351
|
Taking a Stab at Cancer; Oncolytic Virus-Mediated Anti-Cancer Vaccination Strategies. Biomedicines 2017; 5:biomedicines5010003. [PMID: 28536346 PMCID: PMC5423491 DOI: 10.3390/biomedicines5010003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022] Open
Abstract
Vaccines have classically been used for disease prevention. Modern clinical vaccines are continuously being developed for both traditional use as well as for new applications. Typically thought of in terms of infectious disease control, vaccination approaches can alternatively be adapted as a cancer therapy. Vaccines targeting cancer antigens can be used to induce anti-tumour immunity and have demonstrated therapeutic efficacy both pre-clinically and clinically. Various approaches now exist and further establish the tremendous potential and adaptability of anti-cancer vaccination. Classical strategies include ex vivo-loaded immune cells, RNA- or DNA-based vaccines and tumour cell lysates. Recent oncolytic virus development has resulted in a surge of novel viruses engineered to induce powerful tumour-specific immune responses. In addition to their use as cancer vaccines, oncolytic viruses have the added benefit of being directly cytolytic to cancer cells and thus promote antigen recognition within a highly immune-stimulating tumour microenvironment. While oncolytic viruses are perfectly equipped for efficient immunization, this complicates their use upon previous exposure. Indeed, the host's anti-viral counter-attacks often impair multiple-dosing regimens. In this review we will focus on the use of oncolytic viruses for anti-tumour vaccination. We will explore different strategies as well as ways to circumvent some of their limitations.
Collapse
|
352
|
Chan MY, Fedor DM, Phan T, V LB, Kramer RM. Interactions Between Antigens and Nanoemulsion Adjuvants: Separation and Characterization Techniques. Methods Mol Biol 2017; 1494:285-294. [PMID: 27718202 DOI: 10.1007/978-1-4939-6445-1_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Determining the association of vaccine components in a formulation is of interest for designing and optimizing well characterized vaccines. Three methods are described to assess interactions between protein antigens and oil-in-water nanoemulsion adjuvants. The methods include (1) ultracentrifugation to measure free versus adjuvant-associated protein, (2) size exclusion chromatography (SEC) to qualitatively assess existing interactions, and (3) Native PAGE as a means to visualize the formulation run in its native state on a polyacrylamide gel. As with many techniques, the methods alone are not definitive, but data from multiple orthogonal assays can provide a more complete picture of protein-adjuvant interactions.
Collapse
Affiliation(s)
| | - Dawn M Fedor
- IDRI, 1616 Eastlake Avenue East, Seattle, WA, 98102, USA
| | - Tony Phan
- IDRI, 1616 Eastlake Avenue East, Seattle, WA, 98102, USA
| | | | - Ryan M Kramer
- IDRI, 1616 Eastlake Avenue East, Seattle, WA, 98102, USA.
| |
Collapse
|
353
|
Shah RR, Hassett KJ, Brito LA. Overview of Vaccine Adjuvants: Introduction, History, and Current Status. Methods Mol Biol 2017; 1494:1-13. [PMID: 27718182 DOI: 10.1007/978-1-4939-6445-1_1] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Adjuvants are included in sub-unit or recombinant vaccines to enhance the potency of poorly immunogenic antigens. Adjuvant discovery is as complex as it is a multidiscplinary intersection of formulation science, immunology, toxicology, and biology. Adjuvants such as alum, which have been in use for the past 90 years, have illustrated that adjuvant research is a methodical process. As science advances, new analytical tools are developed which allows us to delve deeper into the various mechanisms that generates a potent immune response. Additionally, these new techniques help the field learn about our existing vaccines and what makes them safe, and effective, allowing us to leverage that in the next generation of vaccines. Our goal in this chapter is to define the concept, need, and mechanism of adjuvants in the vaccine field while describing its history, present use, and future prospects. More details on individual adjuvants and their formulation, development, mechanism, and use will be covered in depth in the next chapters.
Collapse
Affiliation(s)
- Ruchi R Shah
- Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | | | - Luis A Brito
- Moderna Therapeutics, 320 Bent Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
354
|
Hsueh KJ, Chen MC, Cheng LT, Lee JW, Chung WB, Chu CY. Transcutaneous immunization of Streptococcus suis bacterin using dissolving microneedles. Comp Immunol Microbiol Infect Dis 2016; 50:78-87. [PMID: 28131383 DOI: 10.1016/j.cimid.2016.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/14/2016] [Accepted: 12/08/2016] [Indexed: 11/17/2022]
Abstract
Vaccine delivery using microneedle (MN) patches is an easy, safe and painless alternative to traditional needle injections. In this study, we examined whether MN patches can enhance the efficacy of a Streptococcus suis serotype 2 (S. suis 2) vaccine in a mouse model. Results showed that MNs can reach 200-250μm into the skin, a depth beneficial for targeted delivery of antigens to antigen-presenting cells in the epidermis and dermis. Vaccination with prime-boost of MN induced higher levels of IgG2a antibody titer, T cell proliferation, and TH1 cytokines (IFN-γ and IL-12) as compared to intramuscular (IM) injection. In addition, single dose MN vaccination better protected mice against lethal challenge than IM vaccination. MN vaccination also conferred long-term IgG2a antibody against S. suis 2 bacteria presence for up to 7 months. Taken together, these data showed that vaccine delivery by MNs results in superior immune response and protection rate when compared to IM injections.
Collapse
Affiliation(s)
- Kai-Jen Hsueh
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan
| | - Mei-Chin Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701 Taiwan
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan
| | - Jai-Wei Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan
| | - Wen-Bin Chung
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan
| | - Chun-Yen Chu
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan.
| |
Collapse
|
355
|
Olafsdottir TA, Lindqvist M, Nookaew I, Andersen P, Maertzdorf J, Persson J, Christensen D, Zhang Y, Anderson J, Khoomrung S, Sen P, Agger EM, Coler R, Carter D, Meinke A, Rappuoli R, Kaufmann SHE, Reed SG, Harandi AM. Comparative Systems Analyses Reveal Molecular Signatures of Clinically tested Vaccine Adjuvants. Sci Rep 2016; 6:39097. [PMID: 27958370 PMCID: PMC5153655 DOI: 10.1038/srep39097] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/17/2016] [Indexed: 01/22/2023] Open
Abstract
A better understanding of the mechanisms of action of human adjuvants could inform a rational development of next generation vaccines for human use. Here, we exploited a genome wide transcriptomics analysis combined with a systems biology approach to determine the molecular signatures induced by four clinically tested vaccine adjuvants, namely CAF01, IC31, GLA-SE and Alum in mice. We report signature molecules, pathways, gene modules and networks, which are shared by or otherwise exclusive to these clinical-grade adjuvants in whole blood and draining lymph nodes of mice. Intriguingly, co-expression analysis revealed blood gene modules highly enriched for molecules with documented roles in T follicular helper (TFH) and germinal center (GC) responses. We could show that all adjuvants enhanced, although with different magnitude and kinetics, TFH and GC B cell responses in draining lymph nodes. These results represent, to our knowledge, the first comparative systems analysis of clinically tested vaccine adjuvants that may provide new insights into the mechanisms of action of human adjuvants.
Collapse
Affiliation(s)
- Thorunn A Olafsdottir
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Madelene Lindqvist
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Intawat Nookaew
- Department of Biology and Biological Engineering, Chalmers, University of Technology, Gothenburg, Sweden.,Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Jeroen Maertzdorf
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Josefine Persson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Yuan Zhang
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenna Anderson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sakda Khoomrung
- Department of Biology and Biological Engineering, Chalmers, University of Technology, Gothenburg, Sweden
| | - Partho Sen
- Department of Biology and Biological Engineering, Chalmers, University of Technology, Gothenburg, Sweden
| | - Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Rhea Coler
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Darrick Carter
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Andreas Meinke
- Valneva Austria GmbH, Campus Vienna Biocenter, Vienna, Austria
| | | | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Steven G Reed
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
356
|
Hayashi M, Aoshi T, Haseda Y, Kobiyama K, Wijaya E, Nakatsu N, Igarashi Y, Standley DM, Yamada H, Honda-Okubo Y, Hara H, Saito T, Takai T, Coban C, Petrovsky N, Ishii KJ. Advax, a Delta Inulin Microparticle, Potentiates In-built Adjuvant Property of Co-administered Vaccines. EBioMedicine 2016; 15:127-136. [PMID: 27919753 PMCID: PMC5233800 DOI: 10.1016/j.ebiom.2016.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/29/2016] [Accepted: 11/09/2016] [Indexed: 11/19/2022] Open
Abstract
Advax, a delta inulin-derived microparticle, has been developed as an adjuvant for several vaccines. However, its immunological characteristics and potential mechanism of action are yet to be elucidated. Here, we show that Advax behaves as a type-2 adjuvant when combined with influenza split vaccine, a T helper (Th)2-type antigen, but behaves as a type-1 adjuvant when combined with influenza inactivated whole virion (WV), a Th1-type antigen. In addition, an adjuvant effect was not observed when Advax-adjuvanted WV vaccine was used to immunize toll-like receptor (TLR) 7 knockout mice which are unable to respond to RNA contained in WV antigen. Similarly, no adjuvant effect was seen when Advax was combined with endotoxin-free ovalbumin, a neutral Th0-type antigen. An adjuvant effect was also not seen in tumor necrosis factor (TNF)-α knockout mice, and the adjuvant effect required the presences of dendritic cells (DCs) and phagocytic macrophages. Therefore, unlike other adjuvants, Advax potentiates the intrinsic or in-built adjuvant property of co-administered antigens. Hence, Advax is a unique class of adjuvant which can potentiate the intrinsic adjuvant feature of the vaccine antigens through a yet to be determined mechanism. Advax potentiates built-in adjuvant property of vaccine antigens. Advax does not change the T helper immune bias induced by the vaccine antigen. Dendritic cells, phagocytic macrophages, and tumor necrosis factor-α play a role in Advax adjuvant activity.
Adjuvants are indispensable agent to maximize the efficacy of vaccines. Most adjuvants consistently impart either T helper (Th)1, Th2 or Th17 bias to the vaccine response regardless of the properties of antigen. For example alum adjuvants consistently impart a Th2 bias regardless of the vaccine antigen. Here we show that a delta inulin-derived microparticle adjuvant, Advax, is an additional class of adjuvant that functions as an amplifier of in-built adjuvant activity within the antigens themselves. Advax enhances different types of adaptive immune response dependent on the antigen's own in-built adjuvant properties, confirming Advax's utility as a general purpose vaccine adjuvant.
Collapse
Affiliation(s)
- Masayuki Hayashi
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Vaccine Research Development Office, Advanced Drug Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama 227-0033, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
| | - Taiki Aoshi
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
| | - Yasunari Haseda
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
| | - Kouji Kobiyama
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
| | - Edward Wijaya
- Systems Immunology Laboratory, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Noriyuki Nakatsu
- Toxicogenomics-informatics Project, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Yoshinobu Igarashi
- Toxicogenomics-informatics Project, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Daron M Standley
- Systems Immunology Laboratory, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Yamada
- Toxicogenomics-informatics Project, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | | | - Hiromitsu Hara
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan; Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; jWPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Cevayir Coban
- Laboratory of Malaria Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, Adelaide, Australia; Department of Diabetes and Endocrinology, Flinders Medical Centre, Flinders University, Adelaide 5042, Australia
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
357
|
Cunningham AL, Garçon N, Leo O, Friedland LR, Strugnell R, Laupèze B, Doherty M, Stern P. Vaccine development: From concept to early clinical testing. Vaccine 2016; 34:6655-6664. [DOI: 10.1016/j.vaccine.2016.10.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/21/2016] [Accepted: 10/04/2016] [Indexed: 12/21/2022]
|
358
|
Masson JD, Thibaudon M, Bélec L, Crépeaux G. Calcium phosphate: a substitute for aluminum adjuvants? Expert Rev Vaccines 2016; 16:289-299. [DOI: 10.1080/14760584.2017.1244484] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jean-Daniel Masson
- Association E3M (Entraide aux Malades de Myofasciite à Macrophages), Monprimblanc, France
| | - Michel Thibaudon
- Pharmacien « Service des Allergènes », de l’Institut Pasteur, Paris, France
| | - Laurent Bélec
- Laboratoire de Microbiologie, hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, & Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Guillemette Crépeaux
- École nationale vétérinaire d’Alfort, Maisons-Alfort, France
- Inserm U955 E10, Université Paris Est Créteil, Créteil, France
| |
Collapse
|
359
|
Detection of Anti-Type II Collagen Antibodies in Patients With Chronic Gouty Arthritis. J Clin Rheumatol 2016; 22:360-3. [DOI: 10.1097/rhu.0000000000000438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
360
|
Tunheim G, Arnemo M, Naess LM, Norheim G, Garcia L, Cardoso D, Mandiarote A, Gonzalez D, Sinnadurai K, Fjeldheim ÅK, Bolstad K, Rosenqvist E. Immune responses of a meningococcal A + W outer membrane vesicle (OMV) vaccine with and without aluminium hydroxide adjuvant in two different mouse strains. APMIS 2016; 124:996-1003. [DOI: 10.1111/apm.12589] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/08/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Gro Tunheim
- Norwegian Institute of Public Health (NIPH); Domain for Infection Control and Environmental Health; Oslo Norway
| | - Marianne Arnemo
- Norwegian Institute of Public Health (NIPH); Domain for Infection Control and Environmental Health; Oslo Norway
- Department of Pharmaceutical Biosciences; School of Pharmacy; University of Oslo; Oslo Norway
| | - Lisbeth M. Naess
- Norwegian Institute of Public Health (NIPH); Domain for Infection Control and Environmental Health; Oslo Norway
| | - Gunnstein Norheim
- Norwegian Institute of Public Health (NIPH); Domain for Infection Control and Environmental Health; Oslo Norway
| | | | | | | | | | - Kalpana Sinnadurai
- Norwegian Institute of Public Health (NIPH); Domain for Infection Control and Environmental Health; Oslo Norway
| | - Åse-Karine Fjeldheim
- Norwegian Institute of Public Health (NIPH); Domain for Infection Control and Environmental Health; Oslo Norway
| | - Karin Bolstad
- Norwegian Institute of Public Health (NIPH); Domain for Infection Control and Environmental Health; Oslo Norway
| | - Einar Rosenqvist
- Norwegian Institute of Public Health (NIPH); Domain for Infection Control and Environmental Health; Oslo Norway
| |
Collapse
|
361
|
Abstract
Adjuvants are substances added to vaccines to improve their immunogenicity. Used for more than 80 years, aluminum, the first adjuvant in human vaccines, proved insufficient to develop vaccines that could protect against new challenging pathogens such as HIV and malaria. New adjuvants and new combinations of adjuvants (Adjuvant Systems) have opened the door to the delivery of improved and new vaccines against re-emerging and difficult pathogens. Adjuvant Systems concept started through serendipity. The access to new developments in technology, microbiology and immunology have been instrumental for the dicephering of what they do and how they do it. This knowledge opens the door to more rational vaccine design with implications for developing new and better vaccines.
Collapse
|
362
|
Abstract
One key approach to increase the efficacy and the safety of immunotherapy is the use of adjuvants. However, many of the adjuvants currently in use can cause adverse events, raising concerns regarding their clinical use, and are geared toward productive immune responses but not necessarily tolerogenic responses. Thus, novel adjuvants for immunotherapy are needed and are being developed. Essential is their potential to boost appropriate tolerogenic adaptive immune responses to allergens while limiting side effects. This review provides an overview of adjuvants currently in clinical use or under development and discusses their therapeutic effect in enhancing allergen-induced tolerance.
Collapse
|
363
|
Senti G, Kündig TM. Novel Delivery Routes for Allergy Immunotherapy: Intralymphatic, Epicutaneous, and Intradermal. Immunol Allergy Clin North Am 2016; 36:25-37. [PMID: 26617225 DOI: 10.1016/j.iac.2015.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Current allergy immunotherapy protocols suffer from two main problems: long treatment duration and systemic allergic side effects of the allergen administrations. The immunologic effects of allergen administration could be enhanced and the number of allergen administrations and treatment duration reduced by choosing a tissue for administration that contains a high density of antigen-presenting cells. Local side effects could be reduced by choosing a route characterized by a low density of mast cells, and systemic side effects could be reduced by administration to nonvascularized tissues, so that inadvertent systemic distribution of the allergen and consequent systemic allergic side effects are minimized.
Collapse
Affiliation(s)
- Gabriela Senti
- Clinical Trials Center, University Hospital Zurich, Moussonstrasse 2, Zurich 8044, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University Hospital Zurich, Gloriatrasse 31, Zurich 8091, Switzerland.
| |
Collapse
|
364
|
Angelina A, Sirvent S, Palladino C, Vereda A, Cuesta-Herranz J, Eiwegger T, Rodríguez R, Breiteneder H, Villalba M, Palomares O. The lipid interaction capacity of Sin a 2 and Ara h 1, major mustard and peanut allergens of the cupin superfamily, endorses allergenicity. Allergy 2016; 71:1284-94. [PMID: 26991432 DOI: 10.1111/all.12887] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Sin a 2 (11S globulin) and Ara h 1 (7S globulin) are major allergens from yellow mustard seeds and peanut, respectively. The ability of these two allergens to interact with lipid components remains unknown. OBJECTIVE To study the capacity of Sin a 2 and Ara h 1 to interact with lipid components and the potential effects of such interaction in their allergenic capacity. METHODS Spectroscopic and SDS-PAGE binding assays of Sin a 2 and Ara h 1 with different phospholipid vesicles and gastrointestinal and endolysosomal digestions in the presence or absence of lipids were performed. The capacity of human monocyte-derived dendritic cells (hmoDCs) to capture food allergens in the presence or absence of lipids, the induced cytokine signature, and the effect of allergens and lipids to regulate TLR2-L-induced NF-kB/AP-1 activation in THP1 cells were analyzed. RESULTS Sin a 2 and Ara h 1 bind phosphatidylglycerol (PG) acid but not phosphatidylcholine (PC) vesicles in a pH-dependent manner. The interaction of these two allergens with lipid components confers resistance to gastrointestinal digestion, reduces their uptake by hmoDCs, and enhances their stability to microsomal degradation. Mustard and peanut lipids favor a proinflammatory environment by increasing the IL-4/IL-10 ratio and IL-1β production by hmoDCs. The presence of mustard lipids and PG vesicles inhibits TLR2-L-induced NF-kB/AP-1 activation in THP1 cells. CONCLUSION Sin a 2 and Ara h 1 interact with lipid components, which might well contribute to explain the potent allergenic capacity of these two clinically relevant allergens belonging to the cupin superfamily.
Collapse
Affiliation(s)
- A. Angelina
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - S. Sirvent
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - C. Palladino
- Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - A. Vereda
- Servicio de Alergia; Fundación Jiménez Diaz; Madrid Spain
| | | | - T. Eiwegger
- Department of Paediatrics and Adolescent Medicine; Medical University of Vienna; Vienna Austria
- Division of Immunology and Allergy; Food allergy and Anaphylaxis Program; The Department of Paediatrics; Hospital for Sick Children; The University of Toronto; Toronto ON Canada
| | - R. Rodríguez
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - H. Breiteneder
- Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - M. Villalba
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - O. Palomares
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| |
Collapse
|
365
|
Yasaghi M, Mahdavi M. Potentiation of human papilloma vaccine candidate using naloxone/alum mixture as an adjuvant: increasing immunogenicity of HPV-16E7d vaccine. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:1003-1009. [PMID: 27803788 PMCID: PMC5080416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Many types of human papillomaviruses (HPVs) have been identified, with some leading to cancer and others to skin lesions such as anogenital warts. Studies have demonstrated an association between oncogenic HPV and cervical cancer and many researchers have focused on therapeutic vaccines development. At present, the modulatory effect of opioids on the innate and acquired immune system is characterized. Antagonists of opioid receptors such as naloxone (NLX) can contribute to the shifting Th2 response toward Th1. Herein; we studied the adjuvant activity of NLX/Alum mixture for improvement of the immunogenicity of HPV-16E7d vaccine. MATERIALS AND METHODS The mice were administered different regimens of vaccine; E7d, E7d-NLX, E7d-Alum, E7d-NLX-Alum, NLX, alum and PBS via subcutaneous route for three times with two weeks interval. Two weeks after the last immunization, the sera were assessed for total antibody, IgG1 and IgG2a with an optimized ELISA method. The splenocytes culture supernatant was analyzed by ELISA for the presence of IL-4, IFN-γ and IL-17 cytokines and lymphocyte proliferation was evaluated with Brdu method. RESULTS Immunization of mice with HPV-16 E7d vaccine formulated in NLX/Alum mixture significantly increased lymphocyte proliferation and Th1 and Th17 cytokines responses compared to other experimental groups. Analysis of humoral immune responses revealed that administration of vaccine with NLX/Alum mixture significantly increased specific IgG responses and also isotypes compared to control groups. CONCLUSION NLX/Alum mixture as an adjuvant could improve cellular and humoral immune responses and the adjuvant maybe useful for HPV vaccines model for further studies in human clinical trial.
Collapse
Affiliation(s)
- Mahsa Yasaghi
- Department of Basic Sciences, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran (IAUPS)
| | - Mehdi Mahdavi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Corresponding author: Mehdi Mahdavi. Department of Immunology, Pasteur Institute of Iran, Tehran, Iran. Tel: +98-21-66496682; Fax: +98-21-66496682; ;
| |
Collapse
|
366
|
Noges LE, White J, Cambier JC, Kappler JW, Marrack P. Contamination of DNase Preparations Confounds Analysis of the Role of DNA in Alum-Adjuvanted Vaccines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:1221-30. [PMID: 27357147 PMCID: PMC4974487 DOI: 10.4049/jimmunol.1501565] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 06/02/2016] [Indexed: 11/19/2022]
Abstract
Aluminum salt (alum) adjuvants have been used for many years as adjuvants for human vaccines because they are safe and effective. Despite its widespread use, the means by which alum acts as an adjuvant remains poorly understood. Recently, it was shown that injected alum is rapidly coated with host chromatin within mice. Experiments suggested that the host DNA in the coating chromatin contributed to alum's adjuvant activity. Some of the experiments used commercially purchased DNase and showed that coinjection of these DNase preparations with alum and Ag reduced the host's immune response to the vaccine. In this study, we report that some commercial DNase preparations are contaminated with proteases. These proteases are responsible for most of the ability of DNase preparations to inhibit alum's adjuvant activity. Nevertheless, DNase somewhat reduces responses to some Ags with alum. The effect of DNase is independent of its ability to cleave DNA, suggesting that alum improves CD4 responses to Ag via a pathway other than host DNA sensing.
Collapse
Affiliation(s)
- Laura E Noges
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - Janice White
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - John C Cambier
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - John W Kappler
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206
| | - Philippa Marrack
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206
| |
Collapse
|
367
|
Zhu L, Zhang F, Yang LJ, Ge Y, Wei QF, Ou Y. EPSAH, an exopolysaccharide from Aphanothece halophytica GR02, improves both cellular and humoral immunity as a novel polysaccharide adjuvant. Chin J Nat Med 2016; 14:541-8. [PMID: 27507205 DOI: 10.1016/s1875-5364(16)30064-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 11/17/2022]
Abstract
EPSAH is an exopolysaccharide from Aphanothece halophytica GR02. The present study was designed to evaluate its toxicity and adjuvant potential in the specific cellular and humoral immune responses in ovalbumin (OVA) in mice. EPSAH did not cause any mortality and side effects when the mice were administered subcutaneously twice at the dose of 50 mg·kg(-1). Hemolytic activity in vitro indicated that EPSAH was non-hemolytic. Splenocyte proliferation in vitro was assayed with different concentrations of EPSAH. The mice were immunized subcutaneously with OVA 0.1 mg alone or with OVA 0.1 mg dissolved in saline containing Alum (0.2 mg) or EPSAH (0.2, 0.4, or 0.8 mg) on Day 1 and 15. Two weeks later, splenocyte proliferation, natural killer (NK) cell activity, production of cytokines IL-2 from splenocytes, and serum OVA-specific antibody titers were measured. Phagocytic activity, production of pro-inflammatory cytokines IL-1 and IL-12 in mice peritoneal macrophages were also determined. EPSAH showed a dose-dependent stimulating effect on mitogen-induced proliferation. The Con A-, LPS-, and OVA-induced splenocyte proliferation and the serum OVA-specific IgG, IgG1, and IgG2a antibody titers in the immunized mice were significantly enhanced. EPSAH also significantly promoted the production of Th1 cytokine IL-2. Besides, EPSAH remarkably increased the killing activities of NK cells from splenocytes in the immunized mice. In addition, EPSAH enhanced phagocytic activity and the generation of pro-inflammatory cytokines IL-1 and IL-12 in macrophages. These results indicated that EPSAH had a strong potential to increase both cellular and humoral immune responses, particularly promoting the development of Th1 polarization.
Collapse
Affiliation(s)
- Lei Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fan Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Li-Jun Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yang Ge
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qing-Fang Wei
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yu Ou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
368
|
Billroth-MacLurg AC, Ford J, Rosenberg A, Miller J, Fowell DJ. Regulatory T Cell Numbers in Inflamed Skin Are Controlled by Local Inflammatory Cues That Upregulate CD25 and Facilitate Antigen-Driven Local Proliferation. THE JOURNAL OF IMMUNOLOGY 2016; 197:2208-18. [PMID: 27511734 PMCID: PMC5157695 DOI: 10.4049/jimmunol.1502575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/11/2016] [Indexed: 01/07/2023]
Abstract
CD4(+)Foxp3(+) regulatory T cells (Tregs) are key immune suppressors that regulate immunity in diverse tissues. The tissue and/or inflammatory signals that influence the magnitude of the Treg response remain unclear. To define signals that promote Treg accumulation, we developed a simple system of skin inflammation using defined Ags and adjuvants that induce distinct cytokine milieus: OVA protein in CFA, aluminum salts (Alum), and Schistosoma mansoni eggs (Sm Egg). Polyclonal and Ag-specific Treg accumulation in the skin differed significantly between adjuvants. CFA and Alum led to robust Treg accumulation, with >50% of all skin CD4(+) T cells being Foxp3(+) In contrast, Tregs accumulated poorly in the Sm Egg-inflamed skin. Surprisingly, we found no evidence of inflammation-specific changes to the Treg gene program between adjuvant-inflamed skin types, suggesting a lack of selective recruitment or adaptation to the inflammatory milieu. Instead, Treg accumulation patterns were linked to differences in CD80/CD86 expression by APC and the regulation of CD25 expression, specifically in the inflamed skin. Inflammatory cues alone, without cognate Ag, differentially supported CD25 upregulation (CFA and Alum > Sm Egg). Only in inflammatory milieus that upregulated CD25 did the provision of Ag enhance local Treg proliferation. Reduced IL-33 in the Sm Egg-inflamed environment was shown to contribute to the failure to upregulate CD25. Thus, the magnitude of the Treg response in inflamed tissues is controlled at two interdependent levels: inflammatory signals that support the upregulation of the important Treg survival factor CD25 and Ag signals that drive local expansion.
Collapse
Affiliation(s)
- Alison C Billroth-MacLurg
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642; and
| | - Jill Ford
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642; and
| | - Alexander Rosenberg
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY 14642
| | - Jim Miller
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642; and
| | - Deborah J Fowell
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642; and
| |
Collapse
|
369
|
Didierlaurent AM, Laupèze B, Di Pasquale A, Hergli N, Collignon C, Garçon N. Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines 2016; 16:55-63. [DOI: 10.1080/14760584.2016.1213632] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
370
|
Ather JL, Burgess EJ, Hoyt LR, Randall MJ, Mandal MK, Matthews DE, Boyson JE, Poynter ME. Uricase Inhibits Nitrogen Dioxide-Promoted Allergic Sensitization to Inhaled Ovalbumin Independent of Uric Acid Catabolism. THE JOURNAL OF IMMUNOLOGY 2016; 197:1720-32. [PMID: 27465529 DOI: 10.4049/jimmunol.1600336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/24/2016] [Indexed: 12/22/2022]
Abstract
Nitrogen dioxide (NO2) is an environmental air pollutant and endogenously generated oxidant that contributes to the exacerbation of respiratory disease and can function as an adjuvant to allergically sensitize to an innocuous inhaled Ag. Because uric acid has been implicated as a mediator of adjuvant activity, we sought to determine whether uric acid was elevated and participated in a mouse model of NO2-promoted allergic sensitization. We found that uric acid was increased in the airways of mice exposed to NO2 and that administration of uricase inhibited the development of OVA-driven allergic airway disease subsequent to OVA challenge, as well as the generation of OVA-specific Abs. However, uricase was itself immunogenic, inducing a uricase-specific adaptive immune response that occurred even when the enzymatic activity of uricase had been inactivated. Inhibition of the OVA-specific response was not due to the capacity of uricase to inhibit the early steps of OVA uptake or processing and presentation by dendritic cells, but occurred at a later step that blocked OVA-specific CD4(+) T cell proliferation and cytokine production. Although blocking uric acid formation by allopurinol did not affect outcomes, administration of ultra-clean human serum albumin at protein concentrations equivalent to that of uricase inhibited NO2-promoted allergic airway disease. These results indicate that, although uric acid levels are elevated in the airways of NO2-exposed mice, the powerful inhibitory effect of uricase administration on allergic sensitization is mediated more through Ag-specific immune deviation than via suppression of allergic sensitization, a mechanism to be considered in the interpretation of results from other experimental systems.
Collapse
Affiliation(s)
- Jennifer L Ather
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Edward J Burgess
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405
| | - Laura R Hoyt
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Matthew J Randall
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Mridul K Mandal
- Department of Chemistry, University of Vermont, Burlington, VT 05405; and
| | - Dwight E Matthews
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405; Department of Chemistry, University of Vermont, Burlington, VT 05405; and
| | - Jonathan E Boyson
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405; Department of Surgery, University of Vermont, Burlington, VT 05405
| | - Matthew E Poynter
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405;
| |
Collapse
|
371
|
Quintilio W, de Freitas FA, Rodriguez D, Kubrusly FS, Yourtov D, Miyaki C, de Cerqueira Leite LC, Raw I. Vitamins as influenza vaccine adjuvant components. Arch Virol 2016; 161:2787-95. [PMID: 27449155 DOI: 10.1007/s00705-016-2994-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/18/2016] [Indexed: 12/28/2022]
Abstract
A number of adjuvant formulations were assayed in mice immunized with 3.75 µg of A/California/7/2009 (H1N1) pdm09 influenza vaccine with vitamins A, D and/or E in emulsions or B2 and/or B9 combined with Bordetella pertussis MPLA and/or alum as adjuvants. Squalene was used as positive control, as well as MPLA with alum. The immune response was evaluated by a panel of tests, including a hemagglutination inhibition (HAI) test, ELISA for IgG, IgG1, and IgG2a and IFN-γ, IL-2, IL-6 and IL-10 quantification in splenocyte culture supernatant after stimulus with influenza antigen. Immunological memory was evaluated using a 1/10 dose booster 60 days after the first immunization followed by assessment of the response by HAI, IgG ELISA, and determination of the antibody affinity index. The highest increases in HAI, IgG1 and IgG2a titers were obtained with the adjuvant combinations containing vitamin E, or the hydrophilic combinations containing MPLA and alum or B2 and alum. The IgG1/IgG2a ratio indicates that the response to the combination of B2 with alum would have more Th2 character than the combination of MPLA with alum. In an assay to investigate the memory response, a significant increase in HAI titer was observed with a booster vaccine dose at 60 days after immunization with vaccines containing MPLA with alum or B2 with alum. Overall, of the 27 adjuvant combinations, MPLA with alum and B2 with alum were the most promising adjuvants to be evaluated in humans.
Collapse
|
372
|
Inbar R, Weiss R, Tomljenovic L, Arango MT, Deri Y, Shaw CA, Chapman J, Blank M, Shoenfeld Y. Behavioral abnormalities in female mice following administration of aluminum adjuvants and the human papillomavirus (HPV) vaccine Gardasil. Immunol Res 2016; 65:136-149. [DOI: 10.1007/s12026-016-8826-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
373
|
Bobbala S, Hook S. Is There an Optimal Formulation and Delivery Strategy for Subunit Vaccines? Pharm Res 2016; 33:2078-97. [DOI: 10.1007/s11095-016-1979-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/21/2016] [Indexed: 12/16/2022]
|
374
|
Agger EM. Novel adjuvant formulations for delivery of anti-tuberculosis vaccine candidates. Adv Drug Deliv Rev 2016; 102:73-82. [PMID: 26596558 DOI: 10.1016/j.addr.2015.11.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/30/2015] [Accepted: 11/16/2015] [Indexed: 01/18/2023]
Abstract
There is an urgent need for a new and improved vaccine against tuberculosis for controlling this disease that continues to pose a global health threat. The current research strategy is to replace the present BCG vaccine or boost BCG-immunity with subunit vaccines such as viral vectored- or protein-based vaccines. The use of recombinant proteins holds a number of production advantages including ease of scalability, but requires an adjuvant inducing cell-mediated immune responses. A number of promising novel adjuvant formulations have recently been designed and show evidence of induction of cellular immune responses in humans. A common trait of effective TB adjuvants including those already in current clinical testing is a two-component approach combining a delivery system with an appropriate immunomodulator. This review summarizes the status of current TB adjuvant research with a focus on the division of labor between delivery systems and immunomodulators.
Collapse
Affiliation(s)
- Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark.
| |
Collapse
|
375
|
Lebre F, Hearnden CH, Lavelle EC. Modulation of Immune Responses by Particulate Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5525-5541. [PMID: 27167228 DOI: 10.1002/adma.201505395] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/12/2016] [Indexed: 06/05/2023]
Abstract
Many biomaterials that are in both preclinical and clinical use are particulate in nature and there is a growing appreciation that the physicochemical properties of materials have a significant impact on their efficacy. The ability of particulates to modulate adaptive immune responses has been recognized for the past century but it is only in recent decades that a mechanistic understanding of how particulates can regulate these responses has emerged. It is now clear that particulate characteristics including size, charge, shape and porosity can influence the scale and nature of both the innate and adaptive immune responses. The potential to tailor biomaterials in order to regulate the type of innate immune response induced, offers significant opportunities in terms of designing systems with increased immune-mediated efficacy.
Collapse
Affiliation(s)
- Filipa Lebre
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 PN40, Ireland
| | - Claire H Hearnden
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 PN40, Ireland
| |
Collapse
|
376
|
Bielinska AU, O'Konek JJ, Janczak KW, Baker JR. Immunomodulation of TH2 biased immunity with mucosal administration of nanoemulsion adjuvant. Vaccine 2016; 34:4017-24. [PMID: 27317451 PMCID: PMC4962973 DOI: 10.1016/j.vaccine.2016.06.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 11/18/2022]
Abstract
TH2-biased immune responses are associated with inadequate protection against some pathogens and with cancer, colitis, asthma and allergy. Since most currently used vaccine adjuvants induce a TH2-biased response, this has led to interest in developing adjuvants capable of activating TH1 immunity and modulating existing TH2 responses. Immunotherapies to shift immune responses from TH2 to TH1 have generally required prolonged immunization protocols and have not induced effective TH1 responses. We have demonstrated that nanoscale emulsions (NE), a novel mucosal adjuvant, induce robust IgA and IgG antibody responses and TH1/TH17 cellular immunity resulting in protection against a variety of respiratory and mucosal infections. Because intranasal (i.n.) delivery of NE adjuvant consistently induces TH1/TH17 biased responses, we hypothesized that NE could be used as a therapeutic vaccine to redirect existing TH2 polarized immunity towards a more balanced TH1/TH2 profile. To test this, a TH2 immune response was established by intramuscular immunization of mice with alum-adjuvanted hepatitis B surface antigen (HBs), followed by a single subsequent i.n. immunization with NE-HBs. These animals exhibited increased TH1 associated immune responses and IL-17, and decreased TH2 cytokines (IL-4 and IL-5) and IgG1. NE immunization induced regulatory T cells and IL-10, and IL-10 was required for the suppression of TH2 immunity. These data demonstrate that NE-based vaccines can modulate existing TH2 immune responses to promote TH1/TH17 immunity and suggest the potential therapeutic use of NE vaccines for diseases associated with TH2 immunity.
Collapse
Affiliation(s)
- Anna U Bielinska
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jessica J O'Konek
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Katarzyna W Janczak
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - James R Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
377
|
Leroux-Roels G, Marchant A, Levy J, Van Damme P, Schwarz TF, Horsmans Y, Jilg W, Kremsner PG, Haelterman E, Clément F, Gabor JJ, Esen M, Hens A, Carletti I, Fissette L, Tavares Da Silva F, Burny W, Janssens M, Moris P, Didierlaurent AM, Van Der Most R, Garçon N, Van Belle P, Van Mechelen M. Impact of adjuvants on CD4(+) T cell and B cell responses to a protein antigen vaccine: Results from a phase II, randomized, multicenter trial. Clin Immunol 2016; 169:16-27. [PMID: 27236001 DOI: 10.1016/j.clim.2016.05.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/02/2016] [Accepted: 05/21/2016] [Indexed: 12/14/2022]
Abstract
Immunogenicity and safety of different adjuvants combined with a model antigen (HBsAg) were compared. Healthy HBV-naïve adults were randomized to receive HBs adjuvanted with alum or Adjuvant Systems AS01B, AS01E, AS03A or AS04 at Days 0 and 30. Different frequencies of HBs-specific CD4+ T cells 14days post dose 2 but similar polyfunctionality profiles were induced by the different adjuvants with frequencies significantly higher in the AS01B and AS01E groups than in the other groups. Antibody concentrations 30days post-dose 2 were significantly higher in AS01B, AS01E and AS03A than in other groups. Limited correlations were observed between HBs-specific CD4+ T cell and antibody responses. Injection site pain was the most common solicited local symptom and was more frequent in AS groups than in alum group. Different adjuvants formulated with the same antigen induced different adaptive immune responses and reactogenicity patterns in healthy naïve adults. The results summary for this study (GSK study number 112115 - NCT# NCT00805389) is available on the GSK Clinical Study Register and can be accessed at www.gsk-clinicalstudyregister.com.
Collapse
Affiliation(s)
- Geert Leroux-Roels
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium.
| | - Arnaud Marchant
- ImmuneHealth, Gosselies, Belgium; Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Jack Levy
- ImmuneHealth, Gosselies, Belgium; CHU Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Van Damme
- Center for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Tino F Schwarz
- Central Laboratory and Vaccination Center, Stiftung Juliusspital, Academic Teaching Hospital of the University of Wuerzburg, Wuerzburg, Germany
| | - Yves Horsmans
- Unité de Pharmacologie Clinique, University Hospital St-Luc, Brussels, Belgium
| | - Wolfgang Jilg
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Germany
| | - Peter G Kremsner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Germany
| | | | - Frédéric Clément
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Julian J Gabor
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Germany
| | - Meral Esen
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Germany
| | - Annick Hens
- Center for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
378
|
Pappalardo F, Fichera E, Paparone N, Lombardo A, Pennisi M, Russo G, Leotta M, Pappalardo F, Pedretti A, De Fiore F, Motta S. A computational model to predict the immune system activation by citrus-derived vaccine adjuvants. Bioinformatics 2016; 32:2672-80. [PMID: 27162187 DOI: 10.1093/bioinformatics/btw293] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/20/2016] [Indexed: 12/12/2022] Open
Abstract
MOTIVATION Vaccines represent the most effective and cost-efficient weapons against a wide range of diseases. Nowadays new generation vaccines based on subunit antigens reduce adverse effects in high risk individuals. However, vaccine antigens are often poor immunogens when administered alone. Adjuvants represent a good strategy to overcome such hurdles, indeed they are able to: enhance the immune response; allow antigens sparing; accelerate the specific immune response; and increase vaccine efficacy in vulnerable groups such as newborns, elderly or immuno-compromised people. However, due to safety concerns and adverse reactions, there are only a few adjuvants approved for use in humans. Moreover, in practice current adjuvants sometimes fail to confer adequate stimulation. Hence, there is an imperative need to develop novel adjuvants that overcome the limitations of the currently available licensed adjuvants. RESULTS We developed a computational framework that provides a complete pipeline capable of predicting the best citrus-derived adjuvants for enhancing the immune system response using, as a target disease model, influenza A infection. In silico simulations suggested a good immune efficacy of specific citrus-derived adjuvant (Beta Sitosterol) that was then confirmed in vivoAvailability: The model is available visiting the following URL: http://vaima.dmi.unict.it/AdjSim CONTACT francesco.pappalardo@unict.it; fp@francescopappalardo.net.
Collapse
Affiliation(s)
| | - Epifanio Fichera
- Etna Biotech S.R.L, via Vincenzo Lancia, 57 - Zona Industriale Blocco Palma 1
| | - Nicoletta Paparone
- Parco Scientifico E Tecnologico Della Sicilia, via Vincenzo Lancia, 57 - Zona Industriale Blocco Palma 1
| | - Alessandro Lombardo
- Parco Scientifico E Tecnologico Della Sicilia, via Vincenzo Lancia, 57 - Zona Industriale Blocco Palma 1
| | - Marzio Pennisi
- Department of Mathematics and Computer Science, University of Catania
| | - Giulia Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Leotta
- Department of Drug Sciences, University of Catania
| | - Francesco Pappalardo
- Parco Scientifico E Tecnologico Della Sicilia, via Vincenzo Lancia, 57 - Zona Industriale Blocco Palma 1
| | | | | | - Santo Motta
- Department of Mathematics and Computer Science, University of Catania
| |
Collapse
|
379
|
Ruwona TB, Xu H, Li X, Taylor AN, Shi YC, Cui Z. Toward understanding the mechanism underlying the strong adjuvant activity of aluminum salt nanoparticles. Vaccine 2016; 34:3059-3067. [PMID: 27155490 DOI: 10.1016/j.vaccine.2016.04.081] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/18/2016] [Accepted: 04/26/2016] [Indexed: 01/13/2023]
Abstract
Aluminum salts such as aluminum oxyhydroxide and aluminum hydroxyphosphate are commonly used human vaccine adjuvants. In an effort to improve the adjuvant activity of aluminum salts, we previously showed that the adjuvant activity of aluminum oxyhydroxide nanoparticles is significantly more potent than that of aluminum oxyhydroxide microparticles. The present study was designed to (i) understand the mechanism underlying the potent adjuvant activity of aluminum oxyhydroxide nanoparticles, relative to microparticles, and (ii) to test whether aluminum hydroxyphosphate nanoparticles have a more potent adjuvant activity than aluminum hydroxyphosphate microparticles as well. In human THP-1 myeloid cells, wild-type and NLRP3-deficient, both aluminum oxyhydroxide nanoparticles and microparticles stimulate the secretion of proinflammatory cytokine IL-1β by activating NLRP3 inflammasome, although aluminum oxyhydroxide nanoparticles are more potent than microparticles, likely related to the higher uptake of the nanoparticles by the THP-1 cells than the microparticles. Aluminum hydroxyphosphate nanoparticles also have a more potent adjuvant activity than microparticles in helping a model antigen lysozyme to stimulate specific antibody response, again likely related to their stronger ability to activate the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Tinashe B Ruwona
- The University of Texas at Austin, College of Pharmacy, Pharmaceutics Division, Austin, TX, United States
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Pharmaceutics Division, Austin, TX, United States
| | - Xu Li
- The University of Texas at Austin, College of Pharmacy, Pharmaceutics Division, Austin, TX, United States
| | - Amber N Taylor
- The University of Texas at Austin, College of Pharmacy, Pharmaceutics Division, Austin, TX, United States
| | - Yan-Chun Shi
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Pharmaceutics Division, Austin, TX, United States; Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
380
|
Pérez Sánchez L, Morera Díaz Y, Bequet-Romero M, Ramses Hernández G, Rodríguez Y, Castro Velazco J, Puente Pérez P, Ayala Avila M, Gavilondo JV. Experimental studies of a vaccine formulation of recombinant human VEGF antigen with aluminum phosphate. Hum Vaccin Immunother 2016; 11:2030-7. [PMID: 25891359 DOI: 10.1080/21645515.2015.1029213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
CIGB-247 is a cancer vaccine that is a formulation of a recombinant protein antigen representative of the human vascular endothelial growth factor (VEGF) with a bacterially-derived adjuvant (VSSP). The vaccine has shown an excellent safety profile in mice, rats, rabbits, not-human primates and in recent clinical trials in cancer patients. Response to the vaccine is characterized by specific antibody titers that neutralize VEGF/VEGFR2 binding and a cytotoxic tumor-specific response. To expand our present anti-VEGF active immunotherapy strategies, we have now studied in mice and non-human primates the effects of vaccination with a formulation of our recombinant VEGF antigen and aluminum phosphate adjuvant (hereafter denominated CIGB-247-A). Administered bi-weekly, CIGB-247-A produces high titers of anti-VEGF IgG blocking antibodies in 2 mice strains. Particularly in BALB/c, the treatment impaired subcutaneous F3II mammary tumor growth and reduced the number of spontaneous lung macro metastases, increasing animals' survival. Spleen cells from specifically immunized mice directly killed F3II tumor cells in vitro. CIGB-247-A also showed to be immunogenic in non-human primates, which developed anti-VEGF blocking antibodies and the ability for specific direct cell cytotoxic responses, all without impairing the healing of deep skin wounds or other side effect. Our results support consideration of aluminum phosphate as a suitable adjuvant for the development of new vaccine formulations using VEGF as antigen.
Collapse
Key Words
- ANOVA, Analysis of Variance
- Aluminum phosphate
- CFSE, Carboxyfluorescein succinimidyl ester
- CTL, Cytotoxic T lymphocyte
- ELISA, Enzyme-linked immune-sorbent assay
- FACS, Fluorescence-activated cell sorting
- GST, Glutathione S-transferase
- HPLC, High-performance liquid chromatography
- KDR, kinase domain receptor
- Ni-NTA, nickel-nitrilotriacetic acid
- PBMC, Peripheral blood mononuclear cells
- VEGF
- VEGF, vascular endothelial growth factor
- VEGFR2, vascular endothelial growth factor receptor 2
- VSSP, very small sized proteoliposomes
- adjuvant
- antibodies
- cancer therapeutic vaccine
Collapse
Affiliation(s)
- Lincidio Pérez Sánchez
- a Cancer Immunotherapy Laboratory; Department of Pharmaceuticals; Center for Genetic Engineering and Biotechnology (CIGB) ; Playa Cubanacan , Havana , Cuba
| | | | | | | | | | | | | | | | | |
Collapse
|
381
|
Adjuvants: Classification, Modus Operandi, and Licensing. J Immunol Res 2016; 2016:1459394. [PMID: 27274998 PMCID: PMC4870346 DOI: 10.1155/2016/1459394] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/02/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023] Open
Abstract
Vaccination is one of the most efficient strategies for the prevention of infectious diseases. Although safer, subunit vaccines are poorly immunogenic and for this reason the use of adjuvants is strongly recommended. Since their discovery in the beginning of the 20th century, adjuvants have been used to improve immune responses that ultimately lead to protection against disease. The choice of the adjuvant is of utmost importance as it can stimulate protective immunity. Their mechanisms of action have now been revealed. Our increasing understanding of the immune system, and of correlates of protection, is helping in the development of new vaccine formulations for global infections. Nevertheless, few adjuvants are licensed for human vaccines and several formulations are now being evaluated in clinical trials. In this review, we briefly describe the most well known adjuvants used in experimental and clinical settings based on their main mechanisms of action and also highlight the requirements for licensing new vaccine formulations.
Collapse
|
382
|
Friesen TJ, Ji Q, Fink PJ. Recent thymic emigrants are tolerized in the absence of inflammation. J Exp Med 2016; 213:913-20. [PMID: 27139493 PMCID: PMC4886366 DOI: 10.1084/jem.20151990] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/06/2016] [Indexed: 12/20/2022] Open
Abstract
T cell development requires a period of postthymic maturation. Why this is the case has remained a mystery, particularly given the rigors of intrathymic developmental checkpoints, successfully traversed by only ∼5% of thymocytes. We now show that the first few weeks of T cell residence in the lymphoid periphery define a period of heightened susceptibility to tolerance induction to tissue-restricted antigens (TRAs), the outcome of which depends on the context in which recent thymic emigrants (RTEs) encounter antigen. After encounter with TRAs in the absence of inflammation, RTEs exhibited defects in proliferation, diminished cytokine production, elevated expression of anergy-associated genes, and diminished diabetogenicity. These properties were mirrored in vitro by enhanced RTE susceptibility to regulatory T cell-mediated suppression. In the presence of inflammation, RTEs and mature T cells were, in contrast, equally capable of inducing diabetes, proliferating, and producing cytokines. Thus, recirculating RTEs encounter TRAs during a transitional developmental stage that facilitates tolerance induction, but inflammation converts antigen-exposed, tolerance-prone RTEs into competent effector cells.
Collapse
Affiliation(s)
- Travis J Friesen
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Qingyong Ji
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Pamela J Fink
- Department of Immunology, University of Washington, Seattle, WA 98109
| |
Collapse
|
383
|
Ou H, Yao H, Yao W, Wu N, Wu X, Han C, Cheng L, Chen K, Chen H, Li L. Analysis of the immunogenicity and bioactivities of a split influenza A/H7N9 vaccine mixed with MF59 adjuvant in BALB/c mice. Vaccine 2016; 34:2362-2370. [PMID: 27013436 DOI: 10.1016/j.vaccine.2016.03.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/02/2016] [Accepted: 03/14/2016] [Indexed: 02/03/2023]
Abstract
The H7N9 influenza virus caused significant mortality and morbidity in humans during an outbreak in China in 2013. A recombinant H7N9 influenza seed with hemagglutinin (HA) and neuraminidase (NA) gene segments from A/Zhejiang/DTID-ZJU01/2013(H7N9) and six internal protein gene segments from A/Puerto Rico/8/34(H1N1; PR8) were generated using reverse genetics. We sought to determine the immunogenic, protective properties, and mechanisms of a split avian influenza A/H7N9 vaccine mixed with MF59 adjuvant in comparison to vaccines that included other adjuvant. BALB/c mice were vaccinated with two doses of different amounts and combinations of this novel A/ZJU01/PR8/2013 split vaccine with adjuvant. Mice were subsequently challenged with A/Zhejiang/DTID-ZJU01/2013(H7N9) by intranasal inoculation. We verified that MF59 enhanced the HI, MN, and IgG antibody titers to influenza antigens. Compared with alum, MF59 could more potentially induce humoral immune responses and Th2 cytokine production after virus infection, while both MF59 and alum can slightly increase NK cell activity. This split H7N9 influenza vaccine with MF59 adjuvant could effectively induce antibody production and protect mice from H7N9 virus challenge. We have selected this vaccine for manufacture and future clinical studies to protect humans from H7N9 virus infection.
Collapse
Affiliation(s)
- Huilin Ou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wei Yao
- Zhejiang Tianyuan Bio-Pharmaceutical Co., Ltd., China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chengcong Han
- Zhejiang Tianyuan Bio-Pharmaceutical Co., Ltd., China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Keda Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
384
|
Tavares Da Silva F, Di Pasquale A, Yarzabal JP, Garçon N. Safety assessment of adjuvanted vaccines: Methodological considerations. Hum Vaccin Immunother 2016; 11:1814-24. [PMID: 26029975 PMCID: PMC4514270 DOI: 10.1080/21645515.2015.1043501] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Adjuvants mainly interact with the innate immune response and are used to enhance the quantity and quality of the downstream adaptive immune response to vaccine antigens. Establishing the safety of a new adjuvant-antigen combination is achieved through rigorous evaluation that begins in the laboratory, and that continues throughout the vaccine life-cycle. The strategy for the evaluation of safety pre-licensure is guided by the disease profile, vaccine indication, and target population, and it is also influenced by available regulatory guidelines. In order to allow meaningful interpretation of clinical data, clinical program methodology should be optimized and standardized, making best use of all available data sources. Post-licensure safety activities are directed by field experience accumulated pre- and post-licensure clinical trial data and spontaneous adverse event reports. Continued evolution of safety evaluation processes that keep pace with advances in vaccine technology and updated communication of the benefit-risk profile is necessary to maintain public confidence in vaccines.
Collapse
|
385
|
Antúnez LR, Livingston A, Berkland C, Dhar P. Physiochemical Properties of Aluminum Adjuvants Elicit Differing Reorganization of Phospholipid Domains in Model Membranes. Mol Pharm 2016; 13:1731-7. [DOI: 10.1021/acs.molpharmaceut.6b00111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lorena R. Antúnez
- Department of Pharmaceutical
Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Andrea Livingston
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Cory Berkland
- Department of Pharmaceutical
Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Prajnaparamita Dhar
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
386
|
Zhu D, Liu L, Yang D, Fu S, Bian Y, Sun Z, He J, Su L, Zhang L, Peng H, Fu YX. Clearing Persistent Extracellular Antigen of Hepatitis B Virus: An Immunomodulatory Strategy To Reverse Tolerance for an Effective Therapeutic Vaccination. THE JOURNAL OF IMMUNOLOGY 2016; 196:3079-87. [PMID: 26936879 DOI: 10.4049/jimmunol.1502061] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/01/2016] [Indexed: 12/14/2022]
Abstract
Development of therapeutic vaccines/strategies to control chronic hepatitis B virus (HBV) infection has been challenging because of HBV-induced tolerance. In this study, we explored strategies for breaking tolerance and restoring the immune response to the HBV surface Ag in tolerant mice. We demonstrated that immune tolerance status is attributed to the level and duration of circulating HBsAg in HBV carrier models. Removal of circulating HBsAg by a monoclonal anti-HBsAg Ab in tolerant mice could gradually reduce tolerance and reestablish B cell and CD4(+) T cell responses to subsequent Engerix-B vaccination, producing protective IgG. Furthermore, HBsAg-specific CD8(+) T cells induced by the addition of a TLR agonist resulted in clearance of HBV in both serum and liver. Thus, generation of protective immunity can be achieved by clearing extracellular viral Ag with neutralizing Abs followed by vaccination.
Collapse
Affiliation(s)
- Danming Zhu
- Institute of Biophysics-University of Texas Group for Immunotherapy, Chinese Academy of Sciences Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Longchao Liu
- Institute of Biophysics-University of Texas Group for Immunotherapy, Chinese Academy of Sciences Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Yang
- Institute of Biophysics-University of Texas Group for Immunotherapy, Chinese Academy of Sciences Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Sherry Fu
- Department of Pathology and Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75225; and
| | - Yingjie Bian
- Institute of Biophysics-University of Texas Group for Immunotherapy, Chinese Academy of Sciences Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichen Sun
- Institute of Biophysics-University of Texas Group for Immunotherapy, Chinese Academy of Sciences Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junming He
- Institute of Biophysics-University of Texas Group for Immunotherapy, Chinese Academy of Sciences Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Liguo Zhang
- Institute of Biophysics-University of Texas Group for Immunotherapy, Chinese Academy of Sciences Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Hua Peng
- Institute of Biophysics-University of Texas Group for Immunotherapy, Chinese Academy of Sciences Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China;
| | - Yang-Xin Fu
- Institute of Biophysics-University of Texas Group for Immunotherapy, Chinese Academy of Sciences Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; Department of Pathology and Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75225; and
| |
Collapse
|
387
|
Analysis of aluminium in rat following administration of allergen immunotherapy using either aluminium or microcrystalline-tyrosine-based adjuvants. Bioanalysis 2016; 8:547-56. [DOI: 10.4155/bio.16.10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background: Investigation into the absorption, distribution and elimination of aluminium in rat after subcutaneous aluminium adjuvant formulation administration using ICP-MS is described. Method & results: Assays were verified under the principles of a tiered approach. There was no evidence of systemic exposure of aluminium, in brain or in kidney. Extensive and persistent retention of aluminium at the dose site was observed for at least 180 days after administration. Conclusion: This is the first published work that has quantified aluminium adjuvant retention based on the quantity of aluminium delivered in a typical allergy immunotherapy course. The results indicate that the repeated administration of aluminium-containing adjuvants will likely contribute directly and significantly to an individual's body burden of aluminium.
Collapse
|
388
|
Gohar A, Abdeltawab NF, Fahmy A, Amin MA. Development of safe, effective and immunogenic vaccine candidate for diarrheagenic Escherichia coli main pathotypes in a mouse model. BMC Res Notes 2016; 9:80. [PMID: 26860931 PMCID: PMC4748553 DOI: 10.1186/s13104-016-1891-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/27/2016] [Indexed: 01/04/2023] Open
Abstract
Background Enteric and diarrheal diseases are important causes of childhood death in the developing world. These diseases are responsible for more than 750 thousand deaths in children under 5 years old worldwide, ranking second cause of death, after lower respiratory diseases, in this age group. Among the major causative agents of diarrhea is Escherichia coli. There are several vaccine trials for diarrheagenic E. coli. However, diarrheagenic E. coli has seven pathotypes and vaccines are directed for one or two of the five main pathotypes-causing diarrhea. Currently, there are no combined vaccines available in the market for all five diarrheagenic E. coli pathotypes. Therefore, we aimed to develop a low-cost vaccine candidate combining the five main diarrheagenic E. coli to offer wide-spectrum protection. We formulated a formalin-killed whole-cell mixture of enteroaggregative, enteropathogenic, enteroinvasive, enterohemorrhagic, and enterotoxigenic E. coli pathotypes as a combined vaccine candidate. Results We immunized Balb/C mice subcutaneously with 109 CFU of combined vaccine candidate and found a significant increase in survival rate post challenge compared to unimmunized controls (100 % survival). Next we aimed to determine the immunological response of mice to the combined vaccine candidate compared to each pathotype immunization. To do so, we immunized mice groups with combined vaccine candidate and monitored biomarkers levels over 6 weeks as well as measured responses post challenge with relevant living E. coli. We found significant increase in specific systemic antibodies (IgG), interferon gamma (IFNγ) and interleukin 6 (IL-6) levels elicited by combined vaccine candidate especially in the first 2 weeks after mice immunization compared to controls (p < 0.05). We also evaluated alum and cholera toxin B subunit (CTB) as potential adjuvant systems for our candidate vaccine. We found that CTB-adjuvanted combined vaccine candidate showed significantly higher IgG and IFNγ levels than alum. Conclusions Overall, our combined vaccine candidate offered protection against the five main diarrheagenic E. coli pathotypes in a single vaccine using mouse model. To the best of our knowledge, this is the first combined vaccine against the five main diarrheagenic E. coli pathotypes that is cost-effective with promise for further testing in humans. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-1891-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Asmaa Gohar
- Viral Control Unit, National Organization of Research and Control of Biological, Cairo, Egypt.
| | - Nourtan F Abdeltawab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Ali Fahmy
- Viral Control Unit, National Organization of Research and Control of Biological, Cairo, Egypt. .,Research and Development Sector, Egyptian Company for Production of Vaccines, Sera and Drugs, The Holding Company for Biological Products and Vaccines (VACSERA), Cairo, Egypt.
| | - Magdy A Amin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| |
Collapse
|
389
|
Wang H, Luo Z, Wang Y, He T, Yang C, Ren C, Ma L, Gong C, Li X, Yang Z. Enzyme-Catalyzed Formation of Supramolecular Hydrogels as Promising Vaccine Adjuvants. ADVANCED FUNCTIONAL MATERIALS 2016. [DOI: 10.1002/adfm.201505188] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Huaimin Wang
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive MaterialsMinistry of Education; College of Life Sciences; Nankai University and Collaborative Innovation Centerof Chemical Science and Engineering; Tianjin 300071 P. R. China
| | - Zichao Luo
- Institute of Biomaterials and Engineering; Wenzhou Medical University; Wenzhou 325035 P. R. China
- Wenzhou Institute of Biomaterials and Engineering; Wenzhou 325035 P. R. China
| | - Youzhi Wang
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive MaterialsMinistry of Education; College of Life Sciences; Nankai University and Collaborative Innovation Centerof Chemical Science and Engineering; Tianjin 300071 P. R. China
| | - Tao He
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu 610041 P. R. China
| | - Chengbiao Yang
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive MaterialsMinistry of Education; College of Life Sciences; Nankai University and Collaborative Innovation Centerof Chemical Science and Engineering; Tianjin 300071 P. R. China
| | - Chunhua Ren
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive MaterialsMinistry of Education; College of Life Sciences; Nankai University and Collaborative Innovation Centerof Chemical Science and Engineering; Tianjin 300071 P. R. China
| | - Linsha Ma
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive MaterialsMinistry of Education; College of Life Sciences; Nankai University and Collaborative Innovation Centerof Chemical Science and Engineering; Tianjin 300071 P. R. China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu 610041 P. R. China
| | - Xingyi Li
- Institute of Biomaterials and Engineering; Wenzhou Medical University; Wenzhou 325035 P. R. China
- Wenzhou Institute of Biomaterials and Engineering; Wenzhou 325035 P. R. China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive MaterialsMinistry of Education; College of Life Sciences; Nankai University and Collaborative Innovation Centerof Chemical Science and Engineering; Tianjin 300071 P. R. China
| |
Collapse
|
390
|
Knudsen NPH, Olsen A, Buonsanti C, Follmann F, Zhang Y, Coler RN, Fox CB, Meinke A, D'Oro U, Casini D, Bonci A, Billeskov R, De Gregorio E, Rappuoli R, Harandi AM, Andersen P, Agger EM. Different human vaccine adjuvants promote distinct antigen-independent immunological signatures tailored to different pathogens. Sci Rep 2016; 6:19570. [PMID: 26791076 PMCID: PMC4726129 DOI: 10.1038/srep19570] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/15/2015] [Indexed: 01/20/2023] Open
Abstract
The majority of vaccine candidates in clinical development are highly purified proteins and peptides relying on adjuvants to enhance and/or direct immune responses. Despite the acknowledged need for novel adjuvants, there are still very few adjuvants in licensed human vaccines. A vast number of adjuvants have been tested pre-clinically using different experimental conditions, rendering it impossible to directly compare their activity. We performed a head-to-head comparison of five different adjuvants Alum, MF59®, GLA-SE, IC31® and CAF01 in mice and combined these with antigens from M. tuberculosis, influenza, and chlamydia to test immune-profiles and efficacy in infection models using standardized protocols. Regardless of antigen, each adjuvant had a unique immunological signature suggesting that the adjuvants have potential for different disease targets. Alum increased antibody titers; MF59® induced strong antibody and IL-5 responses; GLA-SE induced antibodies and Th1; CAF01 showed a mixed Th1/Th17 profile and IC31® induced strong Th1 responses. MF59® and GLA-SE were strong inducers of influenza HI titers while CAF01, GLA-SE and IC31® enhanced protection to TB and chlamydia. Importantly, this is the first extensive attempt to categorize clinical-grade adjuvants based on their immune profiles and protective efficacy to inform a rational development of next generation vaccines for human use.
Collapse
Affiliation(s)
- Niels Peter H Knudsen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Anja Olsen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Cecilia Buonsanti
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Frank Follmann
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Yuan Zhang
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Rhea N Coler
- Infectious Disease Research Institute, Seattle, WA, USA
| | | | | | - Ugo D'Oro
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Daniele Casini
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Alessandra Bonci
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Rolf Billeskov
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Ennio De Gregorio
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Rino Rappuoli
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Ali M Harandi
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
391
|
Walkowicz WE, Fernández-Tejada A, George C, Corzana F, Jiménez-Barbero J, Ragupathi G, Tan DS, Gin DY. Quillaja Saponin Variants with Central Glycosidic Linkage Modifications Exhibit Distinct Conformations and Adjuvant Activities. Chem Sci 2016; 7:2371-2380. [PMID: 27014435 PMCID: PMC4800320 DOI: 10.1039/c5sc02978c] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A mouse vaccination model and molecular dynamics studies reveal characteristic conformations of active QS-21 variants.
Immunological adjuvants such as the saponin natural product QS-21 help stimulate the immune response to co-administered antigens and have become increasingly important in the development of prophylactic and therapeutic vaccines. However, clinical use of QS-21 is encumbered by chemical instability, dose-limiting toxicity, and low-yielding purification from the natural source. Previous studies of structure–activity relationships in the four structural domains of QS-21 have led to simplified, chemically stable variants that retain potent adjuvant activity and low toxicity in mouse vaccination models. However, modification of the central glycosyl ester linkage has not yet been explored. Herein, we describe the design, synthesis, immunologic evaluation, and molecular dynamics analysis of a series of novel QS-21 variants with different linker lengths, stereochemistry, and flexibility to investigate the role of this linkage in saponin adjuvant activity and conformation. Despite relatively conservative structural modifications, these variants exhibit striking differences in in vivo adjuvant activity that correlate with specific conformational preferences. These results highlight the junction of the triterpene and linear oligosaccharide domains as playing a critical role in the immunoadjuvant activity of the Quillaja saponins and also suggest a mechanism of action involving interaction with a discrete macromolecular target, in contrast to the non-specific mechanisms of emulsion-based adjuvants.
Collapse
Affiliation(s)
- William E Walkowicz
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, 1275 York Avenue, New York, NY 10065, United States
| | - Alberto Fernández-Tejada
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States; Chemical & Physical Biology, Center for Biological Research, CIB-CSIC, 28040 Madrid, Spain
| | - Constantine George
- Melanoma & Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - Francisco Corzana
- Department of Chemistry, University of La Rioja, 26006 Logroño, Spain
| | - Jesús Jiménez-Barbero
- Chemical & Physical Biology, Center for Biological Research, CIB-CSIC, 28040 Madrid, Spain; Structural Biology, Center for Cooperative Research, CIC-bioGUNE, 48160 Derio-Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Govind Ragupathi
- Melanoma & Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - Derek S Tan
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, 1275 York Avenue, New York, NY 10065, United States; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States; Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - David Y Gin
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, 1275 York Avenue, New York, NY 10065, United States; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States; Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| |
Collapse
|
392
|
Inbar R, Weiss R, Tomljenovic L, Arango MT, Deri Y, Shaw CA, Chapman J, Blank M, Shoenfeld Y. WITHDRAWN: Behavioral abnormalities in young female mice following administration of aluminum adjuvants and the human papillomavirus (HPV) vaccine Gardasil. Vaccine 2016:S0264-410X(16)00016-5. [PMID: 26778424 DOI: 10.1016/j.vaccine.2015.12.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/15/2015] [Accepted: 12/31/2015] [Indexed: 11/22/2022]
Abstract
This article has been withdrawn at the request of the Editor-in-Chief due to serious concerns regarding the scientific soundness of the article. Review by the Editor-in-Chief and evaluation by outside experts, confirmed that the methodology is seriously flawed, and the claims that the article makes are unjustified. As an international peer-reviewed journal we believe it is our duty to withdraw the article from further circulation, and to notify the community of this issue. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Rotem Inbar
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, 52621 Ramat Gan, Israel; Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, 52621 Ramat Gan, Israel
| | - Ronen Weiss
- Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv, 69978 Tel-Aviv, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978 Tel-Aviv, Israel
| | - Lucija Tomljenovic
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, 52621 Ramat Gan, Israel; Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, University of British Columbia, 828 W. 10th Ave, Vancouver, BC, Canada V5Z 1L8
| | - Maria-Teresa Arango
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, 52621 Ramat Gan, Israel; Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogota 111221, Colombia
| | - Yael Deri
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, 52621 Ramat Gan, Israel
| | - Christopher A Shaw
- Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, University of British Columbia, 828 W. 10th Ave, Vancouver, BC, Canada V5Z 1L8
| | - Joab Chapman
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, 52621 Ramat Gan, Israel; Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv, 69978 Tel-Aviv, Israel; Department of Neurology, Sheba Medical Center, Tel Hashomer, 52621 Ramat Gan, Israel
| | - Miri Blank
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, 52621 Ramat Gan, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, 52621 Ramat Gan, Israel; Incumbent of the Laura Schwarz-Kip Chair for Research of Autoimmune Diseases, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978 Tel-Aviv, Israel.
| |
Collapse
|
393
|
Li Y, Leneghan DB, Miura K, Nikolaeva D, Brian IJ, Dicks MDJ, Fyfe AJ, Zakutansky SE, de Cassan S, Long CA, Draper SJ, Hill AVS, Hill F, Biswas S. Enhancing immunogenicity and transmission-blocking activity of malaria vaccines by fusing Pfs25 to IMX313 multimerization technology. Sci Rep 2016; 6:18848. [PMID: 26743316 PMCID: PMC4705524 DOI: 10.1038/srep18848] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/27/2015] [Indexed: 01/16/2023] Open
Abstract
Transmission-blocking vaccines (TBV) target the sexual-stages of the malaria parasite in the mosquito midgut and are widely considered to be an essential tool for malaria elimination. High-titer functional antibodies are required against target antigens to achieve effective transmission-blocking activity. We have fused Pfs25, the leading malaria TBV candidate antigen to IMX313, a molecular adjuvant and expressed it both in ChAd63 and MVA viral vectors and as a secreted protein-nanoparticle. Pfs25-IMX313 expressed from viral vectors or as a protein-nanoparticle is significantly more immunogenic and gives significantly better transmission-reducing activity than monomeric Pfs25. In addition, we demonstrate that the Pfs25-IMX313 protein-nanoparticle leads to a qualitatively improved antibody response in comparison to soluble Pfs25, as well as to significantly higher germinal centre (GC) responses. These results demonstrate that antigen multimerization using IMX313 is a very promising strategy to enhance antibody responses against Pfs25, and that Pfs25-IMX313 is a highly promising TBV candidate vaccine.
Collapse
Affiliation(s)
- Yuanyuan Li
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious. Disease/National Institutes of Health, Rockville, Maryland, USA
| | - Daria Nikolaeva
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious. Disease/National Institutes of Health, Rockville, Maryland, USA
| | - Iona J Brian
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Alex J Fyfe
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | | | | | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious. Disease/National Institutes of Health, Rockville, Maryland, USA
| | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | | | | | - Sumi Biswas
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
394
|
Wang X, Li X, Ito A, Watanabe Y, Tsuji NM. Rod-shaped and fluorine-substituted hydroxyapatite free of molecular immunopotentiators stimulates anti-cancer immunity in vivo. Chem Commun (Camb) 2016; 52:7078-81. [DOI: 10.1039/c6cc02848a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rod-shaped and fluorine-substituted hydroxyapatite nanoparticles significantly increased the cellular uptake of a model antigen by BMDCs, improved antigen presentation, stimulated immune-related cytokine secretion, and enhanced the anti-cancer immunity.
Collapse
Affiliation(s)
- Xiupeng Wang
- Health Research Institute
- Department of Life Science and Biotechnology
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | - Xia Li
- Health Research Institute
- Department of Life Science and Biotechnology
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | - Atsuo Ito
- Health Research Institute
- Department of Life Science and Biotechnology
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | - Yohei Watanabe
- Immune Homeostasis Lab
- Biomedical Research Institute
- Department of Life Science and Biotechnology
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
| | - Noriko M. Tsuji
- Immune Homeostasis Lab
- Biomedical Research Institute
- Department of Life Science and Biotechnology
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
| |
Collapse
|
395
|
Morris MC, Surendran N. Neonatal Vaccination: Challenges and Intervention Strategies. Neonatology 2016; 109:161-9. [PMID: 26757146 PMCID: PMC4749499 DOI: 10.1159/000442460] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 11/16/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND While vaccines have been tremendously successful in reducing the incidence of serious infectious diseases, newborns remain particularly vulnerable in the first few months of their life to life-threatening infections. A number of challenges exist to neonatal vaccination. However, recent advances in the understanding of neonatal immunology offer insights to overcome many of those challenges. OBJECTIVE This review will present an overview of the features of neonatal immunity which make vaccination difficult, survey the mechanisms of action of available vaccine adjuvants with respect to the unique features of neonatal immunity, and propose a possible mechanism contributing to the inability of neonates to generate protective immune responses to vaccines. METHODS We surveyed recent published findings on the challenges to neonatal vaccination and possible intervention strategies including the use of novel vaccine adjuvants to develop efficacious neonatal vaccines. RESULTS Challenges in the vaccination of neonates include interference from maternal antibody and excessive skewing towards Th2 immunity, which can be counteracted by the use of proper adjuvants. CONCLUSION Synergistic stimulation of multiple Toll-like receptors by incorporating well-defined agonist-adjuvant combinations to vaccines is a promising strategy to ensure a protective vaccine response in neonates.
Collapse
Affiliation(s)
- Matthew C Morris
- Research Institute, Rochester Regional Health Systems, Rochester, N.Y., USA
| | | |
Collapse
|
396
|
Abstract
The demographics of the world's population are changing, with many adults now surviving into their 80s. With this change comes the need to protect the aging and other underserved populations not only against infectious diseases but also against cancer and other chronic conditions. New technologies derived from recent advances in the fields of immunology, structural biology, synthetic biology, and genomics have brought a revolution in the vaccine field. Among them, vaccine adjuvants have the potential to harness the immune system to provide protection against new types of diseases, improve protection in young children, and expand this protection to adults and the elderly. However, in order to do so we need also to overcome the nontechnical challenges that could limit the implementation of innovative vaccines, including controversies regarding the safety of adjuvants, increasing regulatory complexity, the inadequate methods used to assess the value of novel vaccines, and the resulting industry alienation from future investment. This Perspective summarizes the outcome of a recent multidisciplinary symposium entitled "Enhancing Vaccine Immunity and Value," held in Siena, Italy, in July 2014, that addressed two related questions: how to improve vaccine efficacy by using breakthrough technologies and how to capture the full potential of novel vaccines.
Collapse
Affiliation(s)
- Steven Black
- Center for Global Health, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | | | | |
Collapse
|
397
|
Sun H, Wei C, Liu B, Jing H, Feng Q, Tong Y, Yang Y, Yang L, Zuo Q, Zhang Y, Zou Q, Zeng H. Induction of systemic and mucosal immunity against methicillin-resistant Staphylococcus aureus infection by a novel nanoemulsion adjuvant vaccine. Int J Nanomedicine 2015; 10:7275-90. [PMID: 26664118 PMCID: PMC4672755 DOI: 10.2147/ijn.s91529] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Gram-positive bacterial pathogen methicillin-resistant Staphylococcus aureus (MRSA) can cause infections in the bloodstream, endocardial tissue, respiratory tract, culture-confirmed skin, or soft tissue. There are currently no effective vaccines, and none are expected to become available in the near future. An effective vaccine capable of eliciting both systemic and mucosal immune responses is also urgently needed. Here, we reported a novel oil-in-water nanoemulsion adjuvant vaccine containing an MRSA recombination protein antigen, Cremophor EL-35® as a surfactant, and propylene glycol as a co-surfactant. This nanoemulsion vaccine, whose average diameter was 31.34±0.49 nm, demonstrated good protein structure integrity, protein specificity, and good stability at room temperature for 1 year. The intramuscular systemic and nasal mucosal immune responses demonstrated that this nanoemulsion vaccine could improve the specific immune responses of immunoglobulin (Ig)G and related subclasses, such as IgG1, IgG2a, and IgG2b, as well as IgA, in the serum after Balb/c mice intramuscular immunization and C57 mice nasal immunization. Furthermore, this nanoemulsion vaccine also markedly enhanced the interferon-γ and interleukin-17A cytokine cell immune response, improved the survival ratio, and reduced bacterial colonization. Taken together, our results show that this novel nanoemulsion vaccine has great potential and is a robust generator of an effective intramuscular systemic and nasal mucosal immune response without the need for an additional adjuvant. Thus, the present study serves as a sound scientific foundation for future strategies in the development of this novel nanoemulsion adjuvant vaccine to enhance both the intramuscular systemic and nasal mucosal immune responses.
Collapse
Affiliation(s)
- HongWu Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| | - Chao Wei
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| | - BaoShuai Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| | - HaiMing Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| | - Qiang Feng
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, People's Republic of China
| | - YaNan Tong
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| | - Yun Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| | - LiuYang Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| | - QianFei Zuo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| | - Yi Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| | - QuanMing Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| |
Collapse
|
398
|
Shape and size-dependent immune response to antigen-carrying nanoparticles. J Control Release 2015; 220:141-148. [DOI: 10.1016/j.jconrel.2015.09.069] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/20/2015] [Accepted: 09/30/2015] [Indexed: 11/17/2022]
|
399
|
Martins KAO, Cooper CL, Stronsky SM, Norris SLW, Kwilas SA, Steffens JT, Benko JG, van Tongeren SA, Bavari S. Adjuvant-enhanced CD4 T Cell Responses are Critical to Durable Vaccine Immunity. EBioMedicine 2015; 3:67-78. [PMID: 26870818 PMCID: PMC4739439 DOI: 10.1016/j.ebiom.2015.11.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 01/08/2023] Open
Abstract
Protein-based vaccines offer a safer alternative to live-attenuated or inactivated vaccines but have limited immunogenicity. The identification of adjuvants that augment immunogenicity, specifically in a manner that is durable and antigen-specific, is therefore critical for advanced development. In this study, we use the filovirus virus-like particle (VLP) as a model protein-based vaccine in order to evaluate the impact of four candidate vaccine adjuvants on enhancing long term protection from Ebola virus challenge. Adjuvants tested include poly-ICLC (Hiltonol), MPLA, CpG 2395, and alhydrogel. We compared and contrasted antibody responses, neutralizing antibody responses, effector T cell responses, and T follicular helper (Tfh) cell frequencies with each adjuvant's impact on durable protection. We demonstrate that in this system, the most effective adjuvant elicits a Th1-skewed antibody response and strong CD4 T cell responses, including an increase in Tfh frequency. Using immune-deficient animals and adoptive transfer of serum and cells from vaccinated animals into naïve animals, we further demonstrate that serum and CD4 T cells play a critical role in conferring protection within effective vaccination regimens. These studies inform on the requirements of long term immune protection, which can potentially be used to guide screening of clinical-grade adjuvants for vaccine clinical development. Adjuvants can prolong the protection afforded by protein-based vaccines and impact adaptive immune responses Enhanced CD4 T cell responses, helper and effector, correlate with duration of protection Durable protection from ma-EBOV is associated with Tfh frequency, Th1 antibody titers, and effector CD4 T cells
Protein-based vaccines are extremely safe, but they sometimes require the addition of adjuvants to enhance immunogenicity. In this study, we compared the impact of multiple adjuvants on immunogenicity, focusing on the duration of vaccine-mediated protection in mice. We then looked at how each adjuvant impacted the immune response in order to identify correlates of that long lasting immunity. The most effective adjuvant/vaccine combinations elicited multifunctional CD4 T cell responses and a Th1-skewed antibody response. By transferring antigen-experienced CD4 T cells and serum into naïve animals, we demonstrated that both CD4 T cells and serum were critical for durable vaccine-mediated protection.
Collapse
Key Words
- Adjuvant
- BME, beta mercaptoethanol
- CD, cluster of differentiation
- DSCF, Dwass, Steel, Critchlow-Fligner
- Durable protection
- ELISA, Enzyme linked immunosorbent assay
- ELISPOT, enzyme-linked immunospot assay
- Ebola virus
- FACS, fluorescence activated cell sorting
- FBS, fetal bovine serum
- GP, glycoprotein
- IACUC, Institutional Animal Care and Use Committee
- IM, intramuscular
- IP, intraperitoneal
- IQR, interquartile range
- Immune correlates
- LN, lymph node
- MPLA, monophosphoryl lipid A
- NAb, neutralizing antibody
- Ns, not significant
- PBS, phosphate buffered saline
- PRR, pattern recognition receptor
- Pfu, plaque forming unit
- PsVNA, pseudovirion neutralization assay
- TLR, Toll-like receptor
- USAMRIID, United States Army Medical Research Institute of Infectious Diseases
- VLP, virus-like particle
- Vaccine
- ma-EBOV, mouse-adapted Ebola virus
Collapse
Affiliation(s)
- Karen A O Martins
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD, USA
| | - Christopher L Cooper
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD, USA
| | - Sabrina M Stronsky
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD, USA
| | - Sarah L W Norris
- Research Support Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD, USA
| | - Steven A Kwilas
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD, USA
| | - Jesse T Steffens
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD, USA
| | - Jacqueline G Benko
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD, USA
| | - Sean A van Tongeren
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD, USA
| | - Sina Bavari
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD, USA.
| |
Collapse
|
400
|
GPRC6A mediates Alum-induced Nlrp3 inflammasome activation but limits Th2 type antibody responses. Sci Rep 2015; 5:16719. [PMID: 26602597 PMCID: PMC4658484 DOI: 10.1038/srep16719] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/19/2015] [Indexed: 12/22/2022] Open
Abstract
Alum adjuvanticity is still an unknown mechanism despite the frequent use as vaccine
adjuvant in humans. Here we show that Alum-induced inflammasome activation in
vitro and in vivo is mediated by the G protein-coupled receptor
GPRC6A. The Alum-induced humoral response in vivo was independent of the
inflammasome because Nlrp3−/− and
ASC−/− mice responded normally to Alum and blockade of IL-1
had no effect on antibody production. In contrast, Alum adjuvanticity was increased
in GPRC6A−/− mice resulting in increased antibody responses
and increased Th2 cytokine concentrations compared to wildtype mice. In vitro
activation of GPRC6A−/− splenic B cells also induced
increased IgG1 concentrations compared to wildtype B cells. For the first time, we
show GPRC6A expression in B cells, contributing to the direct effects of Alum on
those cells. B cell produced immunostimulatory IL-10 is elevated in
GPRC6A−/− B cells in vitro and in vivo. Our
results demonstrate a dual role of GPRC6A in Alum adjuvanticity. GPCR6A activation
by Alum leads to the initiation of innate inflammatory responses whereas it is an
important signal for the limitation of adaptive immune responses induced by Alum,
partially explained by B cell IL-10.
Collapse
|