351
|
Andersen J, Revah O, Miura Y, Thom N, Amin ND, Kelley KW, Singh M, Chen X, Thete MV, Walczak EM, Vogel H, Fan HC, Paşca SP. Generation of Functional Human 3D Cortico-Motor Assembloids. Cell 2020; 183:1913-1929.e26. [PMID: 33333020 DOI: 10.1016/j.cell.2020.11.017] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/27/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022]
Abstract
Neurons in the cerebral cortex connect through descending pathways to hindbrain and spinal cord to activate muscle and generate movement. Although components of this pathway have been previously generated and studied in vitro, the assembly of this multi-synaptic circuit has not yet been achieved with human cells. Here, we derive organoids resembling the cerebral cortex or the hindbrain/spinal cord and assemble them with human skeletal muscle spheroids to generate 3D cortico-motor assembloids. Using rabies tracing, calcium imaging, and patch-clamp recordings, we show that corticofugal neurons project and connect with spinal spheroids, while spinal-derived motor neurons connect with muscle. Glutamate uncaging or optogenetic stimulation of cortical spheroids triggers robust contraction of 3D muscle, and assembloids are morphologically and functionally intact for up to 10 weeks post-fusion. Together, this system highlights the remarkable self-assembly capacity of 3D cultures to form functional circuits that could be used to understand development and disease.
Collapse
Affiliation(s)
- Jimena Andersen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Omer Revah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Yuki Miura
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Nicholas Thom
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Neal D Amin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Kevin W Kelley
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Mandeep Singh
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Xiaoyu Chen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Mayuri Vijay Thete
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Hannes Vogel
- Departments of Pathology and Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - H Christina Fan
- BD Biosciences, 4040 Campbell Ave Suite 110, Menlo Park, CA 94025, USA
| | - Sergiu P Paşca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
352
|
Amin S, Borrell V. The Extracellular Matrix in the Evolution of Cortical Development and Folding. Front Cell Dev Biol 2020; 8:604448. [PMID: 33344456 PMCID: PMC7744631 DOI: 10.3389/fcell.2020.604448] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/12/2020] [Indexed: 02/02/2023] Open
Abstract
The evolution of the mammalian cerebral cortex leading to humans involved a remarkable sophistication of developmental mechanisms. Specific adaptations of progenitor cell proliferation and neuronal migration mechanisms have been proposed to play major roles in this evolution of neocortical development. One of the central elements influencing neocortex development is the extracellular matrix (ECM). The ECM provides both a structural framework during tissue formation and to present signaling molecules to cells, which directly influences cell behavior and movement. Here we review recent advances in the understanding of the role of ECM molecules on progenitor cell proliferation and neuronal migration, and how these contribute to cerebral cortex expansion and folding. We discuss how transcriptomic studies in human, ferret and mouse identify components of ECM as being candidate key players in cortex expansion during development and evolution. Then we focus on recent functional studies showing that ECM components regulate cortical progenitor cell proliferation, neuron migration and the mechanical properties of the developing cortex. Finally, we discuss how these features differ between lissencephalic and gyrencephalic species, and how the molecular evolution of ECM components and their expression profiles may have been fundamental in the emergence and evolution of cortex folding across mammalian phylogeny.
Collapse
Affiliation(s)
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant, Spain
| |
Collapse
|
353
|
Li Y, Xu Q, Wu D, Chen G. Exploring Additional Valuable Information From Single-Cell RNA-Seq Data. Front Cell Dev Biol 2020; 8:593007. [PMID: 33335900 PMCID: PMC7736616 DOI: 10.3389/fcell.2020.593007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022] Open
Abstract
Single-cell RNA-seq (scRNA-seq) technologies are broadly applied to dissect the cellular heterogeneity and expression dynamics, providing unprecedented insights into single-cell biology. Most of the scRNA-seq studies mainly focused on the dissection of cell types/states, developmental trajectory, gene regulatory network, and alternative splicing. However, besides these routine analyses, many other valuable scRNA-seq investigations can be conducted. Here, we first review cell-to-cell communication exploration, RNA velocity inference, identification of large-scale copy number variations and single nucleotide changes, and chromatin accessibility prediction based on single-cell transcriptomics data. Next, we discuss the identification of novel genes/transcripts through transcriptome reconstruction approaches, as well as the profiling of long non-coding RNAs and circular RNAs. Additionally, we survey the integration of single-cell and bulk RNA-seq datasets for deconvoluting the cell composition of large-scale bulk samples and linking single-cell signatures to patient outcomes. These additional analyses could largely facilitate corresponding basic science and clinical applications.
Collapse
Affiliation(s)
- Yunjin Li
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Qiyue Xu
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Duojiao Wu
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Geng Chen
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
354
|
Learning about cell lineage, cellular diversity and evolution of the human brain through stem cell models. Curr Opin Neurobiol 2020; 66:166-177. [PMID: 33246264 DOI: 10.1016/j.conb.2020.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Here, we summarize the current knowledge on cell diversity in the cortex and other brain regions from in vivo mouse models and in vitro models based on pluripotent stem cells. We discuss the mechanisms underlying cell proliferation and temporal progression that leads to the sequential generation of neurons dedicated to different layers of the cortex. We highlight models of corticogenesis from stem cells that recapitulate specific transcriptional and connectivity patterns from different cortical areas. We overview state-of-the art of human brain organoids modeling different brain regions, and we discuss insights into human cortical evolution from stem cells. Finally, we interrogate human brain organoid models for their competence to recapitulate the essence of human brain development.
Collapse
|
355
|
Upgrading the Physiological Relevance of Human Brain Organoids. Neuron 2020; 107:1014-1028. [PMID: 32970996 PMCID: PMC10042151 DOI: 10.1016/j.neuron.2020.08.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
The recent advent of human pluripotent stem cell (PSC)-derived 3D brain organoids has opened a window into aspects of human brain development that were not accessible before, allowing tractable monitoring and assessment of early developmental processes. However, their broad and effective use for modeling later stages of human brain development and disease is hampered by the lack of a stereotypic anatomical organization, which limits maturation processes dependent upon formation of unique cellular interactions and short- and long-range network connectivity. Emerging methods and technologies aimed at tighter regulatory control through bioengineering approaches, along with newer unbiased organoid analysis readouts, should resolve several of the current limitations. Here, we review recent advances in brain organoid generation and characterization with a focus on highlighting future directions utilizing interdisciplinary strategies that will be important for improving the physiological relevance of this model system.
Collapse
|
356
|
Resolving Neurodevelopmental and Vision Disorders Using Organoid Single-Cell Multi-omics. Neuron 2020; 107:1000-1013. [PMID: 32970995 DOI: 10.1016/j.neuron.2020.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
Abstract
Human organoid models of the central nervous system, including the neural retina, are providing unprecedented opportunities to explore human neurodevelopment and neurodegeneration in controlled culture environments. In this Perspective, we discuss how the single-cell multi-omic toolkit has been used to identify features and limitations of brain and retina organoids and how these tools can be deployed to study congenital brain malformations and vision disorders in organoids. We also address how to improve brain and retina organoid protocols to revolutionize in vitro disease modeling.
Collapse
|
357
|
Younes ST, Herrington B. In silico analysis identifies a putative cell-of-origin for BRAF fusion-positive cerebellar pilocytic astrocytoma. PLoS One 2020; 15:e0242521. [PMID: 33206716 PMCID: PMC7673500 DOI: 10.1371/journal.pone.0242521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/04/2020] [Indexed: 11/19/2022] Open
Abstract
Childhood cancers are increasingly recognized as disorders of cellular development. This study sought to identify the cellular and developmental origins of cerebellar pilocytic astrocytoma, the most common brain tumor of childhood. Using publicly available gene expression data from pilocytic astrocytoma tumors and controlling for driver mutation, a set of developmental-related genes which were overexpressed in cerebellar pilocytic astrocytoma was identified. These genes were then mapped onto several developmental atlases in order to identify normal cells with similar gene expression patterns and the developmental trajectory of those cells was interrogated. Eight known neuro-developmental genes were identified as being expressed in cerebellar pilocytic astrocytoma. Mapping those genes or their orthologs onto mouse neuro-developmental atlases identified overlap in their expression within the ventricular zone of the cerebellar anlage. Further analysis with a single cell RNA-sequencing atlas of the developing mouse cerebellum defined this overlap as occurring in ventricular zone progenitor cells at the division point between GABA-ergic neuronal and glial lineages, a developmental trajectory which closely mirrors that previously described to occur within pilocytic astrocytoma cells. Furthermore, ventricular zone progenitor cells and their progeny exhibited evidence of MAPK pathway activation, the paradigmatic oncogenic cascade known to be active in cerebellar pilocytic astrocytoma. Gene expression from developing human brain atlases recapitulated the same anatomic localizations and developmental trajectories as those found in mice. Taken together, these data suggest this population of ventricular zone progenitor cells as the cell-of-origin for BRAF fusion-positive cerebellar pilocytic astrocytoma.
Collapse
Affiliation(s)
- Subhi Talal Younes
- MD/PhD Program, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Betty Herrington
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| |
Collapse
|
358
|
Outeiro TF, Heutink P, Bezard E, Cenci AM. From iPS Cells to Rodents and Nonhuman Primates: Filling Gaps in Modeling Parkinson's Disease. Mov Disord 2020; 36:832-841. [PMID: 33200446 DOI: 10.1002/mds.28387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is primarily known as a movement disorder because of typical clinical manifestations associated with the loss of dopaminergic neurons in the substantia nigra. However, it is now widely recognized that PD is a much more complex condition, with multiple and severe nonmotor features implicating additional brain areas and organs in the disease process. Pathologically, typical forms of PD are characterized by the accumulation of α-synuclein-rich protein inclusions known as Lewy bodies and Lewy neurites, although other types of protein inclusions are also often present in the brain. Familial forms of PD have provided a wealth of information about molecular pathways leading to neurodegeneration, but only to add to the complexity of the problem and uncover new knowledge gaps. Therefore, modeling PD in the laboratory has become increasingly challenging. Here, we discuss knowledge gaps and challenges in the use of laboratory models for the study of a disease that is clinically heterogeneous and multifactorial. We propose that the combined use of patient-derived cells and animal models, along with current technological tools, will not only expand our molecular and pathophysiological understanding of PD, but also assist in the identification of therapeutic strategies targeting relevant pathogenic pathways. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Peter Heutink
- German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Erwan Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Angela M Cenci
- Department of Experimental Medical Science, Basal Ganglia Pathophysiology Unit, Lund University, Lund, Sweden
| |
Collapse
|
359
|
Venkataraman L, Fair SR, McElroy CA, Hester ME, Fu H. Modeling neurodegenerative diseases with cerebral organoids and other three-dimensional culture systems: focus on Alzheimer's disease. Stem Cell Rev Rep 2020; 18:696-717. [PMID: 33180261 PMCID: PMC7658915 DOI: 10.1007/s12015-020-10068-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Many neurodegenerative diseases (NDs) such as Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, amyotrophic lateral sclerosis and Huntington’s disease, are characterized by the progressive accumulation of abnormal proteinaceous assemblies in specific cell types and regions of the brain, leading to cellular dysfunction and brain damage. Although animal- and in vitro-based studies of NDs have provided the field with an extensive understanding of some of the mechanisms underlying these diseases, findings from these studies have not yielded substantial progress in identifying treatment options for patient populations. This necessitates the development of complementary model systems that are better suited to recapitulate human-specific features of ND pathogenesis. Three-dimensional (3D) culture systems, such as cerebral organoids generated from human induced pluripotent stem cells, hold significant potential to model NDs in a complex, tissue-like environment. In this review, we discuss the advantages of 3D culture systems and 3D modeling of NDs, especially AD and FTD. We also provide an overview of the challenges and limitations of the current 3D culture systems. Finally, we propose a few potential future directions in applying state-of-the-art technologies in 3D culture systems to understand the mechanisms of NDs and to accelerate drug discovery. Graphical abstract ![]()
Collapse
Affiliation(s)
- Lalitha Venkataraman
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 616 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Summer R Fair
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
- College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Craig A McElroy
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Mark E Hester
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 616 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA.
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA.
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Hongjun Fu
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 616 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
360
|
Chiaradia I, Lancaster MA. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat Neurosci 2020; 23:1496-1508. [PMID: 33139941 DOI: 10.1038/s41593-020-00730-3] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Brain development is an extraordinarily complex process achieved through the spatially and temporally regulated release of key patterning factors. In vitro neurodevelopmental models seek to mimic these processes to recapitulate the steps of tissue fate acquisition and morphogenesis. Classic two-dimensional neural cultures present higher homogeneity but lower complexity compared to the brain. Brain organoids instead have more advanced cell composition, maturation and tissue architecture. They can thus be considered at the interface of in vitro and in vivo neurobiology, and further improvements in organoid techniques are continuing to narrow the gap with in vivo brain development. Here we describe these efforts to recapitulate brain development in neural organoids and focus on their applicability for disease modeling, evolutionary studies and neural network research.
Collapse
Affiliation(s)
- Ilaria Chiaradia
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
361
|
Rifes P, Isaksson M, Rathore GS, Aldrin-Kirk P, Møller OK, Barzaghi G, Lee J, Egerod KL, Rausch DM, Parmar M, Pers TH, Laurell T, Kirkeby A. Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient. Nat Biotechnol 2020; 38:1265-1273. [PMID: 32451506 PMCID: PMC7616963 DOI: 10.1038/s41587-020-0525-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 04/14/2020] [Indexed: 12/27/2022]
Abstract
The study of brain development in humans is limited by the lack of tissue samples and suitable in vitro models. Here, we model early human neural tube development using human embryonic stem cells cultured in a microfluidic device. The approach, named microfluidic-controlled stem cell regionalization (MiSTR), exposes pluripotent stem cells to signaling gradients that mimic developmental patterning. Using a WNT-activating gradient, we generated a neural tissue exhibiting progressive caudalization from forebrain to midbrain to hindbrain, including formation of isthmic organizer characteristics. Single-cell transcriptomics revealed that rostro-caudal organization was already established at 24 h of differentiation, and that the first markers of a neural-specific transcription program emerged in the rostral cells at 48 h. The transcriptomic hallmarks of rostro-caudal organization recapitulated gene expression patterns of the early rostro-caudal neural plate in mouse embryos. Thus, MiSTR will facilitate research on the factors and processes underlying rostro-caudal neural tube patterning.
Collapse
Affiliation(s)
- Pedro Rifes
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Marc Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Gaurav Singh Rathore
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Patrick Aldrin-Kirk
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | | | - Guido Barzaghi
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Julie Lee
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Lihme Egerod
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Dylan M Rausch
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Malin Parmar
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tune H Pers
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Laurell
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Agnete Kirkeby
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark.
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
362
|
Shi Y, Wu Q, Wang X. Modeling brain development and diseases with human cerebral organoids. Curr Opin Neurobiol 2020; 66:103-115. [PMID: 33130409 DOI: 10.1016/j.conb.2020.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/03/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022]
Abstract
Understanding the mechanisms that underlie human brain development and neurological and neuropsychiatric disorders is one of the key topics of neurobiology. Because of the poor accessibility of human and non-human primate brain tissues, the current perception and understanding of human brain development have been mainly derived from studies of rodents. However, some human-specific features of neural development cannot be well characterized by these animal models. Thanks to the advances in stem cell technologies, brain organoids are being under rapid development, showing the promising applications in decoding the human brain development and uncovering the pathology of brain diseases. In this review, we mainly summarized the recent advances in the development of brain organoid technology and discussed the limitations, applications and future prospects of this promising field.
Collapse
Affiliation(s)
- Yingchao Shi
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
363
|
Fossati M, Charrier C. Trans-synaptic interactions of ionotropic glutamate receptors. Curr Opin Neurobiol 2020; 66:85-92. [PMID: 33130410 DOI: 10.1016/j.conb.2020.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/01/2020] [Accepted: 09/01/2020] [Indexed: 01/29/2023]
Abstract
Trans-synaptic interactions organize the multiple steps of synaptic development and are critical to generate fully functional neuronal circuits. While trans-synaptic interactions are primarily mediated by cell adhesion molecules (CAMs), some directly involve ionotropic glutamate receptors (iGluRs). Here, we review the expanding extracellular and trans-synaptic proteome of iGluRs. We discuss the role of these molecular networks in specifying the formation of excitatory and inhibitory circuits and in the input-specific recruitment of iGluRs at synapses in various cell types and brain regions. We also shed light on human-specific mutations affecting iGluR-mediated trans-synaptic interactions that may provide unique features to the human brain and contribute to its susceptibility to neurodevelopmental disorders. Together, these data support a view in which iGluR function goes far beyond fast excitatory synaptic transmission by shaping the wiring and the functional properties of neural circuits.
Collapse
Affiliation(s)
- Matteo Fossati
- CNR - Institute of Neuroscience, via Manzoni 56, Rozzano (MI), 20089, Italy; Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano (MI), 20089, Italy.
| | - Cécile Charrier
- Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS, Inserm, École Normale Supérieure, PSL Research University, Paris, 75005, France.
| |
Collapse
|
364
|
Single-cell patterning and axis characterization in the murine and human definitive endoderm. Cell Res 2020; 31:326-344. [PMID: 33106598 DOI: 10.1038/s41422-020-00426-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Defining the precise regionalization of specified definitive endoderm progenitors is critical for understanding the mechanisms underlying the generation and regeneration of respiratory and digestive organs, yet the patterning of endoderm progenitors remains unresolved, particularly in humans. We performed single-cell RNA sequencing on endoderm cells during the early somitogenesis stages in mice and humans. We developed molecular criteria to define four major endoderm regions (foregut, lip of anterior intestinal portal, midgut, and hindgut) and their developmental pathways. We identified the cell subpopulations in each region and their spatial distributions and characterized key molecular features along the body axes. Dorsal and ventral pancreatic progenitors appear to originate from the midgut population and follow distinct pathways to develop into an identical cell type. Finally, we described the generally conserved endoderm patterning in humans and clear differences in dorsal cell distribution between species. Our study comprehensively defines single-cell endoderm patterning and provides novel insights into the spatiotemporal process that drives establishment of early endoderm domains.
Collapse
|
365
|
Pasqualini C, Kozaki T, Bruschi M, Nguyen THH, Minard-Colin V, Castel D, Grill J, Ginhoux F. Modeling the Interaction between the Microenvironment and Tumor Cells in Brain Tumors. Neuron 2020; 108:1025-1044. [PMID: 33065047 DOI: 10.1016/j.neuron.2020.09.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022]
Abstract
Despite considerable recent advances in understanding and treating many other cancers, malignant brain tumors remain associated with low survival or severe long-term sequelae. Limited progress, including development of immunotherapies, relates in part to difficulties in accurately reproducing brain microenvironment with current preclinical models. The cellular interactions among resident microglia, recruited tumor-associated macrophages, stromal cells, glial cells, neurons, and cancer cells and how they affect tumor growth or behavior are emerging, yet many questions remain. The role of the blood-brain barrier, extracellular matrix components, and heterogeneity among tumor types and within different regions of a single tumor further complicate the matter. Here, we focus on brain microenvironment features impacted by tumor biology. We also discuss limits of current preclinical models and how complementary models, such as humanized animals and organoids, will allow deeper mechanistic insights on cancer biology, allowing for more efficient testing of therapeutic strategies, including immunotherapy, for brain cancers.
Collapse
Affiliation(s)
- Claudia Pasqualini
- Children and Adolescent Oncology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Tatsuya Kozaki
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Marco Bruschi
- Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Thi Hai Hoa Nguyen
- Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Véronique Minard-Colin
- Children and Adolescent Oncology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France; INSERM U1015, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - David Castel
- Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Jacques Grill
- Children and Adolescent Oncology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France; Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France.
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore; Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
| |
Collapse
|
366
|
Baldassari S, Musante I, Iacomino M, Zara F, Salpietro V, Scudieri P. Brain Organoids as Model Systems for Genetic Neurodevelopmental Disorders. Front Cell Dev Biol 2020; 8:590119. [PMID: 33154971 PMCID: PMC7586734 DOI: 10.3389/fcell.2020.590119] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of disorders in which the development of the central nervous system (CNS) is disturbed, resulting in different neurological and neuropsychiatric features, such as impaired motor function, learning, language or non-verbal communication. Frequent comorbidities include epilepsy and movement disorders. Advances in DNA sequencing technologies revealed identifiable genetic causes in an increasingly large proportion of NDDs, highlighting the need of experimental approaches to investigate the defective genes and the molecular pathways implicated in abnormal brain development. However, targeted approaches to investigate specific molecular defects and their implications in human brain dysfunction are prevented by limited access to patient-derived brain tissues. In this context, advances of both stem cell technologies and genome editing strategies during the last decade led to the generation of three-dimensional (3D) in vitro-models of cerebral organoids, holding the potential to recapitulate precise stages of human brain development with the aim of personalized diagnostic and therapeutic approaches. Recent progresses allowed to generate 3D-structures of both neuronal and non-neuronal cell types and develop either whole-brain or region-specific cerebral organoids in order to investigate in vitro key brain developmental processes, such as neuronal cell morphogenesis, migration and connectivity. In this review, we summarized emerging methodological approaches in the field of brain organoid technologies and their application to dissect disease mechanisms underlying an array of pediatric brain developmental disorders, with a particular focus on autism spectrum disorders (ASDs) and epileptic encephalopathies.
Collapse
Affiliation(s)
- Simona Baldassari
- Medical Genetics Unit, IRCSS Giannina Gaslini Institute, Genoa, Italy
| | - Ilaria Musante
- Medical Genetics Unit, IRCSS Giannina Gaslini Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Michele Iacomino
- Medical Genetics Unit, IRCSS Giannina Gaslini Institute, Genoa, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCSS Giannina Gaslini Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Vincenzo Salpietro
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,Pediatric Neurology and Muscular Diseases Unit, IRCSS Giannina Gaslini Institute, Genoa, Italy.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Paolo Scudieri
- Medical Genetics Unit, IRCSS Giannina Gaslini Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
367
|
Ribeiro MM, Okawa S, Del Sol A. TransSynW: A single-cell RNA-sequencing based web application to guide cell conversion experiments. Stem Cells Transl Med 2020; 10:230-238. [PMID: 33125830 PMCID: PMC7848352 DOI: 10.1002/sctm.20-0227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/03/2020] [Accepted: 08/16/2020] [Indexed: 12/16/2022] Open
Abstract
Generation of desired cell types by cell conversion remains a challenge. In particular, derivation of novel cell subtypes identified by single‐cell technologies will open up new strategies for cell therapies. The recent increase in the generation of single‐cell RNA‐sequencing (scRNA‐seq) data and the concomitant increase in the interest expressed by researchers in generating a wide range of functional cells prompted us to develop a computational tool for tackling this challenge. Here we introduce a web application, TransSynW, which uses scRNA‐seq data for predicting cell conversion transcription factors (TFs) for user‐specified cell populations. TransSynW prioritizes pioneer factors among predicted conversion TFs to facilitate chromatin opening often required for cell conversion. In addition, it predicts marker genes for assessing the performance of cell conversion experiments. Furthermore, TransSynW does not require users' knowledge of computer programming and computational resources. We applied TransSynW to different levels of cell conversion specificity, which recapitulated known conversion TFs at each level. We foresee that TransSynW will be a valuable tool for guiding experimentalists to design novel protocols for cell conversion in stem cell research and regenerative medicine.
Collapse
Affiliation(s)
- Mariana Messias Ribeiro
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Satoshi Okawa
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,Integrated BioBank of Luxembourg, Dudelange, Luxembourg
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
368
|
Liu Y, Konopka G. An integrative understanding of comparative cognition: lessons from human brain evolution. Integr Comp Biol 2020; 60:991-1006. [PMID: 32681799 PMCID: PMC7608741 DOI: 10.1093/icb/icaa109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A comprehensive understanding of animal cognition requires the integration of studies on behavior, electrophysiology, neuroanatomy, development, and genomics. Although studies of comparative cognition are receiving increasing attention from organismal biologists, most current studies focus on the comparison of behaviors and anatomical structures to understand their adaptative values. However, to understand the most potentially complex cognitive program of the human brain a greater synthesis of a multitude of disciplines is needed. In this review, we start with extensive neuroanatomic comparisons between humans and other primates. One likely specialization of the human brain is the expansion of neocortex, especially in regions for high-order cognition (e.g., prefrontal cortex). We then discuss how such an expansion can be linked to heterochrony of the brain developmental program, resulting in a greater number of neurons and enhanced computational capacity. Furthermore, alteration of gene expression in the human brain has been associated with positive selection in DNA sequences of gene regulatory regions. These results not only imply that genes associated with brain development are a major factor in the evolution of cognition, but also that high-quality whole-genome sequencing and gene manipulation techniques are needed for an integrative and functional understanding of comparative cognition in non-model organisms.
Collapse
Affiliation(s)
- Yuxiang Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
369
|
Ayturk UM, Scollan JP, Goz Ayturk D, Suh ES, Vesprey A, Jacobsen CM, Divieti Pajevic P, Warman ML. Single-Cell RNA Sequencing of Calvarial and Long-Bone Endocortical Cells. J Bone Miner Res 2020; 35:1981-1991. [PMID: 32427356 PMCID: PMC8265023 DOI: 10.1002/jbmr.4052] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022]
Abstract
Single-cell RNA sequencing (scRNA-Seq) is emerging as a powerful technology to examine transcriptomes of individual cells. We determined whether scRNA-Seq could be used to detect the effect of environmental and pharmacologic perturbations on osteoblasts. We began with a commonly used in vitro system in which freshly isolated neonatal mouse calvarial cells are expanded and induced to produce a mineralized matrix. We used scRNA-Seq to compare the relative cell type abundances and the transcriptomes of freshly isolated cells to those that had been cultured for 12 days in vitro. We observed that the percentage of macrophage-like cells increased from 6% in freshly isolated calvarial cells to 34% in cultured cells. We also found that Bglap transcripts were abundant in freshly isolated osteoblasts but nearly undetectable in the cultured calvarial cells. Thus, scRNA-Seq revealed significant differences between heterogeneity of cells in vivo and in vitro. We next performed scRNA-Seq on freshly recovered long bone endocortical cells from mice that received either vehicle or sclerostin-neutralizing antibody for 1 week. We were unable to detect significant changes in bone anabolism-associated transcripts in immature and mature osteoblasts recovered from mice treated with sclerostin-neutralizing antibody; this might be a consequence of being underpowered to detect modest changes in gene expression, because only 7% of the sequenced endocortical cells were osteoblasts and a limited portion of their transcriptomes were sampled. We conclude that scRNA-Seq can detect changes in cell abundance, identity, and gene expression in skeletally derived cells. In order to detect modest changes in osteoblast gene expression at the single-cell level in the appendicular skeleton, larger numbers of osteoblasts from endocortical bone are required. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ugur M Ayturk
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY, USA.,Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, NY, USA.,Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Joseph P Scollan
- Department of Orthopaedic Surgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Didem Goz Ayturk
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY, USA
| | - Eun Sung Suh
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY, USA
| | - Alexander Vesprey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY, USA
| | - Christina M Jacobsen
- Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA.,Divisions of Endocrinology and Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Boston University Goldman School of Dental Medicine, Boston, MA, USA
| | - Matthew L Warman
- Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
370
|
Sahu S, Sharan SK. Translating Embryogenesis to Generate Organoids: Novel Approaches to Personalized Medicine. iScience 2020; 23:101485. [PMID: 32864586 PMCID: PMC7441954 DOI: 10.1016/j.isci.2020.101485] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The astounding capacity of pluripotent stem cells (PSCs) to differentiate and self-organize has revolutionized the development of 3D cell culture models. The major advantage is its ability to mimic in vivo microenvironments and cellular interactions when compared with the classical 2D cell culture models. Recent innovations in generating embryo-like structures (including blastoids and gastruloids) from PSCs have advanced the experimental accessibility to understand embryogenesis with immense potential to model human development. Taking cues on how embryonic development leads to organogenesis, PSCs can also be directly differentiated to form mini-organs or organoids of a particular lineage. Organoids have opened new avenues to augment our understanding of stem cell and regenerative biology, tissue homeostasis, and disease mechanisms. In this review, we provide insights from developmental biology with a comprehensive resource of signaling pathways that in a coordinated manner form embryo-like structures and organoids. Moreover, the advent of assembloids and multilineage organoids from PSCs opens a new dimension to study paracrine function and multi-tissue interactions in vitro. Although this led to an avalanche of enthusiasm to utilize organoids for organ transplantation studies, we examine the current limitations and provide perspectives to improve reproducibility, scalability, functional complexity, and cell-type characterization. Taken together, these 3D in vitro organ-specific and patient-specific models hold great promise for drug discovery, clinical management, and personalized medicine.
Collapse
Affiliation(s)
- Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-04, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Shyam K. Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-33, 1050 Boyles Street, Frederick, MD 21702, USA
| |
Collapse
|
371
|
Luciani M, Gritti A, Meneghini V. Human iPSC-Based Models for the Development of Therapeutics Targeting Neurodegenerative Lysosomal Storage Diseases. Front Mol Biosci 2020; 7:224. [PMID: 33062642 PMCID: PMC7530250 DOI: 10.3389/fmolb.2020.00224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/10/2020] [Indexed: 01/30/2023] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of rare genetic conditions. The absence or deficiency of lysosomal proteins leads to excessive storage of undigested materials and drives secondary pathological mechanisms including autophagy, calcium homeostasis, ER stress, and mitochondrial abnormalities. A large number of LSDs display mild to severe central nervous system (CNS) involvement. Animal disease models and post-mortem tissues partially recapitulate the disease or represent the final stage of CNS pathology, respectively. In the last decades, human models based on induced pluripotent stem cells (hiPSCs) have been extensively applied to investigate LSD pathology in several tissues and organs, including the CNS. Neural stem/progenitor cells (NSCs) derived from patient-specific hiPSCs (hiPS-NSCs) are a promising tool to define the effects of the pathological storage on neurodevelopment, survival and function of neurons and glial cells in neurodegenerative LSDs. Additionally, the development of novel 2D co-culture systems and 3D hiPSC-based models is fostering the investigation of neuron-glia functional and dysfunctional interactions, also contributing to define the role of neurodevelopment and neuroinflammation in the onset and progression of the disease, with important implications in terms of timing and efficacy of treatments. Here, we discuss the advantages and limits of the application of hiPS-NSC-based models in the study and treatment of CNS pathology in different LSDs. Additionally, we review the state-of-the-art and the prospective applications of NSC-based therapy, highlighting the potential exploitation of hiPS-NSCs for gene and cell therapy approaches in the treatment of neurodegenerative LSDs.
Collapse
Affiliation(s)
- Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
372
|
Cheroni C, Caporale N, Testa G. Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology. Mol Autism 2020; 11:69. [PMID: 32912338 PMCID: PMC7488083 DOI: 10.1186/s13229-020-00370-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
The complex pathophysiology of autism spectrum disorder encompasses interactions between genetic and environmental factors. On the one hand, hundreds of genes, converging at the functional level on selective biological domains such as epigenetic regulation and synaptic function, have been identified to be either causative or risk factors of autism. On the other hand, exposure to chemicals that are widespread in the environment, such as endocrine disruptors, has been associated with adverse effects on human health, including neurodevelopmental disorders. Interestingly, experimental results suggest an overlap in the regulatory pathways perturbed by genetic mutations and environmental factors, depicting convergences and complex interplays between genetic susceptibility and toxic insults. The pervasive nature of chemical exposure poses pivotal challenges for neurotoxicological studies, regulatory agencies, and policy makers. This highlights an emerging need of developing new integrative models, including biomonitoring, epidemiology, experimental, and computational tools, able to capture real-life scenarios encompassing the interaction between chronic exposure to mixture of substances and individuals' genetic backgrounds. In this review, we address the intertwined roles of genetic lesions and environmental insults. Specifically, we outline the transformative potential of stem cell models, coupled with omics analytical approaches at increasingly single cell resolution, as converging tools to experimentally dissect the pathogenic mechanisms underlying neurodevelopmental disorders, as well as to improve developmental neurotoxicology risk assessment.
Collapse
Affiliation(s)
- Cristina Cheroni
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.
| | - Nicolò Caporale
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.
- Human Technopole, Via Cristina Belgioioso 171, Milan, Italy.
| | - Giuseppe Testa
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.
- Human Technopole, Via Cristina Belgioioso 171, Milan, Italy.
| |
Collapse
|
373
|
Human Cerebral Organoids Reveal Early Spatiotemporal Dynamics and Pharmacological Responses of UBE3A. Stem Cell Reports 2020; 15:845-854. [PMID: 32916124 PMCID: PMC7561513 DOI: 10.1016/j.stemcr.2020.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Angelman syndrome is a complex neurodevelopmental disorder characterized by delayed development, intellectual disability, speech impairment, and ataxia. It results from the loss of UBE3A protein, an E3 ubiquitin ligase, in neurons of the brain. Despite the dynamic spatiotemporal expression of UBE3A observed in rodents and the potential clinical importance of when and where it is expressed, its expression pattern in humans remains unknown. This reflects a common challenge of studying human neurodevelopment: prenatal periods are hard to access experimentally. In this work, human cerebral organoids reveal a change from weak to strong UBE3A in neuronal nuclei within 3 weeks of culture. Angelman syndrome human induced pluripotent stem cell-derived organoids also exhibit early silencing of paternal UBE3A, with topoisomerase inhibitors partially rescuing UBE3A levels and calcium transient phenotypes. This work establishes human cerebral organoids as an important model for studying UBE3A and motivates their broader use in understanding complex neurodevelopmental disorders. UBE3A signals in neuronal nuclei in hCOs correlate to early stages of development UBE3A exhibits a change from weakly to strongly nuclear in cortical layers UBE3A is imprinted and aberrantly localized in Angelman syndrome hCOs Topoisomerase inhibitors partially rescue UBE3A and neuronal function in AS hCOs
Collapse
|
374
|
Glinsky GV. Impacts of genomic networks governed by human-specific regulatory sequences and genetic loci harboring fixed human-specific neuro-regulatory single nucleotide mutations on phenotypic traits of modern humans. Chromosome Res 2020; 28:331-354. [PMID: 32902713 PMCID: PMC7480002 DOI: 10.1007/s10577-020-09639-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 01/01/2023]
Abstract
Recent advances in identification and characterization of human-specific regulatory DNA sequences set the stage for the assessment of their global impact on physiology and pathology of modern humans. Gene set enrichment analyses (GSEA) of 8405 genes linked with 35,074 human-specific neuro-regulatory single-nucleotide changes (hsSNCs) revealed numerous significant associations with morphological structures, physiological processes, and pathological conditions of modern humans. Significantly enriched traits include more than 1000 anatomically distinct regions of the adult human brain, many different types of cells and tissues, more than 200 common human disorders, and more than 1000 records of rare diseases. Thousands of genes connected with neuro-regulatory hsSNCs have been identified, which represent essential genetic elements of the autosomal inheritance and offspring survival phenotypes. A total of 1494 hsSNC-linked genes are associated with either autosomal dominant or recessive inheritance, and 2273 hsSNC-linked genes have been associated with premature death, embryonic lethality, as well as pre-, peri-, neo-, and post-natal lethality phenotypes of both complete and incomplete penetrance. Differential GSEA implemented on hsSNC-linked loci and associated genes identify a set of 7990 hsSNC-target genes linked to evolutionary distinct classes of human-specific regulatory sequences (HSRS). Notably, the expression of a majority of these genes (5389 genes; 67%) is regulated by stem cell–associated retroviral sequences (SCARS) and SCARS-regulated genes captured a dominant fraction (91%) of significant phenotypic associations linked with hsSNCs. Interrogations of the MGI database revealed readily available mouse models tailored for precise experimental definitions of functional effects of hsSNCs and SCARS on genes causally affecting thousands of mammalian phenotypes and implicated in hundreds of common and rare human disorders. These observations suggest that a preponderance of human-specific traits evolved under a combinatorial regulatory control of distinct classes of HSRS and neuro-regulatory loci harboring hsSNCs that are fixed in humans, distinct from other primates, and located in differentially accessible chromatin regions during brain development.
Collapse
Affiliation(s)
- Gennadi V Glinsky
- Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Dr. MC 0435, La Jolla, CA, 92093-0435, USA.
| |
Collapse
|
375
|
Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skriabine S, Lu P, Weizman OE, Liu F, Dai Y, Szigeti-Buck K, Yasumoto Y, Wang G, Castaldi C, Heltke J, Ng E, Wheeler J, Alfajaro MM, Levavasseur E, Fontes B, Ravindra NG, Van Dijk D, Mane S, Gunel M, Ring A, Kazmi SAJ, Zhang K, Wilen CB, Horvath TL, Plu I, Haik S, Thomas JL, Louvi A, Farhadian SF, Huttner A, Seilhean D, Renier N, Bilguvar K, Iwasaki A. Neuroinvasion of SARS-CoV-2 in human and mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.25.169946. [PMID: 32935108 PMCID: PMC7491522 DOI: 10.1101/2020.06.25.169946] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although COVID-19 is considered to be primarily a respiratory disease, SARS-CoV-2 affects multiple organ systems including the central nervous system (CNS). Yet, there is no consensus whether the virus can infect the brain, or what the consequences of CNS infection are. Here, we used three independent approaches to probe the capacity of SARS-CoV-2 to infect the brain. First, using human brain organoids, we observed clear evidence of infection with accompanying metabolic changes in the infected and neighboring neurons. However, no evidence for the type I interferon responses was detected. We demonstrate that neuronal infection can be prevented either by blocking ACE2 with antibodies or by administering cerebrospinal fluid from a COVID-19 patient. Second, using mice overexpressing human ACE2, we demonstrate in vivo that SARS-CoV-2 neuroinvasion, but not respiratory infection, is associated with mortality. Finally, in brain autopsy from patients who died of COVID-19, we detect SARS-CoV-2 in the cortical neurons, and note pathologic features associated with infection with minimal immune cell infiltrates. These results provide evidence for the neuroinvasive capacity of SARS-CoV2, and an unexpected consequence of direct infection of neurons by SARS-CoV-2.
Collapse
Affiliation(s)
- Eric Song
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ce Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Benjamin Israelow
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06510, USA
| | - Alice Lu-Culligan
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Alba Vieites Prado
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Paris Brain Institute - ICM, Paris, France
| | - Sophie Skriabine
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Paris Brain Institute - ICM, Paris, France
| | - Peiwen Lu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Orr-El Weizman
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Feimei Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Klara Szigeti-Buck
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Yuki Yasumoto
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Guilin Wang
- Yale Center for Genome Analysis, West Haven, CT 06510, USA
| | | | - Jaime Heltke
- Yale Center for Genome Analysis, West Haven, CT 06510, USA
| | - Evelyn Ng
- Yale Center for Genome Analysis, West Haven, CT 06510, USA
| | - John Wheeler
- Yale Center for Genome Analysis, West Haven, CT 06510, USA
| | - Mia Madel Alfajaro
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Etienne Levavasseur
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Paris Brain Institute - ICM, Paris, France
| | - Benjamin Fontes
- Yale Environmental Health and Safety, Yale University, New Haven, CT 06510, USA
| | - Neal G. Ravindra
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Computer Science, Yale University, New Haven, CT 06510, USA
| | - David Van Dijk
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Computer Science, Yale University, New Haven, CT 06510, USA
| | - Shrikant Mane
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Center for Genome Analysis, West Haven, CT 06510, USA
| | - Murat Gunel
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Aaron Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Syed A. Jaffar Kazmi
- Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania
| | - Kai Zhang
- Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania
| | - Craig B Wilen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tamas L. Horvath
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Isabelle Plu
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Paris Brain Institute - ICM, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neuropathologie, Paris, France
| | - Stephane Haik
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Paris Brain Institute - ICM, Paris, France
- Yale Environmental Health and Safety, Yale University, New Haven, CT 06510, USA
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neuropathologie, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Cellule nationale de référence des maladies de Creutzfeldt-Jakob, Paris, France
| | - Jean-Leon Thomas
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Paris Brain Institute - ICM, Paris, France
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Angeliki Louvi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shelli F. Farhadian
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Anita Huttner
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Danielle Seilhean
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Paris Brain Institute - ICM, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neuropathologie, Paris, France
| | - Nicolas Renier
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Paris Brain Institute - ICM, Paris, France
| | - Kaya Bilguvar
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Center for Genome Analysis, West Haven, CT 06510, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale School of Medicine, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lead Contact
| |
Collapse
|
376
|
Decoding Susceptibility to Respiratory Viral Infections and Asthma Inception in Children. Int J Mol Sci 2020; 21:ijms21176372. [PMID: 32887352 PMCID: PMC7503410 DOI: 10.3390/ijms21176372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 01/19/2023] Open
Abstract
Human Respiratory Syncytial Virus and Human Rhinovirus are the most frequent cause of respiratory tract infections in infants and children and are major triggers of acute viral bronchiolitis, wheezing and asthma exacerbations. Here, we will discuss the application of the powerful tools of systems biology to decode the molecular mechanisms that determine risk for infection and subsequent asthma. An important conceptual advance is the understanding that the innate immune system is governed by a Bow-tie architecture, where diverse input signals converge onto a few core pathways (e.g., IRF7), which in turn generate diverse outputs that orchestrate effector and regulatory functions. Molecular profiling studies in children with severe exacerbations of asthma/wheeze have identified two major immunological phenotypes. The IRF7hi phenotype is characterised by robust upregulation of antiviral response networks, and the IRF7lo phenotype is characterised by upregulation of markers of TGFβ signalling and type 2 inflammation. Similar phenotypes have been identified in infants and children with severe viral bronchiolitis. Notably, genome-wide association studies supported by experimental validation have identified key pathways that increase susceptibility to HRV infection (ORMDL3 and CHDR3) and modulate TGFβ signalling (GSDMB, TGFBR1, and SMAD3). Moreover, functional deficiencies in the activation of type I and III interferon responses are already evident at birth in children at risk of developing febrile lower respiratory tract infections and persistent asthma/wheeze, suggesting that the trajectory to asthma begins at birth or in utero. Finally, exposure to microbes and their products reprograms innate immunity and provides protection from the development of allergies and asthma in children, and therefore microbial products are logical candidates for the primary prevention of asthma.
Collapse
|
377
|
|
378
|
He Z, Brazovskaja A, Ebert S, Camp JG, Treutlein B. CSS: cluster similarity spectrum integration of single-cell genomics data. Genome Biol 2020; 21:224. [PMID: 32867824 PMCID: PMC7460789 DOI: 10.1186/s13059-020-02147-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/17/2020] [Indexed: 01/24/2023] Open
Abstract
It is a major challenge to integrate single-cell sequencing data across experiments, conditions, batches, time points, and other technical considerations. New computational methods are required that can integrate samples while simultaneously preserving biological information. Here, we propose an unsupervised reference-free data representation, cluster similarity spectrum (CSS), where each cell is represented by its similarities to clusters independently identified across samples. We show that CSS can be used to assess cellular heterogeneity and enable reconstruction of differentiation trajectories from cerebral organoid and other single-cell transcriptomic data, and to integrate data across experimental conditions and human individuals.
Collapse
Affiliation(s)
- Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| | | | - Sebastian Ebert
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
379
|
Ando Y, Kwon ATJ, Shin JW. An era of single-cell genomics consortia. Exp Mol Med 2020; 52:1409-1418. [PMID: 32929222 PMCID: PMC8080593 DOI: 10.1038/s12276-020-0409-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 02/10/2020] [Indexed: 12/24/2022] Open
Abstract
The human body consists of 37 trillion single cells represented by over 50 organs that are stitched together to make us who we are, yet we still have very little understanding about the basic units of our body: what cell types and states make up our organs both compositionally and spatially. Previous efforts to profile a wide range of human cell types have been attempted by the FANTOM and GTEx consortia. Now, with the advancement in genomic technologies, profiling the human body at single-cell resolution is possible and will generate an unprecedented wealth of data that will accelerate basic and clinical research with tangible applications to future medicine. To date, several major organs have been profiled, but the challenges lie in ways to integrate single-cell genomics data in a meaningful way. In recent years, several consortia have begun to introduce harmonization and equity in data collection and analysis. Herein, we introduce existing and nascent single-cell genomics consortia, and present benefits to necessitate single-cell genomic consortia in a regional environment to achieve the universal human cell reference dataset.
Collapse
Affiliation(s)
- Yoshinari Ando
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045, Japan
| | - Andrew Tae-Jun Kwon
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045, Japan
| | - Jay W Shin
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045, Japan.
| |
Collapse
|
380
|
Xing QR, El Farran CA, Gautam P, Chuah YS, Warrier T, Toh CXD, Kang NY, Sugii S, Chang YT, Xu J, Collins JJ, Daley GQ, Li H, Zhang LF, Loh YH. Diversification of reprogramming trajectories revealed by parallel single-cell transcriptome and chromatin accessibility sequencing. SCIENCE ADVANCES 2020; 6:eaba1190. [PMID: 32917699 PMCID: PMC7486102 DOI: 10.1126/sciadv.aba1190] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/30/2020] [Indexed: 05/16/2023]
Abstract
Cellular reprogramming suffers from low efficiency especially for the human cells. To deconstruct the heterogeneity and unravel the mechanisms for successful reprogramming, we adopted single-cell RNA sequencing (scRNA-Seq) and single-cell assay for transposase-accessible chromatin (scATAC-Seq) to profile reprogramming cells across various time points. Our analysis revealed that reprogramming cells proceed in an asynchronous trajectory and diversify into heterogeneous subpopulations. We identified fluorescent probes and surface markers to enrich for the early reprogrammed human cells. Furthermore, combinatory usage of the surface markers enabled the fine segregation of the early-intermediate cells with diverse reprogramming propensities. scATAC-Seq analysis further uncovered the genomic partitions and transcription factors responsible for the regulatory phasing of reprogramming process. Binary choice between a FOSL1 and a TEAD4-centric regulatory network determines the outcome of a successful reprogramming. Together, our study illuminates the multitude of diverse routes transversed by individual reprogramming cells and presents an integrative roadmap for identifying the mechanistic part list of the reprogramming machinery.
Collapse
Affiliation(s)
- Q R Xing
- Epigenetics and Cell Fates Laboratory, Programme in Stem Cell, Regenerative Medicine and Aging, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Chadi A El Farran
- Epigenetics and Cell Fates Laboratory, Programme in Stem Cell, Regenerative Medicine and Aging, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Pradeep Gautam
- Epigenetics and Cell Fates Laboratory, Programme in Stem Cell, Regenerative Medicine and Aging, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Yu Song Chuah
- Epigenetics and Cell Fates Laboratory, Programme in Stem Cell, Regenerative Medicine and Aging, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Tushar Warrier
- Epigenetics and Cell Fates Laboratory, Programme in Stem Cell, Regenerative Medicine and Aging, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Cheng-Xu Delon Toh
- Epigenetics and Cell Fates Laboratory, Programme in Stem Cell, Regenerative Medicine and Aging, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Nam-Young Kang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, A*STAR, Singapore 138667, Singapore
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Shigeki Sugii
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore 138669, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Young-Tae Chang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, A*STAR, Singapore 138667, Singapore
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jian Xu
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, Netherlands
| | - James J Collins
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - George Q Daley
- Stem Cell Program, Division of Pediatric Hematology and Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Manton Center for Orphan Disease Research, Boston, MA 02115, USA
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Li-Feng Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Yuin-Han Loh
- Epigenetics and Cell Fates Laboratory, Programme in Stem Cell, Regenerative Medicine and Aging, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
381
|
Wang L, Li Z, Sievert D, Smith DEC, Mendes MI, Chen DY, Stanley V, Ghosh S, Wang Y, Kara M, Aslanger AD, Rosti RO, Houlden H, Salomons GS, Gleeson JG. Loss of NARS1 impairs progenitor proliferation in cortical brain organoids and leads to microcephaly. Nat Commun 2020; 11:4038. [PMID: 32788587 PMCID: PMC7424529 DOI: 10.1038/s41467-020-17454-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/11/2020] [Indexed: 12/21/2022] Open
Abstract
Asparaginyl-tRNA synthetase1 (NARS1) is a member of the ubiquitously expressed cytoplasmic Class IIa family of tRNA synthetases required for protein translation. Here, we identify biallelic missense and frameshift mutations in NARS1 in seven patients from three unrelated families with microcephaly and neurodevelopmental delay. Patient cells show reduced NARS1 protein, impaired NARS1 activity and impaired global protein synthesis. Cortical brain organoid modeling shows reduced proliferation of radial glial cells (RGCs), leading to smaller organoids characteristic of microcephaly. Single-cell analysis reveals altered constituents of both astrocytic and RGC lineages, suggesting a requirement for NARS1 in RGC proliferation. Our findings demonstrate that NARS1 is required to meet protein synthetic needs and to support RGC proliferation in human brain development.
Collapse
Affiliation(s)
- Lu Wang
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Zhen Li
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - David Sievert
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Desirée E C Smith
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
| | - Marisa I Mendes
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
| | - Dillon Y Chen
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- Division of Child Neurology, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Valentina Stanley
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Shereen Ghosh
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Majdi Kara
- University of Tripoli, Tripoli Children's Hospital, Tripoli, Libya
| | | | - Rasim O Rosti
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
| | - Joseph G Gleeson
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA.
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Division of Child Neurology, Rady Children's Hospital, San Diego, CA, 92123, USA.
| |
Collapse
|
382
|
Katzenelenbogen Y, Sheban F, Yalin A, Yofe I, Svetlichnyy D, Jaitin DA, Bornstein C, Moshe A, Keren-Shaul H, Cohen M, Wang SY, Li B, David E, Salame TM, Weiner A, Amit I. Coupled scRNA-Seq and Intracellular Protein Activity Reveal an Immunosuppressive Role of TREM2 in Cancer. Cell 2020; 182:872-885.e19. [PMID: 32783915 DOI: 10.1016/j.cell.2020.06.032] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/06/2020] [Accepted: 06/19/2020] [Indexed: 01/08/2023]
Abstract
Cell function and activity are regulated through integration of signaling, epigenetic, transcriptional, and metabolic pathways. Here, we introduce INs-seq, an integrated technology for massively parallel recording of single-cell RNA sequencing (scRNA-seq) and intracellular protein activity. We demonstrate the broad utility of INs-seq for discovering new immune subsets by profiling different intracellular signatures of immune signaling, transcription factor combinations, and metabolic activity. Comprehensive mapping of Arginase 1-expressing cells within tumor models, a metabolic immune signature of suppressive activity, discovers novel Arg1+ Trem2+ regulatory myeloid (Mreg) cells and identifies markers, metabolic activity, and pathways associated with these cells. Genetic ablation of Trem2 in mice inhibits accumulation of intra-tumoral Mreg cells, leading to a marked decrease in dysfunctional CD8+ T cells and reduced tumor growth. This study establishes INs-seq as a broadly applicable technology for elucidating integrated transcriptional and intra-cellular maps and identifies the molecular signature of myeloid suppressive cells in tumors.
Collapse
Affiliation(s)
| | - Fadi Sheban
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Adam Yalin
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Ido Yofe
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | | | | | | | - Adi Moshe
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | | | - Merav Cohen
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Shuang-Yin Wang
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Baoguo Li
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Tomer-Meir Salame
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Assaf Weiner
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel.
| | - Ido Amit
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel.
| |
Collapse
|
383
|
Krefft O, Koch P, Ladewig J. Cerebral organoids to unravel the mechanisms underlying malformations of human cortical development. Semin Cell Dev Biol 2020; 111:15-22. [PMID: 32741653 DOI: 10.1016/j.semcdb.2020.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 10/23/2022]
Abstract
Genetic studies identified multiple mutations associated with malformations of cortical development (MCD) in humans. When analyzing the underlying mechanisms in non-human experimental models it became increasingly evident, that these mutations accumulate in genes, which functions evolutionary progressed from rodents to humans resulting in an incomplete reflection of the molecular and cellular alterations in these models. Human brain organoids derived from human pluripotent stem cells resemble early aspects of human brain development to a remarkable extent making them an attractive model to investigate MCD. Here we review how human brain organoids enable the generation of fundamental new insight about the underlying pathomechanisms of MCD. We show how phenotypic features of these diseases are reflected in human brain organoids and discuss challenges and future considerations but also limitations for the use of human brain organoids to model human brain development and associated disorders.
Collapse
Affiliation(s)
- Olivia Krefft
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany; Hector Institute for Translational Brain Research (HITBR gGmbH), Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Koch
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany; Hector Institute for Translational Brain Research (HITBR gGmbH), Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Julia Ladewig
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany; Hector Institute for Translational Brain Research (HITBR gGmbH), Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
384
|
Lee D, Choi YH, Seo J, Kim JK, Lee SB. Discovery of new epigenomics-based biomarkers and the early diagnosis of neurodegenerative diseases. Ageing Res Rev 2020; 61:101069. [PMID: 32416267 DOI: 10.1016/j.arr.2020.101069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/02/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Abstract
Treatment options for many neurodegenerative diseases are limited due to the lack of early diagnostic procedures that allow timely delivery of therapeutic agents to affected neurons prior to cell death. While notable advances have been made in neurodegenerative disease biomarkers, whether or not the biomarkers discovered to date are useful for early diagnosis remains an open question. Additionally, the reliability of these biomarkers has been disappointing, due in part to the large dissimilarities between the tissues traditionally used to source biomarkers and primarily diseased neurons. In this article, we review the potential viability of atypical epigenetic and/or consequent transcriptional alterations (ETAs) as biomarkers of early-stage neurodegenerative disease, and present our perspectives on the discovery and practical use of such biomarkers in patient-derived neural samples using single-cell level analyses, thereby greatly enhancing the reliability of biomarker application.
Collapse
|
385
|
Porubsky D, Sanders AD, Höps W, Hsieh P, Sulovari A, Li R, Mercuri L, Sorensen M, Murali SC, Gordon D, Cantsilieris S, Pollen AA, Ventura M, Antonacci F, Marschall T, Korbel JO, Eichler EE. Recurrent inversion toggling and great ape genome evolution. Nat Genet 2020; 52:849-858. [PMID: 32541924 PMCID: PMC7415573 DOI: 10.1038/s41588-020-0646-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/15/2020] [Indexed: 01/14/2023]
Abstract
Inversions play an important role in disease and evolution but are difficult to characterize because their breakpoints map to large repeats. We increased by sixfold the number (n = 1,069) of previously reported great ape inversions by using single-cell DNA template strand and long-read sequencing. We find that the X chromosome is most enriched (2.5-fold) for inversions, on the basis of its size and duplication content. There is an excess of differentially expressed primate genes near the breakpoints of large (>100 kilobases (kb)) inversions but not smaller events. We show that when great ape lineage-specific duplications emerge, they preferentially (approximately 75%) occur in an inverted orientation compared to that at their ancestral locus. We construct megabase-pair scale haplotypes for individual chromosomes and identify 23 genomic regions that have recurrently toggled between a direct and an inverted state over 15 million years. The direct orientation is most frequently the derived state for human polymorphisms that predispose to recurrent copy number variants associated with neurodevelopmental disease.
Collapse
Affiliation(s)
- David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
| | - Ashley D Sanders
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Wolfram Höps
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - PingHsun Hsieh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Arvis Sulovari
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Ruiyang Li
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Ludovica Mercuri
- Dipartimento di Biologia, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Melanie Sorensen
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Shwetha C Murali
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - David Gordon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Stuart Cantsilieris
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Centre for Eye Research Australia, Department of Surgery (Ophthalmology), University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Alex A Pollen
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Mario Ventura
- Dipartimento di Biologia, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Francesca Antonacci
- Dipartimento di Biologia, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
386
|
Turelli P, Playfoot C, Grun D, Raclot C, Pontis J, Coudray A, Thorball C, Duc J, Pankevich EV, Deplancke B, Busskamp V, Trono D. Primate-restricted KRAB zinc finger proteins and target retrotransposons control gene expression in human neurons. SCIENCE ADVANCES 2020; 6:eaba3200. [PMID: 32923624 PMCID: PMC7455193 DOI: 10.1126/sciadv.aba3200] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 07/16/2020] [Indexed: 05/11/2023]
Abstract
In the first days of embryogenesis, transposable element-embedded regulatory sequences (TEeRS) are silenced by Kruppel-associated box (KRAB) zinc finger proteins (KZFPs). Many TEeRS are subsequently co-opted in transcription networks, but how KZFPs influence this process is largely unknown. We identify ZNF417 and ZNF587 as primate-specific KZFPs repressing HERVK (human endogenous retrovirus K) and SVA (SINE-VNTR-Alu) integrants in human embryonic stem cells (ESCs). Expressed in specific regions of the human developing and adult brain, ZNF417/587 keep controlling TEeRS in ESC-derived neurons and brain organoids, secondarily influencing the differentiation and neurotransmission profile of neurons and preventing the induction of neurotoxic retroviral proteins and an interferon-like response. Thus, evolutionarily recent KZFPs and their TE targets partner up to influence human neuronal differentiation and physiology.
Collapse
Affiliation(s)
- Priscilla Turelli
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christopher Playfoot
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Dephine Grun
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Charlène Raclot
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julien Pontis
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Coudray
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christian Thorball
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julien Duc
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eugenia V. Pankevich
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bart Deplancke
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Volker Busskamp
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
- Faculty of Medicine, Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Corresponding author.
| |
Collapse
|
387
|
Werren EA, Garcia O, Bigham AW. Identifying adaptive alleles in the human genome: from selection mapping to functional validation. Hum Genet 2020; 140:241-276. [PMID: 32728809 DOI: 10.1007/s00439-020-02206-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
Abstract
The suite of phenotypic diversity across geographically distributed human populations is the outcome of genetic drift, gene flow, and natural selection throughout human evolution. Human genetic variation underlying local biological adaptations to selective pressures is incompletely characterized. With the emergence of population genetics modeling of large-scale genomic data derived from diverse populations, scientists are able to map signatures of natural selection in the genome in a process known as selection mapping. Inferred selection signals further can be used to identify candidate functional alleles that underlie putative adaptive phenotypes. Phenotypic association, fine mapping, and functional experiments facilitate the identification of candidate adaptive alleles. Functional investigation of candidate adaptive variation using novel techniques in molecular biology is slowly beginning to unravel how selection signals translate to changes in biology that underlie the phenotypic spectrum of our species. In addition to informing evolutionary hypotheses of adaptation, the discovery and functional annotation of adaptive alleles also may be of clinical significance. While selection mapping efforts in non-European populations are growing, there remains a stark under-representation of diverse human populations in current public genomic databases, of both clinical and non-clinical cohorts. This lack of inclusion limits the study of human biological variation. Identifying and functionally validating candidate adaptive alleles in more global populations is necessary for understanding basic human biology and human disease.
Collapse
Affiliation(s)
- Elizabeth A Werren
- Department of Human Genetics, The University of Michigan, Ann Arbor, MI, USA
- Department of Anthropology, The University of Michigan, Ann Arbor, MI, USA
| | - Obed Garcia
- Department of Anthropology, The University of Michigan, Ann Arbor, MI, USA
| | - Abigail W Bigham
- Department of Anthropology, University of California Los Angeles, 341 Haines Hall, Los Angeles, CA, 90095, USA.
| |
Collapse
|
388
|
Tambalo M, Lodato S. Brain organoids: Human 3D models to investigate neuronal circuits assembly, function and dysfunction. Brain Res 2020; 1746:147028. [PMID: 32717276 DOI: 10.1016/j.brainres.2020.147028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
The human brain is characterized by an extraordinary complexity of neuronal and nonneuronal cell types, wired together into patterned neuronal circuits, which represent the anatomical substrates for the execution of high-order cognitive functions. Brain circuits' development and function is metabolically supported by an intricate network of selectively permeable blood vessels and finely tuned by short-range interactions with immune factors and immune cells. The coordinated cellular and molecular events governing the assembly of this unique and complex structure are at the core of intense investigation and pose legitimate questions about the best modeling strategies. Unceasing advancements in stem cell technologies coupled with recent demonstration of cell self-assembly capacity have enabled the exponential growth of brain organoid protocols in the past decade. This provides a compelling solution to investigate human brain development, a quest often halted by the inaccessibility of brain tissues and the lack of suitable models. We review the current state-of-the-art on the generation of brain organoids, describing the latest progresses in unguided, guided, and assembloids protocols, as well as organoid-on-a-chip strategies and xenograft approaches. High resolution genome wide sequencing technologies, both at the transcriptional and epigenomic level, enable the molecular comparative analysis of multiple brain organoid protocols, as well as to benchmark them against the human fetal brain. Coupling the molecular profiling with increasingly detailed analyses of the electrophysiological properties of several of these systems now allows a more accurate estimation of the protocol of choice for a given biological question. Thus, we summarize strengths and weaknesses of several brain organoid protocols and further speculate on some potential future endeavors to model human brain development, evolution and neurodevelopmental and neuropsychiatric diseases.
Collapse
Affiliation(s)
- M Tambalo
- Humanitas Clinical and Research Center-IRCCS, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - S Lodato
- Humanitas Clinical and Research Center-IRCCS, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy.
| |
Collapse
|
389
|
Dannemann M, He Z, Heide C, Vernot B, Sidow L, Kanton S, Weigert A, Treutlein B, Pääbo S, Kelso J, Camp JG. Human Stem Cell Resources Are an Inroad to Neandertal DNA Functions. Stem Cell Reports 2020; 15:214-225. [PMID: 32559457 PMCID: PMC7363959 DOI: 10.1016/j.stemcr.2020.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) from diverse humans offer the potential to study human functional variation in controlled culture environments. A portion of this variation originates from an ancient admixture between modern humans and Neandertals, which introduced alleles that left a phenotypic legacy on individual humans today. Here, we show that a large iPSC repository harbors extensive Neandertal DNA, including alleles that contribute to human phenotypes and diseases, encode hundreds of amino acid changes, and alter gene expression in specific tissues. We provide a database of the inferred introgressed Neandertal alleles for each individual iPSC line, together with the annotation of the predicted functional variants. We also show that transcriptomic data from organoids generated from iPSCs can be used to track Neandertal-derived RNA over developmental processes. Human iPSC resources provide an opportunity to experimentally explore Neandertal DNA function and its contribution to present-day phenotypes, and potentially study Neandertal traits.
Collapse
Affiliation(s)
- Michael Dannemann
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Christian Heide
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benjamin Vernot
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Leila Sidow
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sabina Kanton
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anne Weigert
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Barbara Treutlein
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Janet Kelso
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - J Gray Camp
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland.
| |
Collapse
|
390
|
Mechanisms of axon polarization in pyramidal neurons. Mol Cell Neurosci 2020; 107:103522. [PMID: 32653476 DOI: 10.1016/j.mcn.2020.103522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 01/19/2023] Open
Abstract
Neurons are highly polarized cells that have specialized regions for synaptic input, the dendrites, and synaptic output, the axons. This polarity is critical for appropriate neural circuit formation and function. One of the central gaps in our knowledge is understanding how developing neurons initiate axon polarity. Given the critical nature of this polarity on neural circuit formation and function, neurons have evolved multiple mechanisms comprised of extracellular and intracellular cues that allow them to initiate and form axons. These mechanisms engage a variety of signaling cascades that provide positive and negative cues to ensure axon polarization. This review highlights our current knowledge of the molecular underpinnings of axon polarization in pyramidal neurons and their relevance to the development of the brain.
Collapse
|
391
|
Ton MLN, Guibentif C, Göttgens B. Single cell genomics and developmental biology: moving beyond the generation of cell type catalogues. Curr Opin Genet Dev 2020; 64:66-71. [PMID: 32629366 DOI: 10.1016/j.gde.2020.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/25/2020] [Indexed: 11/17/2022]
Abstract
Major developmental processes such as gastrulation and early embryogenesis rely on a complex network of cell-cell interactions, chromatin remodeling, and transcriptional regulators. This makes it challenging to study early development when using bulk populations of cells. Recent advances in single-cell technologies have allowed researchers to better understand the interactions between different molecular modalities and the heterogeneities within classically defined cell types. As new single-cell technologies mature, they have the potential of providing a step-change in our understanding of embryogenesis. In this review, we summarize recent advances in single-cell technologies with particular focus on those that lend insight into early organogenesis. We then discuss current pitfalls and implications for future research.
Collapse
Affiliation(s)
- Mai-Linh N Ton
- Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Carolina Guibentif
- Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Sahlgrenska Cancer Center, Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
392
|
Pattabiraman K, Muchnik SK, Sestan N. The evolution of the human brain and disease susceptibility. Curr Opin Genet Dev 2020; 65:91-97. [PMID: 32629339 DOI: 10.1016/j.gde.2020.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/05/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
Evolutionary perspective is critical for understanding human biology, human medicine, and the traits that make human beings unique. One of the crucial characteristics that sets humans apart from other extant species is our cognitive ability, which allows for complex processes including symbolic thought, theory of mind, and syntactical-grammatical language, and is thought to arise from the expansion and specialization of the human nervous system. It has been hypothesized that the same evolutionary changes that allowed us to develop these valuable skills made humans susceptible to neurodevelopmental and neurodegenerative disease. Unfortunately, our lack of access to our extinct ancestors makes this a difficult hypothesis to test, but recent collaborations between the fields of evolution, genetics, genomics, neuroscience, neurology and psychiatry have begun to provide some clues. Here, we will outline recent work in those fields that have utilized our growing knowledge of disease risk genes and loci, identified by wide-scale genetic studies, and nervous system development and function to draw conclusions about the impact of human-specific aspects of evolution. We will discuss studies that assess evolution at a variety of scales including at the levels of whole brain regions, cell types, synapses, metabolic processes, gene expression patterns, and gene regulation. At all of these levels, there is preliminary evidence that human-specific brain features are linked to neurodevelopmental and neurodegenerative disease risk.
Collapse
Affiliation(s)
- Kartik Pattabiraman
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Yale Child Study Center, New Haven, CT 06510, USA
| | - Sydney Keaton Muchnik
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Yale Child Study Center, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Psychiatry and Comparative Medicine, Kavli Institute for Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
393
|
den Hoed J, Fisher SE. Genetic pathways involved in human speech disorders. Curr Opin Genet Dev 2020; 65:103-111. [PMID: 32622339 DOI: 10.1016/j.gde.2020.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022]
Abstract
Rare genetic variants that disrupt speech development provide entry points for deciphering the neurobiological foundations of key human capacities. The value of this approach is illustrated by FOXP2, a transcription factor gene that was implicated in speech apraxia, and subsequently investigated using human cell-based systems and animal models. Advances in next-generation sequencing, coupled to de novo paradigms, facilitated discovery of etiological variants in additional genes in speech disorder cohorts. As for other neurodevelopmental syndromes, gene-driven studies show blurring of boundaries between diagnostic categories, with some risk genes shared across speech disorders, intellectual disability and autism. Convergent evidence hints at involvement of regulatory genes co-expressed in early human brain development, suggesting that etiological pathways could be amenable for investigation in emerging neural models such as cerebral organoids.
Collapse
Affiliation(s)
- Joery den Hoed
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands; International Max Planck Research School for Language Sciences, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands.
| |
Collapse
|
394
|
Zhang DY, Song H, Ming GL. Modeling neurological disorders using brain organoids. Semin Cell Dev Biol 2020; 111:4-14. [PMID: 32561297 DOI: 10.1016/j.semcdb.2020.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Neurological disorders are challenging to study given the complexity and species-specific features of the organ system. Brain organoids are three dimensional structured aggregates of neural tissue that are generated by self-organization and differentiation from pluripotent stem cells under optimized culture conditions. These brain organoids exhibit similar features of structural organization and cell type diversity as the developing human brain, creating opportunities to recapitulate disease phenotypes that are not otherwise accessible. Here we review the initial attempt in the field to apply brain organoid models for the study of many different types of human neurological disorders across a wide range of etiologies and pathophysiologies. Forthcoming advancements in both brain organoid technology as well as analytical methods have significant potentials to advance the understanding of neurological disorders and to uncover opportunities for meaningful therapeutic intervention.
Collapse
Affiliation(s)
- Daniel Y Zhang
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
395
|
Kruczek K, Swaroop A. Pluripotent stem cell-derived retinal organoids for disease modeling and development of therapies. Stem Cells 2020; 38:1206-1215. [PMID: 32506758 PMCID: PMC7586922 DOI: 10.1002/stem.3239] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
Abstract
Retinal diseases constitute a genetically and phenotypically diverse group of clinical conditions leading to vision impairment or blindness with limited treatment options. Advances in reprogramming of somatic cells to induced pluripotent stem cells and generation of three‐dimensional organoids resembling the native retina offer promising tools to interrogate disease mechanisms and evaluate potential therapies for currently incurable retinal neurodegeneration. Next‐generation sequencing, single‐cell analysis, advanced electrophysiology, and high‐throughput screening approaches are expected to greatly expand the utility of stem cell‐derived retinal cells and organoids for developing personalized treatments. In this review, we discuss the current status and future potential of combining retinal organoids as human models with recent technologies to advance the development of gene, cell, and drug therapies for retinopathies.
Collapse
Affiliation(s)
- Kamil Kruczek
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
396
|
Branching out: what omics can tell us about primate evolution. Curr Opin Genet Dev 2020; 62:65-71. [DOI: 10.1016/j.gde.2020.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022]
|
397
|
Lederer AR, La Manno G. The emergence and promise of single-cell temporal-omics approaches. Curr Opin Biotechnol 2020; 63:70-78. [DOI: 10.1016/j.copbio.2019.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022]
|
398
|
Kamies R, Martinez-Jimenez CP. Advances of single-cell genomics and epigenomics in human disease: where are we now? Mamm Genome 2020; 31:170-180. [PMID: 32270277 PMCID: PMC7368869 DOI: 10.1007/s00335-020-09834-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
Abstract
Cellular heterogeneity is revolutionizing the way to study, monitor and dissect complex diseases. This has been possible with the technological and computational advances associated to single-cell genomics and epigenomics. Deeper understanding of cell-to-cell variation and its impact on tissue function will open new avenues for early disease detection, accurate diagnosis and personalized treatments, all together leading to the next generation of health care. This review focuses on the recent discoveries that single-cell genomics and epigenomics have facilitated in the context of human health. It highlights the potential of single-cell omics to further advance the development of personalized treatments and precision medicine in cancer, diabetes and chronic age-related diseases. The promise of single-cell technologies to generate new insights about the differences in function between individual cells is just emerging, and it is paving the way for identifying biomarkers and novel therapeutic targets to tackle age, complex diseases and understand the effect of life style interventions and environmental factors.
Collapse
Affiliation(s)
- Rizqah Kamies
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | |
Collapse
|
399
|
Liu W, Li W, Cai X, Yang Z, Li H, Su X, Song M, Zhou DS, Li X, Zhang C, Shao M, Zhang L, Yang Y, Zhang Y, Zhao J, Chang H, Yao YG, Fang Y, Lv L, Li M, Xiao X. Identification of a functional human-unique 351-bp Alu insertion polymorphism associated with major depressive disorder in the 1p31.1 GWAS risk loci. Neuropsychopharmacology 2020; 45:1196-1206. [PMID: 32193514 PMCID: PMC7235090 DOI: 10.1038/s41386-020-0659-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/16/2020] [Accepted: 03/11/2020] [Indexed: 12/28/2022]
Abstract
Genome-wide association studies (GWAS) have reported substantial single-nucleotide polymorphisms (SNPs) associated with major depressive disorder (MDD), but the underlying functional variations in the GWAS risk loci are unclear. Here we show that the European MDD genome-wide risk-associated allele of rs12129573 at 1p31.1 is associated with MDD in Han Chinese, and this SNP is in strong linkage disequilibrium (LD) with a human-unique Alu insertion polymorphism (rs70959274) in the 5' flanking region of a long non-coding RNA (lncRNA) LINC01360 (Long Intergenic Non-Protein Coding RNA 1360), which is preferably expressed in human testis in the currently available expression datasets. The risk allele at rs12129573 is almost completely linked with the absence of this Alu insertion. The Alu insertion polymorphism (rs70959274) is significantly associated with a lower RNA level of LINC01360 and acts as a transcription silencer likely through modulating the methylation of its internal CpG sites. Luciferase assays confirm that the presence of Alu insertion at rs70959274 suppresses transcriptional activities in human cells, and deletion of the Alu insertion through CRISPR/Cas9-directed genome editing increases RNA expression of LINC01360. Deletion of the Alu insertion in human cells also leads to dysregulation of gene expression, biological processes and pathways relevant to MDD, such as the alterations of mRNA levels of DRD2 and FLOT1, transcription of genes involved in synaptic transmission, neurogenesis, learning or memory, and the PI3K-Akt signaling pathway. In summary, we identify a human-unique DNA repetitive polymorphism in robust LD with the MDD risk-associated SNP at the prominent 1p31.1 GWAS loci, and offer insights into the molecular basis of the illness.
Collapse
Affiliation(s)
- Weipeng Liu
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Wenqiang Li
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Xin Cai
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Zhihui Yang
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Huijuan Li
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Xi Su
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Meng Song
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Dong-Sheng Zhou
- 0000 0004 1782 599Xgrid.452715.0Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Xingxing Li
- 0000 0004 1782 599Xgrid.452715.0Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Chen Zhang
- 0000 0004 0368 8293grid.16821.3cShanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minglong Shao
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Luwen Zhang
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Yongfeng Yang
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Yan Zhang
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Jingyuan Zhao
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Hong Chang
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Yong-Gang Yao
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China ,0000000119573309grid.9227.eCAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China ,0000000119573309grid.9227.eKIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Yiru Fang
- 0000 0004 0368 8293grid.16821.3cShanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,0000000119573309grid.9227.eCAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China. .,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China. .,Henan Province People's Hospital, Zhengzhou, Henan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
400
|
Muchnik SK, Lorente-Galdos B, Santpere G, Sestan N. Modeling the Evolution of Human Brain Development Using Organoids. Cell 2020; 179:1250-1253. [PMID: 31778651 DOI: 10.1016/j.cell.2019.10.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In a recent issue of Nature, Kanton et al. explore human brain evolution and development by profiling the single-cell transcriptomes and epigenomes of cerebral organoids derived from human, chimpanzee, and macaque stem cells. Their results reveal key molecular characteristics that differentiate humans and non-human primates at the earliest stages of brain development.
Collapse
Affiliation(s)
- Sydney Keaton Muchnik
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Belen Lorente-Galdos
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Gabriel Santpere
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA; Neurogenomics Group, Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Nenad Sestan
- Departments of Genetics, Psychiatry, and Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, and Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|