351
|
Kozera-Kępniak A, Jastrzębski K, Walenczak J, Klimek A, Głąbiński A. 66034T/C polymorphism of the human pregnane X receptor (hPXR) as potential risk factor for drug resistance in epilepsy – Preliminary study. Neurol Neurochir Pol 2017; 51:19-23. [DOI: 10.1016/j.pjnns.2016.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 09/15/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
|
352
|
JUŘICA J, DOVRTĚLOVÁ G, NOSKOVÁ K, ZENDULKA O. Bile Acids, Nuclear Receptors and Cytochrome P450. Physiol Res 2016; 65:S427-S440. [DOI: 10.33549/physiolres.933512] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review summarizes the importance of bile acids (BA) as important regulators of various homeostatic mechanisms with detailed focus on cytochrome P450 (CYP) enzymes. In the first part, synthesis, metabolism and circulation of BA is summarized and BA are reviewed as physiological ligands of nuclear receptors which regulate transcription of genes involved in their metabolism, transport and excretion. Notably, PXR, FXR and VDR are the most important nuclear receptors through which BA regulate transcription of CYP genes involved in the metabolism of both BA and xenobiotics. Therapeutic use of BA and their derivatives is also briefly reviewed. The physiological role of BA interaction with nuclear receptors is basically to decrease production of toxic non-polar BA and increase their metabolic turnover towards polar BA and thus decrease their toxicity. By this, the activity of some drug-metabolizing CYPs is also influenced what could have clinically relevant consequences in cholestatic diseases or during the treatment with BA or their derivatives.
Collapse
Affiliation(s)
| | | | | | - O. ZENDULKA
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno. Czech Republic
| |
Collapse
|
353
|
Kollitz EM, Zhang G, Hawkins MB, Whitfield GK, Reif DM, Kullman SW. Evolutionary and Functional Diversification of the Vitamin D Receptor-Lithocholic Acid Partnership. PLoS One 2016; 11:e0168278. [PMID: 27942020 PMCID: PMC5152921 DOI: 10.1371/journal.pone.0168278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/28/2016] [Indexed: 01/14/2023] Open
Abstract
The evolution, molecular behavior, and physiological function of nuclear receptors are of particular interest given their diverse roles in regulating essential biological processes. The vitamin D receptor (VDR) is well known for its canonical roles in calcium homeostasis and skeletal maintenance. Additionally, VDR has received an increased amount of attention due to the discovery of numerous non-calcemic functions, including the detoxification of lithocholic acid. Lithocholic acid is a toxic metabolite of chenodeoxycholic acid, a primary bile acid. The partnership between the VDR and lithocholic acid has been hypothesized to be a recent adaptation that evolved to mediate the detoxification and elimination of lithocholic acid from the gut. This partnership is speculated to be limited to higher vertebrates (birds and mammals), as lower vertebrates do not synthesize the parent compound of lithocholic acid. However, the molecular functions associated with the observed insensitivity of basal VDRs to lithocholic acid have not been explored. Here we characterize canonical nuclear receptor functions of VDRs from select species representing key nodes in vertebrate evolution and span a range of bile salt phenotypes. Competitive ligand binding assays revealed that the receptor's affinity for lithocholic acid is highly conserved across species, suggesting that lithocholic acid affinity is an ancient and non-adaptive trait. However, transient transactivation assays revealed that lithocholic acid-mediated VDR activation might have evolved more recently, as the non-mammalian receptors did not respond to lithocholic acid unless exogenous coactivator proteins were co-expressed. Subsequent functional assays indicated that differential lithocholic acid-mediated receptor activation is potentially driven by differential protein-protein interactions between VDR and nuclear receptor coregulator proteins. We hypothesize that the vitamin D receptor-lithocholic acid partnership evolved as a by-product of natural selection on the ligand-receptor partnership between the vitamin D receptor and the native VDR ligand: 1α,25-dihydroxyvitamin D3, the biologically active metabolite of vitamin D3.
Collapse
Affiliation(s)
- Erin M. Kollitz
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- Nicholas School of the Environment, Duke University, Durham, NC, United States of America
| | - Guozhu Zhang
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Mary Beth Hawkins
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - G. Kerr Whitfield
- Department of Basic Medical Sciences, The University of Arizona College of Medicine, Phoenix, Arizona, United States of America
| | - David M. Reif
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Seth W. Kullman
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
354
|
Carazo A, Hyrsova L, Dusek J, Chodounska H, Horvatova A, Berka K, Bazgier V, Gan-Schreier H, Chamulitrat W, Kudova E, Pavek P. Acetylated deoxycholic (DCA) and cholic (CA) acids are potent ligands of pregnane X (PXR) receptor. Toxicol Lett 2016; 265:86-96. [PMID: 27871908 DOI: 10.1016/j.toxlet.2016.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022]
Abstract
The Pregnane X (PXR), Vitamin D (VDR) and Farnesoid X (FXR) nuclear receptors have been shown to be receptors of bile acids controlling their detoxification or synthesis. Chenodeoxycholic (CDCA) and lithocholic (LCA) acids are ligands of FXR and VDR, respectively, whereas 3-keto and acetylated derivates of LCA have been described as ligands for all three receptors. In this study, we hypothesized that oxidation or acetylation at position 3, 7 and 12 of bile acids DCA (deoxycholic acid), LCA, CA (cholic acid), and CDCA by detoxification enzymes or microbiome may have an effect on the interactions with bile acid nuclear receptors. We employed reporter gene assays in HepG2 cells, the TR-FRET assay with recombinant PXR and RT-PCR to study the effects of acetylated and keto bile acids on the nuclear receptors activation and their target gene expression in differentiated hepatic HepaRG cells. We demonstrate that the DCA 3,12-diacetate and CA 3,7,12-triacetate derivatives are ligands of PXR and DCA 3,12-diacetate induces PXR target genes such as CYP3A4, CYP2B6 and ABCB1/MDR1. In conclusion, we found that acetylated DCA and CA are potent ligands of PXR. Whether the acetylated bile acid derivatives are novel endogenous ligands of PXR with detoxification or physiological functions should be further studied in ongoing experiments.
Collapse
Affiliation(s)
- Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, Hradec Kralove CZ500 05, Czechia
| | - Lucie Hyrsova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, Hradec Kralove CZ500 05, Czechia
| | - Jan Dusek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, Hradec Kralove CZ500 05, Czechia
| | - Hana Chodounska
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, CZ160 00 Praha, Czechia
| | - Alzbeta Horvatova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, Hradec Kralove CZ500 05, Czechia
| | - Karel Berka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University in Olomouc, 17. listopadu 1131, Olomouc CZ779 00, Czechia
| | - Vaclav Bazgier
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University in Olomouc, 17. listopadu 1131, Olomouc CZ779 00, Czechia
| | - Hongying Gan-Schreier
- Department of Internal Medicine IV, Gastroenterology and Infectious Diseases, Im Neuenheimer Feld, Heidelberg, Germany
| | - Waleé Chamulitrat
- Department of Internal Medicine IV, Gastroenterology and Infectious Diseases, Im Neuenheimer Feld, Heidelberg, Germany
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, CZ160 00 Praha, Czechia
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, Hradec Kralove CZ500 05, Czechia.
| |
Collapse
|
355
|
Menaquinone-4 (vitamin K 2 ) up-regulates expression of human intestinal alkaline phosphatase in Caco-2 cells. Nutr Res 2016; 36:1269-1276. [DOI: 10.1016/j.nutres.2016.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 11/23/2022]
|
356
|
Khamphaya T, Chansela P, Piyachaturawat P, Suksamrarn A, Nathanson MH, Weerachayaphorn J. Effects of andrographolide on intrahepatic cholestasis induced by alpha-naphthylisothiocyanate in rats. Eur J Pharmacol 2016; 789:254-264. [PMID: 27475677 PMCID: PMC10804355 DOI: 10.1016/j.ejphar.2016.07.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 12/28/2022]
Abstract
Cholestasis is a cardinal manifestation of liver diseases but effective therapeutic approaches are limited. Therefore, alternative therapy for treating and preventing cholestatic liver diseases is necessary. Andrographolide, a promising anticancer drug derived from the medicinal plant Andrographis paniculata, has diverse pharmacological properties and multi-spectrum therapeutic applications. However, it is unknown whether andrographolide has a hepatoprotective effect on intrahepatic cholestasis. The aims of this study were to investigate the protective effect and possible mechanisms of andrographolide in a rat model of acute intrahepatic cholestasis induced by alpha-naphthylisothiocyanate (ANIT). Andrographolide was administered intragastrically for four consecutive days, with a single intraperitoneal injection of ANIT on the second day. Liver injury was evaluated biochemically and histologically together with hepatic gene and protein expression analysis. Rats pretreated with andrographolide prior to ANIT injection demonstrated lower levels of serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyltransferase, as well as bilirubin and bile acids as compared to rats treated with ANIT alone. Andrographolide also decreased the incidence and extent of periductular fibrosis and bile duct proliferation. Analysis of protein expression in livers from andrographolide-treated cholestatic rats revealed markedly decreased expression of alpha-smooth muscle actin and nuclear factor kappa-B (NF-κB). In conclusion, andrographolide has a potent protective property against ANIT-induced cholestatic liver injury. The mechanisms that underlie this protective effect are mediated through down-regulation of NF-κB expression and inhibition of hepatic stellate cell activation. These findings suggest that andrographolide could be a promising therapeutic option in prevention and slowing down the progression of cholestatic liver diseases.
Collapse
Affiliation(s)
- Tanaporn Khamphaya
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Piyachat Chansela
- Department of Anatomy, Phramongkutklao College of Medicine, Bangkok, Thailand
| | | | - Apichart Suksamrarn
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Michael H Nathanson
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jittima Weerachayaphorn
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
357
|
AbdulHameed MDM, Ippolito DL, Wallqvist A. Predicting Rat and Human Pregnane X Receptor Activators Using Bayesian Classification Models. Chem Res Toxicol 2016; 29:1729-1740. [DOI: 10.1021/acs.chemrestox.6b00227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mohamed Diwan M. AbdulHameed
- Department
of Defense Biotechnology High Performance Computing Software Applications
Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, Maryland 21702, United States
| | - Danielle L. Ippolito
- U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort
Detrick, Maryland 21702, United States
| | - Anders Wallqvist
- Department
of Defense Biotechnology High Performance Computing Software Applications
Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, Maryland 21702, United States
| |
Collapse
|
358
|
A brief history of the discovery of PXR and CAR as xenobiotic receptors. Acta Pharm Sin B 2016; 6:450-452. [PMID: 27709013 PMCID: PMC5045536 DOI: 10.1016/j.apsb.2016.06.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/21/2016] [Accepted: 04/28/2016] [Indexed: 02/01/2023] Open
Abstract
The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) were cloned and/or established as xenobiotic receptors in 1998. Due to their activities in the transcriptional regulation of phase I and phase II enzymes as well as drug transporters, PXR and CAR have been defined as the master regulators of xenobiotic responses. The discovery of PXR and CAR provides the essential molecular basis by which drugs and other xenobiotic compounds regulate the expression of xenobiotic enzymes and transporters. This article is intended to provide a historical overview on the discovery of PXR and CAR as xenobiotic receptors.
Collapse
|
359
|
Crosstalk of HNF4 α with extracellular and intracellular signaling pathways in the regulation of hepatic metabolism of drugs and lipids. Acta Pharm Sin B 2016; 6:393-408. [PMID: 27709008 PMCID: PMC5045537 DOI: 10.1016/j.apsb.2016.07.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 12/15/2022] Open
Abstract
The liver is essential for survival due to its critical role in the regulation of metabolic homeostasis. Metabolism of xenobiotics, such as environmental chemicals and drugs by the liver protects us from toxic effects of these xenobiotics, whereas metabolism of cholesterol, bile acids (BAs), lipids, and glucose provide key building blocks and nutrients to promote the growth or maintain the survival of the organism. As a well-established master regulator of liver development and function, hepatocyte nuclear factor 4 alpha (HNF4α) plays a critical role in regulating a large number of key genes essential for the metabolism of xenobiotics, metabolic wastes, and nutrients. The expression and activity of HNF4α is regulated by diverse hormonal and signaling pathways such as growth hormone, glucocorticoids, thyroid hormone, insulin, transforming growth factor-β, estrogen, and cytokines. HNF4α appears to play a central role in orchestrating the transduction of extracellular hormonal signaling and intracellular stress/nutritional signaling onto transcriptional changes in the liver. There have been a few reviews on the regulation of drug metabolism, lipid metabolism, cell proliferation, and inflammation by HNF4α. However, the knowledge on how the expression and transcriptional activity of HNF4α is modulated remains scattered. Herein I provide comprehensive review on the regulation of expression and transcriptional activity of HNF4α, and how HNF4α crosstalks with diverse extracellular and intracellular signaling pathways to regulate genes essential in liver pathophysiology.
Collapse
|
360
|
Pregnane X Receptor Regulates Pathogen-Induced Inflammation and Host Defense against an Intracellular Bacterial Infection through Toll-like Receptor 4. Sci Rep 2016; 6:31936. [PMID: 27550658 PMCID: PMC4994038 DOI: 10.1038/srep31936] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/29/2016] [Indexed: 12/20/2022] Open
Abstract
The nuclear pregnane X receptor (PXR) plays a central role in regulating xenobiotic metabolism. We now report a novel role for PXR as a critical negative regulator of innate immunity after infection. Pxr−/− mice exhibited remarkably elevated pro-inflammatory cytokine and chemokine production following infection with Listeria monocytogenes (Lm). Despite the more robust innate immune response, Pxr−/− mice were highly susceptible to Lm infection. Surprisingly, disruption of the Toll-like receptor 4 (TLR4) but not TLR2 signaling restored the inflammation to normal levels and the ability to clear Lm in Pxr−/− mice. Mechanistically, the heightened inflammation in Pxr−/− mice resulted in the death of inflammatory monocytes that led to the enhanced susceptibility to Lm infection. These data demonstrated that PXR regulated pathogen-induced inflammation and host defense against Lm infection through modulating the TLR4 pathway. In summary, we discovered an apical role for PXR in regulating innate immunity. In addition, we uncovered a remarkable negative impact of the TLR4 pathway in controlling the quality of the inflammatory response and host defense against a gram-positive bacterial infection.
Collapse
|
361
|
Barrett KG, Fang H, Kocarek TA, Runge-Morris M. Transcriptional Regulation of Cytosolic Sulfotransferase 1C2 by Vitamin D Receptor in LS180 Human Colorectal Adenocarcinoma Cells. Drug Metab Dispos 2016; 44:1431-4. [PMID: 27130351 PMCID: PMC4986619 DOI: 10.1124/dmd.116.070300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/28/2016] [Indexed: 11/22/2022] Open
Abstract
The factors that regulate expression of genes in the 1C family of human cytosolic sulfotransferases (SULT1C) are not well understood. In a recent study evaluating the effects of a panel of transcription factor activators on SULT1C family member expression in LS180 human colorectal adenocarcinoma cells, we found that SULT1C2 expression was significantly increased by 1α,25-dihydroxyvitamin D3 (VitD3) treatment. The objective of our current study was to identify the mechanism responsible for VitD3-mediated activation of SULT1C2 transcription. VitD3 treatment of LS180 cells activated transcription of a transfected luciferase reporter plasmid that contained ∼5 kilobase pairs (kbp) of the SULT1C2 gene, which included 402 nucleotides (nt) of the noncoding exon 1, all of intron 1, and 21 nt of exon 2. Although computational analysis of the VitD3-responsive region of the SULT1C2 gene identified a pregnane X receptor (PXR)-binding site within exon 1, the transfected 5 kbp SULT1C2 reporter was not activated by treatment with rifampicin, a prototypical PXR agonist. However, deletion or mutation of the predicted PXR-binding site abolished VitD3-mediated SULT1C2 transcriptional activation, identifying the site as a functional vitamin D response element (VDRE). We further demonstrated that vitamin D receptor (VDR) can interact directly with the SULT1C2 VDRE sequence using an enzyme-linked immunosorbent assay-based transcription factor binding assay. In conclusion, VitD3-inducible SULT1C2 transcription is mediated through a VDRE in exon 1. These results suggest a role for SULT1C2 in VitD3-regulated physiologic processes in human intestine.
Collapse
Affiliation(s)
- Kathleen G Barrett
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Hailin Fang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Melissa Runge-Morris
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
362
|
McMillin M, DeMorrow S. Effects of bile acids on neurological function and disease. FASEB J 2016; 30:3658-3668. [PMID: 27468758 DOI: 10.1096/fj.201600275r] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/18/2016] [Indexed: 12/14/2022]
Abstract
Bile acids are synthesized from cholesterol and are known to be involved with the emulsification and digestion of dietary lipids and fat-soluble vitamins. Outside of this role, bile acids can act as cell signaling effectors through binding and activating receptors on both the cell membrane and nucleus. Numerous reports have investigated these signaling pathways in conditions where the liver is damaged. More recently, effort has been made to investigate the role of bile acids in diseases outside of those associated with liver damage. This review summarizes recent findings on the influences that bile acids can exert in normal neurological function and their contribution to diseases of the nervous system, with the intent of highlighting the role of these metabolites as potential players in neurological disorders.-McMillin, M., DeMorrow, S. Effects of bile acids on neurological function and disease.
Collapse
Affiliation(s)
- Matthew McMillin
- Texas A&M University Health Science Center, College of Medicine, Department of Internal Medicine, Temple, Texas, USA; and.,Central Texas Veterans Health Care System, Temple, Texas, USA
| | - Sharon DeMorrow
- Texas A&M University Health Science Center, College of Medicine, Department of Internal Medicine, Temple, Texas, USA; and .,Central Texas Veterans Health Care System, Temple, Texas, USA
| |
Collapse
|
363
|
Fiorucci S, Distrutti E. Targeting the transsulfuration-H2S pathway by FXR and GPBAR1 ligands in the treatment of portal hypertension. Pharmacol Res 2016; 111:749-756. [PMID: 27475883 DOI: 10.1016/j.phrs.2016.07.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/12/2022]
Abstract
Cirrhosis is a end-stage disease of the liver in which fibrogenesis, angiogenesis and distortion of intrahepatic microcirculation lead to increased intrahepatic resistance to portal blood flow, a condition known as portal hypertension. Portal hypertension is maintained by a variety of molecular mechanisms including sinusoidal endothelial cells (LSECs) hyporeactivity, activation of hepatic stellate cells (HSCs), reduction in hepatic endothelial nitric oxide synthase (eNOS) activity along with increased eNOS-derived NO generation in the splanchnic and systemic circulations. A reduction of the expression/function of the two major hydrogen sulfide (H2S)-producing enzymes, cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS), has also been demonstrated. A deficit in the transsulfuration pathway leading to the accumulation of homocysteine might contribute to defective generation of H2S and endothelial hyporeactivity. Bile acids are ligands for nuclear receptors, such as farnesoid X receptor (FXR), and G-protein-coupled receptors (GPCRs), such as the G-protein bile acid receptor 1 (GPBAR1). FXR and GPBAR1 ligands regulate the expression/activity of CSE by both genomic and non-genomic effects and have been proved effective in protecting against endothelial dysfunction observed in rodent models of cirrhosis. GPBAR1, a receptor for secondary bile acids, is selectively expressed by LSECs and its activation increases the expression of CSE and attenuates the production of endotelin-1, a potent vasoconstrictor agent. In vivo GPBAR1 ligand attenuates the imbalance between vasodilatory and vaso-constricting agents, making GPBAR1 a promising target in the treatment of portal hypertension.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/therapeutic use
- Cystathionine gamma-Lyase/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Humans
- Hydrogen Sulfide/metabolism
- Hypertension, Portal/drug therapy
- Hypertension, Portal/metabolism
- Hypertension, Portal/physiopathology
- Ligands
- Liver/drug effects
- Liver/metabolism
- Nitric Oxide/metabolism
- Portal Pressure/drug effects
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Stefano Fiorucci
- Department of Surgical and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi 1, 06132, Perugia, Italy.
| | - Eleonora Distrutti
- S.C. di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06132, Perugia, Italy.
| |
Collapse
|
364
|
Kuno T, Hirayama-Kurogi M, Ito S, Ohtsuki S. Effect of Intestinal Flora on Protein Expression of Drug-Metabolizing Enzymes and Transporters in the Liver and Kidney of Germ-Free and Antibiotics-Treated Mice. Mol Pharm 2016; 13:2691-701. [PMID: 27376980 DOI: 10.1021/acs.molpharmaceut.6b00259] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Takuya Kuno
- Department
of Pharmaceutical Microbiology, Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Department
of Drug Metabolism and Pharmacokinetics, Drug Safety Research Center,
Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima, Tokushima 771-0192, Japan
| | - Mio Hirayama-Kurogi
- Department
of Pharmaceutical Microbiology, Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Department
of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- AMED-CREST, Japan
Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda, Tokyo 100-0004, Japan
| | - Shingo Ito
- Department
of Pharmaceutical Microbiology, Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Department
of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- AMED-CREST, Japan
Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda, Tokyo 100-0004, Japan
| | - Sumio Ohtsuki
- Department
of Pharmaceutical Microbiology, Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Department
of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- AMED-CREST, Japan
Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda, Tokyo 100-0004, Japan
| |
Collapse
|
365
|
Li CY, Renaud HJ, Klaassen CD, Cui JY. Age-Specific Regulation of Drug-Processing Genes in Mouse Liver by Ligands of Xenobiotic-Sensing Transcription Factors. Drug Metab Dispos 2016; 44:1038-49. [PMID: 26577535 PMCID: PMC4931882 DOI: 10.1124/dmd.115.066639] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/13/2015] [Indexed: 01/08/2023] Open
Abstract
The xenobiotic-sensing transcription factors (xeno-sensors) AhR, CAR, and PXR upregulate the expression of many drug-processing genes (DPGs) in liver. Previous studies have unveiled profound changes in the basal expression of DPGs during development; however, knowledge on the ontogeny of the inducibility of DPGs in response to pharmacological activation of xeno-sensors is still limited. The goal of this study was to investigate the age-specific regulation of DPGs by prototypical xeno-sensor ligands: 2,3,7,8-tetrachlorodibenzodioxin (TCDD) for AhR; 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) for CAR; and pregnane-16α-carbonitrile (PCN) for PXR during mouse liver development. The basal mRNAs of most DPGs were low during neonatal age, but gradually increased to adult levels, whereas some DPGs (Cyp1a2, Cyp2b10, Cyp3a11, Gstm2, Gstm3, Papss2, and Oatp1a4) exhibited an adolescent-predominant expression pattern. The inducibility of DPGs was age-specific: 1) during neonatal age, the highest fold increase in the mRNA expression was observed for Cyp1a2, Sult5a1, and Ugt1a9 by TCDD; Cyp3a11 and Mrp2 by TCPOBOP; as well as Gstm2 and Gstm3 by PCN; 2) during adolescent age, the highest fold increase in the mRNA expression was observed for Ugt1a6 and Mrp4 by TCDD, Cyp2b10, Ugt2b34, and Ugt2b35 by TCPOBOP, as well as Gsta1, Gsta4, Sult1e1, Ugt1a1, Mrp3, and Mrp4 by PCN; 3) in adults, the highest fold increase in the mRNA expression was observed for Aldh1a1, Aldh1a7, and Ugt2b36 by TCPOBOP, as well as Papss2 and Oatp1a4 by PCN. In conclusion, the inducibility of hepatic DPGs following the pharmacological activation of xeno-sensors is age specific.
Collapse
MESH Headings
- Age Factors
- Aldehyde Dehydrogenase/genetics
- Aldehyde Dehydrogenase/metabolism
- Animals
- Animals, Newborn
- Basic Helix-Loop-Helix Transcription Factors/agonists
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Constitutive Androstane Receptor
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Gene Expression Profiling/methods
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Glucuronosyltransferase/genetics
- Glucuronosyltransferase/metabolism
- Glutathione Transferase/genetics
- Glutathione Transferase/metabolism
- Ligands
- Liver/drug effects
- Liver/metabolism
- Male
- Mice, Inbred C57BL
- Organic Cation Transport Proteins/genetics
- Organic Cation Transport Proteins/metabolism
- Polychlorinated Dibenzodioxins/pharmacology
- Pregnane X Receptor
- Pregnenolone Carbonitrile/pharmacology
- Pyridines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Aryl Hydrocarbon/agonists
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/agonists
- Receptors, Steroid/metabolism
- Sulfotransferases/genetics
- Sulfotransferases/metabolism
Collapse
Affiliation(s)
- Cindy Yanfei Li
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.Y.L., C.D.K., J.Y.C.); and Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas (H.J.R.)
| | - Helen J Renaud
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.Y.L., C.D.K., J.Y.C.); and Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas (H.J.R.)
| | - Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.Y.L., C.D.K., J.Y.C.); and Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas (H.J.R.)
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.Y.L., C.D.K., J.Y.C.); and Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas (H.J.R.)
| |
Collapse
|
366
|
Kameyama N, Kobayashi K, Shimizu S, Yamasaki Y, Endo M, Hashimoto M, Furihata T, Chiba K. Involvement of ESE-3, epithelial-specific ETS factor family member 3, in transactivation of the ABCB1 gene via pregnane X receptor in intestine-derived LS180 cells but not in liver-derived HepG2 cells. Drug Metab Pharmacokinet 2016; 31:340-348. [PMID: 27567379 DOI: 10.1016/j.dmpk.2016.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/26/2016] [Accepted: 05/25/2016] [Indexed: 01/18/2023]
Abstract
Pregnane X receptor (PXR) is involved in the transactivation of ABCB1 gene by rifampicin (RIF). However, we found that increase in ABCB1 mRNA by RIF was observed in LS180 cells but not in HepG2 cells. Since both cell lines expressed PXR equally, we hypothesized that a factor(s) other than PXR is responsible for PXR-mediated transactivation of the ABCB1 gene. Reporter activities of a distal enhancer module containing direct repeat 4 (DR4) motifs were increased by RIF in LS180 cells but not in HepG2 cells. Mutation of the DR4 motifs diminished the increase in reporter activities in LS180 cells. Gene subtraction showed that epithelial-specific ETS factor 3 (ESE-3) is a transcription factor enriched in LS180 cells compared to HepG2 cells. When ESE-3 and PXR were co-expressed in HepG2 cells, reporter activities were increased by RIF, which were completely abolished by mutation of DR4 motifs. Chromatin immunoprecipitation assays showed specific binding of ESE-3 to the region containing the DR4 motifs of the ABCB1 gene. Finally, knock-down of ESE-3 in LS180 cells resulted in a decrease in the induction of ABCB1 mRNA. These results suggest that ESE-3 is a factor responsible for PXR-mediated transactivation of the ABCB1 gene by RIF in LS180 cells.
Collapse
Affiliation(s)
- Naoya Kameyama
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kaoru Kobayashi
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Shoko Shimizu
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yuki Yamasaki
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Mika Endo
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Mari Hashimoto
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomomi Furihata
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kan Chiba
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
367
|
An ultra-high performance liquid chromatography–tandem mass spectrometric assay for quantifying 3-ketocholanoic acid: Application to the human liver microsomal CYP3A-dependent lithocholic acid 3-oxidation assay. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1023-1024:1-8. [DOI: 10.1016/j.jchromb.2016.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/23/2016] [Accepted: 04/22/2016] [Indexed: 12/28/2022]
|
368
|
RNA-Seq reveals common and unique PXR- and CAR-target gene signatures in the mouse liver transcriptome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1198-1217. [PMID: 27113289 DOI: 10.1016/j.bbagrm.2016.04.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 12/14/2022]
Abstract
The pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are well-known xenobiotic-sensing nuclear receptors with overlapping functions. However, there lacks a quantitative characterization to distinguish between the PXR and CAR target genes and signaling pathways in the liver. The present study performed a transcriptomic comparison of the PXR- and CAR-targets using RNA-Seq in livers of adult wild-type mice that were treated with the prototypical PXR ligand PCN (200mg/kg, i.p. once daily for 4days in corn oil) or the prototypical CAR ligand TCPOBOP (3mg/kg, i.p., once daily for 4days in corn oil). At the given doses, TCPOBOP differentially regulated many more genes (2125) than PCN (212), and 147 of the same genes were differentially regulated by both chemicals. As expected, the top pathways differentially regulated by both PCN and TCPOBOP were involved in xenobiotic metabolism, and they also up-regulated genes involved in retinoid metabolism, but down-regulated genes involved in inflammation and iron homeostasis. Regarding unique pathways, PXR activation appeared to overlap with the aryl hydrocarbon receptor signaling, whereas CAR activation appeared to overlap with the farnesoid X receptor signaling, acute-phase response, and mitochondrial dysfunction. The mRNAs of differentially regulated drug-processing genes (DPGs) partitioned into three patterns, namely TCPOBOP-induced, PCN-induced, as well as TCPOBOP-suppressed gene clusters. The cumulative mRNAs of the differentially regulated DPGs, phase-I and -II enzymes, as well as efflux transporters were all up-regulated by both PCN and TCPOBOPOP, whereas the cumulative mRNAs of the uptake transporters were down-regulated only by TCPOBOP. The absolute mRNA abundance in control and receptor-activated conditions was examined in each DPG category to predict the contribution of specific DPG genes in the PXR/CAR-mediated pharmacokinetic responses. The preferable differential regulation by TCPOBOP in the entire hepatic transcriptome correlated with a marked change in the expression of many DNA and histone epigenetic modifiers. In conclusion, the present study has revealed known and novel, as well as common and unique targets of PXR and CAR in mouse liver following pharmacological activation using their prototypical ligands. Results from this study will further support the role of these receptors in regulating the homeostasis of xenobiotic and intermediary metabolism in the liver, and aid in distinguishing between PXR and CAR signaling at various physiological and pathophysiological conditions. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
|
369
|
Vachirayonstien T, Yan B. MicroRNA-30c-1-3p is a silencer of the pregnane X receptor by targeting the 3'-untranslated region and alters the expression of its target gene cytochrome P450 3A4. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1238-1244. [PMID: 27085140 DOI: 10.1016/j.bbagrm.2016.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/17/2016] [Accepted: 03/30/2016] [Indexed: 01/07/2023]
Abstract
The pregnane X receptor (PXR) is a master regulator of genes involved in drug elimination. Recently, activation of PXR has also been linked to the development of many disease conditions such as metabolic disorders and malignancies. MicroRNAs (miRs) emerge as important molecular species involved in these conditions. This study was undertaken to test a large number of miRs for their ability to regulate PXR expression. As many as 58 miRs were tested and miR-30c-1-3p was identified to suppress PXR expression. The suppression was achieved by targeting the 3'-untranslated region, 438 nucleotides from the stop codon. The suppression was detected in multiple cell lines from different organ origins. In addition, miR-30c-1-3p altered basal and induced expression of cytochrome P450 3A4 (CYP3A4), a prototypical target gene of PXR. The alteration varied depending on the time and amounts of miR-30c-1-3p. CYP3A4 is responsible for the metabolism of more than 50% medicines. The interconnection between miR-30c-1-3p and PXR signifies a role of miRs in drug-drug interactions and chemosensitivity. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Thaveechai Vachirayonstien
- Department of Biomedical and Pharmaceutical Sciences, Center for Integrated Drug Development, University of Rhode Island, Kingston, RI 02881, United States
| | - Bingfang Yan
- Department of Biomedical and Pharmaceutical Sciences, Center for Integrated Drug Development, University of Rhode Island, Kingston, RI 02881, United States.
| |
Collapse
|
370
|
Ebert B, Kisiela M, Maser E. Transcriptional regulation of human and murine short-chain dehydrogenase/reductases (SDRs) – an in silico approach. Drug Metab Rev 2016; 48:183-217. [DOI: 10.3109/03602532.2016.1167902] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bettina Ebert
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Michael Kisiela
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
371
|
Hakkola J, Rysä J, Hukkanen J. Regulation of hepatic energy metabolism by the nuclear receptor PXR. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1072-1082. [PMID: 27041449 DOI: 10.1016/j.bbagrm.2016.03.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/30/2022]
Abstract
The pregnane X receptor (PXR) is a nuclear receptor that is traditionally thought to be specialized for sensing xenobiotic exposure. In concurrence with this feature PXR was originally identified to regulate drug-metabolizing enzymes and transporters. During the last ten years it has become clear that PXR harbors broader functions. Evidence obtained both in experimental animals and humans indicate that ligand-activated PXR regulates hepatic glucose and lipid metabolism and affects whole body metabolic homeostasis. Currently, the consequences of PXR activation on overall metabolic health are not yet fully understood and varying results on the effect of PXR activation or knockout on metabolic disorders and weight gain have been published in mouse models. Rifampicin and St. John's wort, the prototypical human PXR agonists, impair glucose tolerance in healthy volunteers. Chronic exposure to PXR agonists could potentially represent a risk factor for diabetes and metabolic syndrome. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Janne Hukkanen
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland; Research Unit of Internal Medicine, University of Oulu, Oulu, Finland; Department of Internal Medicine, Oulu University Hospital, Oulu, Finland; Biocenter Oulu, Oulu, Finland
| |
Collapse
|
372
|
Rana M, Devi S, Gourinath S, Goswami R, Tyagi RK. A comprehensive analysis and functional characterization of naturally occurring non-synonymous variants of nuclear receptor PXR. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1183-1197. [PMID: 26962022 DOI: 10.1016/j.bbagrm.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 01/17/2023]
Abstract
Pregnane & Xenobiotic Receptor (PXR) acts as a xenosensing transcriptional regulator of many drug metabolizing enzymes and transporters of the 'detoxification machinery' that coordinate in elimination of xenobiotics and endobiotics from the cellular milieu. It is an accepted view that some individuals or specific populations display considerable differences in their ability to metabolize different drugs, dietary constituents, herbals etc. In this context we speculated that polymorphisms in PXR gene might contribute to variability in cytochrome P450 (CYP450) metabolizing enzymes of phase I, drug metabolizing components of phase II and efflux components of the detoxification machinery. Therefore, in this study, we have undertaken a comprehensive functional analysis of seventeen naturally occurring non-synonymous variants of human PXR. When compared, we observed that some of the PXR SNP variants exhibit distinct functional and dynamic responses on parameters which included transcriptional function, sub-cellular localization, mitotic chromatin binding, DNA-binding properties and other molecular interactions. One of the unique SNP located within the DNA-binding domain of PXR was found to be functionally null and distinct on other parameters. Similarly, some of the non-synonymous SNPs in PXR imparted reduced transactivation function as compared to wild type PXR. Interestingly, PXR is reported to be a mitotic chromatin binding protein and such an association has been correlated to an emerging concept of 'transcription memory' and altered transcription output. In view of the observations made herein our data suggest that some of the natural PXR variants may have adverse physiological consequences owing to its influence on the expression levels and functional output of drug-metabolizing enzymes and transporters. The present study is expected to explain not only the observed inter-individual responses to different drugs but may also highlight the mechanistic details and importance of PXR in drug clearance, drug-drug interactions and diverse metabolic disorders. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Manjul Rana
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneeta Devi
- School of Life-Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Samudrala Gourinath
- School of Life-Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravinder Goswami
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
373
|
Zeng H, Li D, Qin X, Chen P, Tan H, Zeng X, Li X, Fan X, Jiang Y, Zhou Y, Chen Y, Wang Y, Huang M, Bi H. Hepatoprotective Effects of Schisandra sphenanthera Extract against Lithocholic Acid-Induced Cholestasis in Male Mice Are Associated with Activation of the Pregnane X Receptor Pathway and Promotion of Liver Regeneration. Drug Metab Dispos 2016; 44:337-42. [PMID: 26658429 DOI: 10.1124/dmd.115.066969] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/16/2015] [Indexed: 02/13/2025] Open
Abstract
We previously reported that the ethanol extract of Schisandra sphenanthera [Wuzhi (WZ) tablet] significantly protects against acetaminophen-induced hepatoxicity. However, whether WZ exerts a protective effect against cholestasis remains unclear. In this study, the protective effect of WZ on lithocholic acid (LCA)-induced intrahepatic cholestasis in mice was characterized and the involved mechanisms were investigated. WZ pretreatment (350 mg/kg) with LCA significantly reversed liver necrosis and decreased serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase activity. More importantly, serum total bile acids and total bilirubin were also remarkably reduced. Quantitative reverse-transcription polymerase chain reaction and Western blot analysis showed that hepatic expression of pregnane X receptor (PXR) target genes such as CYP3A11 and UDP-glucuronosyltransferase (UGT) 1A1 were significantly increased by WZ treatment. Luciferase assays performed in LS174T cells illustrated that WZ extract and its six bioactive lignans could all activate human PXR. In addition, WZ treatment significantly promoted liver regeneration via inhibition of p53/p21 to induce cell proliferation-associated proteins such as cyclin D1 and proliferating cell nuclear antigen. In conclusion, WZ has a protective effect against LCA-induced intrahepatic cholestasis, partially owing to activation of the PXR pathway and promotion of liver regeneration.
Collapse
Affiliation(s)
- Hang Zeng
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Dongshun Li
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Xiaoling Qin
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Pan Chen
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Huasen Tan
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Xuezhen Zeng
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Xi Li
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Xiaomei Fan
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Yiming Jiang
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Yawen Zhou
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Yixin Chen
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Ying Wang
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Min Huang
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Huichang Bi
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| |
Collapse
|
374
|
Zhou C. Novel functions of PXR in cardiometabolic disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1112-1120. [PMID: 26924429 DOI: 10.1016/j.bbagrm.2016.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/17/2022]
Abstract
Cardiometabolic disease emerges as a worldwide epidemic and there is urgent need to understand the molecular mechanisms underlying this chronic disease. The chemical environment to which we are exposed has significantly changed in the past few decades and recent research has implicated its contribution to the development of many chronic human diseases. However, the mechanisms of how exposure to chemicals contributes to the development of cardiometabolic disease are poorly understood. Numerous chemicals have been identified as ligands for the pregnane X receptor (PXR), a nuclear receptor functioning as a xenobiotic sensor to coordinately regulate xenobiotic metabolism via transcriptional regulation of xenobiotic-detoxifying enzymes and transporters. In the past decade, the function of PXR in the regulation of xenobiotic metabolism has been extensively studied by many laboratories and the role of PXR as a xenobiotic sensor has been well-established. The identification of PXR as a xenobiotic sensor has provided an important tool for the study of new mechanisms through which xenobiotic exposure impacts human chronic diseases. Recent studies have revealed novel and unexpected roles of PXR in modulating obesity, insulin sensitivity, lipid homeostasis, atherogenesis, and vascular functions. These studies suggest that PXR signaling may contribute significantly to the pathophysiological effects of many known xenobiotics on cardiometabolic disease in humans. The discovery of novel functions of PXR in cardiometabolic disease not only contributes to our understanding of "gene-environment interactions" in predisposing individuals to chronic diseases but also provides strong evidence to inform future risk assessment for relevant chemicals. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
375
|
Selwyn FP, Cheng SL, Klaassen CD, Cui JY. Regulation of Hepatic Drug-Metabolizing Enzymes in Germ-Free Mice by Conventionalization and Probiotics. Drug Metab Dispos 2016; 44:262-74. [PMID: 26586378 PMCID: PMC4746487 DOI: 10.1124/dmd.115.067504] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/18/2015] [Indexed: 01/26/2023] Open
Abstract
Little is known regarding the effect of intestinal microbiota modifiers, such as probiotics and conventionalization with exogenous bacteria, on host hepatic drug metabolism. Therefore, the goal of this study was to determine the effect of these modifiers on the expression of various drug-metabolizing enzymes of the host liver. VSL3 is a probiotic that contains eight live strains of bacteria. Five groups of mice were used: 1) conventional mice (CV), 2) conventional mice treated with VSL3 in drinking water, 3) germ-free (GF) mice, 4) GF mice treated with VSL3, and 5) GF mice exposed to the conventional environment for 2 months. All mice were 3 months old at tissue collection. GF conditions markedly downregulated the cytochrome P450 (P450) 3a gene cluster, but upregulated the Cyp4a cluster, whereas conventionalization normalized their expression to conventional levels [reverse-transcription quantitative polymerase chain reaction (qPCR) and western blot]. Changes in the Cyp3a and 4a gene expression correlated with alterations in the pregnane X receptor and peroxisome proliferator-activated receptor α-DNA binding, respectively (chromatin immunoprecipitation-qPCR). VSL3 increased each bacterial component in the large intestinal content of the CV mice, and increased these bacteria even more in GF mice, likely due to less competition for growth in the GF environment. VSL3 given to conventional mice increased the mRNAs of Cyp4v3, alcohol dehydrogenase 1, and carboxyesterase 2a, but decreased the mRNAs of multiple phase II glutathione-S-transferases. VSL3 given to germ-free mice decreased the mRNAs of UDP-glucuronosyltransferases 1a9 and 2a3. In conclusion, conventionalization and VSL3 alter the expression of many drug-metabolizing enzyme s in the liver, suggesting the importance of considering "bacteria-drug" interactions for various adverse drug reactions in patients.
Collapse
Affiliation(s)
- Felcy Pavithra Selwyn
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Sunny Lihua Cheng
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
376
|
Wang W, Ren X, Cai Y, Chen L, Zhang W, Xu J. Rifampicin Induces Bicarbonate-Rich Choleresis in Rats: Involvement of Anion Exchanger 2. Dig Dis Sci 2016; 61:126-36. [PMID: 26319954 DOI: 10.1007/s10620-015-3850-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/10/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIM Previous studies have shown that rifampicin induced choleresis, the mechanisms of which have not been described. The aim of this study was to investigate the mechanisms underlying in vivo rifampicin-induced choleresis. METHODS In one experimental set, rats were treated chronically with rifampicin on days 1, 3 and 7. Serum and biliary parameters were assayed, and mRNA and protein levels, as well as the locations of the hepatic export transporters were analyzed by real-time PCR, western blot and immunofluorescence. Ductular mass was evaluated immunohistochemically. In another experimental set, rats received an acute infusion of rifampicin. The amount of rifampicin in bile was detected using HPLC. Biliary parameters were monitored following intrabiliary retrograde fluxes of the Cl(-)/HCO3 (-) exchange inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) or 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) in the infused rats. RESULTS Biliary bicarbonate output increased in parallel to the augmented bile flow in response to rifampicin, and this effect was abolished with intrabiliary administration of DIDS, but not NPPB. The biliary secretion of rifampicin with increases in bile flow and biliary rifampicin in response to different infused doses of the antibiotic show no significant correlations. After rifampicin treatment, the expression level of anion exchanger 2 (AE2) increased, while the location of hepatic transporters did not change. However, RIF treatment did not increase ductular mass significantly. CONCLUSIONS These results indicate that the increase in bile flow induced by rifampicin is mainly due to increased HCO3 (-) excretion mediated by increased AE2 protein expression and activity.
Collapse
Affiliation(s)
- Wei Wang
- Department of Gastroenterology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Xiaofei Ren
- Department of Gastroenterology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Yi Cai
- Department of Gastroenterology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Lihong Chen
- Department of Gastroenterology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Weiping Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Jianming Xu
- Department of Gastroenterology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
377
|
Kaneta M, Ochiai W, Nagae M, Suto W, Hanagata M, Suzuki H, Kitaoka S, Hatogai J, Ikarashi N, Sugiyama K. Mechanism for Increased Expression of UGT2B in the Liver of Mice with Neuropathic Pain. Biol Pharm Bull 2016; 39:1809-1814. [DOI: 10.1248/bpb.b16-00341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Wataru Ochiai
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Marina Nagae
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Wataru Suto
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Mika Hanagata
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Haruka Suzuki
- Department of Clinical Pharmacokinetics, Hoshi University
| | | | - Jo Hatogai
- Department of Clinical Pharmacokinetics, Hoshi University
| | | | | |
Collapse
|
378
|
Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol Res 2015; 104:9-21. [PMID: 26706784 DOI: 10.1016/j.phrs.2015.12.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/03/2015] [Indexed: 12/17/2022]
Abstract
For many years, bile acids were thought to only function as detergents which solubilize fats and facilitate the uptake of fat-soluble vitamins in the intestine. Many early observations; however, demonstrated that bile acids regulate more complex processes, such as bile acids synthesis and immune cell function through activation of signal transduction pathways. These studies were the first to suggest that receptors may exist for bile acids. Ultimately, seminal studies by many investigators led to the discovery of several bile acid-activated receptors including the farnesoid X receptor, the vitamin D receptor, the pregnane X receptor, TGR5, α5 β1 integrin, and sphingosine-1-phosphate receptor 2. Several of these receptors are expressed outside of the gastrointestinal system, indicating that bile acids may have diverse functions throughout the body. Characterization of the functions of these receptors over the last two decades has identified many important roles for these receptors in regulation of bile acid synthesis, transport, and detoxification; regulation of glucose utilization; regulation of fatty acid synthesis and oxidation; regulation of immune cell function; regulation of energy expenditure; and regulation of neural processes such as gastric motility. Through these many functions, bile acids regulate many aspects of digestion ranging from uptake of essential vitamins to proper utilization of nutrients. Accordingly, within a short time period, bile acids moved beyond simple detergents and into the realm of complex signaling molecules. Because of the important processes that bile acids regulate through activation of receptors, drugs that target these receptors are under development for the treatment of several diseases, including cholestatic liver disease and metabolic syndrome. In this review, we will describe the various bile acid receptors, the signal transduction pathways activated by these receptors, and briefly discuss the physiological processes that these receptors regulate.
Collapse
|
379
|
Ponce-Ruiz N, Rojas-García A, Barrón-Vivanco B, Elizondo G, Bernal-Hernández Y, Mejía-García A, Medina-Díaz I. Transcriptional regulation of human paraoxonase 1 by PXR and GR in human hepatoma cells. Toxicol In Vitro 2015; 30:348-54. [DOI: 10.1016/j.tiv.2015.09.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/15/2015] [Accepted: 09/30/2015] [Indexed: 01/08/2023]
|
380
|
PXR stimulates growth factor-mediated hepatocyte proliferation by cross-talk with the FOXO transcription factor. Biochem J 2015; 473:257-66. [PMID: 26574435 DOI: 10.1042/bj20150734] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/16/2015] [Indexed: 11/17/2022]
Abstract
Growth factor-mediated hepatocyte proliferation is crucial in liver regeneration and the recovery of liver function after injury. The nuclear receptor, pregnane X receptor (PXR), is a key transcription factor for the xenobiotic-induced expression of genes associated with various liver functions. Recently, we reported that PXR activation stimulates xenobiotic-induced hepatocyte proliferation. In the present study, we investigated whether PXR activation also stimulates growth factor-mediated hepatocyte proliferation. In G0 phase-synchronized, immortalized mouse hepatocytes, serum or epidermal growth factor treatment increased cell growth and this growth was augmented by the expression of mouse PXR and co-treatment with pregnenolone 16α-carbonitrile (PCN), a PXR ligand. In a liver regeneration model using carbon tetrachloride, PCN treatment enhanced the injury-induced increase in the number of Ki-67-positive nuclei as well as Ccna2 and Ccnb1 mRNA levels in wild-type (WT) but not Pxr-null mice. Chronological analysis of this model demonstrated that PCN treatment shifted the maximum cell proliferation to an earlier time point and increased the number of M-phase cells at those time points. In WT but not Pxr-null mice, PCN treatment reduced hepatic mRNA levels of genes involved in the suppression of G0/G1- and G1/S-phase transition, e.g. Rbl2, Cdkn1a and Cdkn1b. Analysis of the Rbl2 promoter revealed that PXR activation inhibited its Forkhead box O3 (FOXO3)-mediated transcription. Finally, the PXR-mediated enhancement of hepatocyte proliferation was inhibited by the expression of dominant active FOXO3 in vitro. The results of the present study suggest that PXR activation stimulates growth factor-mediated hepatocyte proliferation in mice, at least in part, through inhibiting FOXO3 from accelerating cell-cycle progression.
Collapse
|
381
|
Elentner A, Ortner D, Clausen B, Gonzalez FJ, Fernández-Salguero PM, Schmuth M, Dubrac S. Skin response to a carcinogen involves the xenobiotic receptor pregnane X receptor. Exp Dermatol 2015; 24:835-40. [PMID: 26013842 PMCID: PMC6334296 DOI: 10.1111/exd.12766] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 12/20/2022]
Abstract
Skin is in daily contact with potentially harmful molecules from the environment such as cigarette smoke, automobile emissions, industrial soot and groundwater. Pregnane X receptor (PXR) is a transcription factor expressed in liver and intestine that is activated by xenobiotic chemicals including drugs and environmental pollutants. Topical application of the tumor initiator 7,12-dimethylbenz(a)anthracene (DMBA) enhances Pxr, Cyp1a1, Cyp1b1 and Cyp3a11, but not Ahr expression in the skin. Surprisingly, DMBA-induced Pxr upregulation is largely impaired in Langerin(+) cell-depleted skin, suggesting that DMBA mainly triggers Pxr in Langerin(+) cells. Furthermore, PXR deficiency protects from DNA damage in epidermal cells but to a lesser extent than aryl hydrocarbon receptor (AHR) deficiency. Interestingly, skin exposure to low doses of DMBA induces migration of PXR-deficient but not of wild-type and AHR-deficient Langerhans cells (LCs). PXR-humanized mice show a marked increase in DNA damage to epidermal cells after topical application of DMBA, demonstrating relevance of these findings in human tissue. This is the first report suggesting that carcinogens might trigger PXR in epidermal cells, particularly in LCs, thus leading to DNA damage. Further studies are required to better delineate the role of PXR in cutaneous carcinogenesis.
Collapse
Affiliation(s)
- Andreas Elentner
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Ortner
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | - Björn Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes, Gutenberg-University Mainz, Mainz, Germany
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pedro M. Fernández-Salguero
- Department of Biochemistry, Molecular Biology and Genetic, Faculty of Sciences, University of Extremadura, Badajoz, Spain
| | - Matthias Schmuth
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
382
|
Neves AL, Chilloux J, Sarafian MH, Rahim MBA, Boulangé CL, Dumas ME. The microbiome and its pharmacological targets: therapeutic avenues in cardiometabolic diseases. Curr Opin Pharmacol 2015; 25:36-44. [PMID: 26531326 DOI: 10.1016/j.coph.2015.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/15/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023]
Abstract
Consisting of trillions of non-pathogenic bacteria living in a symbiotic relationship with their mammalian host, the gut microbiota has emerged in the past decades as one of the key drivers for cardiometabolic diseases (CMD). By degrading dietary substrates, the gut microbiota produces several metabolites that bind human pharmacological targets, impact subsequent signalling networks and in fine modulate host's metabolism. In this review, we revisit the pharmacological relevance of four classes of gut microbial metabolites in CMD: short-chain fatty acids (SCFA), bile acids, methylamines and indoles. Unravelling the signalling mechanisms of the microbial-mammalian metabolic axis adds one more layer of complexity to the physiopathology of CMD and opens new avenues for the development of microbiota-based pharmacological therapies.
Collapse
Affiliation(s)
- Ana Luisa Neves
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Julien Chilloux
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Magali H Sarafian
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Mohd Badrin Abdul Rahim
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Claire L Boulangé
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Marc-Emmanuel Dumas
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
383
|
Hodnik Ž, Tomašič T, Smodiš D, D'Amore C, Mašič LP, Fiorucci S, Kikelj D. Diethylstilbestrol-scaffold-based pregnane X receptor modulators. Eur J Med Chem 2015; 103:551-62. [PMID: 26408814 DOI: 10.1016/j.ejmech.2015.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/21/2015] [Accepted: 09/04/2015] [Indexed: 12/22/2022]
Abstract
Due to its function as a regulator of drug-metabolizing enzymes and transporters, pregnane X receptor (PXR) represents an important factor involved in drug metabolism. In this work, we describe the discovery of diethylstilbestrol-based PXR modulators, which were designed from marine sulfated steroids with PXR agonistic activity, solomonsterols A and B, and our recently reported bazedoxifene scaffold-derived PXR antagonists. The methylated diethylstilbestrol derivative 1 displayed potent PXR agonistic activity with an EC50 value of 10.5 μM, whereas compounds 3, 4 and 6 (IC50 for 6 = 27.4 μM) and diethylstilbestrol (2) itself (IC50 = 14.6 μM) exhibited PXR antagonistic effects in HepG2 cells. The PXR modulatory effects of the synthesized diethylstilbestrol derivatives were further confirmed by the induction of PXR-regulated CYP3A4 expression with compound 1, as well as by the inhibition of the rifaximin-promoted up-regulation of CYP3A4 expression with 2 and its derivative 6.
Collapse
Affiliation(s)
- Žiga Hodnik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Domen Smodiš
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Claudio D'Amore
- University of Perugia, Dipartimento di Medicina Clinica e Sperimentale, Nuova Facultàdi Medicina e Chirurgia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | | | - Stefano Fiorucci
- University of Perugia, Dipartimento di Medicina Clinica e Sperimentale, Nuova Facultàdi Medicina e Chirurgia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
384
|
Hwang SR, Kim IJ, Park JW. Formulations of deoxycholic for therapy: a patent review (2011 – 2014). Expert Opin Ther Pat 2015; 25:1423-40. [DOI: 10.1517/13543776.2016.1102888] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
385
|
Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders. Trends Mol Med 2015; 21:702-714. [PMID: 26481828 DOI: 10.1016/j.molmed.2015.09.001] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 12/17/2022]
Abstract
The composition of the bile acid pool is a function of the microbial metabolism of bile acids in the intestine. Perturbations of the microbiota shape the bile acid pool and modulate the activity of bile acid-activated receptors (BARs) even beyond the gastrointestinal tract, triggering various metabolic axes and altering host metabolism. Bile acids, in turn, can also regulate the composition of the gut microbiome at the highest taxonomic levels. Primary bile acids from the host are preferential ligands for the farnesoid X receptor (FXR), while secondary bile acids from the microbiota are ligands for G-protein-coupled bile acid receptor 1 (GPBAR1). In this review, we examine the role of bile acid signaling in the regulation of intestinal microbiota and how changes in bile acid composition affect human metabolism. Bile acids may offer novel therapeutic modalities in inflammation, obesity, and diabetes.
Collapse
|
386
|
Liver Expression of Sulphotransferase 2A1 Enzyme Is Impaired in Patients with Primary Sclerosing Cholangitis: Lack of the Response to Enhanced Expression of PXR. J Immunol Res 2015; 2015:571353. [PMID: 26504856 PMCID: PMC4609469 DOI: 10.1155/2015/571353] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/11/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIM Sulphotransferase 2A1 (SULT2A1) exerts hepatoprotective effects. Transcription of SULT2A1 gene is induced by pregnane-X-receptor (PXR) and can be repressed by miR-378a-5p. We studied the PXR/SULT2A1 axis in chronic cholestatic conditions: primary sclerosing cholangitis (PSC) and primary biliary cirrhosis (PBC). MATERIALS/METHODS Western-blot/PCRs for SULT2A1/PXR were performed in PSC (n = 11), PBC (n = 19), and control liver tissues (n = 19). PXR and SULT2A1 mRNA was analyzed in intestinal tissues from 22 PSC patients. Genomic DNA was isolated from blood of PSC patients (n = 120) and an equal number of healthy volunteers. Liver miRNA expression was evaluated using Affymetrix-Gene-Chip miRNA4.0. RESULTS Increased PXR protein was observed in both PSC and PBC compared to controls and was accompanied by a significant increase of SULT2A1 in PBC but not in PSC. Decreased expression of SULT2A1 mRNA was also seen in ileum of patients with PSC. Unlike PBC, miRNA analysis in PSC has shown a substantial increase in liver miR-378a-5p. CONCLUSIONS PSC is characterized by disease-specific impairment of SULT2A1 expression following PXR activation, a phenomenon which is not noted in PBC, and may account for the impaired hepatoprotection in PSC. miRNA analysis suggests that SULT2A1 expression in PSC may be regulated by miR-378a-5p, connoting its pathogenic role.
Collapse
|
387
|
Klaassen CD, Cui JY. Review: Mechanisms of How the Intestinal Microbiota Alters the Effects of Drugs and Bile Acids. Drug Metab Dispos 2015; 43:1505-21. [PMID: 26261286 PMCID: PMC4576672 DOI: 10.1124/dmd.115.065698] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/05/2015] [Indexed: 12/27/2022] Open
Abstract
Information on the intestinal microbiota has increased exponentially this century because of technical advancements in genomics and metabolomics. Although information on the synthesis of bile acids by the liver and their transformation to secondary bile acids by the intestinal microbiota was the first example of the importance of the intestinal microbiota in biotransforming chemicals, this review will discuss numerous examples of the mechanisms by which the intestinal microbiota alters the pharmacology and toxicology of drugs and other chemicals. More specifically, the altered pharmacology and toxicology of salicylazosulfapridine, digoxin, l-dopa, acetaminophen, caffeic acid, phosphatidyl choline, carnitine, sorivudine, irinotecan, nonsteroidal anti-inflammatory drugs, heterocyclic amines, melamine, nitrazepam, and lovastatin will be reviewed. In addition, recent data that the intestinal microbiota alters drug metabolism of the host, especially Cyp3a, as well as the significance and potential mechanisms of this phenomenon are summarized. The review will conclude with an update of bile acid research, emphasizing the bile acid receptors (FXR and TGR5) that regulate not only bile acid synthesis and transport but also energy metabolism. Recent data indicate that by altering the intestinal microbiota, either by diet or drugs, one may be able to minimize the adverse effects of the Western diet by altering the composition of bile acids in the intestine that are agonists or antagonists of FXR and TGR5. Therefore, it may be possible to consider the intestinal microbiota as another drug target.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
388
|
Richter I, Fidler AE. Tunicate pregnane X receptor (PXR) orthologs: Transcript characterization and natural variation. Mar Genomics 2015; 23:99-108. [DOI: 10.1016/j.margen.2015.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 12/12/2022]
|
389
|
Selwyn FP, Cui JY, Klaassen CD. RNA-Seq Quantification of Hepatic Drug Processing Genes in Germ-Free Mice. Drug Metab Dispos 2015; 43:1572-80. [PMID: 25956306 PMCID: PMC4576678 DOI: 10.1124/dmd.115.063545] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/07/2015] [Indexed: 11/22/2022] Open
Abstract
Intestinal bacteria have been shown to be important in regulating host intermediary metabolism and contributing to obesity. However, relatively less is known about the effect of intestinal bacteria on the expression of hepatic drug-processing genes in the host. This study characterizes the expression of hepatic drug-processing genes in germ-free (GF) mice using RNA-Seq. Total RNA were isolated from the livers of adult male conventional and GF C57BL/6J mice (n = 3 per group). In the livers of GF mice, the mRNA of the aryl hydrocarbon receptor target gene Cyp1a2 was increased 51%, and the mRNA of the peroxisome proliferator-activated receptor α (PPARα) target gene Cyp4a14 was increased 202%. Conversely, the mRNA of the constitutive androstane receptor (CAR) target gene Cyp2b10 was decreased 57%, and the mRNA of the pregnane X receptor target gene Cyp3a11 was decreased 87% in GF mice. Although other non-Cyp phase-1 enzymes in the livers of GF mice were only moderately affected, there was a marked down-regulation in the phase-2 enzymes glutathione S-transferases p1 and p2, as well as a marked up-regulation in the major bile acid transporters Na(+)-taurocholate cotransporting polypeptide and organic anion-transporting polypeptide 1b2, and the cholesterol transporter ATP-binding cassette transporter Abcg5/Abcg8. This study demonstrates that intestinal bacteria regulate the expression of a large number of drug-processing genes, which suggests that intestinal bacteria are responsible for some individual differences in drug responses.
Collapse
Affiliation(s)
- Felcy Pavithra Selwyn
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
390
|
Zazuli Z, Barliana MI, Mulyani UA, Perwitasari DA, Ng H, Abdulah R. Polymorphism of PXR gene associated with the increased risk of drug-induced liver injury in Indonesian pulmonary tuberculosis patients. J Clin Pharm Ther 2015; 40:680-4. [PMID: 26417664 DOI: 10.1111/jcpt.12325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 08/25/2015] [Indexed: 01/28/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Tuberculosis is still a major infectious disease in Indonesia. Patients are treated mostly using fixed-dose combination treatment in primary public health facilities. The incidence of antituberculosis drug-induced liver injury (AT-DILI) is approximately 10% among Indonesian tuberculosis patients who used standard fixed combination regimens during the intensive phase of treatment. However, information regarding genetic polymorphism associated with the increase risk of drug-induced liver injury is still limited. The aim of this study was to investigate pregnane X receptor (PXR) gene polymorphisms as one of the risk factors of AT-DILI. METHODS In this prospective cohort study, we recruited 106 adult patients diagnosed with pulmonary tuberculosis and treated with category I FDC (fixed-dose combination). The identification of SNP -25385C>T (rs3814055) was conducted by ARMS (amplification refractory mutation system). Hepatotoxicity was defined as ALT and/or AST levels above the normal threshold on the second, fourth and sixth months of monitoring during tuberculosis treatment. RESULTS AND DISCUSSION The logistic regression analysis showed that patients with the TT genotype of PXR gene (rs3814055) significantly had a greater risk of AT-DILI (OR 8·89; 95% CI 1·36-57·93, P < 0·05), compared with those of wild-type CC genotype. WHAT IS NEW AND CONCLUSION The result suggests that in Indonesian patients with tuberculosis, the risk of having AT-DILI was associated with TT genotype of the PXR gene.
Collapse
Affiliation(s)
- Z Zazuli
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - M I Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - U A Mulyani
- Center for Applied Health Technology and Clinical Epidemiology, National Institute of Health Research and Development, Ministry of Health Republic of Indonesia, Jakarta, Indonesia
| | - D A Perwitasari
- Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - H Ng
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - R Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
391
|
Hu H, Yu T, Arpiainen S, Lang MA, Hakkola J, Abu-Bakar A. Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6. Toxicol Appl Pharmacol 2015; 289:30-9. [PMID: 26343999 DOI: 10.1016/j.taap.2015.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 08/31/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5'-Luc constructs--down to -160bp from the TSS--showed p53 responsiveness in p53 overexpressed C3A cells. However, a further deletion from -160 to -74bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene--a well-known p53 activator--increased the expression of the p53 responsive positive control and the CYP2A6-5'-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5'-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6.
Collapse
Affiliation(s)
- Hao Hu
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland, Australia.
| | - Ting Yu
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland, Australia.
| | - Satu Arpiainen
- Institute of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - Matti A Lang
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland, Australia.
| | - Jukka Hakkola
- Institute of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - A'edah Abu-Bakar
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland, Australia.
| |
Collapse
|
392
|
Geng T, Xia L, Russo S, Kamara D, Cowart LA. Prosteatotic genes are associated with unsaturated fat suppression of saturated fat-induced hepatic steatosis in C57BL/6 mice. Nutr Res 2015; 35:812-822. [PMID: 26277244 PMCID: PMC5520982 DOI: 10.1016/j.nutres.2015.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/21/2015] [Accepted: 06/30/2015] [Indexed: 01/01/2023]
Abstract
Both high sugar and fat diets can induce prosteatotic genes, leading to obesity and obesity-associated diseases, including hepatic steatosis. Unsaturated fat/fatty acid (USFA) reduces high sugar-induced hepatic steatosis by inhibiting the induced prosteatotic genes. In contrast, it is still unclear how USFA ameliorates saturated fat/fatty acid (SFA)-induced hepatic steatosis. As sugar and fat have different transport and metabolic pathways, we hypothesized that USFA suppressed SFA-induced hepatic steatosis via a different set of prosteatotic genes. To test this, we implemented high SFA vs USFA diets and a control diet in C57BL/6 mice for 16 weeks. Severe hepatic steatosis was induced in mice fed the SFA diet. Among a nearly complete set of prosteatotic genes, only the stearoyl-coenzyme a desaturase 1 (Scd1), cluster of differentiation 36 (Cd36), and peroxisome proliferator-activated receptor γ (Pparγ) genes that were differentially expressed in the liver could contribute to SFA-induced steatosis or the alleviative effect of USFA. That is, the SFA diet induced the expression of Cd36 and Pparγ but not Scd1, and the USFA diet suppressed Scd1 expression and the induction of Cd36 and Pparγ. These findings were mainly recapitulated in cultured hepatocytes. The essential roles of SCD1 and CD36 were confirmed by the observation that the suppression of SCD1 and CD36 with small interfering RNA or drug treatment ameliorated SFA-induced lipid accumulation in hepatocytes. We thus concluded that SCD1, CD36, and PPARγ were essential to the suppression of SFA-induced hepatic steatosis by main dietary USFA, which may provide different therapeutic targets for reducing high-fat vs sugar-induced hepatic steatosis.
Collapse
Affiliation(s)
- Tuoyu Geng
- Institute of Epigenetics and Epigenomics, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China; College of Animal Science and Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, USA.
| | - Lili Xia
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Sarah Russo
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, USA
| | - Davida Kamara
- Union Hospital of Cecil County, 106 Bow St, Elkton, MD 21921, USA
| | - Lauren Ashley Cowart
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, USA; Ralph H Johnson Veteran's Affairs Medical Center, 109 Bee St, 29403, Charleston, SC, USA
| |
Collapse
|
393
|
Cui W, Sun M, Galeva N, Williams TD, Azuma Y, Staudinger JL. SUMOylation and Ubiquitylation Circuitry Controls Pregnane X Receptor Biology in Hepatocytes. Drug Metab Dispos 2015; 43:1316-25. [PMID: 26063058 PMCID: PMC4538856 DOI: 10.1124/dmd.115.065201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/10/2015] [Indexed: 12/25/2022] Open
Abstract
Several nuclear receptor (NR) superfamily members are known to be the molecular target of either the small ubiquitin-related modifier (SUMO) or ubiquitin-signaling pathways. However, little is currently known regarding how these two post-translational modifications interact to control NR biology. We show that SUMO and ubiquitin circuitry coordinately modifies the pregnane X receptor (PXR, NR1I2) to play a key role in regulating PXR protein stability, transactivation capacity, and transcriptional repression. The SUMOylation and ubiquitylation of PXR is increased in a ligand- and tumor necrosis factor alpha -: dependent manner in hepatocytes. The SUMO-E3 ligase enzymes protein inhibitor of activated signal transducer and activator of transcription-1 (STAT1) STAT-1 (PIAS1) and protein inhibitor of activated STAT Y (PIASy) drive high levels of PXR SUMOylation. Expression of protein inhibitor of activated stat 1 selectively increases SUMO(3)ylation as well as PXR-mediated induction of cytochrome P450, family 3, subfamily A and the xenobiotic response. The PIASy-mediated SUMO(1)ylation imparts a transcriptionally repressive function by ameliorating interaction of PXR with coactivator protein peroxisome proliferator-activated receptor gamma coactivator-1-alpha. The SUMO modification of PXR is effectively antagonized by the SUMO protease sentrin protease (SENP) 2, whereas SENP3 and SENP6 proteases are highly active in the removal of SUMO2/3 chains. The PIASy-mediated SUMO(1)ylation of PXR inhibits ubiquitin-mediated degradation of this important liver-enriched NR by the 26S proteasome. Our data reveal a working model that delineates the interactive role that these two post-translational modifications play in reconciling PXR-mediated gene activation of the xenobiotic response versus transcriptional repression of the proinflammatory response in hepatocytes. Taken together, our data reveal that the SUMOylation and ubiquitylation of the PXR interface in a fundamental manner directs its biologic function in the liver in response to xenobiotic or inflammatory stress.
Collapse
Affiliation(s)
- Wenqi Cui
- Departments of Pharmacology and Toxicology (W.C., J.L.S.), Mass Spectrometry Laboratory (N.G., T.D.W.), and Molecular Biosciences, University of Kansas, Lawrence, Kansas (Y.A.); and Department of Medicine, University of California, San Diego, La Jolla, California (M.S.)
| | - Mengxi Sun
- Departments of Pharmacology and Toxicology (W.C., J.L.S.), Mass Spectrometry Laboratory (N.G., T.D.W.), and Molecular Biosciences, University of Kansas, Lawrence, Kansas (Y.A.); and Department of Medicine, University of California, San Diego, La Jolla, California (M.S.)
| | - Nadezhda Galeva
- Departments of Pharmacology and Toxicology (W.C., J.L.S.), Mass Spectrometry Laboratory (N.G., T.D.W.), and Molecular Biosciences, University of Kansas, Lawrence, Kansas (Y.A.); and Department of Medicine, University of California, San Diego, La Jolla, California (M.S.)
| | - Todd D Williams
- Departments of Pharmacology and Toxicology (W.C., J.L.S.), Mass Spectrometry Laboratory (N.G., T.D.W.), and Molecular Biosciences, University of Kansas, Lawrence, Kansas (Y.A.); and Department of Medicine, University of California, San Diego, La Jolla, California (M.S.)
| | - Yoshiaki Azuma
- Departments of Pharmacology and Toxicology (W.C., J.L.S.), Mass Spectrometry Laboratory (N.G., T.D.W.), and Molecular Biosciences, University of Kansas, Lawrence, Kansas (Y.A.); and Department of Medicine, University of California, San Diego, La Jolla, California (M.S.)
| | - Jeff L Staudinger
- Departments of Pharmacology and Toxicology (W.C., J.L.S.), Mass Spectrometry Laboratory (N.G., T.D.W.), and Molecular Biosciences, University of Kansas, Lawrence, Kansas (Y.A.); and Department of Medicine, University of California, San Diego, La Jolla, California (M.S.)
| |
Collapse
|
394
|
Masubuchi N, Sugihara M, Sugita T, Amano K, Nakano M, Matsuura T. Oxidative stress markers, secondary bile acids and sulfated bile acids classify the clinical liver injury type: Promising diagnostic biomarkers for cholestasis. Chem Biol Interact 2015; 255:83-91. [PMID: 26325587 DOI: 10.1016/j.cbi.2015.08.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/07/2015] [Accepted: 08/25/2015] [Indexed: 11/29/2022]
Abstract
Clinicians sometimes encounter difficulty in choosing a therapeutic strategy due to the uncertainty regarding the type of liver injury. In particular, cholestasis is difficult to diagnose by conventional markers at an early stage of disease. The aim of this study was to identify promising biomarkers for distinguishing the symptom-based types of liver injury (e.g. hepatocellular injury, cholestasis), which was derived from a rigorously statistical perspective. The associations between diagnostic biomarkers (e.g. bile acid components, oxidative stress markers and liver fibrosis markers) and the liver injury types were assessed by a multiple logistic regression analysis using 304 blood samples from patients with liver disease. As a result, reductions in the lithocholic acid (LCA) and deoxycholic acid (DCA) levels, and elevation of the serum sulfated bile acid (SSBA), liver fibrosis marker IV collagen (type IV collagen), hyaluronic acid (HA) and reactive oxygen species (ROS) levels were all significantly associated with cholestasis. On the other hand, elevations in the LCA and type IV collagen levels, and a reduction in the ursodeoxy cholic acid (UDCA) level, were significantly associated with hepatocellular injury. The receiver operating characteristic (ROC) analyses showed that the largest area under the ROC curve (AUC) was found for ROS, followed by DCA, HA, LCA, SSBA and type IV collagen in the cholestatic-type cases. These results indicated that ROS, the secondary bile acid levels such as DCA and LCA, and SSBA are promising biomarkers for cholestasis and for classifying the type of liver injuries. This comprehensive approach will allow for an accurate diagnosis, which will facilitate the selection of an appropriate therapy at the onset of disease.
Collapse
Affiliation(s)
- Noriko Masubuchi
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan.
| | - Masahiro Sugihara
- Clinical Data & Biostatistics Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Tomonori Sugita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Katsushi Amano
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Masanori Nakano
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Tomokazu Matsuura
- Department of Laboratory Medicine, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
395
|
Δ(5)-Cholenoyl-amino acids as selective and orally available antagonists of the Eph-ephrin system. Eur J Med Chem 2015; 103:312-24. [PMID: 26363867 DOI: 10.1016/j.ejmech.2015.08.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 01/22/2023]
Abstract
The Eph receptor-ephrin system is an emerging target for the development of novel anti-angiogenic therapies. Research programs aimed at developing small-molecule antagonists of the Eph receptors are still in their initial stage as available compounds suffer from pharmacological drawbacks, limiting their application in vitro and in vivo. In the present work, we report the design, synthesis and evaluation of structure-activity relationships of a class of Δ(5)-cholenoyl-amino acid conjugates as Eph-ephrin antagonists. As a major achievement of our exploration, we identified N-(3β-hydroxy-Δ(5)-cholen-24-oyl)-L-tryptophan (UniPR1331) as the first small molecule antagonist of the Eph-ephrin system effective as an anti-angiogenic agent in endothelial cells, bioavailable in mice by the oral route and devoid of biological activity on G protein-coupled and nuclear receptors targeted by bile acid derivatives.
Collapse
|
396
|
Abstract
Bile acids are well known for their effects on cholesterol homeostasis and lipid digestion. Since the discovery of bile acid receptors, of which there are farnesoid X receptor (FXR), a nuclear receptor, and the plasma membrane G-protein receptor, as well as Takeda G-protein coupled receptor clone 5, further roles have been elucidated for bile acids including glucose and lipid metabolism as well as inflammation. Additionally, treatment with bile acid receptor agonists has shown a decrease in the amount of atherosclerosis plaque formation and decreased portal vascular resistance and portal hypotension in animal models. Furthermore, rodent models have demonstrated antifibrotic activity using bile acid receptor agonists. Early human data using a FXR agonist, obeticholic acid, have shown promising results with improvement of histological activity and even a reduction of fibrosis. Human studies are ongoing and will provide further information on bile acid receptor agonist therapies. Thus, bile acids and their derivatives have the potential for management of liver diseases and potentially other disease states including diabetes and the metabolic syndrome.
Collapse
|
397
|
Amer AO, Probert PM, Dunn M, Knight M, Vallance AE, Flecknell PA, Oakley F, Cameron I, White SA, Blain PG, Wright MC. Sustained Isoprostane E2 Elevation, Inflammation and Fibrosis after Acute Ischaemia-Reperfusion Injury Are Reduced by Pregnane X Receptor Activation. PLoS One 2015; 10:e0136173. [PMID: 26302150 PMCID: PMC4547732 DOI: 10.1371/journal.pone.0136173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/30/2015] [Indexed: 12/16/2022] Open
Abstract
Liver grafts donated after cardiac death are increasingly used to expand the donor pool but are prone to ischaemic-type biliary lesions. The anti-inflammatory effects of the activated pregnane X receptor have previously been shown to be beneficial in a number of inflammatory liver conditions. However, its role in reducing peri-portal inflammation and fibrosis following ischaemia-reperfusion injury has not been investigated. Hepatic injury and its response to pregnane X receptor activation was examined after partial hepatic ischaemia-reperfusion injury induced by surgically clamping the left and middle lobar blood vessels in rats. Molecular and pathological changes in the liver were examined over the following 28 days. Ischaemia-reperfusion injury resulted in transient cholestasis associated with microvillar changes in biliary epithelial cell membranes and hepatocellular injury which resolved within days after reperfusion. However, in contrast to chemically-induced acute liver injuries, this was followed by sustained elevation in isoprostane E2, peri-portal inflammation and fibrosis that remained unresolved in the ischaemic reperfused lobe for at least 28 days after clamping. Administration of pregnenolone-16α-carbonitrile—a rodent-specific pregnane X receptor activator—resulted in significant reductions in cholestasis, hepatic injury, ischaemic lobe isoprostane E2 levels, peri-portal inflammation and fibrosis. Hepatic ischaemia-reperfusion injury therefore results in inflammatory and fibrotic changes that persist well beyond the initial ischaemic insult. Drug-mediated activation of the pregnane X receptor reduced these adverse changes in rats, suggesting that the pregnane X receptor is a viable drug target to reduce ischaemic-type biliary lesions in recipients of liver transplants donated after cardiac death.
Collapse
Affiliation(s)
- Aimen O Amer
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Philip M Probert
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Michael Dunn
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom; Medical Toxicology Centre, Newcastle University, Newcastle, United Kingdom
| | - Margaret Knight
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom; Medical Toxicology Centre, Newcastle University, Newcastle, United Kingdom
| | - Abigail E Vallance
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Paul A Flecknell
- Comparative Biology Centre, Newcastle University, Newcastle, United Kingdom
| | - Fiona Oakley
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Iain Cameron
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom; Department of Pathology, Altnagelvin Hospital, Londonderry, United Kingdom
| | - Steven A White
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Peter G Blain
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom; Medical Toxicology Centre, Newcastle University, Newcastle, United Kingdom
| | - Matthew C Wright
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
398
|
Avior Y, Levy G, Zimerman M, Kitsberg D, Schwartz R, Sadeh R, Moussaieff A, Cohen M, Itskovitz-Eldor J, Nahmias Y. Microbial-derived lithocholic acid and vitamin K2 drive the metabolic maturation of pluripotent stem cells-derived and fetal hepatocytes. Hepatology 2015; 62:265-78. [PMID: 25808545 DOI: 10.1002/hep.27803] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 03/17/2015] [Indexed: 12/28/2022]
Abstract
UNLABELLED The liver is the main organ responsible for the modification, clearance, and transformational toxicity of most xenobiotics owing to its abundance in cytochrome P450 (CYP450) enzymes. However, the scarcity and variability of primary hepatocytes currently limits their utility. Human pluripotent stem cells (hPSCs) represent an excellent source of differentiated hepatocytes; however, current protocols still produce fetal-like hepatocytes with limited mature function. Interestingly, fetal hepatocytes acquire mature CYP450 expression only postpartum, suggesting that nutritional cues may drive hepatic maturation. We show that vitamin K2 and lithocholic acid, a by-product of intestinal flora, activate pregnane X receptor (PXR) and subsequent CYP3A4 and CYP2C9 expression in hPSC-derived and isolated fetal hepatocytes. Differentiated cells produce albumin and apolipoprotein B100 at levels equivalent to primary human hepatocytes, while demonstrating an 8-fold induction of CYP450 activity in response to aryl hydrocarbon receptor (AhR) agonist omeprazole and a 10-fold induction in response to PXR agonist rifampicin. Flow cytometry showed that over 83% of cells were albumin and hepatocyte nuclear factor 4 alpha (HNF4α) positive, permitting high-content screening in a 96-well plate format. Analysis of 12 compounds showed an R(2) correlation of 0.94 between TC50 values obtained in stem cell-derived hepatocytes and primary cells, compared to 0.62 for HepG2 cells. Finally, stem cell-derived hepatocytes demonstrate all toxicological endpoints examined, including steatosis, apoptosis, and cholestasis, when exposed to nine known hepatotoxins. CONCLUSION Our work provides fresh insights into liver development, suggesting that microbial-derived cues may drive the maturation of CYP450 enzymes postpartum. Addition of these cues results in the first functional, inducible, hPSC-derived hepatocyte for predictive toxicology.
Collapse
Affiliation(s)
- Yishai Avior
- Department of Cell and Developmental Biology, Hebrew University of Jerusalem, Jerusalem, Israel.,Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gahl Levy
- Department of Cell and Developmental Biology, Hebrew University of Jerusalem, Jerusalem, Israel.,Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Zimerman
- Department of Cell and Developmental Biology, Hebrew University of Jerusalem, Jerusalem, Israel.,Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Kitsberg
- Department of Cell and Developmental Biology, Hebrew University of Jerusalem, Jerusalem, Israel.,Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Robert Schwartz
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Ronen Sadeh
- Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel.,School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arieh Moussaieff
- Department of Cell and Developmental Biology, Hebrew University of Jerusalem, Jerusalem, Israel.,Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Merav Cohen
- Department of Cell and Developmental Biology, Hebrew University of Jerusalem, Jerusalem, Israel.,Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Yaakov Nahmias
- Department of Cell and Developmental Biology, Hebrew University of Jerusalem, Jerusalem, Israel.,Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel.,School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
399
|
Barrett KG, Fang H, Cukovic D, Dombkowski AA, Kocarek TA, Runge-Morris M. Upregulation of UGT2B4 Expression by 3'-Phosphoadenosine-5'-Phosphosulfate Synthase Knockdown: Implications for Coordinated Control of Bile Acid Conjugation. Drug Metab Dispos 2015; 43:1061-70. [PMID: 25948711 PMCID: PMC4468435 DOI: 10.1124/dmd.114.061440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 05/06/2015] [Indexed: 12/27/2022] Open
Abstract
During cholestasis, the bile acid-conjugating enzymes, SULT2A1 and UGT2B4, work in concert to prevent the accumulation of toxic bile acids. To understand the impact of sulfotransferase deficiency on human hepatic gene expression, we knocked down 3'-phosphoadenosine-5'-phosphosulfate synthases (PAPSS) 1 and 2, which catalyze synthesis of the obligate sulfotransferase cofactor, in HepG2 cells. PAPSS knockdown caused no change in SULT2A1 expression; however, UGT2B4 expression increased markedly (∼41-fold increase in UGT2B4 mRNA content). Knockdown of SULT2A1 in HepG2 cells also increased UGT2B4 expression. To investigate the underlying mechanism, we transfected PAPSS-deficient HepG2 cells with a luciferase reporter plasmid containing ∼2 Kb of the UGT2B4 5'-flanking region, which included a response element for the bile acid-sensing nuclear receptor, farnesoid X receptor (FXR). FXR activation or overexpression increased UGT2B4 promoter activity; however, knocking down FXR or mutating or deleting the FXR response element did not significantly decrease UGT2B4 promoter activity. Further evaluation of the UGT2B4 5'-flanking region indicated the presence of distal regulatory elements between nucleotides -10090 and -10037 that negatively and positively regulated UGT2B4 transcription. Pulse-chase analysis showed that increased UGT2B4 expression in PAPSS-deficient cells was attributable to both increased mRNA synthesis and stability. Transfection analysis demonstrated that the UGT2B4 3'-untranslated region decreased luciferase reporter expression less in PAPSS-deficient cells than in control cells. These data indicate that knocking down PAPSS increases UGT2B4 transcription and mRNA stability as a compensatory response to the loss of SULT2A1 activity, presumably to maintain bile acid-conjugating activity.
Collapse
Affiliation(s)
- Kathleen G Barrett
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan (K.G.B., H.F., T.A.K., M.R.-M.); and Department of Pediatrics, Wayne State University, Detroit, Michigan (D.C., A.A.D.)
| | - Hailin Fang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan (K.G.B., H.F., T.A.K., M.R.-M.); and Department of Pediatrics, Wayne State University, Detroit, Michigan (D.C., A.A.D.)
| | - Daniela Cukovic
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan (K.G.B., H.F., T.A.K., M.R.-M.); and Department of Pediatrics, Wayne State University, Detroit, Michigan (D.C., A.A.D.)
| | - Alan A Dombkowski
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan (K.G.B., H.F., T.A.K., M.R.-M.); and Department of Pediatrics, Wayne State University, Detroit, Michigan (D.C., A.A.D.)
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan (K.G.B., H.F., T.A.K., M.R.-M.); and Department of Pediatrics, Wayne State University, Detroit, Michigan (D.C., A.A.D.)
| | - Melissa Runge-Morris
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan (K.G.B., H.F., T.A.K., M.R.-M.); and Department of Pediatrics, Wayne State University, Detroit, Michigan (D.C., A.A.D.)
| |
Collapse
|
400
|
Mo L, He J. Nuclear hormone receptors PXR and CAR and metabolic diseases. Horm Mol Biol Clin Investig 2015; 19:129-40. [PMID: 25390021 DOI: 10.1515/hmbci-2014-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 06/19/2014] [Indexed: 12/19/2022]
Abstract
Nuclear receptors (NRs) belong to a superfamily of evolutionarily related DNA-binding transcription factors that can be activated by steroid and thyroid hormones, and other lipid metabolites. Ligand activated NRs can regulate target gene expression by binding to DNA response elements present in the target gene promoters. Through this regulation, NRs are broadly implicated in physiology and metabolism. In this chapter, we will focus on the xenobiotic receptors and their recently discovered functions in metabolic diseases.
Collapse
|