351
|
Downes CP, Hawkins PT, Irvine RF. Inositol 1,3,4,5-tetrakisphosphate and not phosphatidylinositol 3,4-bisphosphate is the probable precursor of inositol 1,3,4-trisphosphate in agonist-stimulated parotid gland. Biochem J 1986; 238:501-6. [PMID: 2432882 PMCID: PMC1147162 DOI: 10.1042/bj2380501] [Citation(s) in RCA: 250] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When [3H]inositol-prelabelled rat parotid-gland slices were stimulated with carbachol, noradrenaline or Substance P, the major inositol trisphosphate produced with prolonged exposure to agonists was, in each case, inositol 1,3,4-trisphosphate. Much lower amounts of radioactivity were present in the inositol 1,4,5-trisphosphate fraction separated by anion-exchange h.p.l.c. Analysis of the inositol trisphosphate head group of phosphatidylinositol bisphosphate in [32P]Pi-labelled parotid glands showed the presence of phosphatidylinositol 4,5-bisphosphate, but no detectable phosphatidylinositol 3,4-bisphosphate. Carbachol-stimulated [3H]inositol-labelled parotid glands contained an inositol polyphosphate with the chromatographic properties and electrophoretic mobility of an inositol tetrakisphosphate, the probable structure of which was determined to be inositol 1,3,4,5-tetrakisphosphate. Since an enzyme in erythrocyte membranes is capable of degrading this tetrakisphosphate to inositol 1,3,4-trisphosphate, it is suggested to be the precursor of inositol 1,3,4-trisphosphate in parotid glands.
Collapse
|
352
|
Leach RP, Shears SB, Kirk CJ, Titheradge MA. Changes in free cytosolic calcium and accumulation of inositol phosphates in isolated hepatocytes by [Leu]enkephalin. Biochem J 1986; 238:537-42. [PMID: 3800950 PMCID: PMC1147167 DOI: 10.1042/bj2380537] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Isolated hepatocytes from fed rats were used to study the effects of the opioid peptide [Leu]enkephalin on intracellular free cytosolic Ca2+ ([Ca2+]i) and inositol phosphate production. By measuring the fluorescence of the intracellular Ca2+-selective indicator quin-2, [Leu]enkephalin was found to increase [Ca2+]i rapidly from a resting value of 0.219 microM to 0.55 microM. The magnitude of this response was comparable with that produced by maximally stimulating concentrations of either vasopressin (100 nM) or phenylephrine (10 microM). The opioid-peptide-mediated increase in [Ca2+]i showed a dose-dependency comparable with the activation of phosphorylase, but it preceded the increase in phosphorylase alpha activity. Addition of [Leu]enkephalin to hepatocytes prelabelled with myo-[2-3H(n)]inositol resulted in a significant stimulation of inositol phosphate production. At 10 min after hormone addition, there were increases in the concentrations of inositol mono-, bis- and tris-phosphate fractions of 12-, 9- and 14-fold respectively. No effect was apparent on the glycerophosphoinositol fraction. The effect of 10 microM-[Leu]enkephalin on inositol phosphate production was significantly greater than that obtained with 10 microM-phenylephrine, but marginally smaller than that induced by 100 nM-vasopressin. However, at these concentrations all three agonists gave a comparable increase in [Ca2+]i and activation of phosphorylase a. These data provide evidence for [Leu]enkephalin acting via a mechanism involving a mobilization of Ca2+ as a result of increased phosphatidylinositol turnover.
Collapse
|
353
|
Palmer S, Hawkins PT, Michell RH, Kirk CJ. The labelling of polyphosphoinositides with [32P]Pi and the accumulation of inositol phosphates in vasopressin-stimulated hepatocytes. Biochem J 1986; 238:491-9. [PMID: 3026353 PMCID: PMC1147161 DOI: 10.1042/bj2380491] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
When hepatocytes were incubated with [32P]Pi, the kinetics for the labelling of the monoester phosphate groups of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate were similar to each other and slightly slower than that for the labelling of the gamma-phosphate of ATP. Analysis of the water-soluble 3H-labelled materials derived from [3H]inositol-labelled hepatocytes revealed that, in addition to inositol and its mono-, bis- and tris-phosphates (Ins, InsP, InsP2 and InsP3), these cells contained two unidentified radioactive compounds which co-eluted with InsP on anion-exchange chromatography. When [3H]inositol-labelled hepatocytes were stimulated with 0.23 microM-vasopressin in the presence of 10 mM-Li+, there was an accumulation of radioactivity in InsP, InsP2 and InsP3 but not in Ins or the two unidentified compounds. Further analysis of these inositol phosphates by h.p.l.c. revealed that vasopressin also stimulates the accumulation of inositol tetrakisphosphate (InsP4) in these cells. Vasopressin-stimulated InsP and InsP2 accumulations were maximal in the presence of 1-10 mM-Li+ but InsP3 accumulation continued to increase up to 50 mM-Li+. Accumulated inositol phosphates were retained within the cell. Li+ from 1 to 50 mM did not influence the extent of vasopressin-stimulated inositol lipid degradation in hepatocytes. In the absence of Li+, radioactivity in vasopressin-stimulated hepatocytes accumulated almost entirely in free inositol. The vasopressin-stimulated accumulation of inositol phosphates in the presence of 10 mM-Li+ was abolished by a V1-vasopressin antagonist. Inositol phosphate accumulation was not influenced by ionophore A23187, dimethyl sulphoxide or indomethacin.
Collapse
|
354
|
Davis JS, Weakland LL, West LA, Farese RV. Luteinizing hormone stimulates the formation of inositol trisphosphate and cyclic AMP in rat granulosa cells. Evidence for phospholipase C generated second messengers in the action of luteinizing hormone. Biochem J 1986; 238:597-604. [PMID: 3026357 PMCID: PMC1147174 DOI: 10.1042/bj2380597] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The following studies were conducted to determine whether luteinizing hormone (LH), a hormone which increases cellular levels of cyclic AMP, also provokes increases in 'second messengers' derived from inositol lipid metabolism (i.e. inositol phosphates and diacylglycerol). Rat granulosa cells isolated from mature Graafian follicles were prelabelled for 3 h with myo-[2-3H]inositol. LH provoked rapid (5 min) and sustained (up to 60 min) increases in the levels of inositol mono-, bis, and trisphosphates (IP, IP2 and IP3, respectively). Time course studies revealed that IP3 was formed more rapidly than IP2 and IP following LH treatment. The response to LH was concentration-dependent with maximal increases at LH concentrations of 1 microgram/ml. LiCl (2-40 mM) enhanced the LH-provoked accumulation of all [3H]inositol phosphates, presumably by inhibiting the action of inositol phosphate phosphatases. The effectiveness of LH, however, was dependent on the concentration of lithium employed; maximal increases in IP were observed at 10 mM-LiCl, whereas maximal increases in IP2 and IP3 were observed at 20 mM- and 40 mM-LiCl, respectively. The stimulatory effects of LH on inositol phosphate and progesterone accumulation were also compared with changes in cyclic nucleotide levels. LH rapidly increased levels of inositol phosphates, progesterone and cyclic AMP, but transiently reduced levels of cyclic GMP. These results demonstrate that LH increases both cyclic AMP and inositol trisphosphate (and presumably diacylglycerol) in rat granulosa cells. Our findings suggest that two messenger systems exist to mediate the action of LH in granulosa cells.
Collapse
|
355
|
Naor Z, Azrad A, Limor R, Zakut H, Lotan M. Gonadotropin-releasing hormone activates a rapid Ca2+-independent phosphodiester hydrolysis of polyphosphoinositides in pituitary gonadotrophs. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67116-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
356
|
Rossier MF, Dentand IA, Lew PD, Capponi AM, Vallotton MB. Interconversion of inositol (1,4,5)-trisphosphate to inositol (1,3,4,5)-tetrakisphosphate and (1,3,4)-trisphosphate in permeabilized adrenal glomerulosa cells is calcium-sensitive and ATP-dependent. Biochem Biophys Res Commun 1986; 139:259-65. [PMID: 3490257 DOI: 10.1016/s0006-291x(86)80107-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The metabolism of [3H]inositol (1,4,5)-trisphosphate was followed in permeabilized bovine adrenal glomerulosa cells. At low Ca++ concentration (pCa = 7.2), more than 90% of [3H]inositol (1,4,5)-trisphosphate had disappeared within 2 min, while two other metabolites, [3H]inositol (1,3,4)-trisphosphate and [3H]inositol (1,3,4,5)-tetrakisphosphate appeared progressively. At higher Ca++ concentrations (pCa = 5.7 and 4.8), the formation of these two metabolites was markedly increased, but completely abolished if the medium was ATP-depleted. The peak levels for the generation of [3H]inositol (1,3,4,5)-tetrakisphosphate (1 min) preceded those of [3H]inositol (1,3,4)-trisphosphate and were closely correlated. These results suggest that, in adrenal glomerulosa cells, the isomer inositol (1,3,4)-trisphosphate is generated from inositol (1,4,5)-trisphosphate via a calcium-sensitive and ATP-dependent phosphorylation/dephosphorylation pathway involving the formation of inositol (1,3,4,5)-tetrakisphosphate.
Collapse
|
357
|
Menkes HA, Baraban JM, Freed AN, Snyder SH. Lithium dampens neurotransmitter response in smooth muscle: relevance to action in affective illness. Proc Natl Acad Sci U S A 1986; 83:5727-30. [PMID: 2874555 PMCID: PMC386362 DOI: 10.1073/pnas.83.15.5727] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lithium, by inhibiting inositol phosphate metabolism, interferes with the phosphatidylinositol ("phosphoinositide") cycle, which is stimulated by numerous hormones and neurotransmitters. To examine the relevance of this action to neurotransmission, we evaluated effects of lithium treatment on smooth muscle responses to transmitters. In lithium-pretreated tracheal muscle, the relaxation following carbachol or histamine contractions is retarded. Lithium does not affect relaxation following contractions elicited by treatment with KCl and phorbol 12,13-diacetate in combination, which bypasses receptor stimulation of the phosphatidylinositol cycle. Half-maximal effects of lithium occur at 1 mM, corresponding to therapeutic concentrations. Dampening of neurotransmitter responses by lithium treatment may explain the unique ability of lithium to relieve and prevent both mania and depression.
Collapse
|
358
|
Flint AP, Leat WM, Sheldrick EL, Stewart HJ. Stimulation of phosphoinositide hydrolysis by oxytocin and the mechanism by which oxytocin controls prostaglandin synthesis in the ovine endometrium. Biochem J 1986; 237:797-805. [PMID: 3026333 PMCID: PMC1147059 DOI: 10.1042/bj2370797] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Slices of caruncular endometrium from steroid-treated ovariectomized sheep were incubated with myo-[2-3H]inositol to label tissue phosphatidylinositol. Effects of oxytocin were determined on the rate of incorporation of radioactivity into phosphatidylinositol and on the hydrolysis of phosphoinositides to inositol phosphates and diacylglycerol. Incorporation of radioactivity into phosphatidylinositol was linear during 2 h incubations; 10(-7) M (100 nM)-oxytocin caused a 2.8-fold increase in the rate of incorporation. In the presence of Li+, addition of 10(-7) M-oxytocin to slices in which phosphatidylinositol was pre-labelled caused mean increase of 40-fold in the incorporation of radioactivity into inositol mono-, bis- and tris-phosphates. Inositol 1,3,4-trisphosphate was quantitatively the major trisphosphate formed. The action of oxytocin on phosphoinositide hydrolysis was dose- and time-dependent, occurring at concentrations within the range observed in plasma during episodes of secretion in vivo, and with a time course comparable with that of the action of oxytocin on uterine prostaglandin production. The effect of oxytocin on incorporation of radioactivity into inositol phosphates was not affected by inhibitors of prostaglandin synthesis. Diacylglycerol 1- and 2-lipases in caruncular endometrium converted up to 72% of added 2-[3H]arachidonyldiacylglycerol into [3H]arachidonic acid during 30 min incubations at pH 7.0. Caruncular endometrium contained 1.49 mumol of phosphatidylinositol/g, representing approx. 0.2 mumol/g of phosphatidylinositol arachidonic acid. It is proposed that the stimulation of endometrial prostaglandin synthesis by oxytocin is accounted for by increased hydrolysis of phosphoinositides to diacylglycerol and inositol phosphates with subsequent release of arachidonic acid from diacylglycerol.
Collapse
|
359
|
Stewart SJ, Prpic V, Powers FS, Bocckino SB, Isaacks RE, Exton JH. Perturbation of the human T-cell antigen receptor-T3 complex leads to the production of inositol tetrakisphosphate: evidence for conversion from inositol trisphosphate. Proc Natl Acad Sci U S A 1986; 83:6098-102. [PMID: 3488551 PMCID: PMC386446 DOI: 10.1073/pnas.83.16.6098] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Antibodies directed against the T-cell antigen receptor-T3 complex mimic antigen and lead to cellular changes consistent with activation. When cells of the human T-cell line Jurkat were stimulated with a monoclonal antibody directed against T3, inositol phosphates were produced. In addition to inositol trisphosphate, which is the product of phosphatidylinositol bisphosphate cleavage, a second inositol polyphosphate was formed. This compound was more polar than inositol trisphosphate but less polar than inositol pentakisphosphate. It cochromatographed with inositol tetrakisphosphate from ostrich erythrocytes. In permeabilized Jurkat cells, this compound was shown to be formed from inositol 1,4,5-trisphosphate, but only in the presence of ATP, and 32P was incorporated into it from [gamma-32P]ATP. There also was coincident formation of inositol 1,3,4-trisphosphate. We conclude that the more polar compound is inositol tetrakisphosphate, which is formed by phosphorylation of inositol 1,4,5-trisphosphate and may be the precursor of inositol 1,3,4-trisphosphate.
Collapse
|
360
|
Abstract
Protein kinase C, an enzyme that is activated by the receptor-mediated hydrolysis of inositol phospholipids, relays information in the form of a variety of extracellular signals across the membrane to regulate many Ca2+-dependent processes. At an early phase of cellular responses, the enzyme appears to have a dual effect, providing positive forward as well as negative feedback controls over various steps of its own and other signaling pathways, such as the receptors that are coupled to inositol phospholipid hydrolysis and those of some growth factors. In biological systems, a positive signal is frequently followed by immediate negative feedback regulation. Such a novel role of this protein kinase system seems to give a logical basis for clarifying the biochemical mechanism of signal transduction, and to add a new dimension essential to our understanding of cell-to-cell communication.
Collapse
|
361
|
Aiyar N, Nambi P, Stassen FL, Crooke ST. Vascular vasopressin receptors mediate phosphatidylinositol turnover and calcium efflux in an established smooth muscle cell line. Life Sci 1986; 39:37-45. [PMID: 3014249 DOI: 10.1016/0024-3205(86)90435-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Vasopressin-induced phosphatidylinositol turnover and mobilization of intracellular Ca2+ was studied using an established smooth muscle cell line (A-10). The cells were subcloned to ensure a monoclonal cell population. The accumulation of inositol mono-, di-, and tris-phosphates (IP1, IP2, and IP3, respectively), and the mobilization of intracellular Ca2+ were dependent on the time of incubation and the concentration of arginine vasopressin (AVP). IP1, IP2, and IP3 were significantly elevated after 15 sec and remained elevated for up to 2 hr. The concentrations of AVP required for half-maximal stimulation of IP1, IP2, and IP3 formation were 2, 12, and 4 nM, respectively. LiCl was required to observe the accumulation of inositol phosphates in response to AVP. Significant 45Ca2+ efflux was observed within 15 sec after exposure to AVP. By employing the vasopressin receptor subtype selective antagonists [d(CH2)5Tyr(Me)AVP, V1; d(CH2)5D-Tyr(Et)VAVP,V1/V2; d(CH2) 5D-IleVAVP,V2] and agonists [AVP, V1/V2; dDAVP, V2; dVDAVP, V2], we found that the vasopressin-induced stimulation of phosphatidylinositol turnover and 45Ca2+ efflux were mediated by receptors of the vascular V1 subtype. Pertussis toxin pretreatment partially inhibited vasopressin-induced phosphatidylinositol turnover. These data demonstrate that activation of V1 receptors of vascular smooth muscle cells resulted in enhanced phosphatidylinositol turnover and mobilization of intracellular Ca2+.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Aorta, Thoracic
- Arginine Vasopressin/pharmacology
- Calcium/metabolism
- Cell Line
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Pertussis Toxin
- Phenylephrine/pharmacology
- Phosphatidylinositols/metabolism
- Rats
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/physiology
- Receptors, Cell Surface/physiology
- Receptors, Vasopressin
- Vasopressins/pharmacology
- Virulence Factors, Bordetella/pharmacology
Collapse
|
362
|
Orlicky DJ, Silio M, Williams C, Gordon J, Gerschenson LE. Regulation of inositol phosphate levels by prostaglandins in cultured endometrial cells. J Cell Physiol 1986; 128:105-12. [PMID: 3013903 DOI: 10.1002/jcp.1041280116] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stimulation of cultured rabbit endometrial cells by one of the rabbit endometrial cell culture proliferation factors, prostaglandin F2 alpha (PGF2 alpha), resulted in a very rapid increase in the intracellular levels of [3H]-inositol triphosphate (IP3), [3H]-inositol biphosphate (IP2), and [3H]-inositol monophosphate (IP1) in cells prelabeled with [3H]-inositol. These increases in inositol phosphate levels were detected in periods of stimulation as short as 30 seconds, reached a maximum by 1 1/2-2 min and declined to control levels by 6-10 min. The stimulation was dose-dependent with maximal increases observed near 10(-6) M PGF2 alpha. The cholinergic agent, carbachol, also led to time and dose-independent increases in IP3. Lithium, cadmium, silver, copper, and zinc ions had no effect either on the breakdown of IP3 or on the accumulation of IP1. In contrast, vanadate at 10(-6) or 10(-5) M did lead to a decrease in the breakdown of IP1 and a concomitant increase in IP1, IP2, and IP3. PGF2 alpha was found previously to induce an increase in rabbit endometrial cell DNA synthesis which was inhibited by concomitant or prior addition of prostaglandin E1 (PGE1). PGE1, in a dose-dependent manner, was found to inhibit the observed IP3 increase by PGF2 alpha at 1 1/2 min of stimulation. PGF2 alpha treated and control cultures did not differ in cAMP or cGMP levels, cellular 45Ca uptake, nor cellular 22Na uptake. We propose that IP3 may be one of the intracellular messenger(s) synthesized following the treatment of rabbit endometrial cell cultures with the proliferation agent PGF2 alpha and that it may play a crucial role with cAMP in growth regulation.
Collapse
|
363
|
|
364
|
Turk J, Wolf BA, McDaniel ML. Glucose-induced accumulation of inositol trisphosphates in isolated pancreatic islets. Predominance of the 1,3,4-isomer. Biochem J 1986; 237:259-63. [PMID: 3541896 PMCID: PMC1146973 DOI: 10.1042/bj2370259] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Anion-exchange h.p.l.c. analysis of [3H]inositol phosphates derived from glucose-stimulated isolated pancreatic islets that had been prelabelled with myo-[3H]inositol revealed that the predominant inositol trisphosphate was the 1,3,4-isomer [Ins(1,3,4)P3]. The 1,4,5-isomer [Ins(1,4,5)P3] was also detectable, as was a more polar inositol phosphate with the chromatographic properties of inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. Glucose-induced accumulation of Ins(1,3,4)P3 was augmented by Li+ and occurred after maximal accumulation of Ins(1,4,5)P3. These findings suggest a possible role for Ins(1,3,4)P3 or its probable precursor Ins(1,3,4,5)P4 in stimulus-secretion coupling in pancreatic islets.
Collapse
|
365
|
Second messenger function of inositol 1,4,5-trisphosphate. Early changes in inositol phosphates, cytosolic Ca2+, and insulin release in carbamylcholine-stimulated RINm5F cells. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)83914-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
366
|
Hansen CA, Mah S, Williamson JR. Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)83881-4] [Citation(s) in RCA: 187] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
367
|
Meek JL. Inositol bis-, tris-, and tetrakis(phosphate)s: analysis in tissues by HPLC. Proc Natl Acad Sci U S A 1986; 83:4162-6. [PMID: 3459168 PMCID: PMC323691 DOI: 10.1073/pnas.83.12.4162] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The concentration of isomers of inositol tris(phosphate) (InsP3) was measured in tissues of intact animals. The method employed involved anion-exchange HPLC with on-line enzymatic hydrolysis of the phosphate esters and detection of the inorganic phosphate formed. All seven organs tested from rats killed by decapitation contained Ins(1,4,5)P3 in concentrations of 13-40 nmol/g; a distribution that bears no resemblance to that reported for its precursor [phosphatidylinositol bis(phosphate)]. A second InsP3 isomer [probably Ins(1,3,4)P3] was also detectable in brain and salivary gland. The content of Ins(1,4,5)P3 in brain and salivary gland from rats killed by decapitation was 10-60 times greater than that from rats killed by focused microwave irradiation to block postmortem metabolism. Inositol bis(phosphate) concentrations also changed dramatically postmortem. A much smaller postmortem change was seen in the content of Ins(1,3,4)P3. Receptor stimulation by muscarinic cholinergic agonists increased the content not only of Ins(1,3,4)P3, but also its recently discovered probable precursor, inositol tetrakis-(phosphate).
Collapse
|
368
|
Williamson JR. Role of inositol lipid breakdown in the generation of intracellular signals. State of the art lecture. Hypertension 1986; 8:II140-56. [PMID: 3013767 DOI: 10.1161/01.hyp.8.6_pt_2.ii140] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Many hormones, neurotransmitters, and secretagogues act by increasing the intracellular free Ca2+ concentration in target cells. The initial event following binding of agonists to specific receptors in the plasma membrane involves a receptor-mediated activation of a guanosine nucleotide-binding protein (G protein), which induces a Ca2+-independent activation of phospholipase C. This novel, presently uncharacterized G protein is inactivated by pertussis toxin-catalyzed adenosine 5'-diphosphate ribosylation in some but not all cell types. Phospholipase C catalyzes the breakdown of inositol lipids, notably phosphatidylinositol 4,5-bisphosphate, with the production of inositol phosphates and 1,2-diacylglycerol. Inositol 1,4,5-trisphosphate (IP3) is responsible for a rapid mobilization of intracellular Ca2+ by activating Ca2+ efflux from a subpopulation of the endoplasmic reticulum. The properties of this process are consistent with its being a ligand-activated ion channel with electrogenic Ca2+ efflux being charge-compensated by K+ influx. Sustained hormonal responses require extracellular Ca2+ and a prolonged elevation of the cytosolic free Ca2+. This is brought about by hormone-mediated changes of Ca2+ flux across the plasma membrane involving both an inhibition of Ca2+ efflux and an activation of Ca2+ influx. This review summarizes recent findings concerning the role of G proteins in receptor coupling to phospholipase C; the regulation of enzymes of phosphoinositide metabolism; the evidence for IP3 being a Ca2+-mobilizing second messenger and its mechanism of action; the formation of new inositol phosphates and their possible significance; the relation of intracellular Ca2+ mobilization and plasma membrane Ca2+ fluxes to the kinetics of the hormone-induced cytosolic free Ca2+ transient; and the possible roles of protein kinase C in influencing the hormone-mediated functional response.
Collapse
|
369
|
Donaldson J, Hill SJ. Histamine-induced hydrolysis of polyphosphoinositides in guinea-pig ileum and brain. Eur J Pharmacol 1986; 124:255-65. [PMID: 3732381 DOI: 10.1016/0014-2999(86)90226-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effect of histamine and the H1-selective agonist, 2-pyridylethylamine, on the accumulation of inositol monophosphate (InsP), inositol bisphosphate (InsP2) and inositol trisphosphate (InsP3) has been examined in lithium-treated slices of guinea-pig cerebellum and ileal smooth muscle. Following 45 min incubation, histamine produced a large accumulation of [3H]InsP and a smaller accumulation of [3H]InsP2 and [3H]InsP3 in both tissues. In cerebellar slices all three responses to histamine were potently and competitively inhibited by the selective H1-receptor antagonist, mepyramine. In contrast, incubation of ileal slices with mepyramine (0.1 microM) produced only a small reduction (circa 20%) in the maximal accumulation elicited by histamine of each [3H]inositol phosphate with no significant effect on the EC50 or Hill coefficient. However, when 2-pyridylethylamine, instead of histamine, was used to stimulate inositol phospholipid hydrolysis in ileal smooth muscle, the agonist-induced responses appeared to be competitively antagonised by mepyramine. The results presented indicate that there is an apparent dissociation between histamine-induced InsP3 accumulation and H1-receptor-mediated contractile activity in ileal smooth muscle and suggest that agonist-induced inositol phospholipid hydrolysis in this tissue may be involved in other cellular events separate from those involving calcium.
Collapse
|
370
|
Turk J, Wolf BA, McDaniel ML. Quantitation of myo-inositol as its hexakis(trifluoroacetyl) derivative with negative ion chemical ionization mass spectrometry. BIOMEDICAL & ENVIRONMENTAL MASS SPECTROMETRY 1986; 13:237-44. [PMID: 2941090 DOI: 10.1002/bms.1200130506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Highly volatile hexakis(trifluoroacetyl) derivatives of myo-inositol and hexadeutero-myo-inositol have been prepared and analysed by capillary column gas chromatography/mass spectrometry. The electron impact and negative ion (methane) chemical ionization mass spectra of these compounds have been determined. Negative ion chemical ionization mass spectrometric analysis of hexakis(trifluoroacetyl)-myo-inositol achieves a sensitivity one order of magnitude greater than electron impact mass spectrometric analysis of hexakis(trimethylsilyl)-myo-inositol at appropriate selected ions. Stable isotope dilution measurement of myo-inositol versus hexadeutero-myo-inositol employing gas chromatography/negative ion chemical ionization mass spectrometry of the hexakis(trifluoroacetyl) derivatives is demonstrated, and this method is applied to the detection of inositol derived from hydrolysis of water-soluble inositol phosphates obtained from isolated pancreatic islets.
Collapse
|
371
|
Powers RE, Saluja AK, Houlihan MJ, Steer ML. Diminished agonist-stimulated inositol trisphosphate generation blocks stimulus-secretion coupling in mouse pancreatic acini during diet-induced experimental pancreatitis. J Clin Invest 1986; 77:1668-74. [PMID: 2422212 PMCID: PMC424572 DOI: 10.1172/jci112484] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Young female mice fed a choline-deficient, ethionine-supplemented (CDE) diet rapidly develop acute hemorrhagic pancreatitis. We have observed that pancreatic acini prepared from these mice are unable to secrete amylase in response to addition of the cholinergic agonist carbachol, although they retain the ability to secrete amylase in response to the Ca2+ ionophore A23187. The CDE diet does not alter the binding characteristics (Kd or the maximal number of binding sites) for muscarinic cholinergic receptors as tested using the antagonist [3H]N-methylscopolamine nor the competition for this binding by carbachol. Addition of carbachol to acini prepared from mice fed the CDE diet does not result in as marked an increase in cytosolic free Ca2+ levels as that noted in control samples (evaluated using quin2 fluorescence). These observations indicate that the CDE diet interferes with stimulus-secretion coupling in mouse pancreatic acini at a step subsequent to hormone-receptor binding and prior to Ca2+ release. This conclusion is confirmed by our finding that the hormone-stimulated generation of [3H]inositol phosphates (inositol trisphosphate, inositol bisphosphate, and inositol monophosphate) from acini labeled with [3H]myoinositol is markedly reduced in acini prepared from mice fed the CDE diet. This reduction is not due to a decrease in phosphatidylinositol-4,5-bisphosphate. This communication represents the first report of a system in which a blockade of inositol phosphate generation can be related to a physiologic defect and pathologic lesion.
Collapse
|
372
|
Irvine RF, Letcher AJ, Heslop JP, Berridge MJ. The inositol tris/tetrakisphosphate pathway--demonstration of Ins(1,4,5)P3 3-kinase activity in animal tissues. Nature 1986; 320:631-4. [PMID: 3010126 DOI: 10.1038/320631a0] [Citation(s) in RCA: 560] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent advances in our understanding of the role of inositides in cell signalling have led to the central hypothesis that a receptor-stimulated phosphodiesteratic hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) results in the formation of two second messengers, diacylglycerol and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). The existence of another pathway of inositide metabolism was first suggested by the discovery that a novel inositol trisphosphate, Ins(1,3,4)P3, is formed in stimulated tissues; the metabolic kinetics of Ins(1,3,4)P3 are entirely different from those of Ins(1,4,5)P3 (refs 6, 7). The probable route of formation of Ins(1,3,4)P3 was recently shown to be via a 5-dephosphorylation of inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), a compound which is rapidly formed on muscarinic stimulation of brain slices, and which can be readily converted to Ins(1,3,4)P3 by a 5-phosphatase in red blood cell membranes. However, the source of Ins(1,3,4,5)P4 is unclear, and an attempt to detect a possible parent lipid, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), was unsuccessful. The recent discovery that the higher phosphorylated forms of inositol (InsP5 and InsP6) also exist in animal cells suggested that inositol phosphate kinases might not be confined to plant and avian tissues, and here we show that a variety of animal tissues contain an active and specific Ins(1,4,5)P3 3-kinase. We therefore suggest that an inositol tris/tetrakisphosphate pathway exists as an alternative route to the dephosphorylation of Ins(1,4,5)P3. The function of this novel pathway is unknown.
Collapse
|
373
|
Antigen-stimulated metabolism of inositol phospholipids in the cloned murine mast-cell line MC9. Biochem J 1986; 234:205-12. [PMID: 2423071 PMCID: PMC1146546 DOI: 10.1042/bj2340205] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cells of the murine mast-cell clone MC9 grown in suspension culture were sensitized with an anti-DNP (dinitrophenol) IgE and subsequently prelabelled by incubating with [32P]Pi. Stimulation of these cells with DNP-BSA (bovine serum albumin) caused marked decreases in [32P]polyphosphoinositides (but not [32P]phosphatidylinositol) with concomitant appearance of [32P]phosphatidic acid. Whereas phosphatidylinositol monophosphate levels returned to baseline values after prolonged stimulation, phosphatidylinositol bisphosphate levels remained depressed. Stimulation of sensitized MC9 cells with DNP-BSA increased rates of incorporation of [32P]Pi into other phospholipids in the order: phosphatidylcholine greater than phosphatidylinositol greater than phosphatidylethanolamine. In sensitized cells prelabelled with [3H]inositol, release of inositol monophosphate, inositol bisphosphate and inositol trisphosphate, was observed after stimulation with DNP-BSA. When Li+ was added to inhibit the phosphatase activity that hydrolysed the phosphomonoester bonds in the sugar phosphates, greater increases were observed in all three inositol phosphates, particularly in inositol trisphosphate. The IgE-stimulated release of inositol trisphosphate was independent of the presence of extracellular Ca2+. In addition, the Ca2+ ionophore A23187 caused neither the decrease in [32P]polyphosphoinositides nor the stimulation of the release of inositol phosphates. These results demonstrate that stimulation of the MC9 cell via its receptor for IgE causes increased phospholipid turnover, with effects on polyphosphoinositides predominating. These data support the hypothesis that hapten cross-bridging of IgE receptors stimulates phospholipase C activity, which may be an early event in stimulus-secretion coupling of mast cells. The results with the Ca2+ ionophore A23187 indicate that an increase in intracellular Ca2+ alone is not sufficient for activation of this enzyme.
Collapse
|
374
|
Dubyak GR. Extracellular ATP activates polyphosphoinositide breakdown and Ca2+ mobilization in Ehrlich ascites tumor cells. Arch Biochem Biophys 1986; 245:84-95. [PMID: 3004360 DOI: 10.1016/0003-9861(86)90192-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effects of extracellular ATP on phosphoinositide metabolism and intracellular Ca2+ homeostasis were studied in Ehrlich ascites tumor cells. Cytosolic [Ca2+] was measured using either quin 2 or the recently described indicator fura 2. Addition of 0.5-25 microM extracellular ATP to intact cells results in a rapid mobilization of Ca2+ from a nonmitochondrial, intracellular Ca2+ store. Likewise, direct addition of 0.2-2 microM myo-1,4,5-inositol trisphosphate (IP3) to digitonin-permeabilized Ehrlich cells induces a rapid and reversible release of Ca2+ from a nonmitochondrial pool. Under the same conditions which facilitate intracellular Ca2+ mobilization, extracellular ATP also triggers a rapid breakdown of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and accumulation of IP3. A maximal 18% decrease of the polyphosphoinositide is observed 40-60 s after the addition of 25 microM ATP; within 5 min PtdIns(4,5)P2 returns to or exceeds the original, prestimulus level. These conditions also trigger a rapid accumulation of phosphatidic acid (1.7-fold increase within 5 min). Paralleling these ATP-induced changes in phospholipid levels is a substantial accumulation of the mono-, bis-, and trisphosphate derivatives of inositol; most significantly, a 2-fold increase in the IP3 level is observed within 30 s after ATP addition. These results suggest that in these tumor cells, extracellular ATP elicits changes in phosphoinositide metabolism similar to those produced by a wide variety of Ca2+-mobilizing hormones and growth factors.
Collapse
|
375
|
Spät A, Bradford PG, McKinney JS, Rubin RP, Putney JW. A saturable receptor for 32P-inositol-1,4,5-triphosphate in hepatocytes and neutrophils. Nature 1986; 319:514-6. [PMID: 3003582 DOI: 10.1038/319514a0] [Citation(s) in RCA: 235] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several receptors for neurotransmitters, hormones and growth factors cause accelerated phosphodiesteratic breakdown of polyphosphoinositides when activated. One of the soluble products of this reaction, inositol-1,4,5-trisphosphate (Ins(1,4,5)P3) is thought to act as a second messenger signalling the release of Ca2+ from intracellular stores. In support of this hypothesis, several studies have shown that Ins(1,4,5)P3 releases sequestered Ca2+ from permeable cells and microsomes. On the basis of certain structural requirements for Ca2+-releasing activity by inositol phosphates, it has been postulated that Ins(1,4,5)P3 acts by binding to a specific intracellular receptor, probably on a component of the endoplasmic reticulum. Here we report that 32P-Ins(1,4,5)P3 binds to a specific saturable site in permeabilized guinea pig hepatocytes and rabbit neutrophils, and that the properties of this binding site suggest that it is the physiological receptor for Ins(1,4,5)P3.
Collapse
|
376
|
Nånberg E, Putney J. Alpha 1-adrenergic activation of brown adipocytes leads to an increased formation of inositol polyphosphates. FEBS Lett 1986; 195:319-22. [PMID: 3002856 DOI: 10.1016/0014-5793(86)80185-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
alpha 1-Adrenergic activation of isolated brown adipocytes causes a rapid mobilization of intracellular Ca2+. The cells also respond with an increased turnover of inositol lipids. The present work demonstrates that alpha 1-adrenergic stimulation of brown adipocytes results in phospholipase C-mediated breakdown of phosphatidylinositol bisphosphate to form inositol trisphosphate. The rate of appearance of inositol trisphosphate is sufficiently rapid for it to mediate or contribute to Ca2+ mobilization in these cells.
Collapse
|
377
|
|
378
|
|
379
|
Hellman B, Gylfe E, Bergsten P. Mobilization of different pools of glucose-incorporated calcium in pancreatic beta-cells after muscarinic receptor activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1986; 211:325-41. [PMID: 3300191 DOI: 10.1007/978-1-4684-5314-0_30] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Muscarinic receptor activation resulted in a biphasic mobilization of Ca2+ from isolated pancreatic islets. Glucose was essential for preparing the beta-cells to respond with the initial stimulatory phase. This effect seems to depend on the ability of the sugar to promote active sequestration of Ca2+ in the endoplasmic reticulum.
Collapse
|
380
|
Downes C. Agonist-stimulated phosphatidylinositol 4,5-bisphosphate metabolism in the nervous system. Neurochem Int 1986; 9:211-30. [DOI: 10.1016/0197-0186(86)90056-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
381
|
Martin TF. Measurement of phospholipid turnover in cultured hormone responsive pituitary cells. Methods Enzymol 1986; 124:424-42. [PMID: 3086663 DOI: 10.1016/0076-6879(86)24033-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
382
|
Akhtar RA, Abdel-Latif AA. Surgical sympathetic denervation increases alpha 1-adrenoceptor-mediated accumulation of myo-inositol trisphosphate and muscle contraction in rabbit iris dilator smooth muscle. J Neurochem 1986; 46:96-104. [PMID: 2999340 DOI: 10.1111/j.1471-4159.1986.tb12930.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sympathetic denervation of the iris muscle produces increases in both the breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2) and in muscle contraction in response to norepinephrine (NE). To shed more light on the biochemical basis underlying this supersensitivity we investigated: the effects of NE on PIP2 breakdown, measured as myo-inositol trisphosphate (IP3) accumulation, and on muscle contraction in normal and denervated rabbit iris dilator; and the effects of denervation on selected biochemical properties of this muscle. The data obtained from these studies can be summarized as follows: The EC50 values (microM) for NE-induced IP3 accumulation in normal and denervated dilators were 14 and 3, respectively. This accumulation of IP3 was blocked by prazosin (1 microM). The EC50 values (microM) for NE-induced contraction for the normal and denervated muscles were 10 and 0.6, respectively. The NE-induced muscle contraction was blocked by prazosin (1 microM). The t1/2 values (s) for IP3 accumulation in normal and denervated muscles were 31 and 11, respectively, and for contraction the values were 19 and 9, respectively. Denervation increased significantly (15-18%) the basal labelling of phosphoinositides from myo-[3H]inositol, but not from 32P or [14C]arachidonic acid. Denervation had little effect on the activities of the enzymes involved in phosphoinositide metabolism. However, the activities of protein kinase C and Ca2+-ATPase increased in the denervated muscle. It is concluded that sympathetic denervation of the iris dilator renders the coupling between alpha1 receptors and PIP2 breakdown into IP3 and 1,2-diacylglycerol (DG) more efficient.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
383
|
Abdel-Latif AA, Howe PH, Akhtar RA. Polyphosphoinositides, phosphoproteins, and receptor function in rabbit iris smooth muscles. PROGRESS IN BRAIN RESEARCH 1986; 69:51-63. [PMID: 2833806 DOI: 10.1016/s0079-6123(08)61048-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
384
|
De Graan PN, Oestreicher AB, Schrama LH, Gispen WH. Phosphoprotein B-50: localization and function. PROGRESS IN BRAIN RESEARCH 1986; 69:37-50. [PMID: 2965821 DOI: 10.1016/s0079-6123(08)61047-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
385
|
Eichberg J, Berti-Mattera LN. The role of inositol phosphates in intracellular calcium mobilization. PROGRESS IN BRAIN RESEARCH 1986; 69:15-28. [PMID: 3328874 DOI: 10.1016/s0079-6123(08)61045-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
386
|
Burgess GM, McKinney JS, Irvine RF, Putney JW. Inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate formation in Ca2+-mobilizing-hormone-activated cells. Biochem J 1985; 232:237-43. [PMID: 3002326 PMCID: PMC1152864 DOI: 10.1042/bj2320237] [Citation(s) in RCA: 215] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The inositol trisphosphate liberated on stimulation of guinea-pig hepatocytes, pancreatic acinar cells and dimethyl sulphoxide-differentiated human myelomonocytic HL-60 leukaemia cells is composed of two isomers, the 1,4,5-trisphosphate and the 1,3,4-trisphosphate. Inositol 1,4,5-trisphosphate was released rapidly, with no measurable latency on hormone stimulation, and, consistent with its proposed role as an intracellular messenger for Ca2+ mobilization, there was good temporal correlation between its formation and Ca2+-mediated events in these tissues. There was a definite latency before an increase in the formation of inositol 1,3,4-trisphosphate could be detected. In all of these tissues, however, it formed a substantial proportion of the total inositol trisphosphate by 1 min of stimulation. In guinea-pig hepatocytes, where inositol trisphosphate increases for at least 30 min after hormone application, inositol 1,3,4-trisphosphate made up about 90% of the total inositol trisphosphate by 5-10 min. In pancreatic acinar cells, pretreatment with 20 mM-Li+ caused an increase in hormone-induced inositol trisphosphate accumulation. This increase was accounted for by a rise in inositol 1,3,4-trisphosphate; inositol 1,4,5-trisphosphate was unaffected. This finding is consistent with the observation that Li+ has no effect on Ca2+-mediated responses in these cells. The role, if any, of inositol 1,3,4-trisphosphate in cellular function is unknown.
Collapse
|
387
|
Batty IR, Nahorski SR, Irvine RF. Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem J 1985; 232:211-5. [PMID: 4084229 PMCID: PMC1152860 DOI: 10.1042/bj2320211] [Citation(s) in RCA: 531] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Carbachol stimulation of muscarinic receptors in rat cortical slices prelabelled with myo-[2-3H]inositol caused the rapid formation of a novel inositol polyphosphate. Evidence derived from its chromatographic behaviour, and from the structure of the products formed in partial dephosphorylation experiments, suggests that it is probably D-myo-inositol 1,3,4,5-tetrakisphosphate. An enzyme in human red cell membranes specifically removes the 5-phosphate from it to form inositol 1,3,4-trisphosphate. It is suggested that inositol 1,3,4,5-tetrakisphosphate is likely to be a second messenger, and that it is the precursor of inositol 1,3,4-trisphosphate and possibly of inositol 1,4,5-trisphosphate.
Collapse
|