reached a consensus for defining the fundamental unit of biological diversity, the species. The past half-century of bacterial systematics has been characterized by improvements in methods for demarcating species as phenotypic and genetic clusters, but species demarcation has not been guided by a theory-based concept of species. Eukaryote systematists have developed a universal concept of species: A species is a group of organisms whose divergence is capped by a force of cohesion; divergence between different species is irreversible; and different species are ecologically distinct. In the case of bacteria, these universal properties are held not by the named species of systematics but by ecotypes. These are populations of organisms occupying the same ecological niche, whose divergence is purged recurrently by natural selection. These ecotypes can be discovered by several universal sequence-based approaches. These molecular methods suggest that a typical named species contains many ecotypes, each with the universal attributes of species. A named bacterial species is thus more like a genus than a species.
Collapse
Affiliation(s)
- Frederick M Cohan
- Department of Biology, Wesleyan University, Middletown, Connecticut 06459-0170, USA.
| |
Collapse
|
384
|
Amitai G, Belenkiy O, Dassa B, Shainskaya A, Pietrokovski S. Distribution and function of new bacterial intein-like protein domains. Mol Microbiol 2003; 47:61-73. [PMID: 12492854 DOI: 10.1046/j.1365-2958.2003.03283.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hint protein domains appear in inteins and in the C-terminal region of Hedgehog and Hedgehog-like animal developmental proteins. Intein Hint domains are responsible and sufficient for protein-splicing of their host-protein flanks. In Hedgehog proteins the Hint domain autocatalyses its cleavage from the N-terminal domain of the Hedgehog protein by attaching a cholesterol molecule to it. We identified two new types of Hint domains. Both types have active site sequence features of Hint domains but also possess distinguishing sequence features. The new domains appear in more than 50 different proteins from diverse bacteria, including pathogenic species of humans and plants, such as Neisseria meningitidis and Pseudomonas syringae. These new domains are termed bacterial intein-like (BIL) domains. Bacterial intein-like domains are present in variable protein regions and are typically flanked by domains that also appear in secreted proteins such as filamentous haemagglutinin and calcium binding RTX repeats. Phylogenetic and genomic analysis of BIL sequences suggests that they were positively selected for in different lineages. We cloned two BIL domains of different types and showed them to be active. One of the domains efficiently cleaved itself from its C-terminal flank and could also protein-splice its two flanks, in E. coli and in a cell free system. We discuss several possible biological roles for BIL domains including microevolution and post translational modification for generating protein variability.
Collapse
Affiliation(s)
- Gil Amitai
- Molecular Genetics Department and Mass Spectrometry Unit, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
385
|
Snyder LAS, Shafer WM, Saunders NJ. Divergence and transcriptional analysis of the division cell wall (dcw) gene cluster in Neisseria spp. Mol Microbiol 2003; 47:431-42. [PMID: 12519193 DOI: 10.1046/j.1365-2958.2003.03204.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Three of the 18 open reading frames in the division and cell wall synthesis cluster of the pathogenic Neisseria spp. are not present in the clusters of other bacterial species. The region containing two of these, dcaB and dcaC, displays interstrain and interspecies variability uncharacteristic of such clusters. 3' of dcaB is a Correia repeat enclosed element (CREE), which is only present in some strains. It has been suggested that this CREE is a transcriptional terminator, although we demonstrate otherwise. A gearbox-like promoter within this CREE is active in Escherichia coli but not in Neisseria meningitidis. There is an active promoter 5' of dcaC, although its sequence is not conserved. The presence of similarly located promoters has not been demonstrated in other species. In Neisseria lactamica, this promoter involves another dcw-associated CREE, the first demonstration of active promoter generation at the 5' end of this common intergenic, apparently mobile, element. Upstream of this promoter is an inverted pair of neisserial uptake signal sequences, which are commonly considered to be transcriptional terminators. It has been proposed to terminate transcription in this location, although we have demonstrated transcript extending through this uptake signal sequence. dcaC contains a 108 bp tandem repeat, which is present in different copy numbers in the neisserial strains examined. This investigation reveals extensive sequence variation, disputes the presence of transcriptional terminators and identifies active internal promoters in this normally highly conserved cluster of essential genes, and addresses the transcriptional activity of two common neisserial intergenic components.
Collapse
Affiliation(s)
- Lori A S Snyder
- The Sir William Dunn School of Pathology, Univrsity of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | | | |
Collapse
|
386
|
Dietrich G, Kurz S, Hübner C, Aepinus C, Theiss S, Guckenberger M, Panzner U, Weber J, Frosch M. Transcriptome analysis of Neisseria meningitidis during infection. J Bacteriol 2003; 185:155-64. [PMID: 12486052 PMCID: PMC141974 DOI: 10.1128/jb.185.1.155-164.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis is the cause of septicemia and meningococcal meningitis. During the course of infection, N. meningitidis encounters multiple environments within its host, which makes rapid adaptation to environmental changes a crucial factor for neisserial pathogenicity. Employing oligonucleotide-based DNA microarrays, we analyzed the transcriptome of N. meningitidis during two key steps of meningococcal infection, i.e., the interaction with epithelial cells (HeLa cells) and endothelial cells (human brain microvascular endothelial cells). Seventy-two genes were differentially regulated after contact with epithelial cells, and 48 genes were differentially regulated after contact with endothelial cells, including a considerable proportion of well-known virulence genes. While a considerable number of genes were in concordance between bacteria adherent to both cell types, we identified several open reading frames that were differentially regulated in only one system. The data obtained with this novel approach may provide insight into the pathogenicity mechanisms of N. meningitidis and could demonstrate the importance of gene regulation on the transcriptional level during different stages of meningococcal infection.
Collapse
Affiliation(s)
- Guido Dietrich
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
387
|
Aga H, Nishimoto T, Kuniyoshi M, Maruta K, Yamashita H, Higashiyama T, Nakada T, Kubota M, Fukuda S, Kurimoto M, Tsujisaka Y. 6-α-Glucosyltransferase and 3-α-isomaltosyltransferase from Bacillus globisporus N75. J Biosci Bioeng 2003; 95:215-24. [PMID: 16233396 DOI: 10.1016/s1389-1723(03)80020-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Accepted: 10/23/2002] [Indexed: 10/27/2022]
Abstract
A bacterial strain, Bacillus globisporus N75, produced two glycosyltransferases, 6-alpha-glucosyltransferase (6GT) and 3-alpha-isomaltosyltransferase (IMT), jointly catalyzing formation of cyclo-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1--> (CTS) from alpha-1,4-glucan. The N75 enzymes produced CTS from dextrin in a 43.8% yield at the reaction temperature of 50 degrees C, which was 10 degrees C higher than a critical temperature of CTS-forming by the enzymes from B. globisporus C11. The optimum temperatures for 6GT and IMT reactions were 55 degrees C and 50 degrees C, respectively. The thermal stability of both enzymes was 45 degrees C under the condition at pH 6.0 for 60 min. The genes for 6GT and IMT were cloned from the genomic DNA of N75. The amino acid sequences deduced from the 6GT and IMT genes showed 82% and 85% identities, respectively, to the sequences of the enzymes from C11. CTS yield was decreased by high concentrations of the substrate. It was found that the reaction yield was improved by adding cyclomaltodextrin glucanotransferase (CGTase). We demonstrated mass-production of CTS from starch by using the N75 enzymes and CGTase.
Collapse
Affiliation(s)
- Hajime Aga
- Amase Institute, Hayashibara Biochemical Laboratories, Inc., 7-7 Amase-minami-machi, Okayama 700-0834, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
388
|
Zhu P, Tsang RSW, Tsai CM. Nonencapsulated Neisseria meningitidis strain produces amylopectin from sucrose: altering the concept for differentiation between N. meningitidis and N. polysaccharea. J Clin Microbiol 2003; 41:273-8. [PMID: 12517860 PMCID: PMC149584 DOI: 10.1128/jcm.41.1.273-278.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2002] [Revised: 09/02/2002] [Accepted: 10/06/2002] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis is the causative agent of meningococcal sepsis and meningitis. Neisseria polysaccharea is a nonpathogenic species. N. polysaccharea is able to use sucrose to produce amylopectin, a starch-like polysaccharide, which distinguishes it biochemically from the pathogenic species N. meningitidis. The data presented here indicate that this may be an insufficient criterion to distinguish between these two species. The nonencapsulated Neisseria strain 93246 expressed a phenotype of amylopectin production similar to that of N. polysaccharea. However, strain 93246 reacted with N. meningitidis serotype 4 and serosubtype P1.14 monoclonal antibodies and showed the N. meningitidis L1(8) lipo-oligosaccharide immunotype. Further analyses were performed on four genetic loci in strain 93246, and the results were compared with 7 N. meningitidis strains, 13 N. polysaccharea strains, and 2 N. gonorrhoeae strains. Three genetic loci, opcA, siaD, and lgt-1 in strain 93246, were the same as in N. meningitidis. Particularly, the siaD gene encoding polysialyltransferase responsible for biosynthesis of N. meningitidis group B capsule was detected in strain 93246. This siaD gene was inactivated by a frameshift mutation at the poly(C) tract, which makes strain 93246 identical to other nonencapsulated N. meningitidis strains. As expected, the ams gene encoding amylosucrase, responsible for production of amylopectin from sucrose, was detected in strain 93246 and all 13 N. polysaccharea strains but not in N. meningitidis and N. gonorrhoeae strains. These data suggest that strain 93246 is nonencapsulated N. meningitidis but has the ability to produce extracellular amylopectin from sucrose. The gene for amylopectin production in strain 93246 was likely imported from N. polysaccharea by horizontal genetic exchange. Therefore, we conclude that genetic analysis is required to complement the traditional phenotypic classification for the nonencapsulated Neisseria strains.
Collapse
Affiliation(s)
- Peixuan Zhu
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
389
|
AGA HAJIME, NISHIMOTO TOMOYUKI, KUNIYOSHI MIEKO, MARUTA KAZUHIKO, YAMASHITA HIROSHI, HIGASHIYAMA TAKANOBU, NAKADA TETSUYA, KUBOTA MICHIO, FUKUDA SHIGEHARU, KURIMOTO MASASHI, TSUJISAKA YOSHIO. 6-.ALPHA.-Glucosyltransferase and 3-.ALPHA.-Isomaltosyltransferase from Bacillus globisporus N75. J Biosci Bioeng 2003. [DOI: 10.1263/jbb.95.215] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
390
|
Holland PC, Thompson D, Hancock S, Hodge D. Calciphylaxis, proteases, and purpura: an alternative hypothesis for the severe shock, rash, and hypocalcemia associated with meningococcal septicemia. Crit Care Med 2002; 30:2757-61. [PMID: 12483069 DOI: 10.1097/00003246-200212000-00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The hallmarks of severe meningococcal sepsis include the rapid onset of shock, purpuric rash, and metabolic derangement, in particular, hypocalcemia. The severe ecchymoses and purpura associated with meningococcal sepsis are usually attributed to acute thrombotic episodes, attributable to the associated procoagulation disorder. An alternative explanation for the rash is a sudden extravasation of calcium from the intravascular space into the tissues. We will argue that in meningococcal sepsis, cleavage of albumin into fragments by protease(s) occurs and these fragments, along with calcium, cross the endothelium into the interstitium. The fragmentation of albumin and its loss through the endothelium would also provide a more rational explanation for the rapidity of the shock and the hypocalcemia that is so characteristic of the disease.
Collapse
Affiliation(s)
- Philip C Holland
- Department of Paediatrics, General Infirmary at Leeds, Leeds, UK
| | | | | | | |
Collapse
|
391
|
Perrin A, Bonacorsi S, Carbonnelle E, Talibi D, Dessen P, Nassif X, Tinsley C. Comparative genomics identifies the genetic islands that distinguish Neisseria meningitidis, the agent of cerebrospinal meningitis, from other Neisseria species. Infect Immun 2002; 70:7063-72. [PMID: 12438387 PMCID: PMC133019 DOI: 10.1128/iai.70.12.7063-7072.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis colonizes the nasopharynx and, unlike commensal Neisseria species, is capable of entering the bloodstream, crossing the blood-brain barrier, and invading the meninges. The other pathogenic Neisseria species, Neisseria gonorrhoeae, generally causes an infection which is localized to the genitourinary tract. In order to investigate the genetic basis of this difference in disease profiles, we used a strategy of genomic comparison. We used DNA arrays to compare the genome of N. meningitidis with those of N. gonorrhoeae and Neisseria lactamica, a commensal of the nasopharynx. We thus identified sequences conserved among a representative set of virulent strains which are either specific to N. meningitidis or shared with N. gonorrhoeae but absent from N. lactamica. Though these bacteria express dramatically different pathogenicities, these meningococcal sequences were limited and, in contrast to what has been found in other pathogenic bacterial species, they are not organized in large chromosomal islands.
Collapse
Affiliation(s)
- Agnès Perrin
- INSERM U5701 Faculté de Médecine Necker, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|
392
|
Zhu P, Tsai CM, Frasch CE. Immunologic and genetic characterization of lipooligosaccharide variants in a Neisseria meningitidis serogroup C strain. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2002; 34:193-200. [PMID: 12423771 DOI: 10.1111/j.1574-695x.2002.tb00624.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neisseria meningitidis shows great variation in expression of structurally different lipooligosaccharides (LOS) on its cell surface. To better understand the LOS diversity that may occur within an individual strain, a group C wild-type strain, BB305-Tr4, and two stable isogenic LOS variants, Tr5 and Tr7, were selected for this study. SDS-PAGE analysis showed a size reduction of Tr5 and Tr7 LOS compared to that of Tr4. Immunoblotting showed that parental Tr4 LOS reacted with L1, L2 and L3,7 antibodies, variant Tr5 LOS with L1 and L6 antibodies, while Tr7 LOS was non-typeable. Genetic analysis showed that the gene organization at the lgt-1 locus in the three strains was lgtZ,C,A,B,H4 in Tr4, lgtZ,C,A,H4 in Tr5 and lgtZ,C,A,H9 in Tr7. The genetic differences in the three strains were consistent with their phenotypic changes. Sequence comparison revealed two independent recombination events. The first was the recombination of repeated DNA fragments in the flanking regions to delete lgtB in Tr5. The second was the recombination of a fragment of two genes, lgtB and lgtH4, to create an inactive lgtH9 allele with a mosaic structure in Tr7. These findings suggest that besides phase variation, homologous recombination can contribute to the genetic diversity of the lgt locus and to the generation of LOS variation in N. meningitidis.
Collapse
Affiliation(s)
- Peixuan Zhu
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, FDA, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
393
|
Liu SV, Saunders NJ, Jeffries A, Rest RF. Genome analysis and strain comparison of correia repeats and correia repeat-enclosed elements in pathogenic Neisseria. J Bacteriol 2002; 184:6163-73. [PMID: 12399486 PMCID: PMC151967 DOI: 10.1128/jb.184.22.6163-6173.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whole genome sequences of Neisseria meningitidis strains Z2491 and MC58 and Neisseria gonorrhoeae FA1090 were analyzed for Correia repeats (CR) and CR-enclosed elements (CREE). A total of 533, 516, and 256 copies of CR and 270, 261, and 102 copies of CREE were found in these three genomes, respectively. The lengths of CREE range from 28 to 348 bp, and the lengths of multicopy CREE appear mainly in the ranges of 154 to 156 bp and 105 to 107 bp. The distribution of CREE lengths is similar between the two N. meningitidis genomes, with a greater number of 154- to 156-bp CREE (163 and 152 copies in N. meningitidis strain Z2491 and N. meningitidis strain MC58, respectively) than 105- to 107-bp CREE (72 and 77 copies). In the N. gonorrhoeae strain FA1090 genome there are relatively more 105- to 107-bp CREE (51 copies) than 154- to 156-bp CREE (36 copies). The genomic distribution of 107-bp CREE also shows similarity between the two N. meningitidis strains (15 copies share the same loci) and differences between N. meningitidis strains and N. gonorrhoeae FA1090 (only one copy is located in the same locus). Detailed sequence analysis showed that both the terminal inverted repeats and the core regions of CREE are composed of distinct basic sequence blocks. Direct TA dinucleotide repeats exist at the termini of all CREE. A survey of DNA sequence upstream of the sialyltransferase gene, lst, in several Neisseria isolates showed that 5 N. meningitidis strains contain a 107-bp CREE in this region but 25 N. gonorrhoeae strains show an exact absence of a 105-bp sequence block (i.e., the 107-bp CREE without a 5' TA dinucleotide) in the same region. Whole-genome sequence analysis confirmed that this 105-bp indel exists in many homologous 107-bp CREE loci. Thus, we postulate that all CREE are made of target TA with indels of various lengths. Analysis of 107-bp CREE revealed that they exist predominantly in intergenic regions and are often near virulence, metabolic, and transporter genes. The abundance of CREE in Neisseria genomes suggests that they may have played a role in genome organization, function, and evolution. Their differential distribution in different pathogenic Neisseria strains may contribute to the distinct behaviors of each Neisseria species.
Collapse
Affiliation(s)
- Shi V Liu
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | | | |
Collapse
|
394
|
Jaramillo RD, Barraza BC, Polo A, Sará M, Contreras M, Escamilla JE. The aerobic electron transport system of Eikenella corrodens. Can J Microbiol 2002; 48:895-902. [PMID: 12489779 DOI: 10.1139/w02-084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The respiratory system of the fastidious beta-proteobacterium Eikenella corrodens grown with limited oxygen was studied. Membranes showed the highest oxidase activity with ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) or succinate and the lowest activity with NADH and formate. The presence of a bc1-type complex was suggested by the inhibition exerted by 2-heptyl-4-hydroxyquinoline-N-oxide (HOQNO), myxothiazol, and antimycin A on respiration with succinate and by the effect of the latter two inhibitors on the succinate-reduced difference spectra. Respiration with succinate or ascorbate-TMPD was abolished by low KCN concentrations, suggesting the presence of a KCN-sensitive terminal oxidase. Cytochromes b and c were spectroscopically detected after reduction with physiological or artificial electron donors, whereas type a and d cytochromes were not detected. The CO difference spectrum of membranes reduced by dithionite and its photodissociation spectrum (77 K) suggested the presence of a single CO compound that had the spectral features of a cytochrome o-like pigment. High-pressure liquid chromatography analysis of membrane haems confirmed the presence of haem B; in contrast, haems A and O were not detected. Peroxidase staining of membrane type c cytochromes using SDS-PAGE revealed the presence of five bands with apparent molecular masses of 44, 33, 30, 26, and 14 kDa. Based on our results, a tentative scheme of the respiratory chain in E. corrodens, comprising (i) dehydrogenases for succinate, NADH, and formate, (ii) a ubiquinone, (iii) a cytochrome bc1, and (iv) a type-cbb' cytochrome c oxidase, is proposed.
Collapse
Affiliation(s)
- Rubén D Jaramillo
- Grupo de Investigación in Biomembranes (GIBIOM), Facultad Ciencias de la Salud, Centro Seccional de Investigación (CIUL), Universidad Libre Seccional Barranquilla, Colombia.
| | | | | | | | | | | |
Collapse
|
395
|
Urwin R, Holmes EC, Fox AJ, Derrick JP, Maiden MCJ. Phylogenetic Evidence for Frequent Positive Selection and Recombination in the Meningococcal Surface Antigen PorB. Mol Biol Evol 2002; 19:1686-94. [PMID: 12270895 DOI: 10.1093/oxfordjournals.molbev.a003991] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous estimates of rates of synonymous (d(S)) and nonsynonymous (d(N)) substitution among Neisseria meningitidis gene sequences suggested that the surface loops of the variable outer membrane protein PorB were under only weak selection pressure from the host immune response. These findings were consistent with studies indicating that PorB variants were not always protective in immunological and microbiological assays and questioned the suitability of this protein as a vaccine component. PorB, which is expressed at high levels on the surface of the meningococcus, has been implicated in mechanisms of pathogenesis and has also been used as a typing target in epidemiological investigations. In this work, using more precise estimates of selection pressures and recombination rates, we have shown that some residues in the surface loops of PorB are under very strong positive selection, as great as that observed in human immunodeficiency virus-1 surface glycoproteins, whereas amino acids within the loops and the membrane-spanning regions of the protein are under purifying selection, presumably because of structural constraints. Congruence tests showed that recombination occurred at a rate that was not sufficient to erase all phylogenetic similarity and did not greatly bias selection analysis. Homology models of PorB structure indicated that many strongly selected sites encoded residues that were predicted to be exposed to host immune responses, implying that this protein is under strong immune selection and requires further examination as a potential vaccine candidate. These data show that phylogenetic inference can be used to complement immunological and biochemical data in the choice of vaccine candidates.
Collapse
Affiliation(s)
- Rachel Urwin
- The Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, UK
| | | | | | | | | |
Collapse
|
396
|
Zhai Y, Saier MH. The beta-barrel finder (BBF) program, allowing identification of outer membrane beta-barrel proteins encoded within prokaryotic genomes. Protein Sci 2002; 11:2196-207. [PMID: 12192075 PMCID: PMC2373602 DOI: 10.1110/ps.0209002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Many outer membrane proteins (OMPs) in Gram-negative bacteria possess known beta-barrel three-dimensional (3D) structures. These proteins, including channel-forming transmembrane porins, are diverse in sequence but exhibit common structural features. We here report computational analyses of six outer membrane proteins of known 3D structures with respect to (1) secondary structure, (2) hydropathy, and (3) amphipathicity. Using these characteristics, as well as the presence of an N-terminal targeting sequence, a program was developed allowing prediction of integral membrane beta-barrel proteins encoded within any completely sequenced prokaryotic genome. This program, termed the beta-barrel finder (BBF) program, was used to analyze the proteins encoded within the Escherichia coli genome. Out of 4290 sequences examined, 118 (2.8%) were retrieved. Of these, almost all known outer membrane proteins with established beta-barrel structures as well as many probable outer membrane proteins were identified. This program should be useful for predicting the occurrence of outer membrane proteins in bacteria with completely sequenced genomes.
Collapse
Affiliation(s)
- Yufeng Zhai
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | |
Collapse
|
397
|
Mikael LG, Pawelek PD, Labrie J, Sirois M, Coulton JW, Jacques M. Molecular cloning and characterization of the ferric hydroxamate uptake (fhu) operon in Actinobacillus pleuropneumoniae. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2869-2882. [PMID: 12213932 DOI: 10.1099/00221287-148-9-2869] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The bacterium Actinobacillus pleuropneumoniae, a swine pathogen, utilizes ferrichrome as an iron source. This study details the molecular cloning and sequencing of the genes involved in the uptake of this hydroxamate siderophore. Four ferric hydroxamate uptake (fhu) genes, fhuC, fhuD, fhuB and fhuA, were identified in a single operon, and these were found to encode proteins homologous to proteins of the fhu systems of several bacteria, including Escherichia coli. The fhuA gene encodes the 77 kDa outer-membrane protein (OMP) FhuA, the receptor for ferrichrome. FhuD is the 35.6 kDa periplasmic protein responsible for the translocation of ferric hydroxamate from the outer to the inner membrane. FhuC (28.5 kDa) and FhuB (69.4 kDa) are cytoplasmic-membrane-associated proteins that are components of an ABC transporter which internalizes the ferric hydroxamate. Reference strains of A. pleuropneumoniae that represented serotypes 1 to 12 of this organism all tested positive for the four fhu genes. When A. pleuropneumoniae FhuA was affinity-tagged with hexahistidine at its amino terminus and expressed in an E. coli host, the recombinant protein reacted with an mAb against E. coli FhuA, as well as with a polyclonal pig serum raised against an A. pleuropneumoniae infection. Hence, the authors conclude that fhuA is expressed in vivo by A. pleuropneumoniae. Three-dimensional modelling of the OMP FhuA was achieved by threading it to the X-ray crystallographic structure of the homologous protein in E. coli. FhuA from A. pleuropneumoniae was found to have the same overall fold as its E. coli homologue, i.e. it possesses an N-terminal cork domain followed by a C-terminal beta-barrel domain and displays 11 extracellular loops and 10 periplasmic turns.
Collapse
Affiliation(s)
- Leonie G Mikael
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, CanadaJ2S 7C61
| | - Peter D Pawelek
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, CanadaH3A 2B42
| | - Josée Labrie
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, CanadaJ2S 7C61
| | - Marc Sirois
- Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, CanadaG9A 5H73
| | - James W Coulton
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, CanadaH3A 2B42
| | - Mario Jacques
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, CanadaJ2S 7C61
| |
Collapse
|
398
|
Abstract
Repetitive DNA elements are major organizational components of the genome involved in replication, in transmission to daughter cells, and controlling expression of genomic coding sequences. Repetitive elements format the genome system architecture characteristic of each taxonomic group. Appreciating the functional significance of repetitive DNA provides new concepts of genome organization and genome reorganization in evolution.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637, USA.
| |
Collapse
|
399
|
Takahashi K, Okada N. Mosaic structure and retropositional dynamics during evolution of subfamilies of short interspersed elements in African cichlids. Mol Biol Evol 2002; 19:1303-12. [PMID: 12140242 DOI: 10.1093/oxfordjournals.molbev.a004191] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The African cichlid (AFC) family of short interspersed elements (SINEs) is found in the genomes of cichlid fish. The alignment of the sequences of 70 members of this family, isolated from such fish in Africa, revealed the presence of correlated changes in specific nucleotides (diagnostic nucleotides) that allowed us to categorize the various members into six subfamilies, which were designated Af1 through Af6. Dividing the SINE consensus sequence into a 5'-head and 3'-tail region, these subfamilies were defined by various combinations of four types of head region (A-D) and three types of tail region [X, Y, and (YX)], with each region of each type including unique diagnostic nucleotides. The observed structures of the subfamilies Af1 through Af6 were AX, AY, CY, A(YX), BY, and DX, respectively. The formation of such structures might have involved the shuffling of head or tail regions among preexisting and existing (or both) subfamilies of the AFC family (and, probably, even another SINE family or a pseudogene for a tRNA in the case of the Af6 subfamily) by recombination at the so-called core region during the course of evolution. By plotting the timing of the retroposition of individual members of each subfamily on a phylogenetic tree of AFCs, we found that the Af3 and Af6 subfamilies became active only recently in the evolutionary history of these fish. The integrity of the 3'-tails of SINEs, which are, apparently, recognized by reverse transcriptase, has been reported to be indispensable for retention of retropositional activity. Therefore, we postulate that recombination might have been involved in the apparent recent activation of the retroposition of the Af3 and Af6 subfamilies via introduction of active tails (types Y and X, respectively) into potential ancestral sequences that might have had inactive tails. If this hypothesis is correct, shuffling of tail regions among subfamilies by recombination at the core region might have played a role in the recycling of dead copies of AFC SINEs.
Collapse
Affiliation(s)
- Kazuhiko Takahashi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | |
Collapse
|
400
|
Salvatore P, Bucci C, Pagliarulo C, Tredici M, Colicchio R, Cantalupo G, Bardaro M, Del Giudice L, Massardo DR, Lavitola A, Bruni CB, Alifano P. Phenotypes of a naturally defective recB allele in Neisseria meningitidis clinical isolates. Infect Immun 2002; 70:4185-95. [PMID: 12117927 PMCID: PMC128164 DOI: 10.1128/iai.70.8.4185-4195.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis strains belonging to the hypervirulent lineage ET-37 and several unrelated strains are extremely UV sensitive. The phenotype is consequent to the presence of a nonfunctional recB(ET-37) allele carrying multiple missense mutations. Phenotypic analysis has been performed with congenic meningococcal strains harboring either the wild-type recB allele or the recB(ET-37) allele. Congenic recB(ET-37) meningococci, in addition to being sensitive to UV, were defective both in repair of DNA lesions induced by UV treatment and, partially, in recombination-mediated transformation. Consistently, the wild-type, but not the recB(ET-37), allele was able to complement the Escherichia coli recB21 mutation to UV resistance and proficiency in recombination. recB(ET-37) meningococci did not exhibit higher frequencies of spontaneous mutation to rifampin resistance than recB-proficient strains. However, mutation rates were enhanced following UV treatment, a phenomenon not observed in the recB-proficient counterpart. Interestingly, the results of PCR-based assays demonstrated that the presence of the recB(ET-37) allele considerably increased the frequency of recombination at the pilin loci. The main conclusion that can be drawn is that the presence of the defective recB(ET-37) allele in N. meningitidis isolates causes an increase in genetic diversity, due to an ineffective RecBCD-dependent DNA repair and recombination pathway, and an increase in pilin antigenic variation.
Collapse
Affiliation(s)
- Paola Salvatore
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Università di Napoli Federico II, and Centro di Endocrinologia ed Oncologia Sperimentale G. Salvatore, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|