351
|
Abstract
Transmission of flaviviruses by hematophagous insects such as mosquitoes requires acquisition of the virus during blood feeding on the host, with midgut as the primary infection site. Here, we report that N-glycosylation of the E protein, which is conserved among most flaviviruses, is critical for the Zika virus (ZIKV) to invade the vector midgut by inhibiting the reactive oxygen species (ROS) pathway of the mosquito immune system. Our data further show that removal of the ZIKV E glycosylation site prevents mosquito infection by flaviviruses via the oral route, whereas there is no effect on infection by intrathoracic microinjection, which bypasses the midgut. Interestingly, the defect in infection of the mosquito midgut by the mutant virus through blood feeding is rescued by reduction of the ROS level by application of vitamin C, a well-known antioxidant. Therefore, our data demonstrate that ZIKV utilizes the glycosylation on the envelope to antagonize the vector immune defense during infection.IMPORTANCE Most flaviviruses, including Zika virus (ZIKV), are transmitted between hosts by arthropod vectors, such as mosquitoes, which acquire the virus during a blood meal. Here, by mutagenesis, we found a major role of the N-glycosylation of flavivirus E protein in its transmission circle, facilitating its survival against the vector immune system during invasion of the mosquito midgut while blood feeding on the host. In spite of the extensive studies of the involvement of N-glycan modification of flavivirus E protein in virus-host interactions, we discovered its critical role in virus-vector interaction and the evolution of flavivirus. Given the deleterious effects of ZIKV on human health, this study might have a significant impact on development of novel transmission-blocking strategies.
Collapse
|
352
|
Aguiar BS, Lorenz C, Virginio F, Suesdek L, Chiaravalloti-Neto F. Potential risks of Zika and chikungunya outbreaks in Brazil: A modeling study. Int J Infect Dis 2018; 70:20-29. [PMID: 29454041 DOI: 10.1016/j.ijid.2018.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/05/2018] [Accepted: 02/08/2018] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES While Brazil has witnessed an unprecedented Zika (ZIK) epidemic, chikungunya (CHIK) has also recently come into prominence as a threat in the Americas. The aim of this study was to identify the regions with increased probabilities of ZIK and CHIK occurrence, based on environmental and social conditions. METHODS A statistical Maxent model was used to assess the potential spatial risk of ZIK and CHIK dissemination; this considered the number of probable autochthonous ZIK and CHIK cases in 2015 and 2016, along with environmental variables and social indicators. RESULTS Land use was the most significant variable that best defined the distribution of ZIK and CHIK. Of the social variables, garbage destination, type of sanitary installation, and pipe-borne water were the most significant. An estimated 65 million people in Brazil live in areas at high risk of ZIK and 75 million people in areas at high risk of CHIK. The southeast and northeast regions of Brazil presented the largest areas of high risk for both ZIK and CHIK. CONCLUSIONS Many areas across the Brazilian territory are exposed to ZIK or CHIK infection risks, which are related mainly to land use. The study findings offer valuable information to support time-sensitive public health decision-making at the local and national levels.
Collapse
Affiliation(s)
- Breno S Aguiar
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| | - Camila Lorenz
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil; Departamento de Parasitologia, Programa de Pós-Graduação Biologia da Relação Patógeno-Hospedeiro, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Flávia Virginio
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil; Departamento de Parasitologia, Programa de Pós-Graduação Biologia da Relação Patógeno-Hospedeiro, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| | - Lincoln Suesdek
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil; Departamento de Parasitologia, Programa de Pós-Graduação Biologia da Relação Patógeno-Hospedeiro, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
353
|
Himmelsbach K, Hildt E. Identification of various cell culture models for the study of Zika virus. World J Virol 2018; 7:10-20. [PMID: 29468137 PMCID: PMC5807893 DOI: 10.5501/wjv.v7.i1.10] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To identify cell culture models supportive for Zika virus (ZIKV) replication.
METHODS Various human and non-human cell lines were infected with a defined amount of ZIKV Polynesia strain. Cells were analyzed 48 h post infection for the amount of intracellular and extracellular viral genomes and infectious viral particles by quantitative real-time PCR and virus titration assay. The extent of replication was monitored by immunofluorescence and western blot analysis by using Env and NS1 specific antibodies. Innate immunity was assayed by luciferase reporter assay and immunofluorescence analysis.
RESULTS All investigated cell lines except CHO cells supported infection, replication and release of ZIKV. While in infected A549 and Vero cells a pronounced cytopathic effect was observed COS7, 293T and Huh7.5 cells were most resistant. Although the analyzed cell lines released comparable amounts of viral genomes to the supernatant significant differences were found for the number of infectious viral particles. The neuronal cell lines N29.1 and SH-SY5Y released 100 times less infectious viral particles than Vero-, A549- or 293T-cells. However there is no strict correlation between the amount of produced viral particles and the induction of an interferon response in the analyzed cell lines.
CONCLUSION The investigated cell lines with their different tissue origins and diverging ZIKV susceptibility display a toolbox for ZIKV research.
Collapse
Affiliation(s)
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Langen 63225, Germany
- Center for Infection Research (DZIF), Braunschweig 38124, Germany
| |
Collapse
|
354
|
Gaudinski MR, Houser KV, Morabito KM, Hu Z, Yamshchikov G, Rothwell RS, Berkowitz N, Mendoza F, Saunders JG, Novik L, Hendel CS, Holman LA, Gordon IJ, Cox JH, Edupuganti S, McArthur MA, Rouphael NG, Lyke KE, Cummings GE, Sitar S, Bailer RT, Foreman BM, Burgomaster K, Pelc RS, Gordon DN, DeMaso CR, Dowd KA, Laurencot C, Schwartz RM, Mascola JR, Graham BS, Pierson TC, Ledgerwood JE, Chen GL. Safety, tolerability, and immunogenicity of two Zika virus DNA vaccine candidates in healthy adults: randomised, open-label, phase 1 clinical trials. Lancet 2018; 391:552-562. [PMID: 29217376 PMCID: PMC6379903 DOI: 10.1016/s0140-6736(17)33105-7] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND The Zika virus epidemic and associated congenital infections have prompted rapid vaccine development. We assessed two new DNA vaccines expressing premembrane and envelope Zika virus structural proteins. METHODS We did two phase 1, randomised, open-label trials involving healthy adult volunteers. The VRC 319 trial, done in three centres, assessed plasmid VRC5288 (Zika virus and Japanese encephalitis virus chimera), and the VRC 320, done in one centre, assessed plasmid VRC5283 (wild-type Zika virus). Eligible participants were aged 18-35 years in VRC19 and 18-50 years in VRC 320. Participants were randomly assigned 1:1 by a computer-generated randomisation schedule prepared by the study statistician. All participants received intramuscular injection of 4 mg vaccine. In VRC 319 participants were assigned to receive vaccinations via needle and syringe at 0 and 8 weeks, 0 and 12 weeks, 0, 4, and 8 weeks, or 0, 4, and 20 weeks. In VRC 320 participants were assigned to receive vaccinations at 0, 4, and 8 weeks via single-dose needle and syringe injection in one deltoid or split-dose needle and syringe or needle-free injection with the Stratis device (Pharmajet, Golden, CO, USA) in each deltoid. Both trials followed up volunteers for 24 months for the primary endpoint of safety, assessed as local and systemic reactogenicity in the 7 days after each vaccination and all adverse events in the 28 days after each vaccination. The secondary endpoint in both trials was immunogenicity 4 weeks after last vaccination. These trials are registered with ClinicalTrials.gov, numbers NCT02840487 and NCT02996461. FINDINGS VRC 319 enrolled 80 participants (20 in each group), and VRC 320 enrolled 45 participants (15 in each group). One participant in VRC 319 and two in VRC 320 withdrew after one dose of vaccine, but were included in the safety analyses. Both vaccines were safe and well tolerated. All local and systemic symptoms were mild to moderate. In both studies, pain and tenderness at the injection site was the most frequent local symptoms (37 [46%] of 80 participants in VRC 319 and 36 [80%] of 45 in VRC 320) and malaise and headache were the most frequent systemic symptoms (22 [27%] and 18 [22%], respectively, in VRC 319 and 17 [38%] and 15 [33%], respectively, in VRC 320). For VRC5283, 14 of 14 (100%) participants who received split-dose vaccinations by needle-free injection had detectable positive antibody responses, and the geometric mean titre of 304 was the highest across all groups in both trials. INTERPRETATION VRC5283 was well tolerated and has advanced to phase 2 efficacy testing. FUNDING Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health.
Collapse
Affiliation(s)
- Martin R Gaudinski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katherine V Houser
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kaitlyn M Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zonghui Hu
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Galina Yamshchikov
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ro Shauna Rothwell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nina Berkowitz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Floreliz Mendoza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jamie G Saunders
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laura Novik
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia S Hendel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - LaSonji A Holman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ingelise J Gordon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Josephine H Cox
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Srilatha Edupuganti
- Department of Medicine, Division of Infectious Diseases, Hope Clinic of the Emory Vaccine Center, Emory School of Medicine, Decatur, GA, USA
| | - Monica A McArthur
- University of Maryland Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nadine G Rouphael
- Department of Medicine, Division of Infectious Diseases, Hope Clinic of the Emory Vaccine Center, Emory School of Medicine, Decatur, GA, USA
| | - Kirsten E Lyke
- University of Maryland Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ginny E Cummings
- University of Maryland Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sandra Sitar
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bryant M Foreman
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katherine Burgomaster
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca S Pelc
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David N Gordon
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christina R DeMaso
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kimberly A Dowd
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carolyn Laurencot
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard M Schwartz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Theodore C Pierson
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Grace L Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
355
|
Devillers J. Repurposing drugs for use against Zika virus infection. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2018; 29:103-115. [PMID: 29299939 DOI: 10.1080/1062936x.2017.1411642] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/25/2017] [Indexed: 06/07/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus for which there are no vaccines or specific therapeutics. To find drugs active on the virus is a complex, expensive and time-consuming process. The prospect of drug repurposing, which consists of finding new indications for existing drugs, is an interesting alternative to expedite drug development for specific diseases. In theory, drug repurposing is also able to respond much more rapidly to a crisis than a classical drug discovery process. Consequently, the methodology is attractive for vector-borne diseases that can emerge or re-emerge worldwide with the risk to become pandemic quickly. Different drugs, showing various structures, have been repurposed to be used against ZIKV infection. They are reviewed in this study and the conditions for their potential use in practice are discussed.
Collapse
|
356
|
|
357
|
Degner EC, Harrington LC. A mosquito sperm's journey from male ejaculate to egg: Mechanisms, molecules, and methods for exploration. Mol Reprod Dev 2018; 83:897-911. [PMID: 27147424 PMCID: PMC5086422 DOI: 10.1002/mrd.22653] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
Abstract
The fate of mosquito sperm in the female reproductive tract has been addressed sporadically and incompletely, resulting in significant gaps in our understanding of sperm-female interactions that ultimately lead to fertilization. As with other Diptera, mosquito sperm have a complex journey to their ultimate destination, the egg. After copulation, sperm spend a short time at the site of insemination where they are hyperactivated and quickly congregate near the entrance of the spermathecal ducts. Within minutes, they travel up the narrow ducts to the spermathecae, likely through the combined efforts of female transport and sperm locomotion. The female nourishes sperm and maintains them in these permanent storage organs for her entire life. When she is ready, the female coordinates the release of sperm with ovulation, and the descending egg is fertilized. Although this process has been well studied via microscopy, many questions remain regarding the molecular processes that coordinate sperm motility, movement through the reproductive tract, maintenance, and usage. In this review, we describe the current understanding of a mosquito sperm's journey to the egg, highlighting gaps in our knowledge of mosquito reproductive biology. Where insufficient information is available in mosquitoes, we describe analogous processes in other organisms, such as Drosophila melanogaster, as a basis for comparison, and we suggest future areas of research that will illuminate how sperm successfully traverse the female reproductive tract. Such studies may yield molecular targets that could be manipulated to control populations of vector species. Mol. Reprod. Dev. 83: 897-911, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ethan C Degner
- Department of Entomology, Cornell University, Ithaca, New York
| | | |
Collapse
|
358
|
Mosquitoes Transmit Unique West Nile Virus Populations during Each Feeding Episode. Cell Rep 2018; 19:709-718. [PMID: 28445723 DOI: 10.1016/j.celrep.2017.03.076] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/26/2017] [Accepted: 03/28/2017] [Indexed: 11/23/2022] Open
Abstract
Arthropod-borne viruses (arboviruses), such as Zika virus, chikungunya virus, and West Nile virus (WNV), pose continuous threats to emerge and cause large epidemics. Often, these events are associated with novel virus variants optimized for local transmission that first arise as minorities within a host. Thus, the conditions that regulate the frequency of intrahost variants are important determinants of emergence. Here, we describe the dynamics of WNV genetic diversity during its transmission cycle. By temporally sampling saliva from individual mosquitoes, we demonstrate that virus populations expectorated by mosquitoes are highly diverse and unique to each feeding episode. After transmission to birds, however, most genetic diversity is removed by strong purifying selection. Further, transmission of potentially mosquito-adaptive WNV variants is strongly influenced by genetic drift in mosquitoes. These results highlight the complex evolutionary forces a novel virus variant must overcome to alter infection phenotypes at the population level.
Collapse
|
359
|
Makhluf H, Shresta S. Development of Zika Virus Vaccines. Vaccines (Basel) 2018; 6:E7. [PMID: 29346287 PMCID: PMC5874648 DOI: 10.3390/vaccines6010007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that emerged as a global threat following the most recent outbreak in Brazil in 2015. ZIKV infection of pregnant women is associated with fetal abnormalities such as microcephaly, and infection of adults can lead to Guillain-Barré syndrome, an autoimmune disease characterized by neurological deficits. Although there are currently licensed vaccines for other flaviviruses, there remains an urgent need for preventative vaccines against ZIKV infection. Herein we describe the current efforts to accelerate the development of ZIKV vaccines using various platforms, including live attenuated virus, inactivated virus, DNA and RNA, viral vectors, and in silico-predicted immunogenic viral epitopes. Many of these approaches have leveraged lessons learned from past experience with Dengue and other flavivirus vaccines.
Collapse
Affiliation(s)
- Huda Makhluf
- Department of Mathematics and Natural Sciences, National University, La Jolla, CA 92037, USA.
- Center for Infectious Disease, La Jolla Institute, La Jolla, CA 92037, USA.
| | - Sujan Shresta
- Center for Infectious Disease, La Jolla Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
360
|
Abstract
Many new and emerging RNA and DNA viruses are zoonotic or have zoonotic origins in an animal reservoir that is usually mammalian and sometimes avian. Not all zoonotic viruses are transmissible (directly or by an arthropod vector) between human hosts. Virus genome sequence data provide the best evidence of transmission. Of human transmissible virus, 37 species have so far been restricted to self-limiting outbreaks. These viruses are priorities for surveillance because relatively minor changes in their epidemiologies can potentially lead to major changes in the threat they pose to public health. On the basis of comparisons across all recognized human viruses, we consider the characteristics of these priority viruses and assess the likelihood that they will further emerge in human populations. We also assess the likelihood that a virus that can infect humans but is not capable of transmission (directly or by a vector) between human hosts can acquire that capability.
Collapse
|
361
|
Luo H, Winkelmann ER, Fernandez-Salas I, Li L, Mayer SV, Danis-Lozano R, Sanchez-Casas RM, Vasilakis N, Tesh R, Barrett AD, Weaver SC, Wang T. Zika, dengue and yellow fever viruses induce differential anti-viral immune responses in human monocytic and first trimester trophoblast cells. Antiviral Res 2018; 151:55-62. [PMID: 29331320 DOI: 10.1016/j.antiviral.2018.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/02/2018] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus associated with severe neonatal birth defects, but the causative mechanism is incompletely understood. ZIKV shares sequence homology and early clinical manifestations with yellow fever virus (YFV) and dengue virus (DENV) and are all transmitted in urban cycles by the same species of mosquitoes. However, YFV and DENV have been rarely reported to cause congenital diseases. Here, we compared infection with a contemporary ZIKV strain (FSS13025) to YFV17D and DENV-4 in human monocytic cells (THP-1) and first-trimester trophoblasts (HTR-8). Our results suggest that all three viruses have similar tropisms for both cells. Nevertheless, ZIKV induced strong type 1 IFN and inflammatory cytokine and chemokine production in monocytes and peripheral blood mononuclear cells. Furthermore, ZIKV infection in trophoblasts induced lower IFN and higher inflammatory immune responses. Placental inflammation is known to contribute to the risk of brain damage in preterm newborns. Inhibition of toll-like receptor (TLR)3 and TLR8 each abrogated the inflammatory cytokine responses in ZIKV-infected trophoblasts. Our findings identify a potential link between maternal immune activation and ZIKV-induced congenital diseases, and a potential therapeutic strategy that targets TLR-mediated inflammatory responses in the placenta.
Collapse
Affiliation(s)
- Huanle Luo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Evandro R Winkelmann
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Li Li
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sandra V Mayer
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rogelio Danis-Lozano
- Centro Regional de Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Mexico
| | | | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert Tesh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Alan D Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
362
|
Wang W, Li G, De Wu, Luo Z, Pan P, Tian M, Wang Y, Xiao F, Li A, Wu K, Liu X, Rao L, Liu F, Liu Y, Wu J. Zika virus infection induces host inflammatory responses by facilitating NLRP3 inflammasome assembly and interleukin-1β secretion. Nat Commun 2018; 9:106. [PMID: 29317641 PMCID: PMC5760693 DOI: 10.1038/s41467-017-02645-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 12/15/2017] [Indexed: 01/21/2023] Open
Abstract
Zika virus (ZIKV) infection is a public health emergency and host innate immunity is essential for the control of virus infection. The NLRP3 inflammasome plays a key role in host innate immune responses by activating caspase-1 to facilitate interleukin-1β (IL-1β) secretion. Here we report that ZIKV stimulates IL-1β secretion in infected patients, human PBMCs and macrophages, mice, and mice BMDCs. The knockdown of NLRP3 in cells and knockout of NLRP3 in mice inhibit ZIKV-mediated IL-1β secretion, indicating an essential role for NLRP3 in ZIKV-induced IL-1β activation. Moreover, ZIKV NS5 protein is required for NLRP3 activation and IL-1β secretion by binding with NLRP3 to facilitate the inflammasome complex assembly. Finally, ZIKV infection in mice activates IL-1β secretion, leading to inflammatory responses in the mice brain, spleen, liver, and kidney. Thus we reveal a mechanism by which ZIKV induces inflammatory responses by facilitating NLRP3 inflammasome complex assembly and IL-1β activation.
Collapse
Affiliation(s)
- Wenbiao Wang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China.,Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, P.R. China
| | - Geng Li
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P.R. China
| | - De Wu
- Institute of Pathogenic Microbiology, Center for Disease Control and Prevention of Guangdong, Guangzhou, 510006, P.R. China
| | - Zhen Luo
- Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, P.R. China
| | - Pan Pan
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Mingfu Tian
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Yingchong Wang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Feng Xiao
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Aixin Li
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Kailang Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Xiaohong Liu
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P.R. China
| | - Lang Rao
- School of Physics and Technology, Wuhan University, Wuhan, 430072, P.R. China
| | - Fang Liu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China.
| | - Yingle Liu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China. .,Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, P.R. China.
| | - Jianguo Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China. .,Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, P.R. China.
| |
Collapse
|
363
|
Schultz MJ, Connor JH, Frydman HM. Group B Wolbachia Strain-Dependent Inhibition of Arboviruses. DNA Cell Biol 2018; 37:2-6. [PMID: 29297702 DOI: 10.1089/dna.2017.4025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mosquito-borne viruses, including Zika virus (ZIKV) and dengue virus (DENV), are global threats that continue to infect millions annually. Historically, efforts to combat the spread of these diseases have sought to eradicate the mosquito population. This has had limited success. Recent efforts to combat the spread of these diseases have targeted the mosquito population and the mosquito's ability to transmit viruses by altering the mosquito's microbiome. The introduction of particular strains of Wolbachia bacteria into mosquitos suppresses viral growth and blocks disease transmission. This novel strategy is being tested worldwide to reduce DENV and has early indications of success. The Wolbachia genus comprised divergent strains that are divided in major phylogenetic clades termed supergroups. All Wolbachia field trials currently utilize supergroup A Wolbachia in Aedes aegypti mosquitos to limit virus transmission. Here we discuss our studies of Wolbachia strains not yet used in virus control strategies but that show strong potential to reduce ZIKV replication. These strains are important opportunities in the search for novel tools to reduce the levels of mosquito-borne viruses and provide additional models for mechanistic studies.
Collapse
Affiliation(s)
- Michaela J Schultz
- 1 Department of Biology, Boston University , Boston Massachusetts.,2 National Emerging Infectious Diseases Laboratories, Boston University , Boston, Massachusetts
| | - John H Connor
- 2 National Emerging Infectious Diseases Laboratories, Boston University , Boston, Massachusetts.,3 Department of Microbiology, Boston University School of Medicine , Boston, Massachusetts
| | - Horacio M Frydman
- 1 Department of Biology, Boston University , Boston Massachusetts.,2 National Emerging Infectious Diseases Laboratories, Boston University , Boston, Massachusetts
| |
Collapse
|
364
|
Zika virus structural biology and progress in vaccine development. Biotechnol Adv 2018; 36:47-53. [DOI: 10.1016/j.biotechadv.2017.09.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 01/01/2023]
|
365
|
da Silva Pone MV, Moura Pone S, Araujo Zin A, Barros Mendes PH, Senra Aibe M, Barroso de Aguiar E, de Oliveira Gomes da Silva T. Zika virus infection in children: epidemiology and clinical manifestations. Childs Nerv Syst 2018; 34:63-71. [PMID: 29110197 DOI: 10.1007/s00381-017-3635-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/16/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE The purpose of this review is to comprehensively review Congenital Zika Syndrome in regard to their epidemiology and clinical manifestations. METHODS This subject review of congenital Zika syndrome was composed after conducting a thorough review of the available literature on this topic using PubMed and other primary sources. RESULTS The first epidemic of Zika virus infection in Brazil was followed by an unexpected sharp increase in the incidence of infants born with microcephaly and the description of a new disease, the congenital Zika syndrome. This review focuses on the epidemiological and clinical aspects of Zika infection in children. We conducted a brief historical account of the virus description in 1947, the rare cases of Zika infection occurring up to 2007, and the first epidemics in the Pacific between 2007 and 2014. We also discussed the isolation of the virus in Brazil in 2015 and its spread in the Americas, the microcephaly outbreak in Brazil and its association with Zika virus, and the current epidemiological panorama. We address the known clinical spectrum of Zika virus infection in the pediatric population, including manifestations of acute infection and congenital Zika syndrome, with emphasis on cranial, ophthalmic, and orthopedic abnormalities. CONCLUSION While much has been learned about congenital Zika syndrome, the full spectrum of this infection is not yet known. This review is based on current, limited data about Zika vírus infection. As more information becomes available, we will have a more accurate picture of this new disease.
Collapse
Affiliation(s)
- Marcos Vinicius da Silva Pone
- Pediatric Infectious Diseases Unit, National Institute of Women, Children and Adolescents Health Fernandes Figueira (IFF)/Oswaldo Cruz Foundation (FIOCRUZ), Av. Rui Barbosa 716, Rio de Janeiro, 22250-020, Brazil.
| | - Sheila Moura Pone
- Pediatric Infectious Diseases Unit, National Institute of Women, Children and Adolescents Health Fernandes Figueira (IFF)/Oswaldo Cruz Foundation (FIOCRUZ), Av. Rui Barbosa 716, Rio de Janeiro, 22250-020, Brazil
| | - Andrea Araujo Zin
- Clinical Research Unit, National Institute of Women, Children and Adolescents Health Fernandes Figueira (IFF)/Oswaldo Cruz Foundation (FIOCRUZ), Av. Rui Barbosa 716, Rio de Janeiro, 22250-020, Brazil
| | - Pedro Henrique Barros Mendes
- Orthopedic Unit, National Institute of Women, Children and Adolescents Health Fernandes Figueira (IFF)/Oswaldo Cruz Foundation (FIOCRUZ), Av. Rui Barbosa 716, Rio de Janeiro, 22250-020, Brazil
| | - Mitsue Senra Aibe
- Pediatric Infectious Diseases Unit, National Institute of Women, Children and Adolescents Health Fernandes Figueira (IFF)/Oswaldo Cruz Foundation (FIOCRUZ), Av. Rui Barbosa 716, Rio de Janeiro, 22250-020, Brazil
| | - Elisa Barroso de Aguiar
- Pediatric Infectious Diseases Unit, National Institute of Women, Children and Adolescents Health Fernandes Figueira (IFF)/Oswaldo Cruz Foundation (FIOCRUZ), Av. Rui Barbosa 716, Rio de Janeiro, 22250-020, Brazil
| | - Tallita de Oliveira Gomes da Silva
- Pediatric Infectious Diseases Unit, National Institute of Women, Children and Adolescents Health Fernandes Figueira (IFF)/Oswaldo Cruz Foundation (FIOCRUZ), Av. Rui Barbosa 716, Rio de Janeiro, 22250-020, Brazil
| |
Collapse
|
366
|
Abstract
Since cell regulation and protein expression can be dramatically altered upon infection by viruses, studying the mechanisms by which viruses infect cells and the regulatory networks they disrupt is essential to understanding viral pathogenicity. This line of study can also lead to discoveries about the workings of host cells themselves. Computational methods are rapidly being developed to investigate viral-host interactions, and here we highlight recent methods and the insights that they have revealed so far, with a particular focus on methods that integrate different types of data. We also review the challenges of working with viruses compared with traditional cellular biology, and the limitations of current experimental and informatics methods.
Collapse
|
367
|
|
368
|
Erraguntla M, Zapletal J, Lawley M. Framework for Infectious Disease Analysis: A comprehensive and integrative multi-modeling approach to disease prediction and management. Health Informatics J 2017; 25:1170-1187. [PMID: 29278956 DOI: 10.1177/1460458217747112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The impact of infectious disease on human populations is a function of many factors including environmental conditions, vector dynamics, transmission mechanics, social and cultural behaviors, and public policy. A comprehensive framework for disease management must fully connect the complete disease lifecycle, including emergence from reservoir populations, zoonotic vector transmission, and impact on human societies. The Framework for Infectious Disease Analysis is a software environment and conceptual architecture for data integration, situational awareness, visualization, prediction, and intervention assessment. Framework for Infectious Disease Analysis automatically collects biosurveillance data using natural language processing, integrates structured and unstructured data from multiple sources, applies advanced machine learning, and uses multi-modeling for analyzing disease dynamics and testing interventions in complex, heterogeneous populations. In the illustrative case studies, natural language processing from social media, news feeds, and websites was used for information extraction, biosurveillance, and situation awareness. Classification machine learning algorithms (support vector machines, random forests, and boosting) were used for disease predictions.
Collapse
|
369
|
OKUNEYE KAMALDEENO, VELASCO-HERNANDEZ JORGEX, GUMEL ABBAB. THE “UNHOLY” CHIKUNGUNYA–DENGUE–ZIKA TRINITY: A THEORETICAL ANALYSIS. J BIOL SYST 2017. [DOI: 10.1142/s0218339017400046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aedes aegypti is the vector for numerous diseases in humans and other (reservoir) hosts, such as chikungunya, dengue fever and Zika virus. A new deterministic model is designed and used to assess the dynamics of the three diseases in a population where Aedes mosquitoes are abundant. The model to be designed incorporates the recently-released imperfect vaccine against dengue virus (Dengvaxia[Formula: see text] vaccine by Sanofi Pasteur) as well as allow for sexual transmission of Zika. Further, the model allows for the assessment of the population-level impact of three biological hypotheses, namely a competitive dengue–chikungunya–Zika superinfection hierarchy, an antibody-dependent enhancement of dengue over Zika and that the Dengvaxia vaccine can induce reduced susceptibility to Zika infection in vaccinated individuals. After carrying out detailed theoretical analyses to gain insight into its qualitative features, the model is then fitted to the data recorded during the 2015–2016 outbreaks of the three diseases in Mexico. Simulations of the model show a reasonable fit to observed dynamics consistent with the competitive hierarchy assumed for the interactions of the viruses. Furthermore, Zika transmission dynamics is only mildly affected by changes in the parameter related to the infectiousness of Zika in relation to dengue, even in the region where antibody-dependent enhancement is assumed. The dengue vaccine has a very marginal impact on Zika transmission dynamics (and that the vaccine, no matter the coverage and efficacy levels, is unable to reduce the reproduction number for Zika transmission to a value less than unity). The model is extended to include the effect of seasonality and local weather variability (temperature and rainfall) on the dynamics of the three diseases. Simulations of the resulting non-autonomous model, using weather and demographic data for Mexico, show that for the current mean monthly rainfall value for Mexico, the burden of the three diseases increases with increasing mean monthly temperature in the range 16–29[Formula: see text]C, and decreases with increasing mean monthly temperature thereafter. Additionally, for the current fixed mean monthly temperature and rainfall data for Mexico, simulations show maximum transmission activity of all three diseases if the temperature and rainfall values lie in the range 25–26.4[Formula: see text]C and 90–128[Formula: see text]mm, respectively (these values are typically recorded in Mexico during the months of June, July and September). Simulations for two Mexican states (Oaxaca and Chiapas) where the three diseases are endemic show maximum transmission activity for all three diseases when temperature and rainfall lie in the ranges 20–25[Formula: see text]C and 51–102[Formula: see text]mm for Oaxaca (these ranges are recorded during the months of May through September) and 19–21[Formula: see text]C and 85–107[Formula: see text]mm for Chiapas (there ranges are recorded during the months of May, July, August and October), respectively. These simulations suggest suitable time when anti-mosquito control efforts should be intensified in Mexico (and the two selected states).
Collapse
Affiliation(s)
- KAMALDEEN O. OKUNEYE
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona, 85287-1804, USA
| | | | - ABBA B. GUMEL
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona, 85287-1804, USA
| |
Collapse
|
370
|
Sánchez-Montalvá A, Pou D, Sulleiro E, Salvador F, Bocanegra C, Treviño B, Rando A, Serre N, Pumarola T, Almirante B, Molina I. Zika virus dynamics in body fluids and risk of sexual transmission in a non-endemic area. Trop Med Int Health 2017; 23:92-100. [PMID: 29194880 DOI: 10.1111/tmi.13019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To understand Zika virus (ZIKV) dynamics in fluids of infected individuals and the risk of sexual transmission. METHODS Prospective study at two centres in Spain. Patients with probable or confirmed diagnosis of ZIKV infection were clinically followed up, and fluid samples were collected from saliva, serum, urine and semen or vaginal secretion following the study protocol. Non-traveller-sexual partners were offered to participate. RESULTS From January 2016 to December 2016, we included a total of 11 traveller patients and six sexual contacts. Six patients were male, with a median age of 38 years (IQR 30-45). We performed 61 RT-PCR determinations, seven of which were positive. Positive results were retrieved from serum, urine, semen and vaginal tract. One of four women tested positive for ZIKV RNA in vaginal swabs collected during the first 45 days after symptoms onset. Clearance occurred between day 37 and day 69 after symptoms onset. One of five men tested positive for ZIKV RNA in semen collected during the first 45 days after symptoms onset. Clearance occurred between day 23 and 107 after symptoms onset. Six patients had sexual relations during the defined period. All tested patients were negative for ZIKV infection by serological testing. CONCLUSION ZIKV shedding persistence in genital fluids occurs in a significant number of symptomatic patients after visiting an endemic area. We did not find any ZIKV seroconversion among the three male contacts who were investigated. Diagnostic algorithms may be updated to include genital tract fluid specimens in the diagnostic process.
Collapse
Affiliation(s)
- Adrián Sánchez-Montalvá
- Tropical Medicine Unit, Infectious Diseases Department, PROSICS (International Health Program of the Catalan Health Institute), Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Diana Pou
- Tropical Medicine Unit, Infectious Diseases Department, PROSICS (International Health Program of the Catalan Health Institute), Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Sulleiro
- Microbiology Department, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fernando Salvador
- Tropical Medicine Unit, Infectious Diseases Department, PROSICS (International Health Program of the Catalan Health Institute), Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Bocanegra
- Tropical Medicine Unit, Infectious Diseases Department, PROSICS (International Health Program of the Catalan Health Institute), Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Begoña Treviño
- Tropical Medicine Unit, Infectious Diseases Department, PROSICS (International Health Program of the Catalan Health Institute), Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ariadna Rando
- Microbiology Department, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Núria Serre
- Tropical Medicine Unit, Infectious Diseases Department, PROSICS (International Health Program of the Catalan Health Institute), Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tomàs Pumarola
- Microbiology Department, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Benito Almirante
- Tropical Medicine Unit, Infectious Diseases Department, PROSICS (International Health Program of the Catalan Health Institute), Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Israel Molina
- Tropical Medicine Unit, Infectious Diseases Department, PROSICS (International Health Program of the Catalan Health Institute), Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
371
|
Pattnaik A, Palermo N, Sahoo BR, Yuan Z, Hu D, Annamalai AS, Vu HLX, Correas I, Prathipati PK, Destache CJ, Li Q, Osorio FA, Pattnaik AK, Xiang SH. Discovery of a non-nucleoside RNA polymerase inhibitor for blocking Zika virus replication through in silico screening. Antiviral Res 2017; 151:78-86. [PMID: 29274845 DOI: 10.1016/j.antiviral.2017.12.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/12/2017] [Accepted: 12/20/2017] [Indexed: 02/08/2023]
Abstract
Zika virus (ZIKV), an emerging arbovirus, has become a major human health concern globally due to its association with congenital abnormalities and neurological diseases. Licensed vaccines or antivirals against ZIKV are currently unavailable. Here, by employing a structure-based approach targeting the ZIKV RNA-dependent RNA polymerase (RdRp), we conducted in silico screening of a library of 100,000 small molecules and tested the top ten lead compounds for their ability to inhibit the virus replication in cell-based in vitro assays. One compound, 3-chloro-N-[({4-[4-(2-thienylcarbonyl)-1-piperazinyl]phenyl}amino)carbonothioyl]-1-benzothiophene-2-carboxamide (TPB), potently inhibited ZIKV replication at sub-micromolar concentrations. Molecular docking analysis suggests that TPB binds to the catalytic active site of the RdRp and therefore likely blocks the viral RNA synthesis by an allosteric effect. The IC50 and the CC50 of TPB in Vero cells were 94 nM and 19.4 μM, respectively, yielding a high selective index of 206. In in vivo studies using immunocompetent mice, TPB reduced ZIKV viremia significantly, indicating TPB as a potential drug candidate for ZIKV infections.
Collapse
Affiliation(s)
- Aryamav Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, USA
| | | | - Bikash R Sahoo
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, USA
| | - Zhe Yuan
- School of Biological Sciences, University of Nebraska-Lincoln, USA
| | - Duoyi Hu
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, USA
| | - Arun S Annamalai
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, USA
| | - Hiep L X Vu
- Department of Animal Sciences, University of Nebraska-Lincoln, USA; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ignacio Correas
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, USA
| | | | - Christopher J Destache
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Qingsheng Li
- School of Biological Sciences, University of Nebraska-Lincoln, USA; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Fernando A Osorio
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, USA; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Asit K Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, USA; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Shi-Hua Xiang
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, USA; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
372
|
Bhargava S, Patel T, Gaikwad R, Patil UK, Gayen S. Identification of structural requirements and prediction of inhibitory activity of natural flavonoids against Zika virus through molecular docking and Monte Carlo based QSAR Simulation. Nat Prod Res 2017; 33:851-857. [PMID: 29241370 DOI: 10.1080/14786419.2017.1413574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There has been growing interest in the research of flavonoids due to their potential antiviral activities. Recently, some natural flavonoids have shown potential inhibitory activity against zika virus NS3-NS2B protease. In order to accelerate the drug discovery efforts using flavonoids, a Monte Carlo simulation-based QSAR method has been applied to find out the structural requirements for the inhibitory activity. The best QSAR model was obtained using SMILES descriptors and HSG descriptors with 1EC connectivity with the following statistical parameters: R 2 = 0.9569 and Q 2 = 0.9050 for the test set. The best model was further utilised for the prediction of inhibitory activity of some other natural flavonoids. Four flavonoids (amentoflavone, fisetin, isorhamnetin and theaflavin-3-gallate) have shown higher predicted inhibitory activity and further validated by performing docking analysis. This study may help in understanding and performing natural flavonoids-based drug discovery against zika virus.
Collapse
Affiliation(s)
- Sonam Bhargava
- a Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences , Dr Harisingh Gour University , Sagar , India
| | - Tarun Patel
- a Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences , Dr Harisingh Gour University , Sagar , India
| | - Ruchi Gaikwad
- a Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences , Dr Harisingh Gour University , Sagar , India
| | - Umesh Kumar Patil
- a Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences , Dr Harisingh Gour University , Sagar , India
| | - Shovanlal Gayen
- a Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences , Dr Harisingh Gour University , Sagar , India
| |
Collapse
|
373
|
Bautista LE. Maternal Zika virus infection and newborn microcephaly-an analysis of the epidemiological evidence. Ann Epidemiol 2017; 28:111-118. [PMID: 29277550 DOI: 10.1016/j.annepidem.2017.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/16/2017] [Accepted: 11/20/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE To evaluate whether existing data and evidence support a causal link between maternal Zika virus (ZIKV) infection and newborn microcephaly. METHODS I quantified and compared the prevalence of all and severe microcephaly in Brazil, during and before 2015-2016, to assess whether an outbreak has occurred, used time series analysis to evaluate if the presumed outbreak was linked to a previous outbreak of ZIKV infections, and quantitatively synthesized published data from observational studies testing this association. RESULTS The prevalences of microcephaly in 2015-2016 were similar or lower than background levels (prevalence ratio [PR] for all microcephaly: 0.19; 95% confidence intervals [CI]: 0.17, 0.20). Changes in the number of cases of ZIKV infections at times matching 11-18 weeks of pregnancy were not followed by changes in the number of microcephaly cases (PR for infection at 12 weeks: 1.02; 95% CI: 0.99, 1.05). In observational studies, the prevalence of microcephaly was not significantly increased in newborns of Zika-infected mothers (average PR: 1.30; 95% CI: 0.84, 2.02). CONCLUSIONS Existing evidence is insufficient to claim maternal ZIKV infection causes microcephaly. Although a public health response seems sensible, it should be consistent with existing knowledge and consider risks, potential benefits and harm, and competing priorities.
Collapse
Affiliation(s)
- Leonelo E Bautista
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin at Madison.
| |
Collapse
|
374
|
Abbink P, Larocca RA, Visitsunthorn K, Boyd M, De La Barrera RA, Gromowski GD, Kirilova M, Peterson R, Li Z, Nanayakkara O, Nityanandam R, Mercado NB, Borducchi EN, Chandrashekar A, Jetton D, Mojta S, Gandhi P, LeSuer J, Khatiwada S, Lewis MG, Modjarrad K, Jarman RG, Eckels KH, Thomas SJ, Michael NL, Barouch DH. Durability and correlates of vaccine protection against Zika virus in rhesus monkeys. Sci Transl Med 2017; 9:eaao4163. [PMID: 29237759 PMCID: PMC5747972 DOI: 10.1126/scitranslmed.aao4163] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/07/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022]
Abstract
An effective Zika virus (ZIKV) vaccine will require long-term durable protection. Several ZIKV vaccine candidates have demonstrated protective efficacy in nonhuman primates, but these studies have typically involved ZIKV challenge shortly after vaccination at peak immunity. We show that a single immunization with an adenovirus vector-based vaccine, as well as two immunizations with a purified inactivated virus vaccine, afforded robust protection against ZIKV challenge in rhesus monkeys at 1 year after vaccination. In contrast, two immunizations with an optimized DNA vaccine, which provided complete protection at peak immunity, resulted in reduced protective efficacy at 1 year that was associated with declining neutralizing antibody titers to subprotective levels. These data define a microneutralization log titer of 2.0 to 2.1 as the threshold required for durable protection against ZIKV challenge in this model. Moreover, our findings demonstrate that protection against ZIKV challenge in rhesus monkeys is possible for at least 1 year with a single-shot vaccine.
Collapse
Affiliation(s)
- Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rafael A Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kittipos Visitsunthorn
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michael Boyd
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Marinela Kirilova
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rebecca Peterson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhenfeng Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ovini Nanayakkara
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ramya Nityanandam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Noe B Mercado
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David Jetton
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shanell Mojta
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Priya Gandhi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jake LeSuer
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shreeya Khatiwada
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | - Kayvon Modjarrad
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Richard G Jarman
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Kenneth H Eckels
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Stephen J Thomas
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Nelson L Michael
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
375
|
New Targets for Zika Virus Determined by Human-Viral Interactomic: A Bioinformatics Approach. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1734151. [PMID: 29379794 PMCID: PMC5742907 DOI: 10.1155/2017/1734151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/06/2017] [Accepted: 10/11/2017] [Indexed: 02/08/2023]
Abstract
Identifying ZIKV factors interfering with human host pathways represents a major challenge in understanding ZIKV tropism and pathogenesis. The integration of proteomic, gene expression and Protein-Protein Interactions (PPIs) established between ZIKV and human host proteins predicted by the OralInt algorithm identified 1898 interactions with medium or high score (≥0.7). Targets implicated in vesicular traffic and docking were identified. New receptors involved in endocytosis pathways as ZIKV entry targets, using both clathrin-dependent (17 receptors) and independent (10 receptors) pathways, are described. New targets used by the ZIKV to undermine the host's antiviral immune response are proposed based on predicted interactions established between the virus and host cell receptors and/or proteins with an effector or signaling role in the immune response such as IFN receptors and TLR. Complement and cytokines are proposed as extracellular potential interacting partners of the secreted form of NS1 ZIKV protein. Altogether, in this article, 18 new human targets for structural and nonstructural ZIKV proteins are proposed. These results are of great relevance for the understanding of viral pathogenesis and consequently the development of preventive (vaccines) and therapeutic targets for ZIKV infection management.
Collapse
|
376
|
Mittal R, Nguyen D, Debs LH, Patel AP, Liu G, Jhaveri VM, S. Kay SI, Mittal J, Bandstra ES, Younis RT, Chapagain P, Jayaweera DT, Liu XZ. Zika Virus: An Emerging Global Health Threat. Front Cell Infect Microbiol 2017; 7:486. [PMID: 29276699 PMCID: PMC5727043 DOI: 10.3389/fcimb.2017.00486] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/13/2017] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is an emerging healthcare threat. The presence of the mosquito Aedes species across South and Central America in combination with complementary climates have incited an epidemic of locally transmitted cases of ZIKV infection in Brazil. As one of the most significant current public health concerns in the Americas, ZIKV epidemic has been a cause of alarm due to its known and unknown complications. At this point, there has been a clear association between ZIKV infection and severe clinical manifestations in both adults and neonates, including but not limited to neurological deficits such as Guillain-Barré syndrome (GBS) and microcephaly, respectively. The gravity of the fetal anomalies linked to ZIKV vertical transmission from the mother has prompted a discussion on whether to include ZIKV as a formal member of the TORCH [Toxoplasma gondii, other, rubella virus, cytomegalovirus (CMV), and herpes] family of pathogens known to breach placental barriers and cause congenital disease in the fetus. The mechanisms of these complex phenotypes have yet to be fully described. As such, diagnostic tools are limited and no effective modalities are available to treat ZIKV. This article will review the recent advancements in understanding the pathogenesis of ZIKV infection as well as diagnostic tests available to detect the infection. Due to the increase in incidence of ZIKV infections, there is an immediate need to develop new diagnostic tools and novel preventive as well as therapeutic modalities based on understanding the molecular mechanisms underlying the disease.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States,*Correspondence: Rahul Mittal
| | - Desiree Nguyen
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Luca H. Debs
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Amit P. Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - George Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Vasanti M. Jhaveri
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sae-In S. Kay
- Department of Surgery, Division of Otorhinolaryngology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Emmalee S. Bandstra
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ramzi T. Younis
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States,Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Prem Chapagain
- Department of Physics and Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Dushyantha T. Jayaweera
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States,Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States,Xue Zhong Liu
| |
Collapse
|
377
|
Thompson SJ, Pearce JM, Ramey AM. Vectors, Hosts, and Control Measures for Zika Virus in the Americas. ECOHEALTH 2017; 14:821-839. [PMID: 29150828 DOI: 10.1007/s10393-017-1277-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
We examine Zika virus (ZIKV) from an ecological perspective and with a focus on the Americas. We assess (1) the role of wildlife in ZIKV disease ecology, (2) how mosquito behavior and biology influence disease dynamics, and (3) how nontarget species and ecosystems may be impacted by vector control programs. Our review suggests that free-ranging, non-human primates may be involved in ZIKV transmission in the Old World; however, other wildlife species likely play a limited role in maintaining or transmitting ZIKV. In the Americas, a zoonotic cycle has not yet been definitively established. Understanding behaviors and habitat tolerances of Aedes aegypti and Aedes albopictus, two ZIKV competent vectors in the Americas, will allow more accurate modeling of disease spread and facilitate targeted and effective control efforts. Vector control efforts may have direct and indirect impacts to wildlife, particularly invertebrate feeding species; however, strategies could be implemented to limit detrimental ecological effects.
Collapse
Affiliation(s)
- Sarah J Thompson
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, USA.
| | - John M Pearce
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, USA
| | - Andrew M Ramey
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, USA
| |
Collapse
|
378
|
Rafful P, de Souza AS, Tovar-Moll F. The emerging radiological features of Zika virus infection. Radiol Bras 2017; 50:VII-VIII. [PMID: 29307943 PMCID: PMC5746895 DOI: 10.1590/0100-3984.2017.50.6e3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Patricia Rafful
- D'Or Institute for Research and Education (IDOR), and Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Fernanda Tovar-Moll
- D'Or Institute for Research and Education (IDOR), and Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
379
|
Şahiner F, Siğ AK, Savaşçi Ü, Tekin K, Akay F. Zika Virus-associated Ocular and Neurologic Disorders: The Emergence of New Evidence. Pediatr Infect Dis J 2017; 36:e341-e346. [PMID: 28719506 DOI: 10.1097/inf.0000000000001689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND It has been approximately 70 years since the discovery of the Zika virus (ZIKV). It had been established that the virus causes mild infections and is confined to Africa and Asia; however, major changes in the clinical and epidemiologic patterns of ZIKV infection have occurred in recent years. The virus has attracted intense interest because of the possible association of several autoimmune and neurodevelopmental disorders. METHODS We present a summary of the articles that attempt to explain the ZIKV unknowns and strengthen the association with some disorders that are thought to be related to ZIKV, by describing the discovery milestones from the initial identification of the virus to the present day. RESULTS New evidence strengthens the association between ZIKV infections and Guillain-Barré syndrome (GBS), microcephaly and various neurodevelopmental and ophthalmologic disorders as a result of numerous new clinical and experimental studies. CONCLUSIONS The World Health Organization declared the end of the "Public Health Emergency of International Concern" in December 2016, but ZIKV and associated consequences remain a significant enduring public health challenge.
Collapse
Affiliation(s)
- Fatih Şahiner
- From the *Department of Medical Microbiology, Gulhane Medical Faculty, University of Health Sciences, and †Department of Infectious Disease, Gulhane Training and Research Hospital, University of Health Sciences, and ‡Department of Medical Microbiology, Gulhane Training and Research Hospital, University of Health Sciences, and §Department of Ophthalmology, Atatürk Training and Research Hospital, Katip Çelebi University, İzmir, Turkey
| | | | | | | | | |
Collapse
|
380
|
Peper ST, Wilson-Fallon A, Haydett K, Greenberg H, Presley SM. First record of Aedes aegypti and Aedes albopictus in thirteen Panhandle region counties of Texas, U.S.A. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2017; 42:352-354. [PMID: 29125249 DOI: 10.1111/jvec.12276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Steven T Peper
- The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX, U.S.A
| | | | - Katelyn Haydett
- The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX, U.S.A
| | - Hannah Greenberg
- The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX, U.S.A
| | - Steven M Presley
- The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX, U.S.A
| |
Collapse
|
381
|
Kazmirchuk T, Dick K, Burnside DJ, Barnes B, Moteshareie H, Hajikarimlou M, Omidi K, Ahmed D, Low A, Lettl C, Hooshyar M, Schoenrock A, Pitre S, Babu M, Cassol E, Samanfar B, Wong A, Dehne F, Green JR, Golshani A. Designing anti-Zika virus peptides derived from predicted human-Zika virus protein-protein interactions. Comput Biol Chem 2017; 71:180-187. [DOI: 10.1016/j.compbiolchem.2017.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/03/2017] [Accepted: 10/27/2017] [Indexed: 01/22/2023]
|
382
|
Wagar ZL, Tree MO, Mpoy MC, Conway MJ. Low density lipopolyprotein inhibits flavivirus acquisition in Aedes aegypti. INSECT MOLECULAR BIOLOGY 2017; 26:734-742. [PMID: 28718976 DOI: 10.1111/imb.12334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aedes aegypti is the primary vector of a number of human pathogens including dengue virus (DENV) and Zika virus (ZIKV). Ae. aegypti acquires these viruses during the processing of bloodmeals obtained from an infected vertebrate host. Vertebrate blood contains a number of factors that have the potential to modify virus acquisition in the mosquito. Interestingly, low density lipopolyprotein (LDL) levels are decreased during severe DENV infection. Accordingly, we hypothesized that LDL is a modifiable factor that can influence flavivirus acquisition in the mosquito. We found that LDL is endocytosed by Ae. aegypti cells in a dynamin-dependent manner. LDL is also endocytosed by midgut epithelial cells and accumulates at the luminal midgut epithelium during bloodmeal digestion. Importantly, pretreatment with LDL, but not high density lipopolyprotein (HDL), significantly inhibited both DENV and ZIKV infection in vitro, and LDL inhibited ZIKV infection in vivo. This study identifies human LDL or 'bad cholesterol' as a modifiable factor that can inhibit flavivirus acquisition in Ae. aegypti. Identification of modifiable blood factors and critical cellular interactions that mediate pathogen acquisition may lead to novel strategies to disrupt the transmission cycle of vector-borne diseases.
Collapse
Affiliation(s)
- Z L Wagar
- Foundational Sciences, Central Michigan University, College of Medicine, Mount Pleasant, MI, USA
| | - M O Tree
- Foundational Sciences, Central Michigan University, College of Medicine, Mount Pleasant, MI, USA
| | - M C Mpoy
- Foundational Sciences, Central Michigan University, College of Medicine, Mount Pleasant, MI, USA
| | - M J Conway
- Foundational Sciences, Central Michigan University, College of Medicine, Mount Pleasant, MI, USA
| |
Collapse
|
383
|
Alcalay Y, Tsurim I, Ovadia O. Modelling the effects of spatial heterogeneity and temporal variation in extinction probability on mosquito populations. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:2342-2358. [PMID: 28851019 DOI: 10.1002/eap.1612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/02/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Spatial synchrony plays an important role in dictating the dynamics of spatial and stage-structured populations. Here we argue that, unlike the Moran effect where spatial synchrony is driven by exogenous factors, spatial correlation in intrinsic/local-scale processes can affect the level of spatial synchrony among distinct sub-populations, and therefore the persistence of the entire population. To explore this mechanism, we modelled the consequences of spatial heterogeneity in aquatic habitat quality, and that of temporal variation in local extinction probability, on the persistence of stage-structured mosquito populations. As a model system, we used two widely distributed mosquito species, Aedes albopictus and Culex pipiens, both key vectors of a range of infectious diseases. Spatial heterogeneity in aquatic habitat quality led to increased population persistence, and this pattern was more pronounced at intermediate dispersal rates, and in the long-dispersing species (C. pipiens). The highest regional persistence was obtained at high dispersal rates. This is probably because dispersal, in our model, did not carry any additional costs. Population persistence of both species was negatively correlated with increased temporal variation in local extinction probability. These differences were stronger in the short-dispersing species (A. albopictus), especially at intermediate dispersal rates. The dispersal of A. albopictus adults in each time step was limited to the nearest habitat patches, weakening the positive effect of spatial heterogeneity in aquatic habitat quality on population persistence. In contrast, C. pipiens adults could disperse into more remote sub-populations, resulting in much higher recolonization rates. Hence, the negative effect of temporal variation in local extinction probability on patch occupancy disappeared at intermediate dispersal rates. We suggest that effectively controlling these two mosquito species requires making few spatially synchronized control efforts (i.e., generating high temporal variation in local extinction probability), rather than many asynchronized local control efforts. Finally, our model can be easily fitted to other organisms characterized by complex life cycles, and it can be also used to examine alternative scenarios, including the effect of spatial configuration of local habitat patches and dispersal kernel shape on population persistence.
Collapse
Affiliation(s)
- Yehonatan Alcalay
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ido Tsurim
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Life Sciences, Achva Academic College, Arugot, 7980400, Israel
| | - Ofer Ovadia
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
384
|
Prior Dengue Virus Exposure Shapes T Cell Immunity to Zika Virus in Humans. J Virol 2017; 91:JVI.01469-17. [PMID: 28978707 DOI: 10.1128/jvi.01469-17] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/20/2017] [Indexed: 01/09/2023] Open
Abstract
While progress has been made in characterizing humoral immunity to Zika virus (ZIKV) in humans, little is known regarding the corresponding T cell responses to ZIKV. Here, we investigate the kinetics and viral epitopes targeted by T cells responding to ZIKV and address the critical question of whether preexisting dengue virus (DENV) T cell immunity modulates these responses. We find that memory T cell responses elicited by prior infection with DENV or vaccination with tetravalent dengue attenuated vaccines (TDLAV) recognize ZIKV-derived peptides. This cross-reactivity is explained by the sequence similarity of the two viruses, as the ZIKV peptides recognized by DENV-elicited memory T cells are identical or highly conserved in DENV and ZIKV. DENV exposure prior to ZIKV infection also influences the timing and magnitude of the T cell response. ZIKV-reactive T cells in the acute phase of infection are detected earlier and in greater magnitude in DENV-immune patients. Conversely, the frequency of ZIKV-reactive T cells continues to rise in the convalescent phase in DENV-naive donors but declines in DENV-preexposed donors, compatible with more efficient control of ZIKV replication and/or clearance of ZIKV antigen. The quality of responses is also influenced by previous DENV exposure, and ZIKV-specific CD8 T cells from DENV-preexposed donors selectively upregulated granzyme B and PD1, unlike DENV-naive donors. Finally, we discovered that ZIKV structural proteins (E, prM, and C) are major targets of both the CD4 and CD8 T cell responses, whereas DENV T cell epitopes are found primarily in nonstructural proteins.IMPORTANCE The issue of potential ZIKV and DENV cross-reactivity and how preexisting DENV T cell immunity modulates Zika T cell responses is of great relevance, as the two viruses often cocirculate and Zika virus has been spreading in geographical regions where DENV is endemic or hyperendemic. Our data show that memory T cell responses elicited by prior infection with DENV recognize ZIKV-derived peptides and that DENV exposure prior to ZIKV infection influences the timing, magnitude, and quality of the T cell response. Additionally, we show that ZIKV-specific responses target different proteins than DENV-specific responses, pointing toward important implications for vaccine design against this global threat.
Collapse
|
385
|
Coelho FC, Armstrong M, Saraceni V, Lemos C. Can Zika Account for the Missing Babies? Front Public Health 2017; 5:317. [PMID: 29238705 PMCID: PMC5712541 DOI: 10.3389/fpubh.2017.00317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/13/2017] [Indexed: 01/14/2023] Open
Abstract
The Zika virus (ZIKV) spread rapidly in Brazil in 2015 and 2016. Rio de Janeiro was among the Brazilian cities which were hit the hardest, with more that a hundred thousand confirmed cases up to the end of 2016. Given the severity of the neurological damage caused by ZIKV on fetuses, we wondered whether it would also cause an increase in the number of miscarriages, especially very early ones. As early miscarriages are unlikely to be recorded as a health event, this effect-if it occurred-would only show up as a reduction in the number of live births. In this article, we show that there was a 15% drop in live births between September and December 2016 compared with the previous year, and that this sharp drop from epidemiological week 33 onward is strongly correlated with the number of recorded cases of Zika about 40 weeks earlier. We postulate that ZIKV is directly responsible for this drop in the birth rate. Further work is required to ascertain whether other factors such as the fear of having a microcephaly baby or the economic crisis are having a significant effect.
Collapse
Affiliation(s)
- Flávio Codeço Coelho
- Center for Mathematical Epidemiology, School of Applied Mathematics, Fundação Getúlio Vargas, Brasília, Brazil
| | - Margaret Armstrong
- Center for Mathematical Epidemiology, School of Applied Mathematics, Fundação Getúlio Vargas, Brasília, Brazil
| | | | - Cristina Lemos
- Prefeitura da Cidade do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
386
|
Abstract
Safe and efficacious vaccines are arguably the most successful medical interventions of all time. Yet the ongoing discovery of new pathogens, along with emergence of antibiotic-resistant pathogens and a burgeoning population at risk of such infections, imposes unprecedented public health challenges. To meet these challenges, innovative strategies to discover and develop new or improved anti-infective vaccines are necessary. These approaches must intersect the most meaningful insights into protective immunity and advanced technologies with capabilities to deliver immunogens for optimal immune protection. This goal is considered through several recent advances in host-pathogen relationships, conceptual strides in vaccinology, and emerging technologies. Given a clear and growing risk of pandemic disease should the threat of infection go unmet, developing vaccines that optimize protective immunity against high-priority and antibiotic-resistant pathogens represents an urgent and unifying imperative.
Collapse
Affiliation(s)
- Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90024.,Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90509; .,Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90509.,Los Angeles Biomedical Research Institute, Torrance, California 90502
| | | |
Collapse
|
387
|
Designing Ecofriendly Bionanocomposite Assembly with Improved Antimicrobial and Potent on-site Zika Virus Vector Larvicidal Activities with its Mode of Action. Sci Rep 2017; 7:15531. [PMID: 29138496 PMCID: PMC5686063 DOI: 10.1038/s41598-017-15537-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/27/2017] [Indexed: 12/14/2022] Open
Abstract
Dialyzed natural polymer, fibroin, from Bombyx mori was used to synthesize biocompatible silver and gold nanoparticles in-situ in dispersion form. The films of pure fibroin (PF), fibroin-silver nanocomposite (FSNC) and fibroin-gold nanocomposite (FGNC) were fabricated by drop casting method. The characterization of the resultant dispersion and films was performed by visual color change, UV-Vis spectroscopy and atomic force microscopy. The dispersions of PF, FSNC and FGNC were tested for antibacterial activity against E. coli NCIM 2065, S. aureus NCIM 5021, K. pneumoniae NCIM 2957, P. aeruginosa ATCC 9027 and antifungal activity against A. fumigatus NCIM 902. FSNC dispersion exhibited an effective antimicrobial action against all the tested microbes as compared to FGNC dispersion. The mechanism of action for FSNC and FGNC against these microorganisms is proposed. Additionally, the larvicidal activity of the films was investigated against the larvae of Aedes aegypti. The films of FSNC exhibited 100% mortality while the films of FGNC revealed 86-98% mortality against all the larval instars and pupae of A. aegypti. The phytotoxicity study of the nanocomposite films was also carried out to confirm the reusability of water. This is first noble metal nanocomposite based report on larvicidal activity of zika virus vector.
Collapse
|
388
|
Gyawali N, Bradbury RS, Aaskov JG, Taylor-Robinson AW. Neglected Australian Arboviruses and Undifferentiated Febrile Illness: Addressing Public Health Challenges Arising From the 'Developing Northern Australia' Government Policy. Front Microbiol 2017; 8:2150. [PMID: 29163434 PMCID: PMC5681932 DOI: 10.3389/fmicb.2017.02150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/20/2017] [Indexed: 12/19/2022] Open
Abstract
The Australian Government is currently promoting the development of Northern Australia, with an associated increase in the local population. Consequent to this is the public health threat posed by heightened human exposure to many previously neglected arboviruses that are indigenous to the region. This initiative to support economic activity in the tropical north of the continent is leading to the accelerated expansion of an infection-naïve human population into hitherto un-encountered ecosystems inhabited by reservoir animals and vectors for these arboviruses. Combined with an apparent rise in the number and impact of dramatic climate events, such as tropical cyclones and floods caused by torrential monsoonal rainfall, this heightens the potential for viral transmission to humans. More than 75 arboviruses have been identified in Australia, some of which are associated with human disease but for which routine tests are not available to diagnose infection. Here, we describe briefly the neglected Australian arboviruses that are most likely to emerge as significant agents of human disease in the coming decades. We also advocate the establishment of a thorough surveillance and diagnostic protocol, including developing new pan-viral rapid tests for primary care use to assist in the early diagnosis and correct treatment of affected patients. We propose that the implementation of these activities will enhance our understanding of the geographical range, prevalence, identification and control of neglected Australian arboviruses. This would minimise and limit the possibility of large-scale outbreaks with these agents as population and economic growth expands further into Australia's tropical north.
Collapse
Affiliation(s)
- Narayan Gyawali
- Infectious Diseases Research Group, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Richard S. Bradbury
- Infectious Diseases Research Group, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - John G. Aaskov
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Andrew W. Taylor-Robinson
- Infectious Diseases Research Group, School of Health, Medical and Applied Sciences, Central Queensland University, Brisbane, QLD, Australia
| |
Collapse
|
389
|
Ginsberg HS, Bargar TA, Hladik ML, Lubelczyk C. Management of Arthropod Pathogen Vectors in North America: Minimizing Adverse Effects on Pollinators. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:1463-1475. [PMID: 28968680 DOI: 10.1093/jme/tjx146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Tick and mosquito management is important to public health protection. At the same time, growing concerns about declines of pollinator species raise the question of whether vector control practices might affect pollinator populations. We report the results of a task force of the North American Pollinator Protection Campaign (NAPPC) that examined potential effects of vector management practices on pollinators, and how these programs could be adjusted to minimize negative effects on pollinating species. The main types of vector control practices that might affect pollinators are landscape manipulation, biocontrol, and pesticide applications. Some current practices already minimize effects of vector control on pollinators (e.g., short-lived pesticides and application-targeting technologies). Nontarget effects can be further diminished by taking pollinator protection into account in the planning stages of vector management programs. Effects of vector control on pollinator species often depend on specific local conditions (e.g., proximity of locations with abundant vectors to concentrations of floral resources), so planning is most effective when it includes collaborations of local vector management professionals with local experts on pollinators. Interventions can then be designed to avoid pollinators (e.g., targeting applications to avoid blooming times and pollinator nesting habitats), while still optimizing public health protection. Research on efficient targeting of interventions, and on effects on pollinators of emerging technologies, will help mitigate potential deleterious effects on pollinators in future management programs. In particular, models that can predict effects of integrated pest management on vector-borne pathogen transmission, along with effects on pollinator populations, would be useful for collaborative decision-making.
Collapse
Affiliation(s)
- Howard S Ginsberg
- USGS Patuxent Wildlife Research Center, University of Rhode Island, RI Field Station, Woodward Hall - PSE, Kingston, RI 02881
| | - Timothy A Bargar
- USGS Wetland and Aquatic Research Center, 7920 NW 71st St., Gainesville, FL 32653
| | - Michelle L Hladik
- USGS California Water Science Center, 6000 J St., Placer Hall, Sacramento, CA 95819
| | - Charles Lubelczyk
- Maine Medical Center Research Institute, Vector-Borne Disease Laboratory, 81 Research Dr., Scarborough, ME 04074
| |
Collapse
|
390
|
Hu B, Huo Y, Yang L, Chen G, Luo M, Yang J, Zhou J. ZIKV infection effects changes in gene splicing, isoform composition and lncRNA expression in human neural progenitor cells. Virol J 2017; 14:217. [PMID: 29116029 PMCID: PMC5688814 DOI: 10.1186/s12985-017-0882-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/30/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The Zika virus (ZIKV) is a mosquito-borne flavivirus that causes microcephaly and Guillain-Barré syndrome in infected individuals. To obtain insights into the mechanism of ZIKV infection and pathogenesis, we analyzed the transcriptome of ZIKV infected human neural progenitor cells (hNPCs) for changes in alternative splicing (AS), gene isoform (ISO) composition and long noncoding RNAs (lncRNAs) expression. METHODS We analyzed differentially expressed lncRNAs, AS, ISO from RNA-seq data in ZIKV infected hNPCs. RESULTS We obtained 149 differentially expressed lncRNAs, including potential viral targets to modulate cellular processes such as cell cycle, apoptosis and immune response. The infection induced 262 cases of AS occurring in 229 genes, which were enriched in cell death, RNA processing, transport, and neuron development. Among 691 differentially expressed ISOs, upregulated ISOs were enriched in signaling, regulation of transcription, and amino acid biosynthesis, while downregulated ISOs were mostly enriched in cell cycle. Importantly, these analyses revealed specific links between ZIKV induced changes in cellular pathways and the type of changes in the host transcriptome, suggesting important regulatory mechanisms. CONCLUSIONS Our analyses revealed candidate lncRNAs, AS events and ISOs which may function in ZIKV infection induced cell cycle disruption, apoptosis and attenuation of neurogenesis, and shed light on the roles of lncRNAs, AS and ISOs in virus-host interactions, and would facilitate future studies of ZIKV infection and pathogenesis.
Collapse
Affiliation(s)
- Benxia Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yongxia Huo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, China
| | - Liping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, China
| | - Guijun Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, China
| | - Minhua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Wuhan, 430071, China
| | - Jinlong Yang
- BGI-Yunnan, BGI-Shenzhen, Kunming, 650000, China.,College of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Jumin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, China.
| |
Collapse
|
391
|
Johnson TL, Haque U, Monaghan AJ, Eisen L, Hahn MB, Hayden MH, Savage HM, McAllister J, Mutebi JP, Eisen RJ. Modeling the Environmental Suitability for Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the Contiguous United States. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:1605-1614. [PMID: 29029153 PMCID: PMC5868335 DOI: 10.1093/jme/tjx163] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 05/07/2023]
Abstract
The mosquitoes Aedes (Stegomyia) aegypti (L.)(Diptera:Culicidae) and Ae. (Stegomyia) albopictus (Skuse) (Diptera:Culicidae) transmit dengue, chikungunya, and Zika viruses and represent a growing public health threat in parts of the United States where they are established. To complement existing mosquito presence records based on discontinuous, non-systematic surveillance efforts, we developed county-scale environmental suitability maps for both species using maximum entropy modeling to fit climatic variables to county presence records from 1960-2016 in the contiguous United States. The predictive models for Ae. aegypti and Ae. albopictus had an overall accuracy of 0.84 and 0.85, respectively. Cumulative growing degree days (GDDs) during the winter months, an indicator of overall warmth, was the most important predictive variable for both species and was positively associated with environmental suitability. The number (percentage) of counties classified as environmentally suitable, based on models with 90 or 99% sensitivity, ranged from 1,443 (46%) to 2,209 (71%) for Ae. aegypti and from 1,726 (55%) to 2,329 (75%) for Ae. albopictus. Increasing model sensitivity results in more counties classified as suitable, at least for summer survival, from which there are no mosquito records. We anticipate that Ae. aegypti and Ae. albopictus will be found more commonly in counties classified as suitable based on the lower 90% sensitivity threshold compared with the higher 99% threshold. Counties predicted suitable with 90% sensitivity should therefore be a top priority for expanded mosquito surveillance efforts while still keeping in mind that Ae. aegypti and Ae. albopictus may be introduced, via accidental transport of eggs or immatures, and potentially proliferate during the warmest part of the year anywhere within the geographic areas delineated by the 99% sensitivity model.
Collapse
Affiliation(s)
- Tammi L. Johnson
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| | - Ubydul Haque
- National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307
| | - Andrew J. Monaghan
- National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307
| | - Lars Eisen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| | - Micah B. Hahn
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| | - Mary H. Hayden
- National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307
| | - Harry M. Savage
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| | - Janet McAllister
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| | - John-Paul Mutebi
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| | - Rebecca J. Eisen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| |
Collapse
|
392
|
Pradhan D, Yadav M, Verma R, Khan NS, Jena L, Jain AK. Discovery of T-cell Driven Subunit Vaccines from Zika Virus Genome: An Immunoinformatics Approach. Interdiscip Sci 2017; 9:468-477. [PMID: 29094318 PMCID: PMC7091030 DOI: 10.1007/s12539-017-0238-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 02/26/2017] [Accepted: 05/09/2017] [Indexed: 11/16/2022]
Abstract
The recent outbreaks of Zika virus and the absence of a specific therapy have necessitated to identify T-cell-stimulating antigenic peptides as potential subunit vaccine candidates. The translated ssRNA (+) genome of Zika virus was explored in EMBOSS antigenic and VaxiJen to predict 63 peptides as potential antigens. Three MHC-II binding peptide prediction tools, viz. NetMHCIIpan, PREDIVAC and immune epitope database (IEDB) were employed in consensus on 63 antigenic peptides to propose 14 T-helper cell epitopes. Similarly, analysis on 63 antigenic peptides through NetMHC, NetCTL and IEDB MHC-I binding peptide prediction tool led to identification of 14 CTL epitopes. Seven T-cell epitopes, C:44-66, M:135-149, NS2A:124-144, NS3:421-453, NS3:540-554, NS4B:90-134 and NS4B:171-188, are observed to share overlapping MHC-I and MHC-II binding motifs and hence, are being proposed to constitute minimum T-cell antigens to elicit protective T-cell immune response against Zika. Three of them, C:44-66, NS3:421-453 and NS3:540-554 are identified to be conserved across all the selected strains of Zika virus. Moreover, the 21 T-cell epitopes are non-self to humans and exhibited good coverage in variable populations of 14 geographical locations. Therefore, 21 T-cell epitopes are proposed as potential subunit vaccines against Zika virus.
Collapse
Affiliation(s)
- Dibyabhaba Pradhan
- Biomedical Informatics Centre, National Institute of Pathology-ICMR, New Delhi, 110029, India
| | - Monika Yadav
- Biomedical Informatics Centre, National Institute of Pathology-ICMR, New Delhi, 110029, India
| | - Rashi Verma
- Biomedical Informatics Centre, National Institute of Pathology-ICMR, New Delhi, 110029, India
| | - Noor Saba Khan
- Biomedical Informatics Centre, National Institute of Pathology-ICMR, New Delhi, 110029, India
| | - Lingaraja Jena
- Bioinformatics Centre, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Wardha, 442102, India
| | - Arun Kumar Jain
- Biomedical Informatics Centre, National Institute of Pathology-ICMR, New Delhi, 110029, India.
| |
Collapse
|
393
|
Turner LH, Kinder JM, Wilburn A, D’Mello RJ, Braunlin MR, Jiang TT, Pham G, Way SS. Preconceptual Zika virus asymptomatic infection protects against secondary prenatal infection. PLoS Pathog 2017; 13:e1006684. [PMID: 29145516 PMCID: PMC5689831 DOI: 10.1371/journal.ppat.1006684] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022] Open
Abstract
Pregnant women, and their fetal offspring, are uniquely susceptible to Zika virus and other microbial pathogens capable of congenital fetal infection. Unavoidable exposure to Zika virus in endemic areas underscores the need for identifying at-risk individuals, and protecting expecting mothers and their fetal offspring against prenatal infection. Here we show that primary Zika virus asymptomatic infection in mice confers protection against re-infection, and that these protective benefits are maintained during pregnancy. Zika virus recovery was sharply reduced in maternal tissues and amongst fetal concepti after prenatal challenge in mothers with resolved subclinical infection prior to pregnancy compared with mice undergoing primary prenatal infection. These benefits coincide with expanded accumulation of viral-specific antibodies in maternal serum and fetal tissues that protect against infection by the identical or heterologous Zika virus genotype strains. Thus, preconceptual infection primes Zika virus-specific antibodies that confer cross-genotype protection against re-infection during pregnancy.
Collapse
Affiliation(s)
- Lucien H. Turner
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - Jeremy M. Kinder
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - Adrienne Wilburn
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rahul J. D’Mello
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - Makayla R. Braunlin
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - Tony T. Jiang
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Giang Pham
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - Sing Sing Way
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| |
Collapse
|
394
|
Colón-González FJ, Peres CA, Steiner São Bernardo C, Hunter PR, Lake IR. After the epidemic: Zika virus projections for Latin America and the Caribbean. PLoS Negl Trop Dis 2017; 11:e0006007. [PMID: 29091713 PMCID: PMC5683651 DOI: 10.1371/journal.pntd.0006007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/13/2017] [Accepted: 10/03/2017] [Indexed: 01/24/2023] Open
Abstract
Background Zika is one of the most challenging emergent vector-borne diseases, yet its future public health impact remains unclear. Zika was of little public health concern until recent reports of its association with congenital syndromes. By 3 August 2017 ∼217,000 Zika cases and ∼3,400 cases of associated congenital syndrome were reported in Latin America and the Caribbean. Some modelling exercises suggest that Zika virus infection could become endemic in agreement with recent declarations from the The World Health Organisation. Methodology/Principal findings We produced high-resolution spatially-explicit projections of Zika cases, associated congenital syndromes and monetary costs for Latin America and the Caribbean now that the epidemic phase of the disease appears to be over. In contrast to previous studies which have adopted a modelling approach to map Zika potential, we project case numbers using a statistical approach based upon reported dengue case data as a Zika surrogate. Our results indicate that ∼12.3 (0.7–162.3) million Zika cases could be expected across Latin America and the Caribbean every year, leading to ∼64.4 (0.2–5159.3) thousand cases of Guillain-Barré syndrome and ∼4.7 (0.0–116.3) thousand cases of microcephaly. The economic burden of these neurological sequelae are estimated to be USD ∼2.3 (USD 0–159.3) billion per annum. Conclusions/Significance Zika is likely to have significant public health consequences across Latin America and the Caribbean in years to come. Our projections inform regional and federal health authorities, offering an opportunity to adapt to this public health challenge. In February 2016 the World Health Organisation (WHO) declared Zika virus infection in the Americas as a Public Health Emergency of International Concern (PHEIC). By November 2016, Zika was declared a long-term public health challenge. This change of status implies that Zika is likely to become an endemic problem in the region. Due to the PHEIC status of Zika, most current research has rightly focused on the epidemic stage of the disease; however, it is timely and critical to consider the public health consequences after such epidemic phase. We used one of the largest and most spatially diverse panels of epidemiological surveillance data comprising 12 years of dengue case observations from Brazil and Mexico, and covering an area of over ten million km2. State-of-the-art statistical models, and high-resolution (0.5 × 0.5 degrees) climate and demographic data were used to produce spatially-explicit projections of Zika infection for Latin America and the Caribbean. Model projections were then used to estimate the number of cases with neurological sequelae and their economic cost. Our findings indicate that the potential health and economic burden of Zika could be considerably large for the region should it become endemic. The estimated burden of Zika under an endemic state highlights the need for health authorities in the countries at risk to promote preventive and control measures.
Collapse
Affiliation(s)
- Felipe J. Colón-González
- School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
- * E-mail:
| | - Carlos A. Peres
- School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| | | | - Paul R. Hunter
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Iain R. Lake
- School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| |
Collapse
|
395
|
Alterations in the host transcriptome in vitro following Rift Valley fever virus infection. Sci Rep 2017; 7:14385. [PMID: 29085037 PMCID: PMC5662566 DOI: 10.1038/s41598-017-14800-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/16/2017] [Indexed: 01/01/2023] Open
Abstract
Rift Valley fever virus (RVFV) causes major outbreaks among livestock, characterized by "abortion storms" in which spontaneous abortion occurs in almost 100% of pregnant ruminants. Humans can also become infected with mild symptoms that can progress to more severe symptoms, such as hepatitis, encephalitis, and hemorrhagic fever. The goal of this study was to use RNA-sequencing (RNA-seq) to analyze the host transcriptome in response to RVFV infection. G2/M DNA damage checkpoint, ATM signaling, mitochondrial dysfunction, regulation of the antiviral response, and integrin-linked kinase (ILK) signaling were among the top altered canonical pathways with both the attenuated MP12 strain and the fully virulent ZH548 strain. Although several mRNA transcripts were highly upregulated, an increase at the protein level was not observed for the selected genes, which was at least partially due to the NSs dependent block in mRNA export. Inhibition of ILK signaling, which is involved in cell motility and cytoskeletal reorganization, resulted in reduced RVFV replication, indicating that this pathway is important for viral replication. Overall, this is the first global transcriptomic analysis of the human host response following RVFV infection, which could give insight into novel host responses that have not yet been explored.
Collapse
|
396
|
Zika virus induces astrocyte differentiation in neural stem cells. J Neurovirol 2017; 24:52-61. [DOI: 10.1007/s13365-017-0589-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/18/2017] [Accepted: 10/11/2017] [Indexed: 01/09/2023]
|
397
|
Gyawali N, Taylor-Robinson AW. Confronting the Emerging Threat to Public Health in Northern Australia of Neglected Indigenous Arboviruses. Trop Med Infect Dis 2017; 2:E55. [PMID: 30270912 PMCID: PMC6082055 DOI: 10.3390/tropicalmed2040055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 01/12/2023] Open
Abstract
In excess of 75 arboviruses have been identified in Australia, some of which are now well established as causative agents of debilitating diseases. These include Ross River virus, Barmah Forest virus, and Murray Valley encephalitis virus, each of which may be detected by both antibody-based recognition and molecular typing. However, for most of the remaining arboviruses that may be associated with pathology in humans, routine tests are not available to diagnose infection. A number of these so-called 'neglected' or 'orphan' arboviruses that are indigenous to Australia might have been infecting humans at a regular rate for decades. Some of them may be associated with undifferentiated febrile illness-fever, the cause of which is not obvious-for which around half of all cases each year remain undiagnosed. This is of particular relevance to Northern Australia, given the Commonwealth Government's transformative vision for the midterm future of massive infrastructure investment in this region. An expansion of the industrial and business development of this previously underpopulated region is predicted. This is set to bring into intimate proximity infection-naïve human hosts, native reservoir animals, and vector mosquitoes, thereby creating a perfect storm for increased prevalence of infection with neglected Australian arboviruses. Moreover, the escalating rate and effects of climate change that are increasingly observed in the tropical north of the country are likely to lead to elevated numbers of arbovirus-transmitting mosquitoes. As a commensurate response, continuing assiduous attention to vector monitoring and control is required. In this overall context, improved epidemiological surveillance and diagnostic screening, including establishing novel, rapid pan-viral tests to facilitate early diagnosis and appropriate treatment of febrile primary care patients, should be considered a public health priority. Investment in a rigorous identification program would reduce the possibility of significant outbreaks of these indigenous arboviruses at a time when population growth accelerates in Northern Australia.
Collapse
Affiliation(s)
- Narayan Gyawali
- School of Health, Medical & Applied Sciences, Central Queensland University, Rockhampton, QLD 4702, Australia.
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia.
| | - Andrew W Taylor-Robinson
- School of Health, Medical & Applied Sciences, Central Queensland University, Brisbane, QLD 4000, Australia.
| |
Collapse
|
398
|
Basile K, Kok J, Dwyer DE. Zika virus: what, where from and where to? Pathology 2017; 49:698-706. [PMID: 29050846 DOI: 10.1016/j.pathol.2017.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 08/13/2017] [Accepted: 08/20/2017] [Indexed: 11/25/2022]
Abstract
The significance of Zika virus as a clinically significant flavivirus has previously been under-recognised, until extensive outbreaks in Yap in 2007, French Polynesia in 2013 and the Americas since 2015. Although Zika virus infection is commonly asymptomatic or mild, emerging evidence suggests a strong link to microcephaly in babies and Guillain-Barré syndrome in adults. This article reviews the epidemiology, geographic distribution, basic virology, transmission, clinical presentation, potential complications, laboratory diagnosis, treatment and prevention of Zika virus infection. Education on mosquito avoidance measures and vector control efforts currently remain key to reducing risk of transmission, whilst further research is underway to develop antiviral therapies and vaccines.
Collapse
Affiliation(s)
- Kerri Basile
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, University of Sydney, Westmead Hospital, Westmead, NSW, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead Hospital, Westmead, NSW, Australia; Centre for Research Excellence in Critical Infections, University of Sydney, Westmead Hospital, Westmead, NSW, Australia.
| | - Jen Kok
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, University of Sydney, Westmead Hospital, Westmead, NSW, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead Hospital, Westmead, NSW, Australia; Centre for Research Excellence in Critical Infections, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Dominic E Dwyer
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, University of Sydney, Westmead Hospital, Westmead, NSW, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead Hospital, Westmead, NSW, Australia; Centre for Research Excellence in Critical Infections, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
399
|
Xu HT, Hassounah SA, Colby-Germinario SP, Oliveira M, Fogarty C, Quan Y, Han Y, Golubkov O, Ibanescu I, Brenner B, Stranix BR, Wainberg MA. Purification of Zika virus RNA-dependent RNA polymerase and its use to identify small-molecule Zika inhibitors. J Antimicrob Chemother 2017; 72:727-734. [PMID: 28069884 DOI: 10.1093/jac/dkw514] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022] Open
Abstract
Background The viral RNA-dependent RNA polymerase (RdRp) enzymes of the Flaviviridae family are essential for viral replication and are logically important targets for development of antiviral therapeutic agents. Zika virus (ZIKV) is a rapidly re-emerging human pathogen for which no vaccine or antiviral agent is currently available. Methods To facilitate development of ZIKV RdRp inhibitors, we have established an RdRp assay using purified recombinant ZIKV NS5 polymerase. Results We have shown that both the hepatitis C virus (HCV) nucleoside inhibitor sofosbuvir triphosphate and a pyridoxine-derived non-nucleoside small-molecule inhibitor, DMB213, can act against ZIKV RdRp activity at IC 50 s of 7.3 and 5.2 μM, respectively, in RNA synthesis reactions catalysed by recombinant ZIKV NS5 polymerase. Cell-based assays confirmed the anti-ZIKV activity of sofosbuvir and DMB213 with 50% effective concentrations (EC 50 s) of 8.3 and 4.6 μM, respectively. Control studies showed that DMB213 did not inhibit recombinant HIV-1 reverse transcriptase and showed only very weak inhibition of HIV-1 integrase strand-transfer activity. The S604T substitution in motif B of the ZIKV RdRp, which corresponds to the S282T substitution in motif B of HCV RdRp, which confers resistance to nucleotide inhibitors, also conferred resistance to sofosbuvir triphosphate, but not to DMB213. Enzyme assays showed that DMB213 appears to be competitive with natural nucleoside triphosphate (NTP) substrates. Conclusions Recombinant ZIKV RdRp assays can be useful tools for the screening of both nucleos(t)ide compounds and non-nucleotide metal ion-chelating agents that interfere with ZIKV replication.
Collapse
Affiliation(s)
- Hong-Tao Xu
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Said A Hassounah
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Susan P Colby-Germinario
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Maureen Oliveira
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Clare Fogarty
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Yudong Quan
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Yingshan Han
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Olga Golubkov
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Ilinca Ibanescu
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Bluma Brenner
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | | | - Mark A Wainberg
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
400
|
Castro JDVD, Pereira LP, Dias DA, Aguiar LB, Maia JCN, Costa JIFD, Castro ECMD, Feitosa FEDL, Carvalho FHC. Presumed Zika virus-related congenital brain malformations: the spectrum of CT and MRI findings in fetuses and newborns. ARQUIVOS DE NEURO-PSIQUIATRIA 2017; 75:703-710. [DOI: 10.1590/0004-282x20170134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 07/10/2017] [Indexed: 12/23/2022]
Abstract
ABSTRACT The new epidemic of Zika virus infection raises grave concerns, especially with the increasingly-recognized link between emerging cases of microcephaly and this infectious disease. Besides small cranial dimensions, there are striking morphologic anomalies in the fetal brain. Key anomalies include cortical developmental malformations and a peculiar distribution of pathologic calcifications. These potentially indicate a new pattern of congenital central nervous system infection. Methods: Eight women underwent fetal MRI. Four infants also underwent postnatal CT. Five of the women underwent amniocentesis. Results: All neonates were born with microcephaly. On fetal MRI, ventriculomegaly, marked reduction of white matter thickness, severe sylvian fissure simplification, abnormal sulcation, and diffuse volumetric loss of cerebellar hemispheres were consistently seen. On postnatal CT, diffuse subcortical and basal ganglia calcifications were observed. The Zika virus was detected in two amniocenteses by polymerase chain reaction assays. Conclusion: We hope to assist the medical community in recognizing the spectrum of encephalic changes related to congenital Zika virus infection.
Collapse
|