351
|
Lachmandas E, Eckold C, Böhme J, Koeken VACM, Marzuki MB, Blok B, Arts RJW, Chen J, Teng KWW, Ratter J, Smolders EJ, Van den Heuvel C, Stienstra R, Dockrell HM, Newell E, Netea MG, Singhal A, Cliff JM, Van Crevel R. Metformin Alters Human Host Responses to Mycobacterium tuberculosis in Healthy Subjects. J Infect Dis 2020; 220:139-150. [PMID: 30753544 PMCID: PMC6548897 DOI: 10.1093/infdis/jiz064] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/07/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis. METHODS We investigated in vitro and in vivo effects of metformin in humans. RESULTS Metformin added to peripheral blood mononuclear cells from healthy volunteers enhanced in vitro cellular metabolism while inhibiting the mammalian target of rapamycin targets p70S6K and 4EBP1, with decreased cytokine production and cellular proliferation and increased phagocytosis activity. Metformin administered to healthy human volunteers led to significant downregulation of genes involved in oxidative phosphorylation, mammalian target of rapamycin signaling, and type I interferon response pathways, particularly following stimulation with M. tuberculosis, and upregulation of genes involved in phagocytosis and reactive oxygen species production was increased. These in vivo effects were accompanied by a metformin-induced shift in myeloid cells from classical to nonclassical monocytes. At a functional level, metformin lowered ex vivo production of tumor necrosis factor α, interferon γ, and interleukin 1β but increased phagocytosis activity and reactive oxygen species production. CONCLUSION Metformin has a range of potentially beneficial effects on cellular metabolism, immune function, and gene transcription involved in innate host responses to M. tuberculosis.
Collapse
Affiliation(s)
- Ekta Lachmandas
- Department of Internal Medicine, Nijmegen.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen
| | - Clare Eckold
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Julia Böhme
- Singapore Immunology Network, Agency for Science, Technology, and Research
| | - Valerie A C M Koeken
- Department of Internal Medicine, Nijmegen.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen
| | | | - Bastiaan Blok
- Department of Internal Medicine, Nijmegen.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen
| | - Rob J W Arts
- Department of Internal Medicine, Nijmegen.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology, and Research
| | - Karen W W Teng
- Singapore Immunology Network, Agency for Science, Technology, and Research
| | - Jacqueline Ratter
- Department of Internal Medicine, Nijmegen.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen.,Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | - Elise J Smolders
- Department of Internal Medicine, Nijmegen.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen
| | - Corina Van den Heuvel
- Department of Internal Medicine, Nijmegen.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen
| | - Rinke Stienstra
- Department of Internal Medicine, Nijmegen.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen.,Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | - Hazel M Dockrell
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Evan Newell
- Singapore Immunology Network, Agency for Science, Technology, and Research
| | - Mihai G Netea
- Department of Internal Medicine, Nijmegen.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen.,Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Romania
| | - Amit Singhal
- Singapore Immunology Network, Agency for Science, Technology, and Research.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Jacqueline M Cliff
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Reinout Van Crevel
- Department of Internal Medicine, Nijmegen.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen
| |
Collapse
|
352
|
Li T, Qian Y, Miao Z, Zheng P, Shi T, Jiang X, Pan L, Qian F, Yang G, An H, Zheng Y. Xuebijing Injection Alleviates Pam3CSK4-Induced Inflammatory Response and Protects Mice From Sepsis Caused by Methicillin-Resistant Staphylococcus aureus. Front Pharmacol 2020; 11:104. [PMID: 32153410 PMCID: PMC7047170 DOI: 10.3389/fphar.2020.00104] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
A leading cause of death worldwide is sepsis that develops as a dysregulated immune response to infection. Serious infection caused by methicillin-resistant Staphylococcus aureus (MRSA) increases the difficulty of treatment in septic patients. Host-directed therapy (HDT) is an emerging approach to bacterial infections. Xuebijing injection (XBJ), a commercialized injectable prescription from traditional Chinese medicine, has been used as adjuvant therapy for sepsis with a history of 15 years. Whether it plays a protective role in severe infection caused by antibiotic-resistant bacteria is still unknown. In this study, XBJ significantly improved the survival of MRSA-induced sepsis mice. In MRSA-infected mouse model, XBJ down-regulated the expression of inflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, MCP-1, MIP-2, and IL-10 in sera. Besides that, it decreased the bacterial load in spleens, livers, and alleviated tissue damage of lung, liver, and kidney. The combination of XBJ with vancomycin or dexamethasone exhibited a better down-regulatory role of the inflammatory response. Then, the protective mechanism of XBJ was further investigated. XBJ inhibited heat-killed MRSA-induced IL-6 and TNF-α production in mouse macrophages. XBJ also decreased Pam3CSK4 (a synthetic tripalmitoylated lipopeptide mimicking bacterial lipoproteins)-stimulated expression of IL-6, TNF-α, IL-1β, IL-12, etc. in mouse macrophages. Furthermore, XBJ down-regulated the activation of NF-κB, MAPK, and PI3K/Akt pathways in Pam3CSK4-stimulated mouse macrophages. In conclusion, our findings demonstrated that XBJ played a protective role in MRSA-challenged mice and down-regulated the inflammatory response and the activation of signaling pathways initiated by Pam3CSK4. It enlarged the clinical application of XBJ in the treatment of severe bacterial infection, e.g. caused by MRSA.
Collapse
Affiliation(s)
- Tiantian Li
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Qian
- Department of Emergency, Yueyang Hospital of Integrated Chinese and Western Medicine affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhulei Miao
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Shi
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinru Jiang
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingyun Pan
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenghua Qian
- Department of Emergency, Yueyang Hospital of Integrated Chinese and Western Medicine affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guizhen Yang
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huazhang An
- Clinical Cancer Institute, Center of Translational Medicine, Second Military Medical University, Shanghai, China
| | - Yuejuan Zheng
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
353
|
Palucci I, Maulucci G, De Maio F, Sali M, Romagnoli A, Petrone L, Fimia GM, Sanguinetti M, Goletti D, De Spirito M, Piacentini M, Delogu G. Inhibition of Transglutaminase 2 as a Potential Host-Directed Therapy Against Mycobacterium tuberculosis. Front Immunol 2020; 10:3042. [PMID: 32038614 PMCID: PMC6992558 DOI: 10.3389/fimmu.2019.03042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Host-directed therapies (HDTs) are emerging as a potential valid support in the treatment of drug-resistant tuberculosis (TB). Following our recent report indicating that genetic and pharmacological inhibition of transglutaminase 2 (TG2) restricts Mycobacterium tuberculosis (Mtb) replication in macrophages, we aimed to investigate the potentials of the TG2 inhibitors cystamine and cysteamine as HDTs against TB. We showed that both cysteamine and cystamine restricted Mtb replication in infected macrophages when provided at equimolar concentrations and did not exert any antibacterial activity when administered directly on Mtb cultures. Interestingly, infection of differentiated THP-1 mRFP-GFP-LC3B cells followed by the determination of the autophagic intermediates pH distribution (AIPD) showed that cystamine inhibited the autophagic flux while restricting Mtb replication. Moreover, both cystamine and cysteamine had a similar antimicrobial activity in primary macrophages infected with a panel of Mtb clinical strains belonging to different phylogeographic lineages. Evaluation of cysteamine and cystamine activity in the human ex vivo model of granuloma-like structures (GLS) further confirmed the ability of these drugs to restrict Mtb replication and to reduce the size of GLS. The antimicrobial activity of the TG2 inhibitors synergized with a second-line anti-TB drug as amikacin in human monocyte-derived macrophages and in the GLS model. Overall, the results of this study support the potential usefulness of the TG2-inhibitors cysteamine and cystamine as HDTs against TB.
Collapse
Affiliation(s)
- Ivana Palucci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Institute of Microbiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Maulucci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Institute of Physics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Flavio De Maio
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Institute of Microbiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michela Sali
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Institute of Microbiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandra Romagnoli
- Electron Microscopy and Cell Biology Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI), IRCCS, Rome, Italy
| | - Linda Petrone
- Translational Research Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI), IRCCS, Rome, Italy
| | - Gian Maria Fimia
- Electron Microscopy and Cell Biology Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI), IRCCS, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maurizio Sanguinetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Institute of Microbiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI), IRCCS, Rome, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Institute of Physics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mauro Piacentini
- Electron Microscopy and Cell Biology Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI), IRCCS, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Giovanni Delogu
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Institute of Microbiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Mater Olbia Hospital, Olbia, Italy
| |
Collapse
|
354
|
Wu Y, Boulogne C, Carle S, Podinovskaia M, Barth H, Spang A, Cintrat J, Gillet D, Barbier J. Regulation of endo‐lysosomal pathway and autophagic flux by broad‐spectrum antipathogen inhibitor ABMA. FEBS J 2020; 287:3184-3199. [DOI: 10.1111/febs.15201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/10/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yu Wu
- Université Paris‐Saclay CEAINRAE Médicaments et Technologies pour la Santé (MTS) SIMoS Gif‐sur‐Yvette91191France
| | - Claire Boulogne
- IMAGERIE‐GIF Institute for Integrative Biology of the Cell (I2BC) CEA CNRS Université Paris‐Sud Université Paris‐Saclay Gif‐sur‐Yvette France
| | - Stefan Carle
- Institute of Pharmacology and Toxicology University of Ulm Medical Center Germany
| | | | - Holger Barth
- Institute of Pharmacology and Toxicology University of Ulm Medical Center Germany
| | - Anne Spang
- Growth and Development Biozentrum University of Basel Switzerland
| | - Jean‐Christophe Cintrat
- Université Paris‐Saclay CEA INRAE Médicaments et Technologies pour la Santé (MTS) SCBM Gif‐sur‐Yvette91191France
| | - Daniel Gillet
- Université Paris‐Saclay CEAINRAE Médicaments et Technologies pour la Santé (MTS) SIMoS Gif‐sur‐Yvette91191France
| | - Julien Barbier
- Université Paris‐Saclay CEAINRAE Médicaments et Technologies pour la Santé (MTS) SIMoS Gif‐sur‐Yvette91191France
| |
Collapse
|
355
|
Glaría E, Valledor AF. Roles of CD38 in the Immune Response to Infection. Cells 2020; 9:cells9010228. [PMID: 31963337 PMCID: PMC7017097 DOI: 10.3390/cells9010228] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
CD38 is a multifunctional protein widely expressed in cells from the immune system and as a soluble form in biological fluids. CD38 expression is up-regulated by an array of inflammatory mediators, and it is frequently used as a cell activation marker. Studies in animal models indicate that CD38 functional expression confers protection against infection by several bacterial and parasitic pathogens. In addition, infectious complications are associated with anti-CD38 immunotherapy. Although CD38 displays receptor and enzymatic activities that contribute to the establishment of an effective immune response, recent work raises the possibility that CD38 might also enhance the immunosuppressive potential of regulatory leukocytes. This review integrates the current knowledge on the diversity of functions mediated by CD38 in the host defense to infection.
Collapse
|
356
|
Bento CM, Gomes MS, Silva T. Looking beyond Typical Treatments for Atypical Mycobacteria. Antibiotics (Basel) 2020; 9:antibiotics9010018. [PMID: 31947883 PMCID: PMC7168257 DOI: 10.3390/antibiotics9010018] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
The genus Mycobacterium comprises not only the deadliest of bacterial pathogens, Mycobacterium tuberculosis, but several other pathogenic species, including M. avium and M. abscessus. The incidence of infections caused by atypical or nontuberculous mycobacteria (NTM) has been steadily increasing, and is associated with a panoply of diseases, including pulmonary, soft-tissue, or disseminated infections. The treatment for NTM disease is particularly challenging, due to its long duration, to variability in bacterial susceptibility profiles, and to the lack of evidence-based guidelines. Treatment usually consists of a combination of at least three drugs taken from months to years, often leading to severe secondary effects and a high chance of relapse. Therefore, new treatment approaches are clearly needed. In this review, we identify the main limitations of current treatments and discuss different alternatives that have been put forward in recent years, with an emphasis on less conventional therapeutics, such as antimicrobial peptides, bacteriophages, iron chelators, or host-directed therapies. We also review new forms of the use of old drugs, including the repurposing of non-antibacterial molecules and the incorporation of antimicrobials into ionic liquids. We aim to stimulate advancements in testing these therapies in relevant models, in order to provide clinicians and patients with useful new tools with which to treat these devastating diseases.
Collapse
Affiliation(s)
- Clara M. Bento
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence:
| | - Tânia Silva
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
357
|
Duplantier AJ, Shurtleff AC, Miller C, Chiang CY, Panchal RG, Sunay M. Combating biothreat pathogens: ongoing efforts for countermeasure development and unique challenges. DRUG DISCOVERY TARGETING DRUG-RESISTANT BACTERIA 2020. [PMCID: PMC7258707 DOI: 10.1016/b978-0-12-818480-6.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Research to discover and develop antibacterial and antiviral drugs with potent activity against pathogens of biothreat concern presents unique methodological and process-driven challenges. Herein, we review laboratory approaches for finding new antibodies, antibiotics, and antiviral molecules for pathogens of biothreat concern. Using high-throughput screening techniques, molecules that directly inhibit a pathogen’s entry, replication, or growth can be identified. Alternatively, molecules that target host proteins can be interesting targets for development when countering biothreat pathogens, due to the modulation of the host immune response or targeting proteins that interfere with the pathways required by the pathogen for replication. Monoclonal and cocktail antibody therapies approved by the Food and Drug Administration for countering anthrax and under development for treatment of Ebola virus infection are discussed. A comprehensive tabular review of current in vitro, in vivo, pharmacokinetic and efficacy datasets has been presented for biothreat pathogens of greatest concern. Finally, clinical trials and animal rule or traditional drug approval pathways are also reviewed. Opinions; interpretations; conclusions; and recommendations are those of the authors and are not necessarily endorsed by the US Army.
Collapse
|
358
|
Puyskens A, Stinn A, van der Vaart M, Kreuchwig A, Protze J, Pei G, Klemm M, Guhlich-Bornhof U, Hurwitz R, Krishnamoorthy G, Schaaf M, Krause G, Meijer AH, Kaufmann SHE, Moura-Alves P. Aryl Hydrocarbon Receptor Modulation by Tuberculosis Drugs Impairs Host Defense and Treatment Outcomes. Cell Host Microbe 2019; 27:238-248.e7. [PMID: 31901518 DOI: 10.1016/j.chom.2019.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/30/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Abstract
Antimicrobial resistance in tuberculosis (TB) is a public health threat of global dimension, worsened by increasing drug resistance. Host-directed therapy (HDT) is an emerging concept currently explored as an adjunct therapeutic strategy for TB. One potential host target is the ligand-activated transcription factor aryl hydrocarbon receptor (AhR), which binds TB virulence factors and controls antibacterial responses. Here, we demonstrate that in the context of therapy, the AhR binds several TB drugs, including front line drugs rifampicin (RIF) and rifabutin (RFB), resulting in altered host defense and drug metabolism. AhR sensing of TB drugs modulates host defense mechanisms, notably impairs phagocytosis, and increases TB drug metabolism. Targeting AhR in vivo with a small-molecule inhibitor increases RFB-treatment efficacy. Thus, the AhR markedly impacts TB outcome by affecting both host defense and drug metabolism. As a corollary, we propose the AhR as a potential target for HDT in TB in adjunct to canonical chemotherapy.
Collapse
Affiliation(s)
- Andreas Puyskens
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin 10117, Germany
| | - Anne Stinn
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin 10117, Germany; Department for Structural Infection Biology, Center for Structural Systems Biology, Notkestraße 85, Hamburg 22607, Germany
| | - Michiel van der Vaart
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333, the Netherlands
| | - Annika Kreuchwig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Jonas Protze
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Gang Pei
- Institute of Immunology, Friedrich Loeffler Institute, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Marion Klemm
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin 10117, Germany
| | - Ute Guhlich-Bornhof
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin 10117, Germany
| | - Robert Hurwitz
- Protein Purification Core Facility, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin 10117, Germany
| | - Gopinath Krishnamoorthy
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin 10117, Germany
| | - Marcel Schaaf
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333, the Netherlands
| | - Gerd Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Annemarie H Meijer
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333, the Netherlands
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin 10117, Germany; Hagler Institute for Advanced Study at Texas A&M University, College Station, TX 77843, USA.
| | - Pedro Moura-Alves
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin 10117, Germany; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
359
|
Kim YS, Silwal P, Kim SY, Yoshimori T, Jo EK. Autophagy-activating strategies to promote innate defense against mycobacteria. Exp Mol Med 2019; 51:1-10. [PMID: 31827065 PMCID: PMC6906292 DOI: 10.1038/s12276-019-0290-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/03/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a major causal pathogen of human tuberculosis (TB), which is a serious health burden worldwide. The demand for the development of an innovative therapeutic strategy to treat TB is high due to drug-resistant forms of TB. Autophagy is a cell-autonomous host defense mechanism by which intracytoplasmic cargos can be delivered and then destroyed in lysosomes. Previous studies have reported that autophagy-activating agents and small molecules may be beneficial in restricting intracellular Mtb infection, even with multidrug-resistant Mtb strains. Recent studies have revealed the essential roles of host nuclear receptors (NRs) in the activation of the host defense through antibacterial autophagy against Mtb infection. In particular, we discuss the function of estrogen-related receptor (ERR) α and peroxisome proliferator-activated receptor (PPAR) α in autophagy regulation to improve host defenses against Mtb infection. Despite promising findings relating to the antitubercular effects of various agents, our understanding of the molecular mechanism by which autophagy-activating agents suppress intracellular Mtb in vitro and in vivo is lacking. An improved understanding of the antibacterial autophagic mechanisms in the innate host defense will eventually lead to the development of new therapeutic strategies for human TB. Therapies that promote intracellular digestion of microbes could prove a valuable addition to antibiotic weapons against tuberculosis. Mycobacterium tuberculosis (Mtb) establishes itself within immune cells, and employs a variety of tricks to protect itself as it sickens its host. Researchers led by Eun-Kyeong Jo at Chungnam National University, Daejeon, South Korea, have reviewed efforts to defeat this pathogen by jump-starting a cellular ‘recycling’ pathway called autophagy. Autophagy helps cells break down both biomolecules aggregates and potential invaders, but Mtb can elude such digestion. Jo and colleagues highlight antimycobacterial agents that can potentially render Mtb vulnerable to autophagy, as well as promising cellular targets that may allow researchers to access this process. For example, evidence suggests that agents that activate a regulatory protein such as ERRα or PPARα could stimulate cellular degradation of Mtb.
Collapse
Affiliation(s)
- Yi Sak Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Soo Yeon Kim
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, 28119, South Korea
| | - Tamotsu Yoshimori
- Department of Genetics, Osaka University, Osaka, 565-0871, Japan.,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea. .,Department of Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea. .,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea.
| |
Collapse
|
360
|
de Souza Feitosa Lima IM, Zagmignan A, Santos DM, Maia HS, Dos Santos Silva L, da Silva Cutrim B, Vieira SL, Bezerra Filho CM, de Sousa EM, Napoleão TH, Krogfelt KA, Løbner-Olesen A, Paiva PMG, Nascimento da Silva LC. Schinus terebinthifolia leaf lectin (SteLL) has anti-infective action and modulates the response of Staphylococcus aureus-infected macrophages. Sci Rep 2019; 9:18159. [PMID: 31796807 PMCID: PMC6890730 DOI: 10.1038/s41598-019-54616-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is recognized as an important pathogen causing a wide spectrum of diseases. Here we examined the antimicrobial effects of the lectin isolated from leaves of Schinus terebinthifolia Raddi (SteLL) against S. aureus using in vitro assays and an infection model based on Galleria mellonella larvae. The actions of SteLL on mice macrophages and S. aureus-infected macrophages were also evaluated. SteLL at 16 µg/mL (8 × MIC) increased cell mass and DNA content of S. aureus in relation to untreated bacteria, suggesting that SteLL impairs cell division. Unlike ciprofloxacin, SteLL did not induce the expression of recA, crucial for DNA repair through SOS response. The antimicrobial action of SteLL was partially inhibited by 50 mM N-acetylglucosamine. SteLL reduced staphyloxathin production and increased ciprofloxacin activity towards S. aureus. This lectin also improved the survival of G. mellonella larvae infected with S. aureus. Furthermore, SteLL induced the release of cytokines (IL-6, IL-10, IL-17A, and TNF-α), nitric oxide and superoxide anion by macrophagens. The lectin improved the bactericidal action of macrophages towards S. aureus; while the expression of IL-17A and IFN-γ was downregulated in infected macrophages. These evidences suggest SteLL as important lead molecule in the development of anti-infective agents against S. aureus.
Collapse
Affiliation(s)
| | - Adrielle Zagmignan
- Programas de Pós-Graduação, Universidade Ceuma, São Luís, Maranhão, Brazil
| | | | | | | | | | | | | | | | | | - Karen Angeliki Krogfelt
- Department of Viral and Microbial Diagnostics, Statens Serum Institut, Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark
| | - Anders Løbner-Olesen
- Department of Biology, Section for Functional Genomics, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
361
|
Mahas A, Aman R, Mahfouz M. CRISPR-Cas13d mediates robust RNA virus interference in plants. Genome Biol 2019; 20:263. [PMID: 31791381 PMCID: PMC6886189 DOI: 10.1186/s13059-019-1881-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND CRISPR-Cas systems endow bacterial and archaeal species with adaptive immunity mechanisms to fend off invading phages and foreign genetic elements. CRISPR-Cas9 has been harnessed to confer virus interference against DNA viruses in eukaryotes, including plants. In addition, CRISPR-Cas13 systems have been used to target RNA viruses and the transcriptome in mammalian and plant cells. Recently, CRISPR-Cas13a has been shown to confer modest interference against RNA viruses. Here, we characterized a set of different Cas13 variants to identify those with the most efficient, robust, and specific interference activities against RNA viruses in planta using Nicotiana benthamiana. RESULTS Our data show that LwaCas13a, PspCas13b, and CasRx variants mediate high interference activities against RNA viruses in transient assays. Moreover, CasRx mediated robust interference in both transient and stable overexpression assays when compared to the other variants tested. CasRx targets either one virus alone or two RNA viruses simultaneously, with robust interference efficiencies. In addition, CasRx exhibits strong specificity against the target virus and does not exhibit collateral activity in planta. CONCLUSIONS Our data establish CasRx as the most robust Cas13 variant for RNA virus interference applications in planta and demonstrate its suitability for studying key questions relating to virus biology.
Collapse
Affiliation(s)
- Ahmed Mahas
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Rashid Aman
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
362
|
Host-Targeted Therapeutics against Multidrug Resistant Intracellular Staphylococcus aureus. Antibiotics (Basel) 2019; 8:antibiotics8040241. [PMID: 31795127 PMCID: PMC6963206 DOI: 10.3390/antibiotics8040241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a facultative intracellular pathogen that invades and replicates within many types of human cells. S. aureus has shown to rapidly overcome traditional antibiotherapy by developing multidrug resistance. Furthermore, intracellular S. aureus is protected from the last-resort antibiotics—vancomycin, daptomycin, and linezolid—as they are unable to achieve plasma concentrations sufficient for intracellular killing. Therefore, there is an urgent need to develop novel anti-infective therapies against S. aureus infections. Here, we review the current state of the field and highlight the exploitation of host-directed approaches as a promising strategy going forward.
Collapse
|
363
|
Heinonen T, Ciarlo E, Rigoni E, Regina J, Le Roy D, Roger T. Dual Deletion of the Sirtuins SIRT2 and SIRT3 Impacts on Metabolism and Inflammatory Responses of Macrophages and Protects From Endotoxemia. Front Immunol 2019; 10:2713. [PMID: 31849939 PMCID: PMC6901967 DOI: 10.3389/fimmu.2019.02713] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022] Open
Abstract
Sirtuin 2 (SIRT2) and SIRT3 are cytoplasmic and mitochondrial NAD-dependent deacetylases. SIRT2 and SIRT3 target proteins involved in metabolic, proliferation and inflammation pathways and have been implicated in the pathogenesis of neurodegenerative, metabolic and oncologic disorders. Both pro- and anti-inflammatory effects have been attributed to SIRT2 and SIRT3, and single deficiency in SIRT2 or SIRT3 had minor or no impact on antimicrobial innate immune responses. Here, we generated a SIRT2/3 double deficient mouse line to study the interactions between SIRT2 and SIRT3. SIRT2/3−/− mice developed normally and showed subtle alterations of immune cell populations in the bone marrow, thymus, spleen, blood and peritoneal cavity that contained notably more anti-inflammatory B-1a cells and less NK cells. In vitro, SIRT2/3−/− macrophages favored fatty acid oxidation (FAO) over glycolysis and produced increased levels of both proinflammatory and anti-inflammatory cytokines. In line with metabolic adaptation and increased numbers of peritoneal B-1a cells, SIRT2/3−/− mice were robustly protected from endotoxemia. Yet, SIRT2/3 double deficiency did not modify endotoxin tolerance. Overall, these data suggest that sirtuins can act in concert or compensate each other for certain immune functions, a parameter to be considered for drug development. Moreover, inhibitors targeting multiple sirtuins developed for clinical purposes may be useful to treat inflammatory diseases.
Collapse
Affiliation(s)
- Tytti Heinonen
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eleonora Ciarlo
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ersilia Rigoni
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean Regina
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
364
|
Raffray L, Burton RJ, Baker SE, Morgan MP, Eberl M. Zoledronate rescues immunosuppressed monocytes in sepsis patients. Immunology 2019; 159:88-95. [PMID: 31606902 PMCID: PMC6904622 DOI: 10.1111/imm.13132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
Severe sepsis is often accompanied by a transient immune paralysis, which is associated with enhanced susceptibility to secondary infections and poor clinical outcomes. The functional impairment of antigen‐presenting cells is considered to be a major hallmark of this septic immunosuppression, with reduced HLA‐DR expression on circulating monocytes serving as predictor of mortality. Unconventional lymphocytes like γδ T‐cells have the potential to restore immune defects in a variety of pathologies including cancer, but their use to rescue sepsis‐induced immunosuppression has not been investigated. Our own previous work showed that Vγ9/Vδ2+ γδ T‐cells are potent activators of monocytes from healthy volunteers in vitro, and in individuals with osteoporosis after first‐time administration of the anti‐bone resorption drug zoledronate in vivo. We show here that zoledronate readily induces upregulation of HLA‐DR, CD40 and CD64 on monocytes from both healthy controls and sepsis patients, which could be abrogated by neutralising the pro‐inflammatory cytokines interferon (IFN)‐γ and tumour necrosis factor (TNF)‐α in the cultures. In healthy controls, the upregulation of HLA‐DR on monocytes was proportional to the baseline percentage of Vγ9/Vδ2 T‐cells in the peripheral blood mononuclear cell population. Of note, a proportion of sepsis patients studied here did not show a demonstrable response to zoledronate, predominantly patients with microbiologically confirmed bloodstream infections, compared with sepsis patients with more localised infections marked by negative blood cultures. Taken together, our results suggest that zoledronate can, at least in some individuals, rescue immunosuppressed monocytes during acute sepsis and thus may help improve clinical outcomes during severe infection.
Collapse
Affiliation(s)
- Loïc Raffray
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.,Department of Internal Medicine, Félix Guyon University Hospital of La Réunion, Saint Denis, France
| | - Ross J Burton
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Sarah E Baker
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Matt P Morgan
- Directorate of Critical Care, Cardiff & Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.,Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
365
|
NAD + Depletion Triggers Macrophage Necroptosis, a Cell Death Pathway Exploited by Mycobacterium tuberculosis. Cell Rep 2019; 24:429-440. [PMID: 29996103 DOI: 10.1016/j.celrep.2018.06.042] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/05/2018] [Accepted: 06/08/2018] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) kills infected macrophages by inhibiting apoptosis and promoting necrosis. The tuberculosis necrotizing toxin (TNT) is a secreted nicotinamide adenine dinucleotide (NAD+) glycohydrolase that induces necrosis in infected macrophages. Here, we show that NAD+ depletion by TNT activates RIPK3 and MLKL, key mediators of necroptosis. Notably, Mtb bypasses the canonical necroptosis pathway since neither TNF-α nor RIPK1 are required for macrophage death. Macrophage necroptosis is associated with depolarized mitochondria and impaired ATP synthesis, known hallmarks of Mtb-induced cell death. These results identify TNT as the main trigger of necroptosis in Mtb-infected macrophages. Surprisingly, NAD+ depletion itself was sufficient to trigger necroptosis in a RIPK3- and MLKL-dependent manner by inhibiting the NAD+ salvage pathway in THP-1 cells or by TNT expression in Jurkat T cells. These findings suggest avenues for host-directed therapies to treat tuberculosis and other infectious and age-related diseases in which NAD+ deficiency is a pathological factor.
Collapse
|
366
|
Payen D, Faivre V, Miatello J, Leentjens J, Brumpt C, Tissières P, Dupuis C, Pickkers P, Lukaszewicz AC. Multicentric experience with interferon gamma therapy in sepsis induced immunosuppression. A case series. BMC Infect Dis 2019; 19:931. [PMID: 31690258 PMCID: PMC6833157 DOI: 10.1186/s12879-019-4526-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Background The sepsis-induced immunodepression contributes to impaired clinical outcomes of various stress conditions. This syndrome is well documented and characterized by attenuated function of innate and adaptive immune cells. Several pharmacological interventions aimed to restore the immune response are emerging of which interferon-gamma (IFNγ) is one. It is of paramount relevance to obtain clinical information on optimal timing of the IFNγ-treatment, −tolerance, −effectiveness and outcome before performing a RCT. We describe the effects of IFNγ in a cohort of 18 adult and 2 pediatric sepsis patients. Methods In this open-label prospective multi-center case-series, IFNγ treatment was initiated in patients selected on clinical and immunological criteria early (< 4 days) or late (> 7 days) following the onset of sepsis. The data collected in 18 adults and 2 liver transplanted pediatric patients were: clinical scores, monocyte expression of HLA-DR (flow cytometry), lymphocyte immune-phenotyping (flow cytometry), IL-6 and IL-10 plasma levels (ELISA), bacterial cultures, disease severity, and mortality. Results In 15 out of 18 patients IFNγ treatment was associated with an increase of median HLA-DR expression from 2666 [IQ 1547; 4991] to 12,451 [IQ 4166; 19,707], while the absolute number of lymphocyte subpopulations were not affected, except for the decrease number of NK cells 94.5 [23; 136] to 32.5 [13; 90.8] (0.0625)]. Plasma levels of IL-6 464 [201–770] to 108 (89–140) ng/mL (p = 0.04) and IL-10 from IL-10 from 29 [12–59] to 9 [1–15] pg/mL decreased significantly. Three patients who received IFNγ early after ICU admission (<4 days) died. The other patients had a rapid clinical improvement assessed by the SOFA score and bacterial cultures that were repeatedly positive became negative. The 2 pediatric cases improved rapidly, but 1 died for hemorrhagic complication. Conclusion Guided by clinical and immunological monitoring, adjunctive immunotherapy with IFNγ appears well-tolerated in our cases and improves immune host defense in sepsis induced immuno suppression. Randomized clinical studies to assess its potential clinical benefit are warranted.
Collapse
Affiliation(s)
- Didier Payen
- Groupe Hospitalier Saint-Louis Lariboisière, AP-HP, Université Paris 7 Denis Diderot, 2 rue Ambroise Paré, 75010, Paris, France. .,UMR INSERM 1160 University Paris 7 Denis Diderot, Paris, France.
| | - Valerie Faivre
- Groupe Hospitalier Saint-Louis Lariboisière, AP-HP, Université Paris 7 Denis Diderot, 2 rue Ambroise Paré, 75010, Paris, France.,UMR INSERM 1160 University Paris 7 Denis Diderot, Paris, France
| | - Jordi Miatello
- Pediatric Intensive Care and Neonatal Medicine, Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, France.,Institute of Integrative Biology of Cell, CNRS, CEA, Univ. Paris Sud, Paris Saclay University, Gif sur Yvette, France
| | - Jenneke Leentjens
- Departments of intensive care and internal medicine, Radboud university medical center Nijmegen, PO box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Caren Brumpt
- Service d'Hématologie Biologique, Pôle B2P, Hôpital Lariboisière, APHP, Paris, France
| | - Pierre Tissières
- Pediatric Intensive Care and Neonatal Medicine, Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, France.,Institute of Integrative Biology of Cell, CNRS, CEA, Univ. Paris Sud, Paris Saclay University, Gif sur Yvette, France
| | - Claire Dupuis
- Groupe Hospitalier Saint-Louis Lariboisière, AP-HP, Université Paris 7 Denis Diderot, 2 rue Ambroise Paré, 75010, Paris, France
| | - Peter Pickkers
- Department Intensive Care Medicine, Radboud university medical center Nijmegen, PO box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Anne Claire Lukaszewicz
- Groupe Hospitalier Saint-Louis Lariboisière, AP-HP, Université Paris 7 Denis Diderot, 2 rue Ambroise Paré, 75010, Paris, France.,UMR INSERM 1160 University Paris 7 Denis Diderot, Paris, France
| |
Collapse
|
367
|
Yong HY, Zheng J, Ho VCY, Nguyen MT, Fink K, Griffin PR, Luo D. Structure-guided design of immunomodulatory RNAs specifically targeting the cytoplasmic viral RNA sensor RIG-I. FEBS Lett 2019; 593:3003-3014. [PMID: 31369683 DOI: 10.1002/1873-3468.13564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 12/22/2022]
Abstract
The cytoplasmic immune sensor RIG-I detects viral RNA and initiates an antiviral immune response upon activation. It has become a potential target for vaccination and immunotherapies. To develop the smallest but potent immunomodulatory RNA (immRNAs) species, we performed structure-guided RNA design and used biochemical, structural, and cell-based methods to select and characterize the immRNAs. We demonstrated that inserting guanosine at position 9 to the 10mer RNA hairpin (3p10LG9) activates RIG-I more robustly than the parental RNA. 3p10LG9 interacts strongly with the RIG-I helicase-CTD RNA sensing module and disrupts the auto-inhibitory interaction between the HEL2i and CARDs domains. We further showed that 3p10LA9 has a stronger cellular activity than 3p10LG9. Collectively, purine insertion at position 9 of the immRNA species triggered more robust activation of RIG-1.
Collapse
Affiliation(s)
- Hui Yee Yong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, Singapore
| | - Jie Zheng
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Victor Chin Yong Ho
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore City, Singapore
| | - Mai Trinh Nguyen
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
| | - Katja Fink
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore City, Singapore
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
368
|
Dong X, Zhang CY, Jin G, Wang Z. Targeting of Nanotherapeutics to Infection Sites for Antimicrobial Therapy. ADVANCED THERAPEUTICS 2019; 2:1900095. [PMID: 33313384 PMCID: PMC7731920 DOI: 10.1002/adtp.201900095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 01/07/2023]
Abstract
Bacterial infections cause a wide range of host immune disorders, resulting in local and systemic tissue damage. Antibiotics are pharmacological interventions for treating bacterial infections, but increased antimicrobial resistance and the delayed development of new antibiotics have led to a major global health threat, the so-called "superbugs". Bacterial infections consist of two processes: pathogen invasion and host immune responses. Developing nanotherapeutics to target these two pathways may be effective for eliminating bacteria and restoring host homeostasis, thus possibly finding new treatments for bacterial infections. This review offers new approaches for developing nanotherapeutics based on the pathogenesis of infectious diseases. We have discussed how nanoparticles target infectious microenvironments (IMEs) and how they target phagocytes to deliver antibiotics to eliminate intracellular pathogens. We also review a new concept-host-directed therapy for bacterial infections, such as targeting immune cells for the delivery of anti-inflammatory agents and vaccine developments using bacterial membrane-derived nanovesicles. This review demonstrates the translational potential of nanomedicine for improving infectious disease treatments.
Collapse
Affiliation(s)
| | | | | | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, United States
| |
Collapse
|
369
|
Bösl K, Ianevski A, Than TT, Andersen PI, Kuivanen S, Teppor M, Zusinaite E, Dumpis U, Vitkauskiene A, Cox RJ, Kallio-Kokko H, Bergqvist A, Tenson T, Merits A, Oksenych V, Bjørås M, Anthonsen MW, Shum D, Kaarbø M, Vapalahti O, Windisch MP, Superti-Furga G, Snijder B, Kainov D, Kandasamy RK. Common Nodes of Virus-Host Interaction Revealed Through an Integrated Network Analysis. Front Immunol 2019; 10:2186. [PMID: 31636628 PMCID: PMC6787150 DOI: 10.3389/fimmu.2019.02186] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
Viruses are one of the major causes of acute and chronic infectious diseases and thus a major contributor to the global burden of disease. Several studies have shown how viruses have evolved to hijack basic cellular pathways and evade innate immune response by modulating key host factors and signaling pathways. A collective view of these multiple studies could advance our understanding of virus-host interactions and provide new therapeutic perspectives for the treatment of viral diseases. Here, we performed an integrative meta-analysis to elucidate the 17 different host-virus interactomes. Network and bioinformatics analyses showed how viruses with small genomes efficiently achieve the maximal effect by targeting multifunctional and highly connected host proteins with a high occurrence of disordered regions. We also identified the core cellular process subnetworks that are targeted by all the viruses. Integration with functional RNA interference (RNAi) datasets showed that a large proportion of the targets are required for viral replication. Furthermore, we performed an interactome-informed drug re-purposing screen and identified novel activities for broad-spectrum antiviral agents against hepatitis C virus and human metapneumovirus. Altogether, these orthogonal datasets could serve as a platform for hypothesis generation and follow-up studies to broaden our understanding of the viral evasion landscape.
Collapse
Affiliation(s)
- Korbinian Bösl
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thoa T Than
- Institut Pasteur Korea, Seongnam, South Korea
| | - Petter I Andersen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Suvi Kuivanen
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Mona Teppor
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Uga Dumpis
- Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Lithuanian University of Health Science, Kaunas, Lithuania
| | - Rebecca J Cox
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway
| | - Hannimari Kallio-Kokko
- Department of Virology and Immunology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Anders Bergqvist
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marit W Anthonsen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - David Shum
- Institut Pasteur Korea, Seongnam, South Korea
| | - Mari Kaarbø
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Olli Vapalahti
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Berend Snijder
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Institute of Technology, University of Tartu, Tartu, Estonia
| | - Richard K Kandasamy
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway.,Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
370
|
Schloer S, Hübel N, Masemann D, Pajonczyk D, Brunotte L, Ehrhardt C, Brandenburg LO, Ludwig S, Gerke V, Rescher U. The annexin A1/FPR2 signaling axis expands alveolar macrophages, limits viral replication, and attenuates pathogenesis in the murine influenza A virus infection model. FASEB J 2019; 33:12188-12199. [PMID: 31398292 PMCID: PMC6902725 DOI: 10.1096/fj.201901265r] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pattern recognition receptors (PRRs) are key elements in the innate immune response. Formyl peptide receptor (FPR) 2 is a PRR that, in addition to proinflammatory, pathogen-derived compounds, also recognizes the anti-inflammatory endogenous ligand annexin A1 (AnxA1). Because the contribution of this signaling axis in viral infections is undefined, we investigated AnxA1-mediated FPR2 activation on influenza A virus (IAV) infection in the murine model. AnxA1-treated mice displayed significantly attenuated pathology upon a subsequent IAV infection with significantly improved survival, impaired viral replication in the respiratory tract, and less severe lung damage. The AnxA1-mediated protection against IAV infection was not caused by priming of the type I IFN response but was associated with an increase in the number of alveolar macrophages (AMs) and enhanced pulmonary expression of the AM-regulating cytokine granulocyte-M-CSF (GM-CSF). Both AnxA1-mediated increase in AM levels and GM-CSF production were abrogated when mouse (m)FPR2 signaling was antagonized but remained up-regulated in mice genetically deleted for mFPR1, an mFPR2 isoform also serving as AnxA1 receptor. Our results indicate a novel protective function of the AnxA1-FPR2 signaling axis in IAV pathology via GM-CSF–associated maintenance of AMs, expanding knowledge on the potential use of proresolving mediators in host defense against pathogens.—Schloer, S., Hübel, N., Masemann, D., Pajonczyk, D., Brunotte, L., Ehrhardt, C., Brandenburg, L.-O., Ludwig, S., Gerke, V., Rescher, U. The annexin A1/FPR2 signaling axis expands alveolar macrophages, limits viral replication, and attenuates pathogenesis in the murine influenza A virus infection model.
Collapse
Affiliation(s)
- Sebastian Schloer
- Center for Molecular Biology of Inflammation, Institute of Medical Biochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Nicole Hübel
- Center for Molecular Biology of Inflammation, Institute of Medical Biochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Dörthe Masemann
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Center for Molecular Biology of Inflammation, Institute of Virology, University of Muenster, Muenster, Germany
| | - Denise Pajonczyk
- Center for Molecular Biology of Inflammation, Institute of Medical Biochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Linda Brunotte
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Center for Molecular Biology of Inflammation, Institute of Virology, University of Muenster, Muenster, Germany
| | - Christina Ehrhardt
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Center for Molecular Biology of Inflammation, Institute of Virology, University of Muenster, Muenster, Germany.,Section for Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Lars-Ove Brandenburg
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany.,Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Stephan Ludwig
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Center for Molecular Biology of Inflammation, Institute of Virology, University of Muenster, Muenster, Germany
| | - Volker Gerke
- Center for Molecular Biology of Inflammation, Institute of Medical Biochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Ursula Rescher
- Center for Molecular Biology of Inflammation, Institute of Medical Biochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| |
Collapse
|
371
|
The race between drug introduction and appearance of microbial resistance. Current balance and alternative approaches. Curr Opin Pharmacol 2019; 48:48-56. [DOI: 10.1016/j.coph.2019.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 11/13/2022]
|
372
|
Musilova J, Mulcahy ME, Kuijk MM, McLoughlin RM, Bowie AG. Toll-like receptor 2-dependent endosomal signaling by Staphylococcus aureus in monocytes induces type I interferon and promotes intracellular survival. J Biol Chem 2019; 294:17031-17042. [PMID: 31558608 PMCID: PMC6851302 DOI: 10.1074/jbc.ra119.009302] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Pathogen activation of innate immune pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) stimulates cellular signaling pathways. This often leads to outcomes that contribute to pathogen clearance. Alternatively, activation of specific PRR pathways can aid pathogen survival. The human pathogen Staphylococcus aureus is a case in point, employing strategies to escape innate immune recognition and killing by the host. As for other bacteria, PRR-stimulated type I interferon (IFN-I) induction has been proposed as one such immune escape pathway that may favor S. aureus. Cell wall components of S. aureus elicit TLR2-dependent cellular responses, but the exact signaling pathways activated by S. aureus–TLR2 engagement and the consequences of their activation for the host and bacterium are not fully known. We previously showed that TLR2 activates both a cytoplasmic and an endosome-dependent signaling pathway, the latter leading to IFN-I production. Here, we demonstrate that S. aureus infection of human monocytes activates a TLR2-dependent endosomal signaling pathway, leading to IFN-I induction. We mapped the signaling components of this pathway and identified roles in IFN-I stimulation for the Toll-interleukin-1 receptor (TIR) adaptor Myd88 adaptor-like (Mal), TNF receptor-associated factor 6 (TRAF6), and IκB kinase (IKK)-related kinases, but not for TRIF-related adaptor molecule (TRAM) and TRAF3. Importantly, monocyte TLR2-dependent endosomal signaling enabled immune escape for S. aureus, because this pathway, but not IFN-I per se, contributed to intracellular bacterial survival. These results reveal a TLR2-dependent mechanism in human monocytes whereby S. aureus manipulates innate immune signaling for its survival in cells.
Collapse
Affiliation(s)
- Jana Musilova
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Michelle E Mulcahy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Marieke M Kuijk
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Rachel M McLoughlin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
373
|
Enterovirus pathogenesis requires the host methyltransferase SETD3. Nat Microbiol 2019; 4:2523-2537. [PMID: 31527793 PMCID: PMC6879830 DOI: 10.1038/s41564-019-0551-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/26/2019] [Indexed: 12/30/2022]
Abstract
Enteroviruses (EVs) comprise a large genus of positive-sense, single-stranded RNA viruses whose members cause a number of important and widespread human diseases including poliomyelitis, myocarditis, acute flaccid myelitis (AFM) and the common cold. How EVs co-opt cellular functions to promote replication and spread is incompletely understood. Here, using genome-scale CRISPR screens, we identify the actin histidine methyltransferase SETD3 as critically important for viral infection by a broad panel of enteroviruses including rhinoviruses and non-polio EVs increasingly linked to severe neurological disease such as AFM (EV-D68) and viral encephalitis (EV-A71). We show that cytosolic SETD3, independent of its methylation activity, is required for the RNA replication step in the viral life cycle. Using quantitative affinity purification-mass spectrometry, we show that SETD3 specifically interacts with the viral 2A protease of multiple enteroviral species and we map the residues in 2A that mediate this interaction. 2A mutants that retain protease activity, but unable to interact with SETD3, are severely compromised in RNA replication. These data suggest a role of the viral 2A protein in RNA replication beyond facilitating proteolytic cleavage. Finally, we demonstrate that SETD3 is essential for in vivo replication and pathogenesis in multiple mouse models for enterovirus infection including CV-A10, EV-A71 and EV-D68. Our results reveal a crucial role of a host protein in viral pathogenesis and suggest targeting SETD3 as a potential mechanism for controlling viral infections.
Collapse
|
374
|
Wang X, Yuan J, Wang H, Gan N, Zhang Q, Liu B, Wang J, Shu Z, Rao L, Gou X, Zhang H, Yin Y, Zhang X. Progranulin Decreases Susceptibility to Streptococcus pneumoniae in Influenza and Protects against Lethal Coinfection. THE JOURNAL OF IMMUNOLOGY 2019; 203:2171-2182. [PMID: 31519865 DOI: 10.4049/jimmunol.1900248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/06/2019] [Indexed: 12/25/2022]
Abstract
Streptococcus pneumoniae coinfection is a major cause of mortality in influenza pandemics. Growing evidence shows that uncontrolled immune response results in severe tissue damage and thereby promotes death in coinfection. Progranulin (PGRN) is widely expressed in immune and epithelial cells and exerts anti-inflammatory role in many diseases. We found that PGRN levels were significantly elevated in clinical influenza/S. pneumoniae-coinfected patients. C57BL/6 wild-type (WT) and PGRN-deficient (PGRN-/-) mice were infected with influenza virus PR8 and then superchallenged with S. pneumoniae serotype 19F. Coinfected PGRN-/- mice showed increased mortality and weight loss compared with WT mice. PGRN deficiency led to increased bacterial loads in lungs without altering influenza virus replication, suggesting a role of PGRN in decreasing postinfluenza susceptibility to S. pneumoniae coinfection. Administration of recombinant PGRN improved survival of WT and PGRN-/- mice in lethal coinfection. Additionally, loss of PGRN resulted in aggravated lung damage along with massive proinflammatory cytokine production and immune cell infiltration during coinfection. Endoplasmic reticulum stress (ERS) during influenza, and coinfection was strongly induced in PGRN-/- mice that subsequently activated apoptosis signaling pathways. Treatment of recombinant PGRN or inhibition of ERS by 4-phenylbutyrate decreased apoptosis and bacterial loads in lungs of coinfected mice. These results suggest that PGRN decreases postinfluenza susceptibility to S. pneumoniae coinfection via suppressing ERS-mediated apoptosis. Impaired bacterial clearance and increased lung inflammation are associated with the lethal outcome of coinfected PGRN-/- mice. Our study provides therapeutic implication of PGRN to reduce morbidity and mortality in influenza/S. pneumoniae coinfection.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jun Yuan
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hong Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ning Gan
- Stomatological Hospital, Chongqing Medical University, Chongqing 400016, China; and
| | - Qun Zhang
- Affiliated Children's Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Bichen Liu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jingyao Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zhaoche Shu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lubei Rao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Gou
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hong Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing 400016, China;
| |
Collapse
|
375
|
Abstract
The process of entry into a host cell is a key step in the life cycle of most viruses. In recent years, there has been a significant increase in our understanding of the routes and mechanisms of entry for a number of these viruses. This has led to the development of novel broad-spectrum antiviral approaches that target host cell proteins and pathways, in addition to strategies focused on individual viruses or virus families. Here we consider a number of these approaches and their broad-spectrum potential.
Collapse
Affiliation(s)
- Michela Mazzon
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
376
|
Antiviral Effect of Lithium Chloride and Diammonium Glycyrrhizinate on Porcine Deltacoronavirus In Vitro. Pathogens 2019; 8:pathogens8030144. [PMID: 31505777 PMCID: PMC6789623 DOI: 10.3390/pathogens8030144] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging global swine virus that has a propensity for interspecies transmission. It was identified in Hong Kong in 2012. Given that neither specific antiviral drugs nor vaccines are available for newly emerging porcine deltacoronavirus, searching for effective antiviral drugs is a high priority. In this study, lithium chloride (LiCl) and diammonium glycyrrhizinate (DG), which are host-acting antivirals (HAAs), were tested against PDCoV. We found that LiCl and DG inhibited PDCoV replication in LLC-PK1 cells in a dose-dependent manner. The antiviral effects of LiCl and DG occurred at the early stage of PDCoV replication, and DG also inhibited virus attachment to the cells. Moreover, both drugs inhibited PDCoV-induced apoptosis in LLC-PK1 cells. This study suggests LiCl and DG as new drugs for the treatment of PDCoV infection.
Collapse
|
377
|
Ordonez AA, Sellmyer MA, Gowrishankar G, Ruiz-Bedoya CA, Tucker EW, Palestro CJ, Hammoud DA, Jain SK. Molecular imaging of bacterial infections: Overcoming the barriers to clinical translation. Sci Transl Med 2019; 11:11/508/eaax8251. [PMID: 31484790 PMCID: PMC6743081 DOI: 10.1126/scitranslmed.aax8251] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022]
Abstract
Clinical diagnostic tools requiring direct sample testing cannot be applied to infections deep within the body, and clinically available imaging tools lack specificity. New approaches are needed for early diagnosis and monitoring of bacterial infections and rapid detection of drug-resistant organisms. Molecular imaging allows for longitudinal, noninvasive assessments and can provide key information about infectious processes deep within the body.
Collapse
Affiliation(s)
- Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mark A Sellmyer
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gayatri Gowrishankar
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Camilo A Ruiz-Bedoya
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth W Tucker
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Division of Pediatric Critical Care, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA
| | - Christopher J Palestro
- Department of Radiology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD 20814, USA
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
378
|
Pazhakh V, Ellett F, Croker BA, O’Donnell JA, Pase L, Schulze KE, Greulich RS, Gupta A, Reyes-Aldasoro CC, Andrianopoulos A, Lieschke GJ. β-glucan-dependent shuttling of conidia from neutrophils to macrophages occurs during fungal infection establishment. PLoS Biol 2019; 17:e3000113. [PMID: 31483778 PMCID: PMC6746390 DOI: 10.1371/journal.pbio.3000113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 09/16/2019] [Accepted: 08/15/2019] [Indexed: 12/11/2022] Open
Abstract
The initial host response to fungal pathogen invasion is critical to infection establishment and outcome. However, the diversity of leukocyte–pathogen interactions is only recently being appreciated. We describe a new form of interleukocyte conidial exchange called “shuttling.” In Talaromyces marneffei and Aspergillus fumigatus zebrafish in vivo infections, live imaging demonstrated conidia initially phagocytosed by neutrophils were transferred to macrophages. Shuttling is unidirectional, not a chance event, and involves alterations of phagocyte mobility, intercellular tethering, and phagosome transfer. Shuttling kinetics were fungal-species–specific, implicating a fungal determinant. β-glucan serves as a fungal-derived signal sufficient for shuttling. Murine phagocytes also shuttled in vitro. The impact of shuttling for microbiological outcomes of in vivo infections is difficult to specifically assess experimentally, but for these two pathogens, shuttling augments initial conidial redistribution away from fungicidal neutrophils into the favorable macrophage intracellular niche. Shuttling is a frequent host–pathogen interaction contributing to fungal infection establishment patterns. Imaging of the behaviour of white blood cells in living zebrafish embryos infected with fungi reveals “shuttling,” a specific and previously undescribed form of microorganism exchange between neutrophils and macrophages.
Collapse
Affiliation(s)
- Vahid Pazhakh
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Felix Ellett
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Ben A. Croker
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Joanne A. O’Donnell
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Luke Pase
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Keith E. Schulze
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - R. Stefan Greulich
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Aakash Gupta
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | | | - Alex Andrianopoulos
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Graham J. Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
379
|
Wu Y, Pons V, Noël R, Kali S, Shtanko O, Davey RA, Popoff MR, Tordo N, Gillet D, Cintrat JC, Barbier J. DABMA: A Derivative of ABMA with Improved Broad-Spectrum Inhibitory Activity of Toxins and Viruses. ACS Med Chem Lett 2019; 10:1140-1147. [PMID: 31413797 DOI: 10.1021/acsmedchemlett.9b00155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023] Open
Abstract
The small molecule ABMA has been previously shown to protect cells against multiple toxins and pathogens including virus, intracellular bacteria, and parasite. Its mechanism of action is directly associated with host endolysosomal pathway rather than targeting toxin or pathogen itself. However, the relationship of its broad-spectrum anti-infection activity and chemical structure is not yet resolved. Here, we synthesized a series of derivatives and compared their activities against diphtheria toxin (DT). Dimethyl-ABMA (DABMA), one of the most potent analogs with about 20-fold improvement in protection efficacy against DT, was identified with a similar mechanism of action to ABMA. Moreover, DABMA exhibited enhanced efficacy against Clostridium difficile toxin B (TcdB), Clostridium sordellii lethal toxin (TcsL), Pseudomonas Exotoxin A (PE) as well as Rabies and Ebola viruses. The results revealed a structure-activity relationship of ABMA, which is a starting point for its clinical development as broad-spectrum drug against existing and emerging infectious diseases.
Collapse
Affiliation(s)
- Yu Wu
- Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université
Paris-Saclay, LabEx LERMIT, 91191 Gif-sur-Yvette, France
| | - Valérie Pons
- Service de Chimie Bio-organique et de Marquage (SCBM), CEA, Université Paris-Saclay, LabEx LERMIT, 91191 Gif-sur-Yvette, France
| | - Romain Noël
- Service de Chimie Bio-organique et de Marquage (SCBM), CEA, Université Paris-Saclay, LabEx LERMIT, 91191 Gif-sur-Yvette, France
| | - Sabrina Kali
- Antiviral Strategies Unit, Virology Department, Institut Pasteur, 75015 Paris, France
| | - Olena Shtanko
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| | - Robert A. Davey
- Department of Microbiology, NEIDL, Boston University, Boston, Massachusetts 02118, United States
| | - Michel R. Popoff
- Bactéries anaérobies et Toxines, Institut Pasteur, 75015 Paris, France
| | - Noël Tordo
- Antiviral Strategies Unit, Virology Department, Institut Pasteur, 75015 Paris, France
| | - Daniel Gillet
- Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université
Paris-Saclay, LabEx LERMIT, 91191 Gif-sur-Yvette, France
| | - Jean-Christophe Cintrat
- Service de Chimie Bio-organique et de Marquage (SCBM), CEA, Université Paris-Saclay, LabEx LERMIT, 91191 Gif-sur-Yvette, France
| | - Julien Barbier
- Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université
Paris-Saclay, LabEx LERMIT, 91191 Gif-sur-Yvette, France
| |
Collapse
|
380
|
Richter M, Leuthold MM, Graf D, Bartenschlager R, Klein CD. Prodrug Activation by a Viral Protease: Evaluating Combretastatin Peptide Hybrids To Selectively Target Infected Cells. ACS Med Chem Lett 2019; 10:1115-1121. [PMID: 31413794 DOI: 10.1021/acsmedchemlett.9b00058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/18/2019] [Indexed: 01/05/2023] Open
Abstract
Infections with flaviviruses such as dengue virus (DENV) are prevalent throughout tropical regions worldwide. Replication of these viruses depends on tubulin, a host cell factor that can be targeted to obtain broad-spectrum antiviral agents. Targeting of tubulin does, however, require specific measures to avoid toxic side-effects. Herein, we report the synthesis and biological evaluation of combretastatin peptide hybrids that incorporate the cleavage site of the DENV protease to allow activation of the tubulin ligand within infected cells. The prodrug candidates have no effect on tubulin polymerization in vitro and are 20-2000-fold less toxic than combretastatin A-4. Several of the prodrug candidates were cleaved by the DENV protease in vitro with similar efficiency as the natural viral substrates. Selected compounds were studied in DENV and Zika virus replication assays and had antiviral activity at subcytotoxic concentrations.
Collapse
Affiliation(s)
- Michael Richter
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Mila M. Leuthold
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Dominik Graf
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, D-69120 Heidelberg, Germany
- German Center for Infection Research (DZIF),
Heidelberg Partner Site, Heidelberg, Germany
| | - Christian D. Klein
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
- German Center for Infection Research (DZIF),
Heidelberg Partner Site, Heidelberg, Germany
| |
Collapse
|
381
|
Mortensen R, Clemmensen HS, Woodworth JS, Therkelsen ML, Mustafa T, Tonby K, Jenum S, Agger EM, Dyrhol-Riise AM, Andersen P. Cyclooxygenase inhibitors impair CD4 T cell immunity and exacerbate Mycobacterium tuberculosis infection in aerosol-challenged mice. Commun Biol 2019; 2:288. [PMID: 31396568 PMCID: PMC6683187 DOI: 10.1038/s42003-019-0530-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/02/2019] [Indexed: 01/06/2023] Open
Abstract
Tuberculosis, caused by infection with Mycobacterium tuberculosis (Mtb), kills over 1.6 million people each year despite availability of antibiotics. The increase in drug resistant Mtb strains is a major public health emergency and host-directed therapy as adjunct to antibiotic treatment has gained increased interest. Cyclooxygenase inhibitors (COXi) are frequently used drugs to alleviate tuberculosis related symptoms. Mouse studies of acute intravenous Mtb infection have suggested a potential benefit of COXi for host-directed therapy. Here we show that COXi treatment (ibuprofen and celecoxib) is detrimental to Mtb control in different mouse models of respiratory infection. This effect links to impairments of the Type-1 helper (Th1) T-cell response as CD4 T-cells in COXi-treated animals have significantly decreased Th1 differentiation, reduced IFNγ expression and decreased protective capacity upon adoptive transfer. If confirmed in clinical trials, these findings could have major impact on global health and question the use of COXi for host-directed therapy.
Collapse
Affiliation(s)
- Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, 2300 Copenhagen S, Denmark
| | | | - Joshua S. Woodworth
- Department of Infectious Disease Immunology, Statens Serum Institut, 2300 Copenhagen S, Denmark
| | - Marie Louise Therkelsen
- Department of Infectious Disease Immunology, Statens Serum Institut, 2300 Copenhagen S, Denmark
| | - Tehmina Mustafa
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen & Department of Thoracic Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Kristian Tonby
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, 2300 Copenhagen S, Denmark
| | - Anne Ma Dyrhol-Riise
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, 2300 Copenhagen S, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
382
|
An RNA-centric dissection of host complexes controlling flavivirus infection. Nat Microbiol 2019; 4:2369-2382. [PMID: 31384002 PMCID: PMC6879806 DOI: 10.1038/s41564-019-0518-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/23/2019] [Indexed: 12/26/2022]
Abstract
Flaviviruses including dengue virus (DENV) and Zika virus (ZIKV) cause significant human disease. Co-opting cellular factors for viral translation and viral genome replication at the endoplasmic reticulum (ER) is a shared replication strategy, despite different clinical outcomes. While the protein products of these viruses have been studied in depth, how the RNA genomes operate inside human cells is poorly understood. Using comprehensive identification of RNA binding proteins by mass spectrometry (ChIRP-MS), we took an RNA-centric viewpoint of flaviviral infection and identified several hundred proteins associated with both DENV and ZIKV genomic RNA in human cells. Genome-scale knockout screens assigned putative functional relevance to the RNA-protein interactions observed by ChIRP-MS. The ER-localized RNA binding proteins vigilin and RRBP1 directly bound viral RNA and each acted at distinct stages in the life cycle of flaviviruses. Thus, this versatile strategy can elucidate features of human biology that control pathogenesis of clinically relevant viruses.
Collapse
|
383
|
Manipulation of autophagy for host-directed tuberculosis therapy. Afr J Thorac Crit Care Med 2019; 25. [PMID: 34286250 PMCID: PMC8278992 DOI: 10.7196/ajtccm.2019.v25i2.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2019] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb) is one of the world’s most successful human pathogens, infecting ~2 billion people worldwide. Although
there are effective drugs against M. tb., the disease remains out of control owing to prolonged and toxic treatment. Shorter regimens are
urgently required to control TB. Drug-resistant TB (DR-TB) also threatens to derail TB control. These unfulfilled needs could be addressed
by the identification and development of host-directed therapeutic agents for TB. Manipulation of the innate immune response, including
autophagy, may lead to the identification of cellular pathways that could be exploited to develop host-directed therapeutic interventions.
Host-directed therapies (HDTs) aim to augment immune mechanisms against M. tb infection and/or reduce excess inflammation, thus
preventing end-organ tissue damage, preserving lung function and/or enhancing the effectiveness of TB drug therapy in eliminating
infection. HDTs may also have additional advantages for patients with TB/HIV co-infection, as HDTs may reduce the risk of interaction
with antiretroviral drugs and the risk of developing immune reconstitution inflammatory syndrome (IRIS) and death. In this review, we
discuss the role of autophagy as a potential pathway that could be exploited as a host-directed TB therapeutic agent.
Collapse
|
384
|
Dujardin M, Madan V, Gandhi NS, Cantrelle FX, Launay H, Huvent I, Bartenschlager R, Lippens G, Hanoulle X. Cyclophilin A allows the allosteric regulation of a structural motif in the disordered domain 2 of NS5A and thereby fine-tunes HCV RNA replication. J Biol Chem 2019; 294:13171-13185. [PMID: 31315928 DOI: 10.1074/jbc.ra119.009537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Implicated in numerous human diseases, intrinsically disordered proteins (IDPs) are dynamic ensembles of interconverting conformers that often contain many proline residues. Whether and how proline conformation regulates the functional aspects of IDPs remains an open question, however. Here, we studied the disordered domain 2 of nonstructural protein 5A (NS5A-D2) of hepatitis C virus (HCV). NS5A-D2 comprises a short structural motif (PW-turn) embedded in a proline-rich sequence, whose interaction with the human prolyl isomerase cyclophilin A (CypA) is essential for viral RNA replication. Using NMR, we show here that the PW-turn motif exists in a conformational equilibrium between folded and disordered states. We found that the fraction of conformers in the NS5A-D2 ensemble that adopt the structured motif is allosterically modulated both by the cis/trans isomerization of the surrounding prolines that are CypA substrates and by substitutions conferring resistance to cyclophilin inhibitor. Moreover, we noted that this fraction is directly correlated with HCV RNA replication efficiency. We conclude that CypA can fine-tune the dynamic ensemble of the disordered NS5A-D2, thereby regulating viral RNA replication efficiency.
Collapse
Affiliation(s)
- Marie Dujardin
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Vanesa Madan
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Neha S Gandhi
- School of Mathematical Sciences and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - François-Xavier Cantrelle
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Hélène Launay
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Isabelle Huvent
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Guy Lippens
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Xavier Hanoulle
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France.
| |
Collapse
|
385
|
Hong CH, Tang MR, Hsu SH, Yang CH, Tseng CS, Ko YC, Guo CS, Yang CW, Lee SC. Enhanced early immune response of leptospiral outer membrane protein LipL32 stimulated by narrow band mid-infrared exposure. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111560. [PMID: 31336216 DOI: 10.1016/j.jphotobiol.2019.111560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/26/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
Previous studies revealed significant impact on cancer cell by mid-infrared (MIR) radiation. However, the effects of narrow band MIR on immune reaction and infectious disease are still unknown. In this study, an enhanced innate immune response was observed through the interaction between Leptospiral outer membrane protein (LipL32) and toll-like receptor 2 (TLR2). Thereafter, human kidney proximal tubular cells (HK-2 cells) initiated a serial reaction of enhanced MCP-1 production. The 6 μm narrow bandwidth light source emitted by waveguide thermal emitter (WTE) was applied to induce carbonyl group (CO bond) stretching vibration during the stage of antigen-receptor complex formation. The amount of MCP-1 gene expression had 2.5 folds increase after narrow band MIR illumination comparing to non-MIR illumination at low dose LipL32 condition. Besides, both ELISA and confocal microscopy results also revealed that the chemokine concentration increased significantly after narrow band MIR illumination either at low or high concentration of LipL32. Furthermore, a specific phenomenon that narrow band MIR can amplify the signal of weak immune response by enhancing sensitivity of the interaction between antigen and receptor was observed. This study exhibits clear evidence that the narrow band MIR exposure can modulate the early immune response of infectious disease and play a potential role to develop host-directed therapy in the future.
Collapse
Affiliation(s)
- Chung-Hung Hong
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan.
| | - Ming-Ru Tang
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan.
| | - Shen-Hsing Hsu
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Ching-Hsu Yang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
| | - Chi-Shin Tseng
- Department of Urology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yi-Ching Ko
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Che-Shao Guo
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chih-Wei Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Si-Chen Lee
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
386
|
Mukherjee T, Balaji KN. Immunological implications of epidermal growth factor receptor signaling in persistent infections. IUBMB Life 2019; 71:1661-1671. [PMID: 31283086 DOI: 10.1002/iub.2115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/17/2019] [Indexed: 01/18/2023]
Abstract
Infectious diseases account for a large proportion of global health emergencies and are rising more so owing to the paucity of effective vaccination and chemotherapeutic strategies. The severity is compounded by the development of antibiotic resistance among major pathogenic strains, capable of residing in the hostile host microenvironment by hijacking its signaling mechanisms and molecular circuitry. Among such processes, studies on epidermal growth factor receptor (EGFR) have revealed specific contributions of this classical oncogenic signaling axis during distinct infection conditions. Here, we review the current status of EGFR family members in the context of host-pathogen interactions and speculate the possible dimensions of exploration and manipulation of the EGFR pathway for host-directed therapeutic purposes.
Collapse
Affiliation(s)
- Tanushree Mukherjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | | |
Collapse
|
387
|
Yang G, Chen S, Zhang J. Bioinspired and Biomimetic Nanotherapies for the Treatment of Infectious Diseases. Front Pharmacol 2019; 10:751. [PMID: 31333467 PMCID: PMC6624236 DOI: 10.3389/fphar.2019.00751] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
There are still great challenges for the effective treatment of infectious diseases, although considerable achievement has been made by using antiviral and antimicrobial agents varying from small-molecule drugs, peptides/proteins, to nucleic acids. The nanomedicine approach is emerging as a new strategy capable of overcoming disadvantages of molecular therapeutics and amplifying their anti-infective activities, by localized delivery to infection sites, reducing off-target effects, and/or attenuating resistance development. Nanotechnology, in combination with bioinspired and biomimetic approaches, affords additional functions to nanoparticles derived from synthetic materials. Herein, we aim to provide a state-of-the-art review on recent progress in biomimetic and bioengineered nanotherapies for the treatment of infectious disease. Different biomimetic nanoparticles, derived from viruses, bacteria, and mammalian cells, are first described, with respect to their construction and biophysicochemical properties. Then, the applications of diverse biomimetic nanoparticles in anti-infective therapy are introduced, either by their intrinsic activity or by loading and site-specifically delivering various molecular drugs. Bioinspired and biomimetic nanovaccines for prevention and/or therapy of infectious diseases are also highlighted. At the end, major translation issues and future directions of this field are discussed.
Collapse
Affiliation(s)
- Guoyu Yang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Sheng Chen
- Department of Pediatrics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
388
|
Jiménez de Oya N, Esler WP, Huard K, El-Kattan AF, Karamanlidis G, Blázquez AB, Ramos-Ibeas P, Escribano-Romero E, Louloudes-Lázaro A, Casas J, Sobrino F, Hoehn K, James DE, Gutiérrez-Adán A, Saiz JC, Martín-Acebes MA. Targeting host metabolism by inhibition of acetyl-Coenzyme A carboxylase reduces flavivirus infection in mouse models. Emerg Microbes Infect 2019; 8:624-636. [PMID: 30999821 PMCID: PMC6493301 DOI: 10.1080/22221751.2019.1604084] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Flaviviruses are (re)-emerging RNA viruses strictly dependent on lipid metabolism for infection. In the search for host targeting antivirals, we explored the effect of pharmacological modulation of fatty acid metabolism during flavivirus infection. Considering the central role of acetyl-Coenzyme A carboxylase (ACC) on fatty acid metabolism, we analyzed the effect of three small-molecule ACC inhibitors (PF-05175157, PF-05206574, and PF-06256254) on the infection of medically relevant flaviviruses, namely West Nile virus (WNV), dengue virus, and Zika virus. Treatment with these compounds inhibited the multiplication of the three viruses in cultured cells. PF-05175157 induced a reduction of the viral load in serum and kidney in WNV-infected mice, unveiling its therapeutic potential for the treatment of chronic kidney disease associated with persistent WNV infection. This study constitutes a proof of concept of the reliability of ACC inhibitors to become viable antiviral candidates. These results support the repositioning of metabolic inhibitors as broad-spectrum antivirals.
Collapse
Affiliation(s)
- Nereida Jiménez de Oya
- a Department of Biotechnology , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | - William P Esler
- b Worldwide Research and Development Pfizer , Cambridge , MA , USA
| | - Kim Huard
- b Worldwide Research and Development Pfizer , Cambridge , MA , USA
| | | | - Georgios Karamanlidis
- b Worldwide Research and Development Pfizer , Cambridge , MA , USA.,h Present address: Cardiometabolic Disorders Amgen Discovery Research , Thousand Oaks , California 91320 , USA
| | - Ana-Belén Blázquez
- a Department of Biotechnology , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | | | - Estela Escribano-Romero
- a Department of Biotechnology , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | - Andrés Louloudes-Lázaro
- a Department of Biotechnology , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | - Josefina Casas
- d Department of Biomedicinal Chemistry , Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) and CIBEREHD , Barcelona , Spain
| | - Francisco Sobrino
- e Department of Virology and Microbiology , Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) , Madrid , Spain
| | - Kyle Hoehn
- f School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney , Australia
| | - David E James
- g Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School , University of Sydney , Australia
| | | | - Juan-Carlos Saiz
- a Department of Biotechnology , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | - Miguel A Martín-Acebes
- a Department of Biotechnology , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| |
Collapse
|
389
|
Abstract
Pneumonia is a highly prevalent disease with considerable morbidity and mortality. However, diagnosis and therapy still rely on antiquated methods, leading to the vast overuse of antimicrobials, which carries risks for both society and the individual. Furthermore, outcomes in severe pneumonia remain poor. Genomic techniques have the potential to transform the management of pneumonia through deep characterization of pathogens as well as the host response to infection. This characterization will enable the delivery of selective antimicrobials and immunomodulatory therapy that will help to offset the disorder associated with overexuberant immune responses.
Collapse
Affiliation(s)
- Samir Gautam
- Pulmonary Critical Care and Sleep Medicine, Center for Pulmonary Infection Research and Treatment, Yale University, 300 Cedar Street, TACS441, New Haven, CT 06520-8057, USA
| | - Lokesh Sharma
- Pulmonary Critical Care and Sleep Medicine, Center for Pulmonary Infection Research and Treatment, Yale University, 300 Cedar Street, TACS441, New Haven, CT 06520-8057, USA
| | - Charles S Dela Cruz
- Pulmonary Critical Care and Sleep Medicine, Center for Pulmonary Infection Research and Treatment, Yale University, 300 Cedar Street, TACS441, New Haven, CT 06520-8057, USA.
| |
Collapse
|
390
|
Opportunities for Overcoming Mycobacterium tuberculosis Drug Resistance: Emerging Mycobacterial Targets and Host-Directed Therapy. Int J Mol Sci 2019; 20:ijms20122868. [PMID: 31212777 PMCID: PMC6627145 DOI: 10.3390/ijms20122868] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 02/08/2023] Open
Abstract
The ever-increasing incidence of drug-resistant Mycobacterium tuberculosis infections has invigorated the focus on the discovery and development of novel treatment options. The discovery and investigation of essential mycobacterial targets is of utmost importance. In addition to the discovery of novel targets, focusing on non-lethal pathways and the use of host-directed therapies has gained interest. These adjunctive treatment options could not only lead to increased antibiotic susceptibility of Mycobacterium tuberculosis, but also have the potential to avoid the emergence of drug resistance. Host-directed therapies, on the other hand, can also reduce the associated lung pathology and improve disease outcome. This review will provide an outline of recent opportunities.
Collapse
|
391
|
Mannosylated graphene oxide as macrophage-targeted delivery system for enhanced intracellular M.tuberculosis killing efficiency. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109777. [PMID: 31349400 DOI: 10.1016/j.msec.2019.109777] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/23/2019] [Accepted: 05/19/2019] [Indexed: 12/31/2022]
Abstract
Tuberculosis (TB), caused by M.tuberculosis (Mtb), has become a top killer among infectious diseases. Enhancing the ability of anti-TB drugs to kill intracellular Mtb in host cells remains a big challenge. Here, an innovative nano-system was developed to increase drug delivery and Mtb-killing efficacy in Mtb-infected macrophages. We employed mannose surface decoration to develop mannosylated and PEGylated graphene oxide (GO-PEG-MAN). Such nano-platform exhibited increased uptake by macrophages via mannose receptor-mediated endocytosis in vitro. Interestingly, drug-loaded GO-PEG-MAN was preferentially up-taken by mannose receptor-expressing mucosal CD14+ macrophages isolated from Mtb-infected rhesus macaques than drug-loaded GO-PEG. Consistently, the drug concentration was also significantly higher in macrophages than that in T and B cells expressing no or low mannose receptor, implicating a useful macrophage/mannose receptor-targeted drug-delivery system relevant to the in vivo settings. Concurrently, rifampicin-loaded GO-PEG-MAN (Rif@GO-PEG-MAN) significantly increased rifampicin uptake, inducing long-lasting higher concentration of rifampicin in macrophages. Such innovative Rif@GO-PEG-MAN could readily get into the lysosomes of the Mtb host cells, where rifampicin underwent an accelerated release in acidic lysosomic condition, leading to explosive rifampicin release after cell entry for more effective killing of intracellular Mtb. Most importantly, Rif@GO-PEG-MAN-enhanced intracellular rifampicin delivery and pharmacokinetics significantly increased the efficacy of rifampicin-driven killing of intracellular BCG and Mtb bacilli in infected macrophages both in vitro and ex vivo. Such innovative nanocarrier approach may potentially enhance anti-TB drug efficacy and reduce drug side effects.
Collapse
|
392
|
Hu J, Cheng J, Tang L, Hu Z, Luo Y, Li Y, Zhou T, Chang J, Guo JT. Virological Basis for the Cure of Chronic Hepatitis B. ACS Infect Dis 2019; 5:659-674. [PMID: 29893548 DOI: 10.1021/acsinfecdis.8b00081] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) has infected one-third of world population, and 240 million people are chronic carriers, to whom a curative therapy is still not available. Similar to other viruses, persistent HBV infection relies on the virus to exploit host cell functions to support its replication and efficiently evade host innate and adaptive antiviral immunity. Understanding HBV replication and concomitant host cell interactions is thus instrumental for development of therapeutics to disrupt the virus-host interactions critical for its persistence and cure chronic hepatitis B. Although the currently available cell culture systems of HBV infection are refractory to genome-wide high throughput screening of key host cellular factors essential for and/or regulating HBV replication, classic one-gene (or pathway)-at-a-time studies in the last several decades have already revealed many aspects of HBV-host interactions. An overview of the landscape of HBV-hepatocyte interaction indicates that, in addition to more tightly suppressing viral replication by directly targeting viral proteins, disruption of key viral-host cell interactions to eliminate or inactivate the covalently closed circular (ccc) DNA, the most stable HBV replication intermediate that exists as an episomal minichromosome in the nucleus of infected hepatocyte, is essential to achieve a functional cure of chronic hepatitis B. Moreover, therapeutic targeting of integrated HBV DNA and their transcripts may also be required to induce hepatitis B virus surface antigen (HBsAg) seroclearance and prevent liver carcinogenesis.
Collapse
Affiliation(s)
- Jin Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, 1 Tian-tan Xi-li, Beijing, 100050, China
| | - Junjun Cheng
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Liudi Tang
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, Pennsylvania 19129, United States
| | - Zhanying Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Yue Luo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
- Institute of Hepatology, Second Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Yuhuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, 1 Tian-tan Xi-li, Beijing, 100050, China
| | - Tianlun Zhou
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Jinhong Chang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
393
|
Destabilization of the human RED-SMU1 splicing complex as a basis for host-directed antiinfluenza strategy. Proc Natl Acad Sci U S A 2019; 116:10968-10977. [PMID: 31076555 DOI: 10.1073/pnas.1901214116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
New therapeutic strategies targeting influenza are actively sought due to limitations in current drugs available. Host-directed therapy is an emerging concept to target host functions involved in pathogen life cycles and/or pathogenesis, rather than pathogen components themselves. From this perspective, we focused on an essential host partner of influenza viruses, the RED-SMU1 splicing complex. Here, we identified two synthetic molecules targeting an α-helix/groove interface essential for RED-SMU1 complex assembly. We solved the structure of the SMU1 N-terminal domain in complex with RED or bound to one of the molecules identified to disrupt this complex. We show that these compounds inhibiting RED-SMU1 interaction also decrease endogenous RED-SMU1 levels and inhibit viral mRNA splicing and viral multiplication, while preserving cell viability. Overall, our data demonstrate the potential of RED-SMU1 destabilizing molecules as an antiviral therapy that could be active against a wide range of influenza viruses and be less prone to drug resistance.
Collapse
|
394
|
Netzler NE, Enosi Tuipulotu D, White PA. Norovirus antivirals: Where are we now? Med Res Rev 2019; 39:860-886. [PMID: 30584800 PMCID: PMC7168425 DOI: 10.1002/med.21545] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022]
Abstract
Human noroviruses inflict a significant health burden on society and are responsible for approximately 699 million infections and over 200 000 estimated deaths worldwide each year. Yet despite significant research efforts, approved vaccines or antivirals to combat this pathogen are still lacking. Safe and effective antivirals are not available, particularly for chronically infected immunocompromised individuals, and for prophylactic applications to protect high-risk and vulnerable populations in outbreak settings. Since the discovery of human norovirus in 1972, the lack of a cell culture system has hindered biological research and antiviral studies for many years. Recent breakthroughs in culturing human norovirus have been encouraging, however, further development and optimization of these novel methodologies are required to facilitate more robust replication levels, that will enable reliable serological and replication studies, as well as advances in antiviral development. In the last few years, considerable progress has been made toward the development of norovirus antivirals, inviting an updated review. This review focuses on potential therapeutics that have been reported since 2010, which were examined across at least two model systems used for studying human norovirus or its enzymes. In addition, we have placed emphasis on antiviral compounds with a defined chemical structure. We include a comprehensive outline of direct-acting antivirals and offer a discussion of host-modulating compounds, a rapidly expanding and promising area of antiviral research.
Collapse
Affiliation(s)
- Natalie E. Netzler
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, SydneyNew South WalesAustralia
| | - Daniel Enosi Tuipulotu
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, SydneyNew South WalesAustralia
| | - Peter A. White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, SydneyNew South WalesAustralia
| |
Collapse
|
395
|
Machelart A, Salzano G, Li X, Demars A, Debrie AS, Menendez-Miranda M, Pancani E, Jouny S, Hoffmann E, Deboosere N, Belhaouane I, Rouanet C, Simar S, Talahari S, Giannini V, Villemagne B, Flipo M, Brosch R, Nesslany F, Deprez B, Muraille E, Locht C, Baulard AR, Willand N, Majlessi L, Gref R, Brodin P. Intrinsic Antibacterial Activity of Nanoparticles Made of β-Cyclodextrins Potentiates Their Effect as Drug Nanocarriers against Tuberculosis. ACS NANO 2019; 13:3992-4007. [PMID: 30822386 PMCID: PMC6718168 DOI: 10.1021/acsnano.8b07902] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/01/2019] [Indexed: 05/23/2023]
Abstract
Multi-drug-resistant tuberculosis (TB) is a major public health problem, concerning about half a million cases each year. Patients hardly adhere to the current strict treatment consisting of more than 10 000 tablets over a 2-year period. There is a clear need for efficient and better formulated medications. We have previously shown that nanoparticles made of cross-linked poly-β-cyclodextrins (pβCD) are efficient vehicles for pulmonary delivery of powerful combinations of anti-TB drugs. Here, we report that in addition to being efficient drug carriers, pβCD nanoparticles are endowed with intrinsic antibacterial properties. Empty pβCD nanoparticles are able to impair Mycobacterium tuberculosis (Mtb) establishment after pulmonary administration in mice. pβCD hamper colonization of macrophages by Mtb by interfering with lipid rafts, without inducing toxicity. Moreover, pβCD provoke macrophage apoptosis, leading to depletion of infected cells, thus creating a lung microenvironment detrimental to Mtb persistence. Taken together, our results suggest that pβCD nanoparticles loaded or not with antibiotics have an antibacterial action on their own and could be used as a carrier in drug regimen formulations effective against TB.
Collapse
Affiliation(s)
- Arnaud Machelart
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Giuseppina Salzano
- Université
Paris Sud, Université Paris-Saclay, CNRS, UMR 8214 - Institute for Molecular Sciences of Orsay (ISMO), F-91405 Orsay, France
| | - Xue Li
- Université
Paris Sud, Université Paris-Saclay, CNRS, UMR 8214 - Institute for Molecular Sciences of Orsay (ISMO), F-91405 Orsay, France
| | - Aurore Demars
- Research
Unit in Microorganisms Biology (URBM), Laboratory of Immunology and
Microbiology, Université de Namur, Narilis, B-5000 Namur, Belgium
| | - Anne-Sophie Debrie
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Mario Menendez-Miranda
- Université
Paris Sud, Université Paris-Saclay, CNRS, UMR 8214 - Institute for Molecular Sciences of Orsay (ISMO), F-91405 Orsay, France
| | - Elisabetta Pancani
- Université
Paris Sud, Université Paris-Saclay, CNRS, UMR 8214 - Institute for Molecular Sciences of Orsay (ISMO), F-91405 Orsay, France
| | - Samuel Jouny
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Eik Hoffmann
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nathalie Deboosere
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Imène Belhaouane
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Carine Rouanet
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Sophie Simar
- Université
de Lille, Institut Pasteur de Lille, EA 4483, F-59000 Lille, France
| | - Smaïl Talahari
- Université
de Lille, Institut Pasteur de Lille, EA 4483, F-59000 Lille, France
| | - Valerie Giannini
- Institut
Pasteur, Unit for Integrated
Mycobacterial Pathogenomics, Paris, CNRS
UMR 3525, 25 Rue du Dr. Roux, F-75015 Paris, France
| | - Baptiste Villemagne
- Université
de Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Marion Flipo
- Université
de Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Roland Brosch
- Institut
Pasteur, Unit for Integrated
Mycobacterial Pathogenomics, Paris, CNRS
UMR 3525, 25 Rue du Dr. Roux, F-75015 Paris, France
| | - Fabrice Nesslany
- Université
de Lille, Institut Pasteur de Lille, EA 4483, F-59000 Lille, France
| | - Benoit Deprez
- Université
de Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Eric Muraille
- Research
Unit in Microorganisms Biology (URBM), Laboratory of Immunology and
Microbiology, Université de Namur, Narilis, B-5000 Namur, Belgium
- Laboratory
of Parasitology, Faculty of Medicine, Université
Libre de Bruxelles, B-1070 Brussels, Belgium
| | - Camille Locht
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Alain R. Baulard
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nicolas Willand
- Université
de Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Laleh Majlessi
- Institut
Pasteur, Unit for Integrated
Mycobacterial Pathogenomics, Paris, CNRS
UMR 3525, 25 Rue du Dr. Roux, F-75015 Paris, France
| | - Ruxandra Gref
- Université
Paris Sud, Université Paris-Saclay, CNRS, UMR 8214 - Institute for Molecular Sciences of Orsay (ISMO), F-91405 Orsay, France
| | - Priscille Brodin
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
396
|
Ianevski A, Andersen PI, Merits A, Bjørås M, Kainov D. Expanding the activity spectrum of antiviral agents. Drug Discov Today 2019; 24:1224-1228. [PMID: 30980905 DOI: 10.1016/j.drudis.2019.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 12/30/2022]
Abstract
Broad-spectrum antivirals (BSAs) are agents that inhibit replication of several human viruses. Here, we review 108 approved, investigational, and experimental BSAs, for which safety profiles in humans are available. The most effective and tolerable BSAs could reinforce the arsenal of available antiviral therapeutics pending the results of further pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7028, Norway
| | - Petter I Andersen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7028, Norway
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu 50090, Estonia
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7028, Norway; Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo 0027, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7028, Norway; Institute of Technology, University of Tartu, Tartu 50090, Estonia.
| |
Collapse
|
397
|
Yang Y, Cao L, Gao H, Wu Y, Wang Y, Fang F, Lan T, Lou Z, Rao Y. Discovery, Optimization, and Target Identification of Novel Potent Broad-Spectrum Antiviral Inhibitors. J Med Chem 2019; 62:4056-4073. [DOI: 10.1021/acs.jmedchem.9b00091] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yiqing Yang
- Tsinghua University−Peking University Joint Center for Life Sciences, Beijing 100084, P. R. China
| | - Lin Cao
- College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Hongying Gao
- Tsinghua University−Peking University Joint Center for Life Sciences, Beijing 100084, P. R. China
| | | | - Yaxin Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | | | | | | | | |
Collapse
|
398
|
Frutis-Murillo M, Sandoval-Carrillo MA, Alva-Murillo N, Ochoa-Zarzosa A, López-Meza JE. Immunomodulatory molecules regulate adhesin gene expression in Staphylococcus aureus: Effect on bacterial internalization into bovine mammary epithelial cells. Microb Pathog 2019; 131:15-21. [PMID: 30930221 DOI: 10.1016/j.micpath.2019.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 11/26/2022]
Abstract
Staphylococcus aureus is a major pathogen of subclinical bovine mastitis that usually is chronic and recurrent, which has been related to its ability to internalize into bovine mammary epithelial cells (bMECs). Previously, we reported that short and medium fatty acids and cholecalciferol reduce S. aureus internalization into pretreated-bMECs with these molecules suggesting a role as immunomodulatory agents. Hence, we assessed the role of sodium butyrate (NaB), sodium octanoate (NaO) and cholecalciferol on S. aureus adhesin expression and its internalization into bMECs. S. aureus pre-treated 2 h with 0.5 mM or 2 mM NaB showed a reduction in internalization into bMECs (∼35% and ∼55%; respectively), which coincided with a down-regulated expression of clumping factor B (ClfB). Also, the S. aureus internalization reduction by 2 mM NaB (2 h) agreed with a down-regulated expression of sdrC. Moreover, the 2 mM NaB (24 h) pre-treatment induced bacterial internalization (∼3-fold), which was related with an up-regulation of spa, clfB and sdrC genes. Also, NaO (0.25 mM and 1 mM) only reduced S. aureus internalization when bacteria were grown 2 h with this molecule but there was no relationship with adhesin expression. In addition, cholecalciferol (50 nM) reduced bacteria internalization at similar levels (∼50%) when bacteria were grown 2 and 24 h in broth supplemented with this compound, which correlated with spa and sdrC mRNA expression down-regulated at 2 h, and fnba and clfB mRNA expression decreased at 24 h. In conclusion, our data support the fact that fatty acids and cholecalciferol regulate adhesin gene expression as well as bacteria internalization in nonprofessional phagocytic cells, which may lead to development of anti-virulence agents for control of pathogens.
Collapse
Affiliation(s)
- Minerva Frutis-Murillo
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Marcelo Alejandro Sandoval-Carrillo
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Nayeli Alva-Murillo
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Joel E López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico.
| |
Collapse
|
399
|
Duffy FJ, Weiner J, Hansen S, Tabb DL, Suliman S, Thompson E, Maertzdorf J, Shankar S, Tromp G, Parida S, Dover D, Axthelm MK, Sutherland JS, Dockrell HM, Ottenhoff THM, Scriba TJ, Picker LJ, Walzl G, Kaufmann SHE, Zak DE. Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome. Front Immunol 2019; 10:527. [PMID: 30967866 PMCID: PMC6440524 DOI: 10.3389/fimmu.2019.00527] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/27/2019] [Indexed: 12/24/2022] Open
Abstract
There remains a pressing need for biomarkers that can predict who will progress to active tuberculosis (TB) after exposure to Mycobacterium tuberculosis (MTB) bacterium. By analyzing cohorts of household contacts of TB index cases (HHCs) and a stringent non-human primate (NHP) challenge model, we evaluated whether integration of blood transcriptional profiling with serum metabolomic profiling can provide new understanding of disease processes and enable improved prediction of TB progression. Compared to either alone, the combined application of pre-existing transcriptome- and metabolome-based signatures more accurately predicted TB progression in the HHC cohorts and more accurately predicted disease severity in the NHPs. Pathway and data-driven correlation analyses of the integrated transcriptional and metabolomic datasets further identified novel immunometabolomic signatures significantly associated with TB progression in HHCs and NHPs, implicating cortisol, tryptophan, glutathione, and tRNA acylation networks. These results demonstrate the power of multi-omics analysis to provide new insights into complex disease processes.
Collapse
Affiliation(s)
- Fergal J Duffy
- Center for Global Infectious Disease Research, Seattle Childrens Research Institute, Seattle, WA, United States
| | - January Weiner
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Scott Hansen
- Oregon Health and Science University, Portland, OR, United States
| | - David L Tabb
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, SAMRC-SHIP South African Tuberculosis Bioinformatics Initiative (SATBBI), Center for Bioinformatics and Computational Biology, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| | - Sara Suliman
- Department of Pathology, South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Ethan Thompson
- Center for Infectious Disease Research, Seattle, WA, United States
| | | | - Smitha Shankar
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Gerard Tromp
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, SAMRC-SHIP South African Tuberculosis Bioinformatics Initiative (SATBBI), Center for Bioinformatics and Computational Biology, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| | - Shreemanta Parida
- Max Planck Institute for Infection Biology, Berlin, Germany.,Translational Medicine & Global Health Consulting, Berlin, Germany
| | - Drew Dover
- Center for Global Infectious Disease Research, Seattle Childrens Research Institute, Seattle, WA, United States
| | | | - Jayne S Sutherland
- Vaccines & Immunity Theme, Medical Research Council Unit, Fajara, Gambia
| | - Hazel M Dockrell
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Thomas J Scriba
- Department of Pathology, South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Louis J Picker
- Oregon Health and Science University, Portland, OR, United States
| | - Gerhard Walzl
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, SAMRC-SHIP South African Tuberculosis Bioinformatics Initiative (SATBBI), Center for Bioinformatics and Computational Biology, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| | | | - Daniel E Zak
- Center for Infectious Disease Research, Seattle, WA, United States
| | | |
Collapse
|
400
|
Host-directed kinase inhibitors act as novel therapies against intracellular Staphylococcus aureus. Sci Rep 2019; 9:4876. [PMID: 30890742 PMCID: PMC6425000 DOI: 10.1038/s41598-019-41260-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/05/2019] [Indexed: 01/09/2023] Open
Abstract
Host-directed therapeutics are a promising anti-infective strategy against intracellular bacterial pathogens. Repurposing host-targeted drugs approved by the FDA in the US, the MHRA in the UK and/or regulatory equivalents in other countries, is particularly interesting because these drugs are commercially available, safe doses are documented and they have been already approved for other clinical purposes. In this study, we aimed to identify novel therapies against intracellular Staphylococcus aureus, an opportunistic pathogen that is able to exploit host molecular and metabolic pathways to support its own intracellular survival. We screened 133 host-targeting drugs and found three host-directed tyrosine kinase inhibitors (Ibrutinib, Dasatinib and Crizotinib) that substantially impaired intracellular bacterial survival. We found that Ibrutinib significantly increased host cell viability after S. aureus infection via inhibition of cell invasion and intracellular bacterial proliferation. Using phosphoproteomics data, we propose a putative mechanism of action of Ibrutinib involving several host factors, including EPHA2, C-JUN and NWASP. We confirmed the importance of EPHA2 for staphylococcal infection in an EPHA2-knock-out cell line. Our study serves as an important example of feasibility for identifying host-directed therapeutics as candidates for repurposing.
Collapse
|