351
|
Chang HH, Lee H, Hu MK, Tsao PN, Juan HF, Huang MC, Shih YY, Wang BJ, Jeng YM, Chang CL, Huang SF, Tsay YG, Hsieh FJ, Lin KH, Hsu WM, Liao YF. Notch1 expression predicts an unfavorable prognosis and serves as a therapeutic target of patients with neuroblastoma. Clin Cancer Res 2010; 16:4411-20. [PMID: 20736329 DOI: 10.1158/1078-0432.ccr-09-3360] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Notch signaling has been implicated to play a critical role in the tumorigenesis of neuroblastoma (NB) and can modulate calreticulin (CRT) expression that strongly correlates with tumor differentiation and favorable prognosis of NB. We thus sought to determine how Notch regulates CRT expression and affects NB tumor behavior. EXPERIMENTAL DESIGN The Notch-dependent regulation of CRT expression in cultured NB cells was analyzed by confocal microscopy and Western blotting. Notch1 protein expression in 85 NB tumors was examined by immunohistochemistry and correlated with the clinicopathologic/biological characters of NB patients. The progression of NB tumors in response to attenuated Notch signaling was examined by using a xenograft mouse model. RESULTS We showed that CRT is essential for the neuronal differentiation of NB cells elicited by inhibition of Notch signaling. This effect was mediated by a c-Jun-NH(2)-kinase-dependent pathway. Furthermore, NB tumors with elevated Notch1 protein expression were strongly correlated with advanced tumor stages, MYCN amplification, an undifferentiated histology, as well as a low CRT expression level. Most importantly, the opposing effect between Notch1 and CRT could reciprocally affect the survival of NB patients. The administration of a gamma-secretase inhibitor into a xenograft mouse model of NB significantly suppressed the tumor progression. CONCLUSIONS Our findings provide the first evidence that a c-Jun-NH(2)-kinase-CRT-dependent pathway is essential for the neuronal differentiation elicited by Notch signaling blockade and that Notch1 and CRT can synergistically predict the clinical outcomes of NB patients. The present data suggest that Notch signaling could be a therapeutic target for NB.
Collapse
Affiliation(s)
- Hsiu-Hao Chang
- Department of Pediatrics, National Taiwan University Hospital, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Truong AP, Tóth G, Probst GD, Sealy JM, Bowers S, Wone DWG, Dressen D, Hom RK, Konradi AW, Sham HL, Wu J, Peterson BT, Ruslim L, Bova MP, Kholodenko D, Motter RN, Bard F, Santiago P, Ni H, Chian D, Soriano F, Cole T, Brigham EF, Wong K, Zmolek W, Goldbach E, Samant B, Chen L, Zhang H, Nakamura DF, Quinn KP, Yednock TA, Sauer JM. Design of an orally efficacious hydroxyethylamine (HEA) BACE-1 inhibitor in a preclinical animal model. Bioorg Med Chem Lett 2010; 20:6231-6. [PMID: 20833041 DOI: 10.1016/j.bmcl.2010.08.102] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 12/17/2022]
Abstract
In this Letter, we describe our efforts to design HEA BACE-1 inhibitors that are highly permeable coupled with negligible levels of permeability-glycoprotein activity. These efforts culminate in producing 16 which lowers Αβ by 28% and 32% in the cortex and CSF, respectively, in the preclinical wild type Hartley guinea pig animal model when dosed orally at 30mpk BID for 2.5days.
Collapse
Affiliation(s)
- Anh P Truong
- Department of Medicinal Chemistry, Elan Pharmaceuticals, 180 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
353
|
Truong AP, Probst GD, Aquino J, Fang L, Brogley L, Sealy JM, Hom RK, Tucker JA, John V, Tung JS, Pleiss MA, Konradi AW, Sham HL, Dappen MS, Tóth G, Yao N, Brecht E, Pan H, Artis DR, Ruslim L, Bova MP, Sinha S, Yednock TA, Zmolek W, Quinn KP, Sauer JM. Improving the permeability of the hydroxyethylamine BACE-1 inhibitors: Structure–activity relationship of P2′ substituents. Bioorg Med Chem Lett 2010; 20:4789-94. [DOI: 10.1016/j.bmcl.2010.06.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/14/2010] [Accepted: 06/21/2010] [Indexed: 01/08/2023]
|
354
|
Bepridil and amiodarone simultaneously target the Alzheimer's disease beta- and gamma-secretase via distinct mechanisms. J Neurosci 2010; 30:8974-83. [PMID: 20592218 DOI: 10.1523/jneurosci.1199-10.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The two proteases beta-secretase and gamma-secretase generate the amyloid beta peptide and are drug targets for Alzheimer's disease. Here we tested the possibility of targeting the cellular environment of beta-secretase cleavage instead of the beta-secretase enzyme itself. beta-Secretase has an acidic pH optimum and cleaves the amyloid precursor protein in the acidic endosomes. We identified two drugs, bepridil and amiodarone, that are weak bases and are in clinical use as calcium antagonists. Independently of their calcium-blocking activity, both compounds mildly raised the membrane-proximal, endosomal pH and inhibited beta-secretase cleavage at therapeutically achievable concentrations in cultured cells, in primary neurons, and in vivo in guinea pigs. This shows that an alkalinization of the cellular environment could be a novel therapeutic strategy to inhibit beta-secretase. Surprisingly, bepridil and amiodarone also modulated gamma-secretase cleavage independently of endosomal alkalinization. Thus, both compounds act as dual modulators that simultaneously target beta- and gamma-secretase through distinct molecular mechanisms. In addition to Alzheimer's disease, compounds with dual properties may also be useful for drug development targeting other membrane proteins.
Collapse
|
355
|
Czvitkovich S, Duller S, Mathiesen E, Lorenzoni K, Imbimbo BP, Hutter-Paier B, Windisch M, Wronski R. Comparison of pharmacological modulation of APP metabolism in primary chicken telencephalic neurons and in a human neuroglioma cell line. J Mol Neurosci 2010; 43:257-67. [PMID: 20603724 PMCID: PMC3041911 DOI: 10.1007/s12031-010-9416-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 06/18/2010] [Indexed: 01/29/2023]
Abstract
Sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases and the formation of Aβ peptides are pivotal for Alzheimer's disease. Therefore, a large number of drugs has been developed targeting APP metabolism. However, many pharmacological compounds have been identified in vitro in immortalized APP overexpressing cell lines rather than in primary neurons. Here, we compared the effect of already characterized secretase inhibitors and modulators on Aβ formation in primary chicken telencephalic neurons and in a human neuroglioma cell line (H4) ectopically expressing human APP with the Swedish double mutation. Primary chicken neurons replicated the effects of a β-secretase inhibitor (β-secretase inhibitor IV), two γ-secretase inhibitors (DAPM, DAPT), two non-steroidal-anti-inflammatory drugs (sulindac sulfide, CW), and of the calpain inhibitor calpeptin. With the exception of the two γ-secretase inhibitors, all tested compounds were more efficacious in primary chicken telencephalic neurons than in the immortalized H4 cell line. Moreover, H4 cells failed to reproduce the effect of calpeptin. Hence, primary chicken telencephalic neurons represent a suitable cell culture model for testing drugs interfering with APP processing and are overall more sensitive to pharmacological interference than immortalized H4 cells ectopically expressing mutant human APP.
Collapse
|
356
|
Araki W, Kametani F, Oda A, Tamaoka A. MEK inhibitors suppress β-amyloid production by altering the level of a β-C-terminal fragment of amyloid precursor protein in neuronal cells. FEBS Lett 2010; 584:3410-4. [DOI: 10.1016/j.febslet.2010.06.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/04/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
|
357
|
Sassi N, Laadhar L, Mahjoub M, Driss M, Zitouni M, Benromdhane K, Makni S, Sellami S. Expression of Notch family members in cultured murine articular chondrocytes. Biotech Histochem 2010; 84:313-20. [PMID: 19562571 DOI: 10.3109/10520290903054382] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Notch family is involved in cell differentiation during embryogenesis. Osteoarthritic chondrocytes undergo morphological and biochemical changes leading to the de-differentiation process. In the study reported here, we were interested in the involvement of the Notch pathway in murine articular chondrocyte de-differentiation. Articular chondrocytes were subjected to several cell culture passages and treated with or without a Notch inhibitor, N-[N-(3, 5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-Butyl Ester (DAPT). Chondrocyte morphology was studied using optical microscopy. Immunocytochemistry and immunoblot were performed to study the expression of collagens and Notch family members. Without DAPT treatment, chondrocyte de-differentiation resulted in fibroblast-like morphology. This was confirmed by immunocytochemical staining and immunoblot analysis, which showed an increase in collagen type I (col I) and a decrease in collagen type II (col II) expression. With DAPT treatment, de-differentiation was delayed. Immunocytochemistry and immunoblot analysis showed during the first passages inhibition of col II expression, which then was re-instituted during the last passage, suggesting chondrocyte re-differentiation. In the study reported here, we showed that inhibition of the Notch receptor not only delayed the de-differentiation process, but also chondrocyte re-differentiation, which confirms the involvement of the Notch pathway in chondrocyte de-differentiation.
Collapse
Affiliation(s)
- N Sassi
- Osteoarthritis-Osteoporosis Research Laboratory, Department of Rheumatology, LaRabta Hospital, Tunis, Tunisia.
| | | | | | | | | | | | | | | |
Collapse
|
358
|
Lee CYD, Landreth GE. The role of microglia in amyloid clearance from the AD brain. J Neural Transm (Vienna) 2010; 117:949-60. [PMID: 20552234 DOI: 10.1007/s00702-010-0433-4] [Citation(s) in RCA: 521] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/26/2010] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD), the most prominent cause of senile dementia, is clinically characterized by the extracellular deposition of beta-amyloid (Abeta) and the intracellular neurofibrillary tangles. It has been well accepted that AD pathogenesis arises from perturbation in the homeostasis of Abeta in the brain. Abeta is normally produced at high levels in the brain and cleared in an equivalent rate. Thus, even a moderate decrease in the clearance leads to the accumulation of Abeta and subsequent amyloid deposition. Microglia are the tissue macrophages in the central nervous system (CNS) and have been shown to play major roles in internalization and degradation of Abeta. Abeta exists in the brain both in soluble and in fibrillar forms. Microglia interact with these two forms of Abeta in different ways. They take up soluble forms of Abeta through macropinocytosis and LDL receptor-related proteins (LRPs) mediated pathway. Fibrillar forms of Abeta interact with the cell surface innate immune receptor complex, initiating intracellular signaling cascades that stimulate phagocytosis. Inflammatory responses influence the activation status of microglia and subsequently regulate their ability to take up and degrade Abeta. ApoE and its receptors have been shown to play critical roles in these processes. In this review, we will explore the mechanisms that microglia utilize to clear Abeta and the effectors that modulate the processes.
Collapse
Affiliation(s)
- C Y Daniel Lee
- School of Medicine, Case Western Reserve University, SOM E649, 10900 Euclid Avenue, Cleveland, OH 44106-4928, USA.
| | | |
Collapse
|
359
|
Netzer WJ, Powell C, Nong Y, Blundell J, Wong L, Duff K, Flajolet M, Greengard P. Lowering beta-amyloid levels rescues learning and memory in a Down syndrome mouse model. PLoS One 2010; 5:e10943. [PMID: 20532168 PMCID: PMC2880593 DOI: 10.1371/journal.pone.0010943] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 05/11/2010] [Indexed: 02/04/2023] Open
Abstract
β-amyloid levels are elevated in Down syndrome (DS) patients throughout life and are believed to cause Alzheimer's disease (AD) in adult members of this population. However, it is not known if β-amyloid contributes to intellectual disability in younger individuals. We used a γ-secretase inhibitor to lower β-amyloid levels in young mice that model DS. This treatment corrected learning deficits characteristic of these mice, suggesting that β-amyloid-lowering therapies might improve cognitive function in young DS patients.
Collapse
Affiliation(s)
- William J Netzer
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York, USA.
| | | | | | | | | | | | | | | |
Collapse
|
360
|
Early-stage blocking of Notch signaling inhibits the depletion of goblet cells in dextran sodium sulfate-induced colitis in mice. J Gastroenterol 2010; 45:608-17. [PMID: 20169455 DOI: 10.1007/s00535-010-0210-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 01/12/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUND Goblet cells, which contribute to mucosal defense and repair in the intestinal epithelium, are depleted in human and rodent colitis. The Notch signal pathway regulates the differentiation of intestinal stem cells into epithelial cells and inhibits the differentiation of secretory lineages, including goblet cells. The aim of our study was to clarify whether the blocking of the Notch pathway at an early stage of colitis would preserve goblet cells and facilitate the healing process in dextran sulfate sodium (DSS)-induced colitis in mice. METHODS DSS was orally administered to C57/BL6 mice for 7 days, and dibenzazepine (DBZ), a Notch pathway blocker, was administered for 5 consecutive days, beginning on the first day of DSS treatment. Colonic mucosal inflammation was evaluated clinically, biochemically, and histologically. The expression of the goblet cell-associated genes Math1 and MUC2 and proinflammatory cytokines was evaluated by real-time reverse-transcriptase-PCR, with the expression of Math1 and MUC2 also visualized by immunohistochemical examination. RESULTS The administration of DBZ at 4 mumol/kg significantly reduced the severity of the colitis. Compared with the DSS only-treated intestine, the number of goblet cells was relatively sustained, and the expression of Math1 and MUC2 was also elevated in the DSS/DBZ-treated intestine. DBZ treatment suppressed the mRNA levels for interleukin-1beta and -6, and matrix metalloproteinases-3 and -9 in the DSS-treated intestine. CONCLUSIONS Early-stage blocking of Notch signaling may ameliorate acute DSS colitis by preventing reduction in the number of goblet cells.
Collapse
|
361
|
Discovery of a novel sulfonamide-pyrazolopiperidine series as potent and efficacious γ-secretase inhibitors (Part II). Bioorg Med Chem Lett 2010; 20:3502-6. [DOI: 10.1016/j.bmcl.2010.04.148] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 04/28/2010] [Accepted: 04/30/2010] [Indexed: 11/23/2022]
|
362
|
|
363
|
Takahashi N, Knudson CB, Thankamony S, Ariyoshi W, Mellor L, Im HJ, Knudson W. Induction of CD44 cleavage in articular chondrocytes. ARTHRITIS AND RHEUMATISM 2010; 62:1338-48. [PMID: 20178130 PMCID: PMC2896278 DOI: 10.1002/art.27410] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The hyaluronan receptor CD44 provides chondrocytes with a mechanism for sensing and responding to changes in the extracellular matrix. The purpose of this study was to document the fragmentation and loss of CD44 and to determine the likely mechanisms involved. METHODS A polyclonal anti-CD44 cytotail antibody was generated to detect CD44 fragmentation by Western blot analysis. Chondrocytes were isolated from human or bovine articular cartilage. Primary articular chondrocytes were treated with interleukin-1beta (IL-1beta), hyaluronan oligosaccharides, or phorbol myristate acetate or were passaged and subcultured in monolayer to induce dedifferentiation. Conditions that altered the capacity of CD44 to transit into lipid rafts, or pharmacologic inhibitors of metalloproteinase or gamma-secretase activity were used to define the mechanism of fragmentation of CD44. RESULTS Chondrocytes from osteoarthritic cartilage exhibited CD44 fragmentation as low molecular mass bands, corresponding to the CD44-EXT and CD44-ICD bands. Following dedifferentiation of chondrocytes or treatment of primary chondrocytes with hyaluronan oligosaccharides, IL-1beta, or phorbol myristate acetate, CD44 fragmentation was enhanced. Subsequent culture of the dedifferentiated chondrocytes in 3-dimensional alginate beads rescued the chondrocyte phenotype and diminished the fragmentation of CD44. Fragmentation of CD44 in chondrocytes was blocked in the presence of the metalloproteinase inhibitor GM6001 and the gamma-secretase inhibitor DAPT. CONCLUSION CD44 fragmentation, consistent with a signature pattern reported for sequential metalloproteinase/gamma-secretase cleavage of CD44, is a common metabolic feature of chondrocytes that have undergone dedifferentiation in vitro and osteoarthritic chondrocytes. Transit of CD44 into lipid rafts may be required for its fragmentation.
Collapse
Affiliation(s)
- Nobunori Takahashi
- Nobunori Takahashi, MD, PhD, Cheryl B. Knudson, PhD, Wataru Ariyoshi, DDS, PhD, Liliana Mellor, MS, Warren Knudson, PhD: The Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Cheryl B. Knudson
- Nobunori Takahashi, MD, PhD, Cheryl B. Knudson, PhD, Wataru Ariyoshi, DDS, PhD, Liliana Mellor, MS, Warren Knudson, PhD: The Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Sai Thankamony
- Sai Thankamony, PhD, Hee-Jeong Im, PhD: Rush University Medical Center, Chicago, Illinois
| | - Wataru Ariyoshi
- Nobunori Takahashi, MD, PhD, Cheryl B. Knudson, PhD, Wataru Ariyoshi, DDS, PhD, Liliana Mellor, MS, Warren Knudson, PhD: The Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Liliana Mellor
- Nobunori Takahashi, MD, PhD, Cheryl B. Knudson, PhD, Wataru Ariyoshi, DDS, PhD, Liliana Mellor, MS, Warren Knudson, PhD: The Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Hee-Jeong Im
- Sai Thankamony, PhD, Hee-Jeong Im, PhD: Rush University Medical Center, Chicago, Illinois
| | - Warren Knudson
- Nobunori Takahashi, MD, PhD, Cheryl B. Knudson, PhD, Wataru Ariyoshi, DDS, PhD, Liliana Mellor, MS, Warren Knudson, PhD: The Brody School of Medicine, East Carolina University, Greenville, North Carolina
| |
Collapse
|
364
|
Aguzzi A, O'Connor T. Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 2010; 9:237-48. [PMID: 20190788 DOI: 10.1038/nrd3050] [Citation(s) in RCA: 562] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A growing number of diseases seem to be associated with inappropriate deposition of protein aggregates. Some of these diseases--such as Alzheimer's disease and systemic amyloidoses--have been recognized for a long time. However, it is now clear that ordered aggregation of pathogenic proteins does not only occur in the extracellular space, but in the cytoplasm and nucleus as well, indicating that many other diseases may also qualify as amyloidoses. The common structural and pathogenic features of these diverse protein aggregation diseases is only now being fully understood, and may provide novel opportunities for overarching therapeutic approaches such as depleting the monomeric precursor protein, inhibiting aggregation, enhancing aggregate clearance or blocking common aggregation-induced cellular toxicity pathways.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zürich, Schmelzbergstrasse 12, CH8091 Zürich, Switzerland.
| | | |
Collapse
|
365
|
Abstract
The MEROPS website (http://merops.sanger.ac.uk) includes information on peptidase inhibitors as well as on peptidases and their substrates. Displays have been put in place to link peptidases and inhibitors together. The classification of protein peptidase inhibitors is continually being revised, and currently inhibitors are grouped into 67 families based on comparisons of protein sequences. These families can be further grouped into 38 clans based on comparisons of tertiary structure. Small molecule inhibitors are important reagents for peptidase characterization and, with the increasing importance of peptidases as drug targets, they are also important to the pharmaceutical industry. Small molecule inhibitors are now included in MEROPS and over 160 summaries have been written.
Collapse
Affiliation(s)
- Neil D Rawlings
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.
| |
Collapse
|
366
|
Ye XM, Konradi AW, Smith J, Xu YZ, Dressen D, Garofalo AW, Marugg J, Sham HL, Truong AP, Jagodzinski J, Pleiss M, Zhang H, Goldbach E, Sauer JM, Brigham E, Bova M, Basi GS. Discovery of a novel sulfonamide-pyrazolopiperidine series as potent and Efficacious γ-Secretase Inhibitors. Bioorg Med Chem Lett 2010; 20:2195-9. [DOI: 10.1016/j.bmcl.2010.02.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/05/2010] [Accepted: 02/08/2010] [Indexed: 11/28/2022]
|
367
|
Portelius E, Dean RA, Gustavsson MK, Andreasson U, Zetterberg H, Siemers E, Blennow K. A novel Abeta isoform pattern in CSF reflects gamma-secretase inhibition in Alzheimer disease. ALZHEIMERS RESEARCH & THERAPY 2010; 2:7. [PMID: 20350302 PMCID: PMC2876785 DOI: 10.1186/alzrt30] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/12/2010] [Accepted: 03/29/2010] [Indexed: 11/10/2022]
Abstract
Introduction LY450139 (semagacestat) inhibits γ-secretase, a key enzyme for generation of amyloid β (Aβ), the peptide deposited in plaques in Alzheimer disease (AD). Previous data have shown that LY450139 lowers plasma Aβ, but has no clear effect on Aβ1-40 or Aβ1-42 levels in cerebrospinal fluid (CSF). By using targeted proteomics techniques, we recently identified several shorter Aβ isoforms, such as Aβ1-16, that in experimental settings increase during γ-secretase inhibitor treatment, and thus may serve as sensitive biochemical indices of the treatment effect. Here, we test the hypothesis that these shorter Aβ isoforms may be biomarkers of γ-secretase inhibitor treatment in clinical trials. Methods In a phase II clinical trial, 35 individuals with mild to moderate AD were randomized to placebo (n = 10) or LY450139 (100 mg (n = 15) or 140 mg (n = 10)) and underwent lumbar puncture at baseline and after 14 weeks of treatment. The CSF Aβ isoform pattern was analyzed with immunoprecipitation combined with MALDI-TOF mass spectrometry. Results The CSF levels of Aβ1-14, Aβ1-15, and Aβ1-16 showed a dose-dependent increase by 57% and 74%, 21% and 35%, and 30% and 67%, respectively in the 100-mg and 140-mg treatment groups. Aβ1-40 and Aβ1-42 were unaffected by treatment. Conclusions CSF Aβ1-14, Aβ1-15, and Aβ1-16 increase during γ-secretase inhibitor treatment in AD, even at doses that do not affect Aβ1-42 or Aβ1-40, probably because of increased substrate availability of the C99 APP stub (APP β-CTF) induced by γ-secretase inhibition. These Aβ isoforms may be novel sensitive biomarkers to monitor the biochemical effect in clinical trials. Trial registration Clinical Trials.gov NCT00244322
Collapse
Affiliation(s)
- Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Molndal, SE-431 80, Sweden.
| | | | | | | | | | | | | |
Collapse
|
368
|
Wright D, Ferjentsik Z, Chong SW, Qiu X, Yun-Jin J, Malapert P, Pourquié O, Van Hateren N, Wilson SA, Franco C, Gerhardt H, Dale JK, Maroto M. Cyclic Nrarp mRNA expression is regulated by the somitic oscillator but Nrarp protein levels do not oscillate. Dev Dyn 2010; 238:3043-3055. [PMID: 19882724 DOI: 10.1002/dvdy.22139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Somites are formed progressively from the presomitic mesoderm (PSM) in a highly regulated process according to a strict periodicity driven by an oscillatory mechanism. The Notch and Wnt pathways are key components in the regulation of this somitic oscillator and data from Xenopus and zebrafish embryos indicate that the Notch-downstream target Nrarp participates in the regulation of both activities. We have analyzed Nrarp/nrarp-a expression in the PSM of chick, mouse and zebrafish embryos, and we show that it cycles in synchrony with other Notch regulated cyclic genes. In the mouse its transcription is both Wnt- and Notch-dependent, whereas in the chick and fish embryo it is simply Notch-dependent. Despite oscillating mRNA levels, Nrarp protein does not oscillate in the PSM. Finally, neither gain nor loss of Nrarp function interferes with the normal expression of Notch-related cyclic genes.
Collapse
Affiliation(s)
- David Wright
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Zoltan Ferjentsik
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Shang-Wei Chong
- Laboratory of Developmental Signalling and Patterning, Genes and Development Division, Institute of Molecular and Cell Biology, Proteos, Singapore
| | - Xuehui Qiu
- Laboratory of Developmental Signalling and Patterning, Genes and Development Division, Institute of Molecular and Cell Biology, Proteos, Singapore
| | - Jiang Yun-Jin
- Laboratory of Developmental Signalling and Patterning, Genes and Development Division, Institute of Molecular and Cell Biology, Proteos, Singapore
| | - Pascale Malapert
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, and Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Missouri
| | - Olivier Pourquié
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, and Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Missouri
| | - Nick Van Hateren
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Stuart A Wilson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Claudio Franco
- Vascular Biology Laboratory, London Research Institute-Cancer Research UK, London, United Kingdom
| | - Holger Gerhardt
- Vascular Biology Laboratory, London Research Institute-Cancer Research UK, London, United Kingdom
| | - J Kim Dale
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Miguel Maroto
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
369
|
Abstract
Presenilins form the catalytic part of the gamma-secretases, protein complexes that are responsible for the intramembranous cleavage of transmembrane proteins. The presenilins are involved in several biological functions, but are best known for their role in the generation of the beta-amyloid (Abeta) peptide in Alzheimer's disease and are therefore thought to be important drug targets for this disorder. Mutations in the presenilin genes cause early-onset familial Alzheimer's disease, but mutation carriers have substantial phenotypic heterogeneity. Recent evidence implicating presenilin mutations in non-Alzheimer's dementias, including frontotemporal dementia and Lewy body dementia, warrants further investigation. An increased understanding of the diversity of the molecular cell biology of the gamma-secretase complex and the effects of clinical mutations in the presenilin genes might help pave the way for improved development of drugs that are designed to target gamma-secretase enzymatic activity in Alzheimer's disease and potentially in other neurological diseases.
Collapse
Affiliation(s)
- Bruno A Bergmans
- Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium; Center for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
370
|
Down-regulation of Notch1 by gamma-secretase inhibition contributes to cell growth inhibition and apoptosis in ovarian cancer cells A2780. Biochem Biophys Res Commun 2010; 393:144-9. [PMID: 20117093 DOI: 10.1016/j.bbrc.2010.01.103] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 01/25/2010] [Indexed: 01/28/2023]
Abstract
The release of Notch intracellular domain (NICD) is mediated by gamma-secretase. gamma-Secretase inhibitors have been shown to be potent inhibitors of NICD. We hypothesized that Notch1 is acting as an oncogene in ovarian cancer and that inhibition of Notch1 would lead to inhibition of cell growth and apoptotic cell death in ovarian cancer cells. In this study, expressions of Notch1 and hes1 in four human ovarian cancer (A2780, SKOV3, HO-8910, and HO-8910PM), and one ovarian surface (IOSE 144) cell lines were detected by Western blot and quantitative real-time RT-PCR. The effects of gamma-secretase inhibition (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester, DAPT) were measured by MTT assay, flow cytometry, ELISA and colony-forming assay. Our results showed that Notch1 and hes1 were found in all the four human ovarian cancer and IOSE 144 cell lines, and they were significantly higher in ovarian cancer cells A2780 compared to another four ovarian cells. Down-regulation of Notch1 expression by DAPT was able to substantially inhibit cell growth, induce G1 cell cycle arrest and induce cell apoptosis in A2780 in dose- and time-dependent manner. In addition, hes1 was found to be down-regulated in dose- and time-dependent manner by DAPT in A2780. These results demonstrate that treatment with DAPT leads to growth inhibition and apoptosis of A2780 cells in dose- and time-dependent manner. These findings also support the conclusion that blocking of the Notch1 activity by gamma-secretase inhibitors represents a potentially attractive strategy of targeted therapy for ovarian cancer.
Collapse
|
371
|
Abstract
The amyloid hypothesis has yielded a series of well-validated candidate drug targets with potential for the treatment of Alzheimer disease (AD). Three proteases that are involved in the processing of amyloid precursor protein-alpha-secretase, beta-secretase and gamma-secretase-are of particular interest as they are central to the generation and modulation of amyloid-beta peptide and can be targeted by small compounds in vitro and in vivo. Given that these proteases also fulfill other important biological roles, inhibiting their activity will clearly be inherently associated with mechanism-based toxicity. Carefully determining a suitable therapeutic window and optimizing the selectivity of the drug treatments towards amyloid precursor protein processing might be ways of overcoming this potential complication. Secretase inhibitors are likely to be the first small-molecule therapies aimed at AD modification that will be fully tested in the clinic. Success or failure of these first-generation AD therapies will have enormous consequences for further drug development efforts for AD and possibly other neurodegenerative conditions.
Collapse
Affiliation(s)
- Bart De Strooper
- Center for Human Genetics, VIB and KULeuven, Herestraat 49, Leuven, Belgium.
| | | | | |
Collapse
|
372
|
Oldershaw RA, Hardingham TE. Notch signaling during chondrogenesis of human bone marrow stem cells. Bone 2010; 46:286-93. [PMID: 19406255 DOI: 10.1016/j.bone.2009.04.242] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/14/2009] [Accepted: 04/15/2009] [Indexed: 01/15/2023]
Abstract
Notch signaling is an important mechanism involved in early development which helps to determine the differentiation and fate of cells destined to form different tissues in the body. Its role in the differentiation of adult stem cells, such as those found in bone marrow is much less clear. As there is great interest in the potential of human bone marrow stem cells (hMSC) as a source of cells for the repair of articular cartilage and other tissues, it is important to understand if Notch signaling promotes or suppresses differentiation. Using primary human bone marrow stem cells (hMSC) in 3D cell aggregate culture a new study has investigated the expression of the canonical Notch pathway genes during chondrogenesis and showed that the Notch ligand, Jagged1 (JAG1) sharply increased in expression peaking early in differentiation. A Notch target gene, HEY1, was also expressed with a temporal profile, which closely followed the expression of JAG1 and this preceded the rise in type II collagen expression that characterized chondrogenesis. The JAG1 mediated Notch signaling was shown with a Notch inhibitor (DAPT) to be necessary for chondrogenesis, as inhibition days 0-14, or just days 0-5, blocked chondrogenesis, whereas Notch inhibition days 5-14 did not. In further experiments Notch signaling was shown to be critical for full chondrogenesis, as adenoviral hJAG1 transduction of hMSCs, which caused continuous expression of JAG1 and sustained Notch signaling, completely blocked chondrogenesis. In these cultures there was inhibited production of extracellular matrix and failure to differentiate was interpreted as the retention of the hMSC in a pre-chondrogenic state. The results in this study thus showed that JAG1 mediated Notch signaling in hMSC was necessary to initiate chondrogenesis, but must be switched off for chondrogenesis to proceed and it will be important to establish if this is a mechanism common to all chondrocyte differentiation.
Collapse
Affiliation(s)
- Rachel A Oldershaw
- North West Embryonic Stem Cell Centre, Faculty of Life Sciences, University of Manchester, Manchester, M13 9NT UK
| | | |
Collapse
|
373
|
Basi GS, Feinberg H, Oshidari F, Anderson J, Barbour R, Baker J, Comery TA, Diep L, Gill D, Johnson-Wood K, Goel A, Grantcharova K, Lee M, Li J, Partridge A, Griswold-Prenner I, Piot N, Walker D, Widom A, Pangalos MN, Seubert P, Jacobsen JS, Schenk D, Weis WI. Structural correlates of antibodies associated with acute reversal of amyloid beta-related behavioral deficits in a mouse model of Alzheimer disease. J Biol Chem 2010; 285:3417-27. [PMID: 19923222 PMCID: PMC2823416 DOI: 10.1074/jbc.m109.045187] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/02/2009] [Indexed: 01/08/2023] Open
Abstract
Immunotherapy targeting of amyloid beta (Abeta) peptide in transgenic mouse models of Alzheimer disease (AD) has been widely demonstrated to resolve amyloid deposition as well as associated neuronal, glial, and inflammatory pathologies. These successes have provided the basis for ongoing clinical trials of immunotherapy for treatment of AD in humans. Acute as well as chronic Abeta-targeted immunotherapy has also been demonstrated to reverse Abeta-related behavioral deficits assessing memory in AD transgenic mouse models. We observe that three antibodies targeting the same linear epitope of Abeta, Abeta(3-7), differ in their ability to reverse contextual fear deficits in Tg2576 mice in an acute testing paradigm. Reversal of contextual fear deficit by the antibodies does not correlate with in vitro recognition of Abeta in a consistent or correlative manner. To better define differences in antigen recognition at the atomic level, we determined crystal structures of Fab fragments in complex with Abeta. The conformation of the Abeta peptide recognized by all three antibodies was highly related and is also remarkably similar to that observed in independently reported Abeta:antibody crystal structures. Sequence and structural differences between the antibodies, particularly in CDR3 of the heavy chain variable region, are proposed to account for differing in vivo properties of the antibodies under study. These findings provide a structural basis for immunotherapeutic strategies targeting Abeta species postulated to underlie cognitive deficits in AD.
Collapse
Affiliation(s)
- Guriqbal S Basi
- Elan Pharmaceuticals, Incorporated, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
374
|
Firestone AJ, Chen JK. Controlling destiny through chemistry: small-molecule regulators of cell fate. ACS Chem Biol 2010; 5:15-34. [PMID: 20000447 PMCID: PMC2807212 DOI: 10.1021/cb900249y] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Controlling cell fate is essential for embryonic development, tissue regeneration, and the prevention of human disease. With each cell in the human body sharing a common genome, achieving the appropriate spectrum of stem cells and their differentiated lineages requires the selective activation of developmental signaling pathways, the expression of specific target genes, and the maintenance of these cellular states through epigenetic mechanisms. Small molecules that target these regulatory processes are therefore valuable tools for probing and manipulating the molecular mechanisms by which stem cells self-renew, differentiate, and arise from somatic cell reprogramming. Pharmacological modulators of cell fate could also help remediate human diseases caused by dysregulated cell proliferation or differentiation, heralding a new era in molecular therapeutics.
Collapse
Affiliation(s)
- Ari J. Firestone
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305
| | - James K. Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
375
|
Panza F, Solfrizzi V, Frisardi V, Capurso C, D'Introno A, Colacicco AM, Vendemiale G, Capurso A, Imbimbo BP. Disease-modifying approach to the treatment of Alzheimer's disease: from alpha-secretase activators to gamma-secretase inhibitors and modulators. Drugs Aging 2010; 26:537-55. [PMID: 19655822 DOI: 10.2165/11315770-000000000-00000] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the last decade, advances in understanding the neurobiology of Alzheimer's disease (AD) have translated into an increase in clinical trials assessing various potential AD treatments. At present, drugs used for the treatment of AD only slightly delay the inevitable symptomatic progression of the disease and do not affect the main neuropathological hallmarks of the disease, i.e. senile plaques and neurofibrillary tangles. Brain accumulation of oligomeric species of beta-amyloid (A beta) peptides, the principal components of senile plaques, is believed to play a crucial role in the development of AD. Based on this hypothesis, huge efforts are being made to identify drugs able to interfere with proteases regulating A beta formation from amyloid precursor protein (APP). Compounds that stimulate alpha-secretase, the enzyme responsible for non-amyloidogenic metabolism of APP, are being developed and one of these, EHT-0202, has recently commenced evaluation in a phase II study. The discovery of inhibitors of beta-secretase (memapsin-2, beta-amyloid cleaving enzyme-1 [BACE-1]), the enzyme that regulates the first step of amyloidogenic APP metabolism, has proved to be particularly difficult because of inherent medicinal chemistry issues and only one compound (CTS-21166) has proceeded to clinical testing. Conversely, several compounds that inhibit gamma-secretase, the pivotal enzyme that generates A beta, have been identified, the most advanced being LY-450139 (semagacestat), presently in phase III clinical development. There has been considerable disappointment over the failure of a phase III study of tarenflurbil, a compound believed to modulate the activity of gamma-secretase, after encouraging phase II findings. Nevertheless, other promising gamma-secretase modulators are being developed and are approaching clinical testing. All these therapeutic approaches increase the hope of slowing the rate of decline in patients with AD and modifying the natural history of this devastating disease within the next 5 years.
Collapse
Affiliation(s)
- Francesco Panza
- Department of Geriatrics, Center for Aging Brain, Memory Unit, University of Bari, Bari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Sanalkumar R, Indulekha CL, Divya TS, Divya MS, Anto RJ, Vinod B, Vidyanand S, Jagatha B, Venugopal S, James J. ATF2 maintains a subset of neural progenitors through CBF1/Notch independent Hes-1 expression and synergistically activates the expression of Hes-1 in Notch-dependent neural progenitors. J Neurochem 2010; 113:807-18. [PMID: 20067572 DOI: 10.1111/j.1471-4159.2010.06574.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hes-1 and Hes-5 are downstream effectors of Notch signaling that are known to be involved in different aspects of neural stem cell proliferation and differentiation. Evidence has emerged that Hes-1 expression can be regulated by alternate signaling pathways independent of canonical Notch/CBF1 interaction. This context-dependent differential regulation of Hes-1 expression in neural progenitor gains a lot of importance as it would help in its exponential expansion without the requirement of interaction from neighboring cells during development. Here, we have clearly demonstrated the existence of a population of neural progenitors with Notch/CBF1-independent Hes-1 expression in vitro. Further analysis demonstrated the role of FGF2 in activating Hes-1 expression through the direct binding of ATF2, a JNK downstream target, on Hes-1 promoter. This raises the possibility for the existence of two distinct populations of neural progenitors - one maintained by Hes-1 expression exclusively through Notch-independent mechanism and the other mediating Hes-1 expression through both canonical Notch and FGF2-ATF2 pathway. This alternative pathway will insure a constant expression of Hes-1 even in the absence of canonical Notch intracellular domain-mediated signaling, thereby maintaining a pool of proliferating neural progenitors required during development.
Collapse
Affiliation(s)
- Rajendran Sanalkumar
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
377
|
Direct inhibition of the NOTCH transcription factor complex. Nature 2010; 462:182-8. [PMID: 19907488 DOI: 10.1038/nature08543] [Citation(s) in RCA: 623] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 09/25/2009] [Indexed: 12/13/2022]
Abstract
Direct inhibition of transcription factor complexes remains a central challenge in the discipline of ligand discovery. In general, these proteins lack surface involutions suitable for high-affinity binding by small molecules. Here we report the design of synthetic, cell-permeable, stabilized alpha-helical peptides that target a critical protein-protein interface in the NOTCH transactivation complex. We demonstrate that direct, high-affinity binding of the hydrocarbon-stapled peptide SAHM1 prevents assembly of the active transcriptional complex. Inappropriate NOTCH activation is directly implicated in the pathogenesis of several disease states, including T-cell acute lymphoblastic leukaemia (T-ALL). The treatment of leukaemic cells with SAHM1 results in genome-wide suppression of NOTCH-activated genes. Direct antagonism of the NOTCH transcriptional program causes potent, NOTCH-specific anti-proliferative effects in cultured cells and in a mouse model of NOTCH1-driven T-ALL.
Collapse
|
378
|
Prakasam A, Muthuswamy A, Ablonczy Z, Greig NH, Fauq A, Rao KJ, Pappolla MA, Sambamurti K. Differential accumulation of secreted AbetaPP metabolites in ocular fluids. J Alzheimers Dis 2010; 20:1243-1253. [PMID: 20413851 PMCID: PMC3397687 DOI: 10.3233/jad-2010-100210] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amyloid-beta (Abeta) accumulates in several types of retinal degeneration and in Alzheimer's disease (AD), but its source has been unclear. We detected the neuronal 695 amino acid form of amyloid-beta protein precursor (AbetaPP) in the normal retina and AbetaPP751 in the retinal pigment epithelium (RPE) and anterior eye tissues. Similar to the brain, alpha- and beta-secretases cleaved AbetaPP to soluble derivatives (sAbetaPP) alpha or beta and membrane-bound C-terminal fragments alpha or beta in the retina and RPE. Levels of sAbetaPP were particularly high in the vitreous and low in aqueous humor revealing a molecular barrier for AbetaPP. In contrast, Abeta40 and Abeta42 levels were only 50% lower in the aqueous than the vitreous humor, indicating relatively barrier-free movement of Abeta. These studies demonstrated a relatively high yield of AbetaPP and Abeta in the ocular fluids, which may serve as a trackable marker for AD. In addition, failure of free clearance from the eye may trigger retina degeneration in a manner similar to Abeta-related neurodegeneration in AD.
Collapse
Affiliation(s)
- Annamalai Prakasam
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, BSB 403, Charleston, SC 29425
| | - Anusuya Muthuswamy
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, BSB 403, Charleston, SC 29425
| | - Zsolt Ablonczy
- Department of Ophthalmology, Medical University of South Carolina, 167 Ashley Avenue, Storm Eye Institute, Rm 518, Charleston, SC 29425
| | - Nigel H. Greig
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Abdul Fauq
- Department of Neurosciences, Mayo Clinic, 6400 San Pablo Road, Jacksonville, FL 32224
| | - Kosagisharaf Jagannatha Rao
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, BSB 403, Charleston, SC 29425
| | - Miguel A. Pappolla
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, BSB 403, Charleston, SC 29425
| | - Kumar Sambamurti
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, BSB 403, Charleston, SC 29425
| |
Collapse
|
379
|
Jorissen E, De Strooper B. γ-Secretase and the Intramembrane Proteolysis of Notch. Curr Top Dev Biol 2010; 92:201-30. [DOI: 10.1016/s0070-2153(10)92006-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
380
|
Divergent pathways mediate spine alterations and cell death induced by amyloid-beta, wild-type tau, and R406W tau. J Neurosci 2009; 29:14439-50. [PMID: 19923278 DOI: 10.1523/jneurosci.3590-09.2009] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Alzheimer's disease is characterized by synaptic alterations and neurodegeneration. Histopathological hallmarks represent amyloid plaques composed of amyloid-beta (Abeta) and neurofibrillary tangles containing hyperphosphorylated tau. To determine whether synaptic changes and neurodegeneration share common pathways, we established an ex vivo model using organotypic hippocampal slice cultures from amyloid precursor protein transgenic mice combined with virus-mediated expression of EGFP-tagged tau constructs. Confocal high-resolution imaging, algorithm-based evaluation of spines, and live imaging were used to determine spine changes and neurodegeneration. We report that Abeta but not tau induces spine loss and shifts spine shape from mushroom to stubby through a mechanism involving NMDA receptor (NMDAR), calcineurin, and GSK-3beta activation. In contrast, Abeta alone does not cause neurodegeneration but induces toxicity through phosphorylation of wild-type (wt) tau in an NMDAR-dependent pathway. We show that GSK-3beta levels are elevated in APP transgenic cultures and that inhibiting GSK-3beta activity or use of phosphorylation-blocking tau mutations prevented Abeta-induced toxicity of tau. FTDP-17 tau mutants are differentially affected by Abeta. While R406W tau shows increased toxicity in the presence of Abeta, no change is observed with P301L tau. While blocking NMDAR activity abolishes toxicity of both wt and R406W tau, the inhibition of GSK-3beta only protects against toxicity of wt tau but not of R406W tau induced by Abeta. Tau aggregation does not correlate with toxicity. We propose that Abeta-induced spine pathology and tau-dependent neurodegeneration are mediated by divergent pathways downstream of NMDAR activation and suggest that Abeta affects wt and R406W tau toxicity by different pathways downstream of NMDAR activity.
Collapse
|
381
|
Krishnaswamy S, Verdile G, Groth D, Kanyenda L, Martins RN. The structure and function of Alzheimer’s gamma secretase enzyme complex. Crit Rev Clin Lab Sci 2009; 46:282-301. [DOI: 10.3109/10408360903335821] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
382
|
Panza F, Solfrizzi V, Frisardi V, Imbimbo BP, Capurso C, D'Introno A, Colacicco AM, Seripa D, Vendemiale G, Capurso A, Pilotto A. Beyond the neurotransmitter-focused approach in treating Alzheimer's disease: drugs targeting beta-amyloid and tau protein. Aging Clin Exp Res 2009; 21:386-406. [PMID: 20154508 DOI: 10.1007/bf03327445] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Drugs currently used to treat Alzheimer's Disease (AD) have limited therapeutic value and do not affect the main neuropathological hallmarks of the disease, i.e., senile plaques and neurofibrillar tangles. Senile plaques are mainly formed of beta-amyloid (Abeta), a 42-aminoacid peptide. Neurofibrillar tangles are composed of paired helical filaments of hyperphosphorylated tau protein. New, potentially disease-modifying, therapeutic approaches are targeting Abeta and tau protein. Drugs directed against Abeta include active and passive immunization, that have been found to accelerate Abeta clearance from the brain. The most developmentally advanced monoclonal antibody directly targeting Abeta is bapineuzumab, now being studied in a large Phase III clinical trial. Compounds that interfere with proteases regulating Abeta formation from amyloid precursor protein (APP) are also actively pursued. The discovery of inhibitors of beta-secretase, the enzyme that regulates the first step of the amyloidogenic metabolism of APP, has been revealed to be particularly difficult due to inherent medicinal chemistry problems, and only one compound (CTS-21166) has reached clinical testing. Conversely, several compounds that inhibit gamma-secretase, the pivotal enzyme that generates Abeta, have been identified, the most advanced being LY-450139 (semagacestat), now in Phase III clinical development. Compounds that stimulate alpha-secretase, the enzyme responsible for the non-amyloidogenic metabolism of APP, are also being developed, and one of them, EHT-0202, has recently entered Phase II testing. Potent inhibitors of Abeta aggregation have also been identified, and one of such compounds, PBT-2, has provided encouraging neuropsychological results in a recently completed Phase II study. Therapeutic approaches directed against tau protein include inhibitors of glycogen synthase kinase- 3 (GSK-3), the enzyme responsible for tau phosphorylation and tau protein aggregation inhibitors. NP-12, a promising GSK-3 inhibitor, is being tested in a Phase II study, and methylthioninium chloride, a tau protein aggregation inhibitor, has given initial encouraging results in a 50-week study. With all these approaches on their way, the hope for disease-modifying therapy in this devastating disease may become a reality in the next 5 years.
Collapse
Affiliation(s)
- Francesco Panza
- Department of Geriatrics, Center for Aging Brain, Memory Unit, University of Bari, 70124, Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
383
|
Kreft AF, Martone R, Porte A. Recent advances in the identification of gamma-secretase inhibitors to clinically test the Abeta oligomer hypothesis of Alzheimer's disease. J Med Chem 2009; 52:6169-88. [PMID: 19694467 DOI: 10.1021/jm900188z] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
384
|
Frigerio CS, Kukar TL, Fauq A, Engel PC, Golde TE, Walsh DM. An NSAID-like compound, FT-9, preferentially inhibits gamma-secretase cleavage of the amyloid precursor protein compared to its effect on amyloid precursor-like protein 1. Biochemistry 2009; 48:10894-904. [PMID: 19821615 PMCID: PMC4489158 DOI: 10.1021/bi901237k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibition of gamma-secretase cleavage of the amyloid precursor protein (APP) is a prime target for the development of therapeutics for treating Alzheimer's disease; however, complete inhibition of this activity would also impair the processing of many other proteins, including the APP homologues, amyloid precursor-like protein (APLP) 1 and 2. To prevent unwanted side effects, therapeutically useful gamma-secretase inhibitors should specifically target APP processing while sparing cleavage of other gamma-substrates. Thus, since APLP1 and APLP2 are more similar to APP than any of the other known gamma-secretase substrates and have important physiological roles in their own right, we reasoned that comparison of the effect of gamma-secretase inhibitors on APLP processing should provide a sensitive indicator of the selectivity of putative inhibitors. To address this issue, we have optimized microsome and cell culture assays to monitor the gamma-secretase proteolysis of APP and APLPs. Production of the gamma-secretase-generated intracellular domain (ICD) occurs more rapidly from APLP1 than from either APLP2 or APP, suggesting that APLP1 is a better gamma-substrate and that substrate recognition is not restricted to the highly conserved amino acid sequences surrounding the epsilon-site. As expected, the well-characterized gamma-secretase modulator, fenofibrate, did not inhibit ICD release, whereas a related compound, FT-9, inhibited gamma-secretase both in microsomes and in whole cells. Importantly, FT-9 displayed a preferential effect, inhibiting cleavage of APP much more effectively than cleavage of APLP1. These findings suggest that selective inhibitors can be developed and that screening of compounds against APP and APLPs should assist in this process.
Collapse
Affiliation(s)
- Carlo Sala Frigerio
- Laboratory for Neurodegenerative Research, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Thomas L. Kukar
- Mayo Clinic, College of Medicine, Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, Florida 32224
| | - Abdul Fauq
- Mayo Clinic, College of Medicine, Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, Florida 32224
| | - Paul C. Engel
- Laboratory for Neurodegenerative Research, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Todd E. Golde
- Mayo Clinic, College of Medicine, Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, Florida 32224
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Research, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| |
Collapse
|
385
|
Martone RL, Zhou H, Atchison K, Comery T, Xu JZ, Huang X, Gong X, Jin M, Kreft A, Harrison B, Mayer SC, Aschmies S, Gonzales C, Zaleska MM, Riddell DR, Wagner E, Lu P, Sun SC, Sonnenberg-Reines J, Oganesian A, Adkins K, Leach MW, Clarke DW, Huryn D, Abou-Gharbia M, Magolda R, Bard J, Frick G, Raje S, Forlow SB, Balliet C, Burczynski ME, Reinhart PH, Wan HI, Pangalos MN, Jacobsen JS. Begacestat (GSI-953): a novel, selective thiophene sulfonamide inhibitor of amyloid precursor protein gamma-secretase for the treatment of Alzheimer's disease. J Pharmacol Exp Ther 2009; 331:598-608. [PMID: 19671883 DOI: 10.1124/jpet.109.152975] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
The presenilin containing gamma-secretase complex is responsible for the regulated intramembraneous proteolysis of the amyloid precursor protein (APP), the Notch receptor, and a multitude of other substrates. gamma-Secretase catalyzes the final step in the generation of Abeta(40) and Abeta(42) peptides from APP. Amyloid beta-peptides (Abeta peptides) aggregate to form neurotoxic oligomers, senile plaques, and congophilic angiopathy, some of the cardinal pathologies associated with Alzheimer's disease. Although inhibition of this protease acting on APP may result in potentially therapeutic reductions of neurotoxic Abeta peptides, nonselective inhibition of the enzyme may cause severe adverse events as a result of impaired Notch receptor processing. Here, we report the preclinical pharmacological profile of GSI-953 (begacestat), a novel thiophene sulfonamide gamma-secretase inhibitor (GSI) that selectively inhibits cleavage of APP over Notch. This GSI inhibits Abeta production with low nanomolar potency in cellular and cell-free assays of gamma-secretase function, and displaces a tritiated analog of GSI-953 from enriched gamma-secretase enzyme complexes with similar potency. Cellular assays of Notch cleavage reveal that this compound is approximately 16-fold selective for the inhibition of APP cleavage. In the human APP-overexpressing Tg2576 transgenic mouse, treatment with this orally active compound results in a robust reduction in brain, plasma, and cerebral spinal fluid Abeta levels, and a reversal of contextual fear-conditioning deficits that are correlated with Abeta load. In healthy human volunteers, oral administration of a single dose of GSI-953 produces dose-dependent changes in plasma Abeta levels, confirming pharmacodynamic activity of GSI-953 in humans.
Collapse
Affiliation(s)
- Robert L Martone
- Wyeth Research, Departments of Discovery Neuroscience, Princeton, New Jersey 08543, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
386
|
Sealy JM, Truong AP, Tso L, Probst GD, Aquino J, Hom RK, Jagodzinska BM, Dressen D, Wone DW, Brogley L, John V, Tung JS, Pleiss MA, Tucker JA, Konradi AW, Dappen MS, Toth G, Pan H, Ruslim L, Miller J, Bova MP, Sinha S, Quinn KP, Sauer JM. Design and synthesis of cell potent BACE-1 inhibitors: Structure–activity relationship of P1′ substituents. Bioorg Med Chem Lett 2009; 19:6386-91. [DOI: 10.1016/j.bmcl.2009.09.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 09/14/2009] [Accepted: 09/16/2009] [Indexed: 11/16/2022]
|
387
|
Wang X, Mao X, Xie L, Greenberg DA, Jin K. Involvement of Notch1 signaling in neurogenesis in the subventricular zone of normal and ischemic rat brain in vivo. J Cereb Blood Flow Metab 2009; 29:1644-54. [PMID: 19536070 PMCID: PMC2810260 DOI: 10.1038/jcbfm.2009.83] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Notch1 signaling pathway is regarded as one of the main regulators of neural stem cell behavior during development, but its role in the adult brain is less well understood. We found that Notch1 was mainly expressed in doublecortin (DCX)-positive cells corresponding to newborn neurons, whereas the Notch1 ligand, Jagged1, was predominantly expressed in glial fibrillary acidic protein (GFAP)-positive astrocytic cells in the subventricular zone (SVZ) of the normal adult brain. These findings were confirmed by conditional depletion of DCX-positive cells in transgenic mice carrying herpes simplex virus thymidine kinase (HSV-TK) under the control of the DCX promoter. In addition, the activated form of Notch1 (Notch intracellular domain, NICD) and its downstream transcriptional targets, Hes1 and sonic hedgehog (Shh), were also expressed in SVZ cells. Increased activation of Notch1 signaling increased SVZ cell proliferation, whereas inhibiting Notch1 signaling resulted in a reduction of proliferating cells in the SVZ. Levels of NICD, Hes1, and Shh were increased in the SVZ at 4 and 24 h after focal cerebral ischemia. Finally, ischemia-induced cell proliferation in the SVZ was blocked by inhibition of the Notch1 signaling pathway, suggesting that Notch1 signaling may have a key role in normal adult and ischemia-induced neurogenesis.
Collapse
Affiliation(s)
- Xiaomei Wang
- Buck Institute for Age Research, Novato, California, USA
| | | | | | | | | |
Collapse
|
388
|
Ferjentsik Z, Hayashi S, Dale JK, Bessho Y, Herreman A, De Strooper B, del Monte G, de la Pompa JL, Maroto M. Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites. PLoS Genet 2009; 5:e1000662. [PMID: 19779553 PMCID: PMC2739441 DOI: 10.1371/journal.pgen.1000662] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 08/26/2009] [Indexed: 11/25/2022] Open
Abstract
Segmentation of the vertebrate body axis is initiated through somitogenesis, whereby epithelial somites bud off in pairs periodically from the rostral end of the unsegmented presomitic mesoderm (PSM). The periodicity of somitogenesis is governed by a molecular oscillator that drives periodic waves of clock gene expression caudo-rostrally through the PSM with a periodicity that matches somite formation. To date the clock genes comprise components of the Notch, Wnt, and FGF pathways. The literature contains controversial reports as to the absolute role(s) of Notch signalling during the process of somite formation. Recent data in the zebrafish have suggested that the only role of Notch signalling is to synchronise clock gene oscillations across the PSM and that somite formation can continue in the absence of Notch activity. However, it is not clear in the mouse if an FGF/Wnt-based oscillator is sufficient to generate segmented structures, such as the somites, in the absence of all Notch activity. We have investigated the requirement for Notch signalling in the mouse somitogenesis clock by analysing embryos carrying a mutation in different components of the Notch pathway, such as Lunatic fringe (Lfng), Hes7, Rbpj, and presenilin1/presenilin2 (Psen1/Psen2), and by pharmacological blocking of the Notch pathway. In contrast to the fish studies, we show that mouse embryos lacking all Notch activity do not show oscillatory activity, as evidenced by the absence of waves of clock gene expression across the PSM, and they do not develop somites. We propose that, at least in the mouse embryo, Notch activity is absolutely essential for the formation of a segmented body axis. Vertebrate animals generate their segmented body plan during embryogenesis. These embryonic segments, or somites, form one after another from tissue at the tail end of the embryo in a highly regulated process controlled by a molecular oscillator. This oscillator drives the expression of a group of genes in this tissue and determines the periodicity of somite formation. To date the genes regulated by this molecular clock comprise components of the Notch, Wnt, and FGF pathways. Recent data in the zebrafish embryo have suggested that the only role of Notch signalling in this process is to synchronise gene oscillations between neighbouring cells and that somite formation can continue in the absence of Notch activity. However, we show that mouse embryos lacking all Notch activity do not show oscillatory activity and do not develop somites. We propose that, at least in the mouse embryo, Notch activity is absolutely essential for building a segmented body axis.
Collapse
Affiliation(s)
- Zoltan Ferjentsik
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Shinichi Hayashi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - J. Kim Dale
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Yasumasa Bessho
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - An Herreman
- Department of Molecular and Developmental Genetics, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Center for Human Genetics, KULeuven, Leuven, Belgium
| | - Bart De Strooper
- Department of Molecular and Developmental Genetics, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Center for Human Genetics, KULeuven, Leuven, Belgium
| | - Gonzalo del Monte
- Cardiovascular Developmental Biology Department, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jose Luis de la Pompa
- Cardiovascular Developmental Biology Department, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Miguel Maroto
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
389
|
Marks N, Berg MJ. BACE and gamma-secretase characterization and their sorting as therapeutic targets to reduce amyloidogenesis. Neurochem Res 2009; 35:181-210. [PMID: 19760173 DOI: 10.1007/s11064-009-0054-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
Secretases are named for enzymes processing amyloid precursor protein (APP), a prototypic type-1 membrane protein. This led directly to discovery of novel Aspartyl proteases (beta-secretases or BACE), a tetramer complex gamma-secretase (gamma-SC) containing presenilins, nicastrin, aph-1 and pen-2, and a new role for metalloprotease(s) of the ADAM family as a alpha-secretases. Recent advances in defining pathways that mediate endosomal-lysosomal-autophagic-exosomal trafficking now provide targets for new drugs to attenuate abnormal production of fibril forming products characteristic of AD. A key to success includes not only characterization of relevant secretases but mechanisms for sorting and transport of key metabolites to abnormal vesicles or sites for assembly of fibrils. New developments we highlight include an important role for an 'early recycling endosome' coated in retromer complex containing lipoprotein receptor LRP-II (SorLA) for switching APP to a non-amyloidogenic pathway for alpha-secretases processing, or to shuttle APP to a 'late endosome compartment' to form Abeta or AICD. LRP11 (SorLA) is of particular importance since it decreases in sporadic AD whose etiology otherwise is unknown.
Collapse
Affiliation(s)
- Neville Marks
- Center for Neurochemistry, Nathan S Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | | |
Collapse
|
390
|
Wang LF, Zhang R, Xie X. Development of a high-throughput assay for screening of gamma-secretase inhibitor with endogenous human, mouse or Drosophila gamma-secretase. Molecules 2009; 14:3589-99. [PMID: 19783945 PMCID: PMC6254802 DOI: 10.3390/molecules14093589] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 08/22/2009] [Accepted: 08/31/2009] [Indexed: 02/03/2023] Open
Abstract
Selective lowering of amyloid-β levels with small-molecule γ-secretase inhibitors is a promising therapeutic approach for Alzheimer’s disease. In this work, we developed a high throughput assay for screening of γ-secretase inhibitors with endogenous γ-secretase and a fluorogenic substrate. The IC50 values of known γ-secretase inhibitors generated with this method were comparable with reported values obtained by other methods. The assay was optimized and applied to a small-scale screening of 1,280 compounds. The discovery of several new inhibitors warrants further investigation. This assay was also proven to be easily adopted to test compounds for drosophila and mouse γ-secretase, which could be very useful to assess compounds activity against γ-secretase from different species before the in vivo test in animal models.
Collapse
Affiliation(s)
- Lie-Feng Wang
- Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; E-mails: (L-F.W.); (R.Z.)
| | - Ru Zhang
- Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; E-mails: (L-F.W.); (R.Z.)
| | - Xin Xie
- Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; E-mails: (L-F.W.); (R.Z.)
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Author to whom correspondence should be addressed; E-mail:
| |
Collapse
|
391
|
Juryńczyk M, Selmaj K. Notch: a new player in MS mechanisms. J Neuroimmunol 2009; 218:3-11. [PMID: 19748685 DOI: 10.1016/j.jneuroim.2009.08.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 08/20/2009] [Accepted: 08/20/2009] [Indexed: 11/28/2022]
Abstract
Notch is a family of four transmembrane receptors (Notch1-4) that orchestrate differentiation of various cell types, tissues and organs. Recent studies have revealed that Notch, among other processes, regulates immune responses of peripheral T cells, controls oligodendrocyte maturation and myelination of axons and under inflammatory conditions affects activation of macrophages and microglia. Therefore, Notch signaling has been implicated in the differentiation and function of all cell types considered crucial for the development and clinical progression of multiple sclerosis (MS). Importantly, inflammatory/demyelinating lesions in MS and its animal model, autoimmune experimental encephalomyelitis (EAE), abundantly express Notch receptors, their ligands and downstream activation targets. In EAE, in vivo modulation of Notch signaling affects immune responses of myelin-reactive T cells, enhances tissue repair and reduces clinical severity of the disease. In this review, we present recent findings on how Notch signaling may affect function of both immune and glial cells, analyze data implicating the Notch pathway in MS and EAE, and discuss the therapeutic potential of manipulating Notch signaling in MS patients.
Collapse
Affiliation(s)
- Maciej Juryńczyk
- Department of Neurology, Medical University of Lodz, Kopcińskiego 22, Poland.
| | | |
Collapse
|
392
|
Gamma-secretase inhibition reduces spine density in vivo via an amyloid precursor protein-dependent pathway. J Neurosci 2009; 29:10405-9. [PMID: 19692615 DOI: 10.1523/jneurosci.2288-09.2009] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) represents the most common age-related neurodegenerative disorder. It is characterized by the invariant accumulation of the beta-amyloid peptide (Abeta), which mediates synapse loss and cognitive impairment in AD. Current therapeutic approaches concentrate on reducing Abeta levels and amyloid plaque load via modifying or inhibiting the generation of Abeta. Based on in vivo two-photon imaging, we present evidence that side effects on the level of dendritic spines may counteract the beneficial potential of these approaches. Two potent gamma-secretase inhibitors (GSIs), DAPT (N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester) and LY450139 (hydroxylvaleryl monobenzocaprolactam), were found to reduce the density of dendritic spines in wild-type mice. In mice deficient for the amyloid precursor protein (APP), both GSIs had no effect on dendritic spine density, demonstrating that gamma-secretase inhibition decreases dendritic spine density via APP. Independent of the effects of gamma-secretase inhibition, we observed a twofold higher density of dendritic spines in the cerebral cortex of adult APP-deficient mice. This observation further supports the notion that APP is involved in the modulation of dendritic spine density--shown here for the first time in vivo.
Collapse
|
393
|
Truong AP, Aubele DL, Probst GD, Neitzel ML, Semko CM, Bowers S, Dressen D, Hom RK, Konradi AW, Sham HL, Garofalo AW, Keim PS, Wu J, Dappen MS, Wong K, Goldbach E, Quinn KP, Sauer JM, Brigham EF, Wallace W, Nguyen L, Hemphill SS, Bova MP, Basi G. Design, synthesis, and structure–activity relationship of novel orally efficacious pyrazole/sulfonamide based dihydroquinoline γ-secretase inhibitors. Bioorg Med Chem Lett 2009; 19:4920-3. [DOI: 10.1016/j.bmcl.2009.07.092] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 07/20/2009] [Indexed: 11/25/2022]
|
394
|
Abstract
Notch signaling requires a series of proteolytic cleavage events to release the Notch intracellular domain (NICD) that functions directly in signal transduction. The Notch receptor is locked down in a protease-resistant state by a negative regulatory region (NRR) that protects an ADAM (a disintegrin and metalloprotease) cleavage site. Engagement with ligand-bearing cells induces global conformational movements in Notch that unfold the NRR structure to expose the ADAM cleavage site and initiate proteolytic activation. Although both ADAM10 and ADAM17 have been reported to cleave Notch to facilitate NICD release by gamma-secretase, the relevant ADAM has remained controversial. Our study provides new insight into this conflict, as we find that although Notch1 (N1) is a substrate for both ADAM10 and ADAM17, the particular ADAM required for receptor activation is context dependent. Specifically, ADAM10 was absolutely required for N1 signaling induced by ligands, while signaling independent of ligands required ADAM17. In contrast to the strict and differential use of ADAM10 and ADAM17 in normal and dysregulated signaling, respectively, both proteases participated in signaling intrinsic to N1 mutations associated with leukemia. We propose that in addition to exposing the ADAM cleavage site, activating N1 conformational changes facilitate selective cleavage by specific proteases.
Collapse
|
395
|
Wells J, Lee B, Cai AQ, Karapetyan A, Lee WJ, Rugg E, Sinha S, Nie Q, Dai X. Ovol2 suppresses cell cycling and terminal differentiation of keratinocytes by directly repressing c-Myc and Notch1. J Biol Chem 2009; 284:29125-35. [PMID: 19700410 DOI: 10.1074/jbc.m109.008847] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ovol2 belongs to the Ovo family of evolutionarily conserved zinc finger transcription factors that act downstream of key developmental signaling pathways including Wg/Wnt and BMP/TGF-beta. We previously reported Ovol2 expression in the basal layer of epidermis, where epidermal stem/progenitor cells reside. In this work, we use HaCaT human keratinocytes to investigate the cellular and molecular functions of Ovol2. We show that depletion of Ovol2 leads to transient cell expansion but a loss of cells with long term proliferation potential. Mathematical modeling and experimental findings suggest that both faster cycling and precocious withdrawal from the cell cycle underlie this phenotype. Ovol2 depletion also accelerates extracellular signal-induced terminal differentiation in two- and three-dimensional culture models. By chromatin immunoprecipitation, luciferase reporter, and functional rescue assays, we demonstrate that Ovol2 directly represses two critical downstream targets, c-Myc and Notch1, thereby suppressing keratinocyte transient proliferation and terminal differentiation, respectively. These findings shed light on how an epidermal cell maintains a proliferation-competent and differentiation-resistant state.
Collapse
Affiliation(s)
- Julie Wells
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
396
|
Monsalve E, Ruiz-García A, Baladrón V, Ruiz-Hidalgo MJ, Sánchez-Solana B, Rivero S, García-Ramírez JJ, Rubio A, Laborda J, Díaz-Guerra MJM. Notch1 upregulates LPS-induced macrophage activation by increasing NF-κB activity. Eur J Immunol 2009; 39:2556-70. [DOI: 10.1002/eji.200838722] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
397
|
Winkler E, Hobson S, Fukumori A, Dümpelfeld B, Luebbers T, Baumann K, Haass C, Hopf C, Steiner H. Purification, pharmacological modulation, and biochemical characterization of interactors of endogenous human gamma-secretase. Biochemistry 2009; 48:1183-97. [PMID: 19159235 DOI: 10.1021/bi801204g] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gamma-secretase is a unique intramembrane-cleaving protease complex, which cleaves the Alzheimer's disease-associated beta-amyloid precursor protein (APP) and a number of other type I membrane proteins. Human gamma-secretase consists of the catalytic subunit presenilin (PS) (PS1 or PS2), the substrate receptor nicastrin, APH-1 (APH-1a or APH-1b), and PEN-2. To facilitate in-depth biochemical analysis of gamma-secretase, we developed a fast and convenient multistep purification procedure for the endogenous enzyme. The enzyme was purified from HEK293 cells in an active form and had a molecular mass of approximately 500 kDa. Purified gamma-secretase was capable of producing the major amyloid-beta peptide (Abeta) species, such as Abeta40 and Abeta42, from a recombinant APP substrate in physiological ratios. Abeta generation could be modulated by pharmacological gamma-secretase modulators. Moreover, the Abeta42/Abeta40 ratio was strongly increased by purified PS1 L166P, an aggressive familial Alzheimer's disease mutant. Tandem mass spectrometry analysis revealed the consistent coisolation of several proteins with the known gamma-secretase core subunits. Among these were the previously described gamma-secretase interactors CD147 and TMP21 as well as other known interactors of these. Interestingly, the Niemann-Pick type C1 protein, a cholesterol transporter previously implicated in gamma-secretase-mediated processing of APP, was identified as a major copurifying protein. Affinity capture experiments using a biotinylated transition-state analogue inhibitor of gamma-secretase showed that these proteins are absent from active gamma-secretase complexes. Taken together, we provide an effective procedure for isolating endogenous gamma-secretase in considerably high grade, thus aiding further characterization of this pivotal enzyme. In addition, we provide evidence that the copurifying proteins identified are unlikely to be part of the active gamma-secretase enzyme.
Collapse
Affiliation(s)
- Edith Winkler
- Center for Integrated Protein Science Munich and Adolf-Butenandt-Institute, Department of Biochemistry, Laboratory for Neurodegenerative Disease Research, Ludwig-Maximilians-University, 80336 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
398
|
A novel pathway for amyloid precursor protein processing. Neurobiol Aging 2009; 32:1090-8. [PMID: 19604603 DOI: 10.1016/j.neurobiolaging.2009.06.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/05/2009] [Accepted: 06/11/2009] [Indexed: 11/24/2022]
Abstract
Amyloid precursor protein (APP) can be proteolytically processed along two pathways, the amyloidogenic that leads to the formation of the 40-42 amino acid long Alzheimer-associated amyloid β (Aβ) peptide and the non-amyloidogenic in which APP is cut in the middle of the Aβ domain thus precluding Aβ formation. Using immunoprecipitation and mass spectrometry we have shown that Aβ is present in cerebrospinal fluid (CSF) as several shorter isoforms in addition to Aβ1-40 and Aβ1-42. To address the question by which processing pathways these shorter isoforms arise, we have developed a cell model that accurately reflects the Aβ isoform pattern in CSF. Using this model, we determined changes in the Aβ isoform pattern induced by α-, β-, and γ-secretase inhibitor treatment. All isoforms longer than and including Aβ1-17 were γ-secretase dependent whereas shorter isoforms were γ-secretase independent. These shorter isoforms, including Aβ1-14 and Aβ1-15, were reduced by treatment with α- and β-secretase inhibitors, which suggests the existence of a third and previously unknown APP processing pathway involving concerted cleavages of APP by α- and β-secretase.
Collapse
|
399
|
Bateman RJ, Siemers ER, Mawuenyega KG, Wen G, Browning KR, Sigurdson WC, Yarasheski KE, Friedrich SW, Demattos RB, May PC, Paul SM, Holtzman DM. A gamma-secretase inhibitor decreases amyloid-beta production in the central nervous system. Ann Neurol 2009; 66:48-54. [PMID: 19360898 PMCID: PMC2730994 DOI: 10.1002/ana.21623] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Accumulation of amyloid-beta (Abeta) by overproduction or underclearance in the central nervous system (CNS) is hypothesized to be a necessary event in the pathogenesis of Alzheimer's disease. However, previously, there has not been a method to determine drug effects on Abeta production or clearance in the human CNS. The objective of this study was to determine the effects of a gamma-secretase inhibitor on the production of Abeta in the human CNS. METHODS We utilized a recently developed method of stable-isotope labeling combined with cerebrospinal fluid sampling to directly measure Abeta production during treatment of a gamma-secretase inhibitor, LY450139. We assessed whether this drug could decrease CNS Abeta production in healthy men (age range, 21-50 years) at single oral doses of 100, 140, or 280mg (n = 5 per group). RESULTS LY450139 significantly decreased the production of CNS Abeta in a dose-dependent fashion, with inhibition of Abeta generation of 47, 52, and 84% over a 12-hour period with doses of 100, 140, and 280mg, respectively. There was no difference in Abeta clearance. INTERPRETATION Stable isotope labeling of CNS proteins can be utilized to assess the effects of drugs on the production and clearance rates of proteins targeted as potential disease-modifying treatments for Alzheimer's disease and other CNS disorders. Results from this approach can assist in making decisions about drug dosing and frequency in the design of larger and longer clinical trials for diseases such as Alzheimer's disease, and may accelerate effective drug validation. Ann Neurol 2009.
Collapse
Affiliation(s)
- Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
400
|
Elvang AB, Volbracht C, Pedersen LØ, Jensen KG, Karlsson JJ, Larsen SA, Mørk A, Stensbøl TB, Bastlund JF. Differential effects of gamma-secretase and BACE1 inhibition on brain Abeta levels in vitro and in vivo. J Neurochem 2009; 110:1377-87. [PMID: 19519664 DOI: 10.1111/j.1471-4159.2009.06215.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is hypothesized to result from elevated brain levels of beta-amyloid peptide (Abeta) which is the main component of plaques found in AD brains and which cause memory impairment in mice. Therefore, there has been a major focus on the development of inhibitors of the Abeta producing enzymes gamma-secretase and beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1). In this study, we investigated the Abeta-lowering effects of the BACE1 inhibitor LY2434074 in vitro and in vivo, comparing it to the well characterized gamma-secretase inhibitor LY450139. We sampled interstitial fluid Abeta from awake APPswe/PS1dE9 AD mice by in vivo Abeta microdialysis. In addition, we measured levels of endogenous brain Abeta extracted from wildtype C57BL/6 mice. In our in vitro assays both compounds showed similar Abeta-lowering effects. However, while systemic administration of LY450139 resulted in transient reduction of Abeta in both in vivo models, we were unable to show any Abeta-lowering effect by systemic administration of the BACE1 inhibitor LY2434074 despite brain exposure exceeding the in vitro IC(50) value several fold. In contrast, significant reduction of 40-50% of interstitial fluid Abeta and wildtype cortical Abeta was observed when infusing LY2434074 directly into the brain by means of reverse microdialysis or by dosing the BACE1 inhibitor to p-glycoprotein (p-gp) mutant mice. The effects seen in p-gp mutant mice and subsequent data from our cell-based p-gp transport assay suggested that LY2434074 is a p-gp substrate. This may partly explain why BACE1 inhibition by LY2434074 has lower in vivo efficacy, with respect to decreased Abeta40 levels, compared with gamma-secretase inhibition by LY450139.
Collapse
Affiliation(s)
- Anders Brandt Elvang
- Department of In Vivo Neurobiology-Neurodegeneration, H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|