351
|
Kretz-Remy C, Bates EE, Arrigo AP. Amino acid analogs activate NF-kappaB through redox-dependent IkappaB-alpha degradation by the proteasome without apparent IkappaB-alpha phosphorylation. Consequence on HIV-1 long terminal repeat activation. J Biol Chem 1998; 273:3180-91. [PMID: 9452429 DOI: 10.1074/jbc.273.6.3180] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We report here that amino acid analogs, which activate hsp70 promoter, are powerful transcriptional activators of human immunodeficiency virus 1 (HIV-1) long terminal repeat (LTR), an activation which was impaired when the two kappaB sites present in the LTR were mutated or deleted. Amino acid analogs also stimulated the transcription of a kappaB-controlled reporter gene. Upon treatment with amino acid analogs, the two NF-kappaB subunits (p65 and p50), which are characterized by a relatively long half-life, redistributed into the nucleus where they bound to kappaB elements. This phenomenon, which began to be detectable after 1 h of treatment, was concomitant with the degradation of the short lived inhibitory subunit IkappaB-alpha by the proteasome. However, contrasting with other NF-kappaB inducers that trigger IkappaB-alpha degradation through a phosphorylation step, amino acid analogs did not change IkappaB-alpha isoform composition. Antioxidant conditions inhibited amino acid analog stimulatory action toward NF-kappaB. This suggests that aberrant protein conformation probably generates a pro-oxidant state that is necessary for IkappaB-alpha proteolysis by the proteasome. Moreover, this activation of NF-kappaB appeared different from that mediated by endoplasmic reticulum overload as it was not inhibited by calcium chelation.
Collapse
Affiliation(s)
- C Kretz-Remy
- Laboratoire du Stress Cellulaire, Centre de Génétique Moléculaire et Cellulaire, CNRS-UMR 5534, Université Claude Bernard Lyon-I, 69622 Villeurbanne Cedex, France
| | | | | |
Collapse
|
352
|
Lahdenpohja N, Savinainen K, Hurme M. Pre-Exposure to Oxidative Stress Decreases the Nuclear Factor-κB-Dependent Transcription in T Lymphocytes. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.3.1354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Reactive oxygen species (ROS) are used as signaling molecules in T cell activation. One of the main targets of ROS is the transcription factor nuclear factor-κB (NF-κB). NF-κB-dependent transcription is inhibited by antioxidants, and the activation is induced or potentiated by ROS. However, chronic oxidative stress is known to reduce the activation of T cells and NF-κB. To analyze these phenomena in more detail, we have exposed Jurkat T cells in vitro to oxidative stress (H2O2) at various times before or simultaneously with signals known to activate NF-κB (phorbol dibutyrate (PDBu) and TNF). Simultaneously applied H2O2 strongly potentiated the PDBu- or TNF-induced transcriptional activity of NF-κB. In contrast to this, H2O2 given 3 to 20 h before the activating signal reduced NF-κB-dependent transcriptional activity. This was not due to the oxidation-induced modification of NF-κB; cytoplasmic NF-κB was able to bind to DNA after dissociation from IκBα by detergent treatment. H2O2 pre-exposure effectively inhibited the PDBu- or TNF-induced phosphorylation and degradation of IκBα, but H2O2 given simultaneously with PDBu or TNF enhanced the degradation. Oxidative stress was also followed by a strongly decreased ability to form intracellular ROS. Taken together, these data indicate that IκBα phosphorylation is the target of action of ROS, and as the ROS-forming capacity is weaker after chronic oxidative stress, IκBα is not effectively phosphorylated and degraded, thus leading to decreased NF-κB-dependent transcription.
Collapse
Affiliation(s)
- Nina Lahdenpohja
- Department of Microbiology and Immunology, University of Tampere Medical School, Tampere, Finland
| | - Kimmo Savinainen
- Department of Microbiology and Immunology, University of Tampere Medical School, Tampere, Finland
| | - Mikko Hurme
- Department of Microbiology and Immunology, University of Tampere Medical School, Tampere, Finland
| |
Collapse
|
353
|
Affiliation(s)
- M J May
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
354
|
Qin ZH, Wang Y, Nakai M, Chase TN. Nuclear factor-kappa B contributes to excitotoxin-induced apoptosis in rat striatum. Mol Pharmacol 1998; 53:33-42. [PMID: 9443930 DOI: 10.1124/mol.53.1.33] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Excitotoxin-induced destruction of striatal neurons, proposed as a model of Huntington's disease, involves a process having the biochemical stigmata of apoptosis. Recent studies suggested that transcription factor nuclear factor (NF)-kappa B may be involved in excitotoxicity. To further analyze the contribution of NF kappa B to excitotoxic neuronal death in vivo, changes in binding activities of NF kappa B and other transcription factors as well as the consequences of inhibiting NF kappa B nuclear translocation were measured after the infusion of quinolinic acid (120 nmol) into rat striatum. Internucleosomal DNA fragmentation and terminal transferase-mediated dUTP digoxigenin nick end labeling-positive nuclei appeared 12 hr later and intensified over the next 12 hr. NF kappa B binding activity increased several-fold from 2 to 12 hr, then gradually declined during the next 12 hr. Other transcription factor changes included AP-1, whose binding peaked about 6 hr after quinolinic acid administration, and E2F-1, which was only modestly and transiently elevated. In contrast, quinolinic acid lead to a reduction in OCT-1, beginning after 12 hr, and briefly in SP-1 binding. The NF kappa B, AP-1, and OCT-1 changes were attenuated both by the N-methyl-D-aspartate receptor antagonist MK-801 and the protein synthesis inhibitor cycloheximide. Moreover, quinolinic acid-induced internucleosomal DNA fragmentation and striatal cell death were significantly reduced by the intrastriatal administration of NF kappa B SN50, a cell-permeable recombinant peptide that blocks NF kappa B nuclear translocation. These results illustrate the complex temporal pattern of transcription factor change attending the apoptotic destruction produced in rat striatum by quinolinic acid. They further suggest that NF kappa B activation contributes to the excitotoxin-induced death of striatal neurons.
Collapse
Affiliation(s)
- Z H Qin
- Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
355
|
Borrello S, Demple B. NF kappa B-independent transcriptional induction of the human manganous superoxide dismutase gene. Arch Biochem Biophys 1997; 348:289-94. [PMID: 9434740 DOI: 10.1006/abbi.1997.0355] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Numerous conditions induce expression of manganese-containing superoxide dismutase (MnSOD) in mammalian cells. The reported inducers of MnSOD are all agents that activate two transcription factors, AP-1 and NF kappa B, but several reports have suggested that MnSOD induction relies solely on NF kappa B. We investigated the contribution of the individual transcription factors by using antioxidants and metal chelators to modulate MnSOD transcriptional activation in response to phorbol esters or hydrogen peroxide. The results indicate substantial transcriptional induction of the MnSOD gene independent of NF kappa B. The metal chelator and antioxidant pyrrolidine dithiocarbamate (PDTC) at 60 or 100 microM induced the MnSOD transcript in HeLa cells while diminishing expression of the NF kappa B-responsive transcript I kappa B-alpha. Induction of the MnSOD mRNA by phorbol-12-myristate-13-acetate (PMA) was only slightly diminished in the presence of PDTC, which in contrast virtually eliminated induction of the NF kappa B-dependent transcript I kappa B-alpha by PMA. MnSOD RNA induction by H2O2 was only approximately 1.5-fold, compared to a ca. 3-fold activation of I kappa B-alpha expression. Two other antioxidants, N-acetyl-L-cysteine and butylated hydroxyanisole, failed to block induction of the MnSOD transcript by PMA, which is consistent with a role for AP-1. In vitro DNA binding studies confirmed strong AP-1 activation under conditions where NF kappa B is blocked but the MnSOD transcript is strongly induced (e.g., PMA treatment in the presence of PDTC).
Collapse
Affiliation(s)
- S Borrello
- Department of Molecular and Cellular Toxicology, Harvard School of Public Health, Boston, Massachusetts 02165, USA
| | | |
Collapse
|
356
|
Crépieux P, Kwon H, Leclerc N, Spencer W, Richard S, Lin R, Hiscott J. I kappaB alpha physically interacts with a cytoskeleton-associated protein through its signal response domain. Mol Cell Biol 1997; 17:7375-85. [PMID: 9372968 PMCID: PMC232593 DOI: 10.1128/mcb.17.12.7375] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The I kappaB alpha protein is a key molecular target involved in the control of NF-kappaB/Rel transcription factors during viral infection or inflammatory reactions. This NF-kappaB-inhibitory factor is regulated by posttranslational phosphorylation and ubiquitination of its amino-terminal signal response domain that targets I kappaB alpha for rapid proteolysis by the 26S proteasome. In an attempt to identify regulators of the I kappaB alpha inhibitory activity, we undertook a yeast two-hybrid genetic screen, using the amino-terminal end of I kappaB alpha as bait, and identified 12 independent interacting clones. Sequence analysis identified some of these cDNA clones as Dlc-1, a sequence encoding a small, 9-kDa human homolog of the outer-arm dynein light-chain protein. In the two-hybrid assay, Dlc-1 also interacted with full-length I kappaB alpha protein but not with N-terminal-deletion-containing versions of I kappaB alpha. I kappaB alpha interacted in vitro with a glutathione S-transferase-Dlc-1 fusion protein, and RelA(p65) did not displace this association, demonstrating that p65 and Dlc-1 contact different protein motifs of I kappaB alpha. Importantly, in HeLa and 293 cells, endogenous and transfected I kappaB alpha coimmunoprecipitated with Myc-tagged or endogenous Dlc-1. Indirect immunofluorescence analyzed by confocal microscopy indicated that Dlc-1 and I kappaB alpha colocalized with both nuclear and cytoplasmic distribution. Furthermore, Dlc-1 and I kappaB alpha were found to associate with the microtubule organizing center, a perinuclear region from which microtubules radiate. Likewise, I kappaB alpha colocalized with alpha-tubulin filaments. Taken together, these results highlight an intriguing interaction between the I kappaB alpha protein and the human homolog of a member of the dynein family of motor proteins and provide a potential link between cytoskeleton dynamics and gene regulation.
Collapse
Affiliation(s)
- P Crépieux
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montreal, Que., Canada
| | | | | | | | | | | | | |
Collapse
|
357
|
Abstract
The transcription factor NF-kappa B is maintained in an inactive cytoplasmic state by I kappa B inhibitors. In mammalian cells, I kappa B alpha and I kappa B beta proteins have been purified and shown to be the inhibitors of NF-kappa B through their association with the p65 or c-Rel subunits. In addition, we have isolated a third NF-kappa B inhibitor, I kappa B epsilon (1). Upon treatment with a large variety of inducers, I kappa B alpha, I kappa B beta are proteolytically degraded, resulting in NF-kappa B translocation into the nucleus. Here we show that in E29.1 T cell hybridoma I kappa B alpha and I kappa B beta are equally associated with p65 and that I kappa B beta is degraded in response to TNF alpha in contrast to what has been originally published. Our data also suggest that, unlike I kappa B alpha, I kappa B beta is constitutively phosphorylated and resynthesized as a hypophosphorylated form. The absence of slow migrating forms of I kappa B beta following stimulation suggests that the phosphorylation does not necessarily constitute the signal-induced event which targets the molecule for proteolysis.
Collapse
Affiliation(s)
- R Weil
- Unité de Biologie Moléculaire de l'Expression Génique, UMR 321 Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
358
|
Palmer GH, Machado J, Fernandez P, Heussler V, Perinat T, Dobbelaere DA. Parasite-mediated nuclear factor kappaB regulation in lymphoproliferation caused by Theileria parva infection. Proc Natl Acad Sci U S A 1997; 94:12527-32. [PMID: 9356483 PMCID: PMC25026 DOI: 10.1073/pnas.94.23.12527] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Infection of cattle with the protozoan Theileria parva results in uncontrolled T lymphocyte proliferation resulting in lesions resembling multicentric lymphoma. Parasitized cells exhibit autocrine growth characterized by persistent translocation of the transcriptional regulatory factor nuclear factor kappaB (NFkappaB) to the nucleus and consequent enhanced expression of interleukin 2 and the interleukin 2 receptor. How T. parva induces persistent NFkappaB activation, required for T cell activation and proliferation, is unknown. We hypothesized that the parasite induces degradation of the IkappaB molecules which normally sequester NFkappaB in the cytoplasm and that continuous degradation requires viable parasites. Using T. parva-infected T cells, we showed that the parasite mediates continuous phosphorylation and proteolysis of IkappaBalpha. However, IkappaBalpha reaccumulated to high levels in parasitized cells, which indicated that T. parva did not alter the normal NFkappaB-mediated positive feedback loop which restores cytoplasmic IkappaBalpha. In contrast, T. parva mediated continuous degradation of IkappaBbeta resulting in persistently low cytoplasmic IkappaBbeta levels. Normal IkappaBbeta levels were only restored following T. parva killing, indicating that viable parasites are required for IkappaBbeta degradation. Treatment of T. parva-infected cells with pyrrolidine dithiocarbamate, a metal chelator, blocked both IkappaB degradation and consequent enhanced expression of NFkappaB dependent genes. However treatment using the antioxidant N-acetylcysteine had no effect on either IkappaB levels or NFkappaB activation, indicating that the parasite subverts the normal IkappaB regulatory pathway downstream of the requirement for reactive oxygen intermediates. Identification of the critical points regulated by T. parva may provide new approaches for disease control as well as increase our understanding of normal T cell function.
Collapse
Affiliation(s)
- G H Palmer
- Institute of Animal Pathology, University of Bern, Bern 3012, Switzerland
| | | | | | | | | | | |
Collapse
|
359
|
Bash J, Zong WX, Gélinas C. c-Rel arrests the proliferation of HeLa cells and affects critical regulators of the G1/S-phase transition. Mol Cell Biol 1997; 17:6526-36. [PMID: 9343416 PMCID: PMC232506 DOI: 10.1128/mcb.17.11.6526] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A tetracycline-regulated system was used to characterize the effects of c-Rel on cell proliferation. The expression of c-Rel in HeLa cells led to growth arrest at the G1/S-phase transition, which correlated with its nuclear localization and the induction of endogenous IkappaB alpha expression. These changes were accompanied by a decrease in E2F DNA binding and the accumulation of the hypophosphorylated form of Rb. In vitro kinase assays showed a reduction in Cdk2 kinase activity that correlated with elevated levels of p21WAF1 Cdk inhibitor and p53 tumor suppressor protein. While the steady-state levels of WAF1 transcripts were increased, pulse-chase analysis revealed a sharp increase in p53 protein stability. Importantly, the deletion of the C-terminal transactivation domains of c-Rel abolished these effects. Together, these studies demonstrate that c-Rel can affect cell cycle control and suggest the involvement of the p21WAF1 and p53 cell cycle regulators.
Collapse
Affiliation(s)
- J Bash
- Center for Advanced Biotechnology and Medicine, and Graduate Program in Microbiology and Molecular Genetics, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
360
|
Li Z, Nabel GJ. A new member of the I kappaB protein family, I kappaB epsilon, inhibits RelA (p65)-mediated NF-kappaB transcription. Mol Cell Biol 1997; 17:6184-90. [PMID: 9315679 PMCID: PMC232469 DOI: 10.1128/mcb.17.10.6184] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A novel member of the I kappaB family has been identified as a protein that associated with the p50 subunit of NF-kappaB in a yeast two-hybrid screen. Similar to previously known I kappaB proteins, this member, I kappaB epsilon, has six consecutive ankyrin repeats. I kappaB epsilon mRNA is widely expressed in different human tissues, with highest levels in spleen, testis, and lung. I kappaB epsilon interacts with different NF-kappaB proteins, including p65 (RelA), c-Rel, p50, and p52, in vitro and in vivo and inhibits the DNA-binding activity of both p50-p65 and p50-c-Rel complexes effectively. Endogenous and transfected NF-kappaB (RelA-dependent) transcriptional activation is inhibited by I kappaB epsilon. I kappaB epsilon mRNA is expressed at different levels in specific cell types and is synthesized constitutively in transformed B-cell lines. It also displays differential induction in response to tumor necrosis factor alpha, interleukin-1, or phorbol ester stimulation compared to I kappaB alpha in non-B-cell lines. Therefore, I kappaB epsilon represents a novel I kappaB family member which provides an alternative mechanism for regulation of NF-kappaB-dependent transcription.
Collapse
Affiliation(s)
- Z Li
- Department of Internal Medicine, Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor 48109-0650, USA
| | | |
Collapse
|
361
|
Jeong JY, Kim KU, Jue DM. Tosylphenylalanine chloromethyl ketone inhibits TNF-alpha mRNA synthesis in the presence of activated NF-kappa B in RAW 264.7 macrophages. Immunol Suppl 1997; 92:267-73. [PMID: 9415036 PMCID: PMC1364068 DOI: 10.1046/j.1365-2567.1997.00335.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Serine proteinase inhibitors such as N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) and N alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK) were shown to inhibit production of tumour necrosis factor-alpha (TNF-alpha) in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. The proteinase inhibitors were also reported to inhibit activation of the transcription factor nuclear factor-kappa B (NF-kappa B) by blocking the signalling pathway for stimuli-induced phosphorylation of the inhibitory subunit (I kappa B alpha) and thus preventing its degradation. In RAW 264.7 cells TPCK and TLCK significantly suppressed LPS-induced increase in TNF-alpha mRNA, induction of nuclear kappa B-binding activity and degradation of I kappa B alpha. TPCK and TLCK effectively blocked TNF-alpha mRNA synthesis even when they were added after LPS stimulation. In these cells, however, the inhibitory modes of the two inhibitors were found to be different: while addition of TLCK suppressed I kappa B alpha degradation and reduced NF-kappa B activity, a comparable decrease in the nuclear kappa B-binding activity or in I kappa B alpha degradation was not observed in cells treated with TPCK. Our results show that TPCK inhibits LPS-induced TNF-alpha mRNA synthesis in the presence of activated NF-kappa B and suggests that mechanisms other than NF-kappa B activation are involved in the transcriptional regulation of the TNF-alpha gene.
Collapse
Affiliation(s)
- J Y Jeong
- Department of Biochemistry, Catholic University Medical College, Seoul, South Korea
| | | | | |
Collapse
|
362
|
Stuhlmeier KM, Kao JJ, Bach FH. Arachidonic acid influences proinflammatory gene induction by stabilizing the inhibitor-kappaBalpha/nuclear factor-kappaB (NF-kappaB) complex, thus suppressing the nuclear translocation of NF-kappaB. J Biol Chem 1997; 272:24679-83. [PMID: 9305938 DOI: 10.1074/jbc.272.39.24679] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Arachidonic acid (AA), through its myriad metabolites, is involved in inflammation in a number of ways. AA is produced and released by several cell types, including endothelial cells (EC), and acts on a variety of cells. EC activation plays a key role in inflammation presumably by modulating the immune response through up- or down-regulation of several genes. We have previously shown that AA and its nonmetabolizable analogue, 5,8,11,14-eicosatetraynoic acid (ETYA), inhibit up-regulation of proinflammatory genes in EC. In the present study we identify a mechanism to explain the inhibitory effects: AA and ETYA both inhibit the translocation of nuclear factor-kappaB (NF-kappaB) to the nucleus by blocking the degradation of the inhibitor of NF-kappaB (IkappaB) and thus stabilizing the IkappaB/NF-kappaB complex. To investigate the mechanism whereby AA inhibits up-regulation of genes encoding proinflammatory mediators, we examined the ability of ETYA to inhibit tumor necrosis factor-alpha (TNF-alpha) mediated phosphorylation and degradation of IkappaBalpha. Western blot analysis revealed that preincubation of EC with ETYA for 40 min prior to stimulation with TNF-alpha inhibits the phosphorylation and degradation of IkappaBalpha. These findings establish a mechanism by which AA inhibits nuclear translocation of NF-kappaB and thereby explaining its modulatory role in the induction of proinflammatory genes.
Collapse
Affiliation(s)
- K M Stuhlmeier
- Sandoz Center for Immunobiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
363
|
Tran K, Merika M, Thanos D. Distinct functional properties of IkappaB alpha and IkappaB beta. Mol Cell Biol 1997; 17:5386-99. [PMID: 9271416 PMCID: PMC232389 DOI: 10.1128/mcb.17.9.5386] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The biological activity of the transcription factor NF-kappaB is controlled mainly by the IkappaB alpha and IkappaB beta proteins, which restrict NF-kappaB to the cytoplasm and inhibit its DNA binding activity. Here, we carried out experiments to determine and compare the mechanisms by which IkappaB alpha and IkappaB beta inhibit NF-kappaB-dependent transcriptional activation. First, we found that in vivo IkappaB alpha is a stronger inhibitor of NF-kappaB than is IkappaB beta. This difference is directly correlated with their abilities to inhibit NF-kappaB binding to DNA in vitro and in vivo. Moreover, IkappaB alpha, but not IkappaB beta, can remove NF-kappaB from functional preinitiation complexes in in vitro transcription experiments. Second, we showed that both IkappaBs function in vivo not only in the cytoplasm but also in the nucleus, where they inhibit NF-kappaB binding to DNA. Third, the inhibitory activity of IkappaB beta, but not that of IkappaB alpha, is facilitated by phosphorylation of the C-terminal PEST sequence by casein kinase II and/or by the interaction of NF-kappaB with high-mobility group protein I (HMG I) on selected promoters. The unphosphorylated form of IkappaB beta forms stable ternary complexes with NF-kappaB on the DNA either in vitro or in vivo. These experiments suggest that IkappaB alpha works as a postinduction repressor of NF-kappaB independently of HMG I, whereas IkappaB beta functions preferentially in promoters regulated by the NF-kappaB/HMG I complexes.
Collapse
Affiliation(s)
- K Tran
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
364
|
Lee R, Beauparlant P, Elford H, Ponka P, Hiscott J. Selective inhibition of l kappaB alpha phosphorylation and HIV-1 LTR-directed gene expression by novel antioxidant compounds. Virology 1997; 234:277-90. [PMID: 9268159 DOI: 10.1006/viro.1997.8642] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oxidative stress activates the NF-kappaB/Rel transcription factors which are involved in the activation of numerous immunoregulatory genes and the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR). In the present study, we examined the effects of established and novel compounds including antioxidants, ribonucleotide reductase inhibitors, and iron chelators on NF-kappaB activation and HIV LTR-mediated gene expression induced by TNF-alpha. N-Acetylcysteine (NAC), pyrrolidinedithiocarbamate (PDTC), and Trimidox (TD) at various concentrations inhibited TNF-alpha-induced NF-kappaB binding in Jurkat cells. Pretreatment of cells with these compounds prior to stimulation prevented I kappaB alpha degradation. Phosphorylation of I kappaB alpha, a prerequisite for its signal-induced degradation, was abrogated in these cells, indicating that oxidative stress is an essential step in the NF-kappaB activation pathway. On the other hand, iron chelators desferrioxamine, pyridoxal isonicotinoyl hydrazone (PIH), and salicylaldehyde isonicotinoyl hydrazone (SIH) showed no inhibition of TNF-alpha-induced NF-kappaB DNA-binding activity. Synergistic induction of HIV-1 LTR-mediated gene expression by TNF-alpha and the HIV-1 transactivator Tat in Jurkat cells was significantly suppressed in the presence of NAC and TD, but not PDTC. The inhibition of NAC and TD on LTR-directed gene expression was diminished when NF-kappaB-binding sites in the LTR were deleted, indicating that these compounds affected the NF-kappaB component of the synergism. Iron chelators PIH and SIH also showed some inhibitory effect on LTR-mediated gene activation, presumably through an NF-kappaB-independent mechanism. These experiments demonstrate that TD, at concentration 50 times lower than the effective concentration of NAC, potently inhibits NF-kappaB activity and suppresses HIV LTR expression.
Collapse
Affiliation(s)
- R Lee
- Lady Davis Institute for Medical Research, Department of Microbiology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
365
|
Cowen DS, Molinoff PB, Manning DR. 5-hydroxytryptamine1A receptor-mediated increases in receptor expression and activation of nuclear factor-kappaB in transfected Chinese hamster ovary cells. Mol Pharmacol 1997; 52:221-6. [PMID: 9271344 DOI: 10.1124/mol.52.2.221] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The regulation in expression of human 5-hydroxytryptamine1A (5-HT1A) receptors by agonists and antagonists was studied in a stable transfected Chinese hamster ovary cell line expressing the human 5-HT1A receptor. Receptor density and affinity were measured with [125I]4-(2'-methoxyphenyl)-1-[2'-[N-(2'-pyridinyl)-p-iodobenzamido ]ethyl]piperazine ([125I]p-MPPI), a selective antagonist of 5-HT1A receptors. Treatment of Chinese hamster ovary cells with serotonin or the selective agonist (+/-)-8-hydroxy-N,N-dipropyl-2-aminotetralin stimulated a 2.5-fold increase in receptor density. The antagonists 4-(2'-methoxyphenyl)-1-[2'-[N-(2'-pyridinyl)-p-iodobenzamidoethyl] piperazine, (-)-(S)-pindolol, and spiperone also stimulated up-regulation of receptor expression. Agonist- and antagonist-stimulated up-regulations of receptor expression were mechanistically different. The effect of agonists was inhibited by pertussis toxin, actinomycin D, and cycloheximide. Antagonist-stimulated up-regulation was inhibited by cycloheximide, only partially inhibited by actinomycin D, and not inhibited by pertussis toxin. In the course of identifying potential pathways for coupling of the receptor to activation of transcription, we demonstrated that agonists activate the transcription regulatory factor nuclear factor-kappaB (NF-kappaB). Agonists were found to stimulate degradation of the inhibitory subunit, IkappaB alpha, and to increase the activity of a NF-kappaB-dependent CAT reporter gene. In contrast, the antagonist 4-(2'-methoxyphenyl)-1-[2'-[N-(2'-pyridinyl)-p-iodobenzamidoethyl] piperazine neither elicited degradation of Ikappa-B alpha nor increased reporter activity. Our data suggest that expression of 5-HT1A receptors can be regulated by both agonists and antagonists and that the agonist but not antagonist stimulation occurs concomitantly with activation of NF-kappaB.
Collapse
Affiliation(s)
- D S Cowen
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | |
Collapse
|
366
|
Heck S, Bender K, Kullmann M, Göttlicher M, Herrlich P, Cato AC. I kappaB alpha-independent downregulation of NF-kappaB activity by glucocorticoid receptor. EMBO J 1997; 16:4698-707. [PMID: 9303314 PMCID: PMC1170096 DOI: 10.1093/emboj/16.15.4698] [Citation(s) in RCA: 215] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
I kappaB alpha is an inhibitor protein that prevents nuclear transport-and activation of the transcription factor NF-kappaB. In acute inflammation, NF-kappaB is activated and increases the expression of several pro-inflammatory cytokine and chemokine genes. Glucocorticoids counteract this process. It has been proposed that the glucocorticoid-dependent inhibition of NF-kappaB activity is mediated by increased synthesis of I kappaB alpha which should then sequester NF-kappaB in an inactive cytoplasmic form. Here, we show by the use of a mutant glucocorticoid receptor and steroidal ligands that hormone-induced I kappaB alpha synthesis and inhibition of NF-kappaB activity are separable biochemical processes. A dimerization-defective glucocorticoid receptor mutant that does not enhance the I kappaB alpha level is still able to repress NF-kappaB activity. Conversely, glucocorticoid analogues competent in enhancing I kappaB alpha synthesis do not repress NF-kappaB activity. These results demonstrate that increased synthesis of I kappaB alpha is neither required nor sufficient for the hormone-mediated downmodulation of NF-kappaB activity.
Collapse
Affiliation(s)
- S Heck
- Forschungszentrum Karlsruhe, Institute of Genetics, Germany
| | | | | | | | | | | |
Collapse
|
367
|
Lee EH, Rikihisa Y. Anti-Ehrlichia chaffeensis antibody complexed with E. chaffeensis induces potent proinflammatory cytokine mRNA expression in human monocytes through sustained reduction of IkappaB-alpha and activation of NF-kappaB. Infect Immun 1997; 65:2890-7. [PMID: 9199464 PMCID: PMC175406 DOI: 10.1128/iai.65.7.2890-2897.1997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ehrlichia chaffeensis is an obligatory intracellular bacterium that infects monocytes and macrophages and is the etiologic agent of human ehrlichiosis in the United States. Our previous studies showed that the exposure of human monocytes to E. chaffeensis induces the expression of interleukin-1beta (IL-1beta), IL-8, and IL-10 genes in vitro but not the expression of tumor necrosis factor alpha (TNF-alpha) and IL-6 mRNAs. In this study, the effect of anti-E. chaffeensis antibody complexed with E. chaffeensis on the expression of major proinflammatory cytokines in human monocytes was examined. Human monocytic cell line THP-1 was treated with E. chaffeensis which had been preincubated with human anti-E. chaffeensis serum for 2 h, and the levels of cytokine mRNAs were evaluated by competitive reverse transcription-PCR. Anti-E. chaffeensis antibody complexed with E. chaffeensis significantly enhanced mRNA expression of IL-1beta in THP-1 cells. The expression of TNF-alpha and IL-6 mRNAs was also induced. The levels of secreted IL-1beta, TNF-alpha, and IL-6 during 24 h of stimulation were comparable to those induced by Escherichia coli lipopolysaccharide at 1 microg/ml. Fab fragment of anti-E. chaffeensis immunoglobulin G complexed with E. chaffeensis did not induce any of these three cytokines, indicating that ehrlichial binding is required for IL-1beta mRNA expression and that binding of the immune complex to the Fc gamma receptor is required for TNF-alpha and IL-6 mRNA expression and enhanced IL-1beta mRNA expression. Furthermore, prolonged degradation of IkappaB-alpha and activation of NF-kappaB were demonstrated in THP-1 cells exposed to anti-E. chaffeensis serum and E. chaffeensis. This result implies that development of anti-E. chaffeensis antibody in patients can result in the production of major proinflammatory cytokines, which may play an important role in the pathophysiology of ehrlichiosis and immune responses to it.
Collapse
Affiliation(s)
- E H Lee
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
368
|
Schouten GJ, Vertegaal AC, Whiteside ST, Israël A, Toebes M, Dorsman JC, van der Eb AJ, Zantema A. IkappaB alpha is a target for the mitogen-activated 90 kDa ribosomal S6 kinase. EMBO J 1997; 16:3133-44. [PMID: 9214631 PMCID: PMC1169932 DOI: 10.1093/emboj/16.11.3133] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The activity of transcription factor NFkappaB is regulated by its subcellular localization. In most cell types, NFkappaB is sequestered in the cytoplasm due to binding of the inhibitory protein IkappaB alpha. Stimulation of cells with a wide variety of agents results in degradation of IkappaB alpha which allows translocation of NFkappaB to the nucleus. Degradation of IkappaB alpha is triggered by phosphorylation of two serine residues, i.e. Ser32 and Ser36, by as yet unknown kinases. Here we report that the mitogen-activated 90 kDa ribosomal S6 kinase (p90rsk1) is an IkappaB alpha kinase. p90rsk1 phosphorylates IkappaB alpha at Ser32 and it physically associates with IkappaB alpha in vivo. Moreover, when the function of p90rsk1 is impaired by expression of a dominant-negative mutant, IkappaB alpha degradation in response to mitogenic stimuli, e.g. 12-O-tetradecanoylphorbol 13-acetate (TPA), is inhibited. Finally, NFkappaB cannot be activated by TPA in cell lines that have low levels of p90rsk1. We conclude that p90rsk1 is an essential kinase required for phosphorylation and subsequent degradation of IkappaB alpha in response to mitogens.
Collapse
Affiliation(s)
- G J Schouten
- Laboratory for Molecular Carcinogenesis, Sylvius Laboratories, Leiden University, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
369
|
Ruetten H, Thiemermann C. Effect of calpain inhibitor I, an inhibitor of the proteolysis of I kappa B, on the circulatory failure and multiple organ dysfunction caused by endotoxin in the rat. Br J Pharmacol 1997; 121:695-704. [PMID: 9208136 PMCID: PMC1564738 DOI: 10.1038/sj.bjp.0701180] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. We compared the effects of calpain inhibitor I (inhibitor of the proteolysis of I kappa B and, hence, of the activation of nuclear factor kappa B (NF kappa B) and dexamethasone on (i) the circulatory failure, (ii) multiple organ dysfunction and (iii) induction of the inducible isoforms of nitric oxide (NO) synthase (iNOS) and cyclo-oxygenase (COX-2) in anaesthetized rats with endotoxic shock. 2. Injection of lipopolysaccharide (LPS, E. coli, 10 mg kg-1, i.v.) resulted in hypotension and a reduction of the pressor responses elicited by noradrenaline. This circulatory dysfunction was attenuated by pretreatment of LPS-rats with calpain inhibitor I (10 mg kg-1, i.v., 2 h before LPS) or dexamethasone (1 mg kg-1, i.v.). 3. Endotoxaemia also caused rises in the serum levels of (i) urea and creatinine (renal dysfunction), (ii) alanine aminotransferase (ALT), aspartate aminotransferase (AST) (hepatocellular injury), bilirubin and gamma-glutamyl transferase (gamma GT) (liver dysfunction), (iii) lipase (pancreatic injury) and (iv) lactate. Calpain inhibitor I and dexamethasone attenuated the liver injury, the pancreatic injury, the lactic acidosis as well as the hypoglycaemia caused by LPS. Dexamethasone, but not calpain inhibitor I, reduced the renal dysfunction caused by LPS. 4. Endotoxaemia for 6 h resulted in a substantial increase in iNOS and COX-2 protein and activity in lung and liver, which was attenuated in LPS-rats pretreated with calpain inhibitor I or dexamethasone. 5. Thus, calpain inhibitor I and dexamethasone attenuate (i) the circulatory failure, (ii) the multiple organ dysfunction (liver and pancreatic dysfunction/injury, lactic acidosis, hypoglycaemia), as well as (iii) the induction of iNOS and COX-2 protein and activity in rats with endotoxic shock. We propose that prevention of the activation of NF-kappa B in vivo may be useful in the therapy of circulatory shock or of disorders associated with local or systemic inflammation.
Collapse
Affiliation(s)
- H Ruetten
- William Harvey Research Institute, St. Bartholomew's and the Royal London School of Medicine and Dentistry, London
| | | |
Collapse
|
370
|
Brown K, Franzoso G, Baldi L, Carlson L, Mills L, Lin YC, Gerstberger S, Siebenlist U. The signal response of IkappaB alpha is regulated by transferable N- and C-terminal domains. Mol Cell Biol 1997; 17:3021-7. [PMID: 9154800 PMCID: PMC232154 DOI: 10.1128/mcb.17.6.3021] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
IkappaB alpha retains the transcription factor NF-kappaB in the cytoplasm, thus inhibiting its function. Various stimuli inactivate IkappaB alpha by triggering phosphorylation of the N-terminal residues Ser32 and Ser36. Phosphorylation of both serines is demonstrated directly by phosphopeptide mapping utilizing calpain protease, which cuts approximately 60 residues from the N terminus, and by analysis of mutants lacking one or both serine residues. Phosphorylation is followed by rapid proteolysis, and the liberated NF-kappaB translocates to the nucleus, where it activates transcription of its target genes. Transfer of the N-terminal domain of IkappaB alpha to the ankyrin domain of the related oncoprotein Bcl-3 or to the unrelated protein glutathione S-transferase confers signal-induced phosphorylation on the resulting chimeric proteins. If the C-terminal domain of IkappaB alpha is transferred as well, the resulting chimeras exhibit both signal-induced phosphorylation and rapid proteolysis. Thus, the signal response of IkappaB alpha is controlled by transferable N-terminal and C-terminal domains.
Collapse
Affiliation(s)
- K Brown
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1876, USA
| | | | | | | | | | | | | | | |
Collapse
|
371
|
Abstract
AbstractActivated neutrophils have the ability to upregulate the expression of many genes, in particular those encoding cytokines and chemokines, and to subsequently release the corresponding proteins. Although little is known to date concerning the regulation of gene transcription in neutrophils, it is noteworthy that many of these genes depend on the activation of transcription factors, such as NF-κB, for inducible expression. We therefore investigated whether NF-κB/Rel proteins are expressed in human neutrophils, as well as their fate on cell activation. We now report that dimers consisting of p50 NFκB1, p65 RelA, and/or c-Rel are present in neutrophils and that the greater part of these protein complexes is physically associated with cytoplasmic IκB-α in resting cells. Following neutrophil stimulation with proinflammatory agonists (such as lipopolysaccharide [LPS], tumor necrosis factor-α [TNF-α], and fMet-Leu-Phe) that induce the production of cytokines and chemokines in these cells, NF-κB/Rel proteins translocated to nuclear fractions, resulting in a transient induction of NF-κB DNA binding activity, as determined in gel mobility shift assays. The onset of both processes was found to be closely paralleled by, and dependent on, IκB-α degradation. Proinflammatory neutrophil stimuli also promoted the accumulation of IκB-α mRNA transcripts, resulting in the reexpression of the IκB-α protein. To our knowledge, this constitutes the first indication that NF-κB activation may underlie the action of proinflammatory stimuli towards human neutrophil gene expression and, as such, adds a new facet to our understanding of neutrophil biology.
Collapse
|
372
|
Schini-Kerth VB, Boese M, Busse R, Fisslthaler B, Mülsch A. N-alpha-tosyl-L-lysine chloromethylketone prevents expression of iNOS in vascular smooth muscle by blocking activation of NF-kappa B. Arterioscler Thromb Vasc Biol 1997; 17:672-9. [PMID: 9108779 DOI: 10.1161/01.atv.17.4.672] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Certain cytokines and lipopolysaccharide stimulate expression of inducible nitric oxide synthase (iNOS) in vascular smooth muscle, an event that is regulated at the transcriptional level and appears to involve several transcription factors, including nuclear factor kappa B (NF-kappa B). Since proteases play an essential role in NF-kappa B activation, experiments were designed to clarify, in both cultured rat aortic smooth muscle cells (SMCs) and isolated rat aortas, whether protease inhibitors affect the interleukin-1 beta (IL-1 beta)-elicited expression of iNOS. The formation of NO was assessed by nitrite release in cultured SMCs and the attenuation of phenylephrine-induced contraction in aortic rings, the expression of iNOS by Western blot analysis and reverse transcription-polymerase chain reaction, and NF-kappa B activity in nuclear extracts by gel electrophoretic mobility shift assya. Exposure of cultured SMCs to IL-1 beta increased NF-kappa B binding activity within 30 minutes and was associated with nitrite accumulation and the appearance of iNOS protein 24 hours later. These responses were abolished in cells that had been exposed to the cytokine in the presence of the protease inhibitor N-alpha-tosyl-L-lysine chloromethylketone. Aprotinin and p-toluenesulfonyl-L-arginine methyl ester, two other protease inhibitors, also reduced the cytokine-stimulated release of nitrite and the level of iNOS protein. Exposure of rat aortic segments without endothelium to IL-1 beta activated NF-kappa B within 30 minutes and was associated with the appearance of iNOS mRNA and an attenuation of phenylephrine-induced contraction 6 hours later. These responses were blunted when the segments were incubated with the cytokine and N-alpha-tosyl-L-lysine chloromethyl ketone. The present observations indicate that protease inhibitors prevent iNOS expression in both cultured and native vascular SMCs by blocking the activation of NF-kappa B.
Collapse
|
373
|
Pise-Masison CA, Dittmer J, Clemens KE, Brady JN. Physical and functional interaction between the human T-cell lymphotropic virus type 1 Tax1 protein and the CCAAT binding protein NF-Y. Mol Cell Biol 1997; 17:1236-43. [PMID: 9032250 PMCID: PMC231848 DOI: 10.1128/mcb.17.3.1236] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tax1, a potent activator of human T-cell lymphotropic virus type 1 (HTLV-1) transcription, has been shown to modulate expression of many cellular genes. Tax1 does not bind DNA directly but regulates transcription through protein-protein interactions with sequence-specific transcription factors. Using the yeast two-hybrid system to screen for proteins which interact with Tax1, we isolated the B subunit of the CCAAT binding protein NF-Y from a HeLa cDNA library. The interaction of Tax1 with NF-YB was specific in that NF-YB did not interact with a variety of other transcription factors, including human immunodeficiency virus Tat, human papillomavirus E6, and Bicoid, or with the M7 (amino acids 29CP-AS) Tax1 mutant. However, NF-YB did interact with the C-terminal Tax1 mutants M22 (130TL-AS) and M47 (319LL-RS). We also show that in vitro-translated NF-YB specifically bound to a glutathione S-transferase-Tax1 fusion protein. Further, Tax1 coimmunoprecipitated with NF-Y from nuclear extracts of HTLV-1-transformed cells, providing evidence for in vivo interaction of Tax1 and NF-YB. We further demonstrate that Tax1 specifically activated the NF-Y-responsive DQbeta promoter, as well as a minimal promoter which contains only the Y-box element. In addition, mutation of the Y-box element alone abrogated Tax1-mediated activation. Taken together, these data indicate that Tax1 interacts with NF-Y through the B subunit and that this interaction results in activation of the major histocompatibility complex class II promoter. Through activation of this and other NF-Y driven promoters, the Tax1-NF-Y interaction may play a critical role in causing cellular transformation and HTLV-1 pathogenesis.
Collapse
Affiliation(s)
- C A Pise-Masison
- Laboratory of Molecular Virology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA
| | | | | | | |
Collapse
|
374
|
Harhaj EW, Sun SC. The serine/threonine phosphatase inhibitor calyculin A induces rapid degradation of IkappaBbeta. Requirement of both the N- and C-terminal sequences. J Biol Chem 1997; 272:5409-12. [PMID: 9038140 DOI: 10.1074/jbc.272.9.5409] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Signal-initiated activation of the transcription factor NF-kappaB is mediated through proteolysis of its cytoplasmic inhibitory proteins IkappaBalpha and IkappaBbeta. While most NF-kappaB inducers trigger the degradation of IkappaBalpha, only certain stimuli are able to induce the degradation of IkappaBbeta. The degradation of IkappaBalpha is targeted by its site-specific phosphorylations, although the mechanism underlying the degradation of IkappaBbeta remains elusive. In the present study, we have analyzed the effect of phosphatase inhibitors on the proteolysis of IkappaBbeta. We show that the serine/threonine phosphatase inhibitor calyculin A induces the hyperphosphorylation and subsequent degradation of IkappaBbeta in both human Jurkat T cells and the murine 70Z-3 preB cells, which is associated with the nuclear expression of active NF-kappaB. The calyculin A-mediated degradation of IkappaBbeta is further enhanced by the cytokine tumor necrosis factor-alpha (TNF-alpha), although TNF-alpha alone is unable to induce the degradation of IkappaBbeta. Mutational analyses have revealed that the inducible degradation of IkappaBbeta induced by calyculin A, and TNF-alpha requires two N-terminal serines (serines 19 and 23) that are homologous to the inducible phosphorylation sites present in IkappaBalpha. Furthermore, the C-terminal 51 amino acid residues, which are rich in serines and aspartic acids, are also required for the inducible degradation of IkappaBbeta. These results suggest that the degradation signal of IkappaBbeta may be controlled by the opposing actions of protein kinases and phosphatases and that both the N- and C-terminal sequences of IkappaBbeta are required for the inducible degradation of this NF-kappaB inhibitor.
Collapse
Affiliation(s)
- E W Harhaj
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
375
|
Schoonbroodt S, Legrand-Poels S, Best-Belpomme M, Piette J. Activation of the NF-kappaB transcription factor in a T-lymphocytic cell line by hypochlorous acid. Biochem J 1997; 321 ( Pt 3):777-85. [PMID: 9032466 PMCID: PMC1218135 DOI: 10.1042/bj3210777] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide serve as second messengers in the induction of the transcription factor NF-kappaB, and hence in the activation and replication of human immunodeficiency virus type 1 (HIV-1) in human cells. During inflammatory reactions, many oxidative species are produced, one of which is hypochlorous acid (HOCl), which is responsible for the microbicidal effects of activated human polymorphonuclear leukocytes. Treatment of a T-lymphocytic cell line with micromolar concentrations of HOCl promoted the appearance of transcription factor NF-kappaB (the heterodimer p50/p65) in the nucleus of the cells, even in the absence of de novo protein synthesis. Western blot analysis of the NF-kappaB inhibitory subunits (IkappaB) demonstrated that both IkappaB-alpha proteolysis and p105 processing were induced by the treatment. NF-kappaB activation was very effective when cells were subjected to hyperthermia before being treated with HOCl. Various antioxidants, such as pyrrolidine dithiocarbamate, p-bromophenacyl-bromide and nordihydroguaiaretic acid could strongly reduce NF-kappaB translocation, demonstrating the importance of oxidative species in the transduction mechanism. Moreover, ACH-2 cells treated with HOCl or H2O2 released tumour necrosis factor-alpha (TNF-alpha) in the supernatants. The importance of TNF-alpha release in NF-kappaB induction by HOCl or H2O2 was demonstrated by the fact that: (1) the nuclear appearance of NF-kappaB was promoted in untreated cells; and (2) synergism between TNF-alpha and HOCl was detected. Collectively, these results suggest that HOCl should be considered as an oxidative species capable of inducing NF-kappaB in a T-lymphocytic cell line through a transduction mechanism involving ROS, and having a long-distance effect through subsequent TNF-alpha release.
Collapse
Affiliation(s)
- S Schoonbroodt
- Laboratory of Virology, Institute of Pathology B23, University of Liege, Belgium
| | | | | | | |
Collapse
|
376
|
Auphan N, Didonato JA, Helmberg A, Rosette C, Karin M. Immunoregulatory genes and immunosuppression by glucocorticoids. ARCHIVES OF TOXICOLOGY. SUPPLEMENT. = ARCHIV FUR TOXIKOLOGIE. SUPPLEMENT 1997; 19:87-95. [PMID: 9079197 DOI: 10.1007/978-3-642-60682-3_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- N Auphan
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla 92093-0636, USA
| | | | | | | | | |
Collapse
|
377
|
Abstract
Animal and human proteinuric glomerulopathies evolve to terminal renal failure by a process leading to progressive parenchymal damage, which appears to be relatively independent of the initial insult. Despite the fact that the mechanism(s) leading to renal disease progression has been only partially clarified, several studies have found that the amount of urinary proteins (taken to reflect the degree of protein trafficking through the glomerular capillary) correlated with the tendency of a given disease to progress more than the underlying renal pathology. On the other hand, dietary protein restriction and ACE inhibitors were capable of limiting the progressive decline in GFR to the extent that they could effectively lower the urinary protein excretion rate. A constant feature of proteinuric nephritis is also the concomitant presence of tubulointerstitial inflammation. So far it was not clear if this is a reaction to the ischemic obliteration of peritubular capillaries that follows glomerular obsolescence or whether albumin and other proteins that accumulated in the urinary space are indeed instrumental for the formation of the interstitial inflammatory reaction. In recent years several studies have convincingly documented that excessive and sustained protein trafficking could have an intrinsic renal toxicity. Here we have reviewed the abundant evidence in the literature that the process of reabsorption of filtered proteins activates the proximal tubular epithelium. Biochemical events associated with tubular cell activation in response to protein stress include up-regulation of inflammatory and vasoactive genes such as MCP-1 and endothelins. The corresponding molecules formed in an excessive amount by renal tubuli are secreted toward the basolateral compartment of the cell and give rise to an inflammatory reaction that in most forms of glomerulonephritis consistently precede renal scarring.
Collapse
Affiliation(s)
- G Remuzzi
- Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | | | | |
Collapse
|
378
|
Rhee S, Lee KH, Kwon H, Kang M. NF‐κB activation by disruption of microtubule array during myogenesis of L6 cells. ACTA ACUST UNITED AC 1997. [DOI: 10.1080/12265071.1997.9647349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
379
|
Sandoval M, Zhang XJ, Liu X, Mannick EE, Clark DA, Miller MJ. Peroxynitrite-induced apoptosis in T84 and RAW 264.7 cells: attenuation by L-ascorbic acid. Free Radic Biol Med 1997; 22:489-95. [PMID: 8981041 DOI: 10.1016/s0891-5849(96)00374-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The free radicals nitric oxide and superoxide react to form peroxynitrite (ONOO-), a potent cytotoxic oxidant. This study was designed to evaluate whether addition of L-Ascorbic acid (AsC) into the culture medium decreases peroxynitrite-induced apoptosis in human intestinal epithelial (T84) and murine macrophage (RAW 264.7) cell lines. In Experiment 1, T84 and RAW 264.7 cells were divided in two protocols: (1) treated with 100-300 microM ONOO- and incubated for 4 h, and (2) treated with 10-100 microM ONOO- and incubated overnight (14 h). In Experiment 2, T84 and RAW 264.7 cells were treated with 300 microM ONOO- and 500 microM AsC and incubated for 4 h. In Experiment 3, T84 and RAW 264.7 cells were preincubated for 2 h with 500 microM AsC then exposed to 300 microM ONOO- for 4 h. Cell viability (necrosis) was assessed by trypan blue dye exclusion. Apoptosis was quantified with a cell death detection ELISA assay. In the 4 h protocol, ONOO- induced apoptosis in T84 and RAW 264.7 cells, at levels of 100-300 microM. Concentrations of ONOO- greater than 300 microM caused necrosis. In contrast, extension of the protocol to 14 h indicated that ONOO- induced apoptosis at lower concentrations (50;-75 microM), with concentrations > 75 microM resulting in necrosis. AsC administered to the media or with preincubation plus washout, decreased peroxynitrite-induced apoptosis in T84 and RAW 264.7 cells. These results indicate that ONOO- may contribute to the pathophysiology of gut inflammation by promoting cell death and ascorbic acid may protect against peroxynitrie-induced damage.
Collapse
Affiliation(s)
- M Sandoval
- Department of Pediatrics, Louisiana State University School of Medicine, New Orleans 70112, USA
| | | | | | | | | | | |
Collapse
|
380
|
Bonizzi G, Dejardin E, Piret B, Piette J, Merville MP, Bours V. Interleukin-1 beta induces nuclear factor kappa B in epithelial cells independently of the production of reactive oxygen intermediates. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:544-9. [PMID: 9022680 DOI: 10.1111/j.1432-1033.1996.0544r.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A large body of work has been devoted to tumor necrosis factor alpha or interleukin-1 beta (IL-1 beta) signaling leading to the activation of the transcription factor nuclear factor-kappa B (NF-kappa B) in various cell types. Several studies have indicated that NF-kappa B activation depends strictly on the production of reactive oxygen intermediates. In this report, we first demonstrated that IL-1 beta is a potent activator of NF-kappa B in various epithelial transformed cell lines (OVCAR-3, SKOV-3, MCF7 A/Z). In these cells, IL-1 beta rapidly induces NF-kappa B through a complete degradation of I kappa B-alpha, while H2O2 activates NF-kappa B with slower kinetics through a partial degradation of I kappa B-alpha, p100 and p105. We showed that IL-1 beta-mediated induction of NF-kappa B in OVCAR-3 and in other epithelial cell lines does not proceed through the production of reactive oxygen intermediates, while the same cytokine activates NF-kappa B in lymphoid cells through the intracellular generation of H2O2. Our study demonstrated that several signaling pathways lead to the activation of NF-kappa B, following IL-1 beta treatment in different cell types.
Collapse
Affiliation(s)
- G Bonizzi
- Laboratory of Medical Chemistry/Medical Oncology, University of Liège, Belgium
| | | | | | | | | | | |
Collapse
|
381
|
Harhaj EW, Maggirwar SB, Good L, Sun SC. CD28 mediates a potent costimulatory signal for rapid degradation of IkappaBbeta which is associated with accelerated activation of various NF-kappaB/Rel heterodimers. Mol Cell Biol 1996; 16:6736-43. [PMID: 8943328 PMCID: PMC231676 DOI: 10.1128/mcb.16.12.6736] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Optimal activation of T cells requires at least two signals delivered by the T-cell receptor complex and costimulatory molecules such as CD28. The CD28 signaling participates in the transcription of the interleukin-2 gene through activation of an enhancer termed the CD28-responsive element (CD28RE). Stimulation of CD28 enhances mitogen-mediated induction of CD28RE-binding proteins including members of the NF-kappaB/Rel transcription factor family, although the underlying mechanism remains elusive. In this report, we show that CD28 costimulation leads to biphasic induction of NF-kappaB/Rel heterodimers, including early-phase induction of p50/RelA and c-Rel/RelA and late-phase induction of p50/c-Rel. Interestingly, activation of these NF-kappaB/Rel complexes by the CD28 signal is associated with the rapid degradation of both IkappaBalpha and IkappaBbeta, two major cytoplasmic inhibitors of NF-kappaB/Rel. Although IkappaBalpha degradation can be induced by phorbol ester alone, degradation of IkappaBbeta is largely dependent on the CD28 costimulatory signal. We further demonstrate that CD28-mediated transactivation of the CD28RE enhancer is potently inhibited by an N-terminal truncation mutant of IkappaBbeta that is incapable of responding to the degradation signals. Together, these results suggest that the CD28 costimulatory signal augments activation of NF-kappaB/Rel by promoting degradation of IkappaBbeta as well as enhancing degradation of IkappaBalpha and that induction of NF-kappaB/Rel serves as an essential step in the signal-mediated activation of the CD28RE enhancer.
Collapse
Affiliation(s)
- E W Harhaj
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey Medical Center, Hershey 17033, USA
| | | | | | | |
Collapse
|
382
|
Speir E, Shibutani T, Yu ZX, Ferrans V, Epstein SE. Role of reactive oxygen intermediates in cytomegalovirus gene expression and in the response of human smooth muscle cells to viral infection. Circ Res 1996; 79:1143-52. [PMID: 8943952 DOI: 10.1161/01.res.79.6.1143] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Because cytomegalovirus (CMV) may contribute to restenosis and atherosclerosis and because smooth muscle cells (SMCs) are involved in these disease processes, we examined CMV-SMC interactions. Using confocal microscopy to identify a redox-sensitive fluorescent marker, we found that CMV infection of SMCs generates intracellular reactive oxygen intermediates (ROIs). CMV also activated nuclear factor kappa B (NF kappa B), a cellular transcription factor, as demonstrated by increased NF kappa B binding to DNA (electrophoretic mobility shift assay). Antioxidants inhibited activation, suggesting a role of ROIs in CMV-induced NF kappa B activation. By using antioxidants to assess the role of ROIs in modulating virally mediated effects, we also found that CMV-induced ROIs (1) are critical to the transactivation of the viral major immediate promoter (MIEP) by its immediate-early protein IE72 (determined by cotransfection of an IE72 expression vector and a reporter gene downstream from the MIEP) and (2) are necessary for IE72 expression (determined by immunocytochemistry) and viral replication (determined by viral titer assay on indicator cells) following CMV infection of SMCs. Because ROIs, through activation of NF kappa B, can also induce expression of cellular genes involved in immune and inflammatory responses, the ROI response to CMV infection may also represent a parallel survival mechanism that has evolved in the host cell to protect against viral infection. We conclude that CMV induces intracellular ROI generation within minutes after infection of SMCs and then uses these ROIs to facilitate its own gene expression and replication. Conversely, antioxidants inhibit CMV immediate-early gene expression and viral replication.
Collapse
Affiliation(s)
- E Speir
- Cardiology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md., USA
| | | | | | | | | |
Collapse
|
383
|
Harada Y, Watanabe S, Yssel H, Arai K. Factors affecting the cytokine production of human T cells stimulated by different modes of activation. J Allergy Clin Immunol 1996; 98:S161-73. [PMID: 8977524 DOI: 10.1016/s0091-6749(96)70063-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
According to the widely accepted classification, human TH cell clones can be divided into two mutually exclusive subsets, TH1 and TH2, based on their profile of cytokine production. The intracellular difference between these clones is not clear. To characterize the biochemical nature of T-cell receptor (TCR)/CD3 complex-mediated signal transduction pathways, we introduced several human TH cell clones of THO- or TH1-like phenotype and analyzed the effects of various drugs and antibodies on cytokine production or proliferation of these clones. The tyrosine kinase inhibitor herbimycin inhibited the production of interferon-gamma (IFN-gamma) by THO-like clone, after stimulation with anti-CD3 monoclonal antibody alpha CD3-mAb) or with phorbol 12-myristate 13-acetate (PMA) and the calcium ionophore A23187. However, whereas herbimycin strongly inhibited the production of IL-4 and IL-5 by alpha CD3 mAb stimulated T cells, it did not affect the production of these cytokines after PMA/A23187 stimulation. Cyclosporin A inhibited the proliferation as well as the production of the cytokines, including that of IL-2, IL-4, IL-5, and IFN-gamma, irrespective of the mode of stimulation. A23187, which synergizes with PMA in the induction of IL-4 and IFN-gamma, inhibited PMA-induced IL-10 production in a dose-dependent manner. Transforming growth factor-beta and anti-IL-2 receptor monoclonal antibody partially inhibited alpha CD3 mAb-mediated T-cell proliferation, but had no effect on the proliferation induced by PMA and A23187. Cyclic adenosine monophosphate (cAMP)-elevating drugs, like prostaglandin E2 and dibutyryl cAMP, inhibited the TCR-mediated cytokine production but shifted the cytokine production profile from a TH0 to a TH2 type after stimulation with PMA and A23187. Finally, we analyzed the induction of activity of two transcription factors, nuclear factor-kappa B (NF-kappa B) and nuclear factor of activated T cells, involved in the regulation of cytokine gene expression, after a different mode of activation. The induction of NF-kappa B (p50/p65 heterodimer) by using alpha CD3-mAb stimulation but not by using PMA/A23187 stimulation was found to be inhibited by using cAMP-elevating drugs.
Collapse
Affiliation(s)
- Y Harada
- Department of Molecular and Developmental Biology, University of Tokyo, Japan
| | | | | | | |
Collapse
|
384
|
Van Antwerp DJ, Verma IM. Signal-induced degradation of I(kappa)B(alpha): association with NF-kappaB and the PEST sequence in I(kappa)B(alpha) are not required. Mol Cell Biol 1996; 16:6037-45. [PMID: 8887633 PMCID: PMC231606 DOI: 10.1128/mcb.16.11.6037] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Signal-induced degradation of I(kappa)B(alpha) via the ubiquitin-proteasome pathway requires phosphorylation on residues serine 32 and serine 36 followed by ubiquitination on lysines 21 and 22. We investigated the role of other regions of I(kappa)B(alpha) which may be involved in its degradation. Here we report that the carboxy-terminal PEST sequence is not required for I(kappa)B(alpha) signal-induced degradation. However, removal of the PEST sequence stabilizes free I(kappa)B(alpha) in unstimulated cells. We further report that a PEST deletion mutant does not associate well with NF-(kappa)B proteins but is degraded in response to signal. Therefore, we conclude that both association with NF-(kappa)B and a PEST sequence are not required for signal-induced I(kappa)B(alpha) degradation. Additionally, the PEST sequence may be required for constitutive turnover of free I(kappa)B(alpha).
Collapse
Affiliation(s)
- D J Van Antwerp
- Laboratory of Genetics, The Salk Institute, San Diego, California 92186, USA
| | | |
Collapse
|
385
|
Bell S, Matthews JR, Jaffray E, Hay RT. I(kappa)B(gamma) inhibits DNA binding of NF-kappaB p50 homodimers by interacting with residues that contact DNA. Mol Cell Biol 1996; 16:6477-85. [PMID: 8887676 PMCID: PMC231649 DOI: 10.1128/mcb.16.11.6477] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
NF-(kappa)B is an inducible transcription factor that activates many cellular genes involved in stress and immune response and whose DNA binding activity and cellular distribution are regulated by I(kappa)B inhibitor proteins. The interaction between NF-(kappa)B p50 and DNA was investigated by protein footprinting using chemical modification and partial proteolysis. Both methods confirmed lysine-DNA contacts already found in the crystal structure (K-147, K-149, K-244, K-275, and K-278) but also revealed an additional contact in the lysine cluster K-77-K-78-K-80 which was made on an extended DNA. Molecular modelling of such a DNA-protein complex revealed that lysine 80 is ideally placed to make phosphate backbone contacts in the extended DNA. Thus, it seems likely that the entire AB loop, containing lysines 77, 78, and 80, forms a C-shaped clamp that closes around the DNA recognition site. The same protein footprinting approaches were used to probe the interaction of p50 with the ankyrin repeat containing proteins I(kappa)B(gamma) and I(kappa)B(alpha). Lysine residues in p50 that were protected from modification by DNA were also protected from modification by I(kappa)B(gamma) but not I(kappa)B(alpha). Similarly, proteolytic cleavage at p50 residues which contact DNA was inhibited by bound I(kappa)B(gamma) but was enhanced by the presence of I(kappa)B(alpha). Thus, I(kappa)B(gamma) inhibits the DNA binding activity of p50 by direct interactions with residues contacting DNA, whereas the same residues remain exposed in the presence of I(kappa)B(alpha), which binds to p50 but does not block DNA binding.
Collapse
Affiliation(s)
- S Bell
- School of Biological and Medical Sciences, University of St. Andrews, Fife, Scotland
| | | | | | | |
Collapse
|
386
|
|
387
|
Suyang H, Phillips R, Douglas I, Ghosh S. Role of unphosphorylated, newly synthesized I kappa B beta in persistent activation of NF-kappa B. Mol Cell Biol 1996; 16:5444-9. [PMID: 8816457 PMCID: PMC231544 DOI: 10.1128/mcb.16.10.5444] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Stimulation with inducers that cause persistent activation of NF-kappa B results in the degradation of the NF-kappa B inhibitors, I kappa B alpha and I kappa B beta. Despite the rapid resynthesis and accumulation of I kappa B alpha, NF-kappa B remains induced under these conditions. We now report that I kappa B beta is also resynthesized in stimulated cells and appears as an unphosphorylated protein. The unphosphorylated I kappa B beta forms a stable complex with NF-kappa B in the cytosol; however, this binding fails to mask the nuclear localization signal and DNA binding domain on NF-kappa B, and the I kappa B beta-NF-kappa B complex enters the nucleus. It appears therefore that during prolonged stimulation, I kappa B beta functions as a chaperone for NF-kappa B by protecting it from I kappa B alpha and allowing it to be transported to the nucleus.
Collapse
Affiliation(s)
- H Suyang
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
388
|
Leanna CA, Hannink M. The reverse two-hybrid system: a genetic scheme for selection against specific protein/protein interactions. Nucleic Acids Res 1996; 24:3341-7. [PMID: 8811088 PMCID: PMC146093 DOI: 10.1093/nar/24.17.3341] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The yeast two-hybrid system is a powerful experimental approach for the characterization of protein/ protein interactions. A unique strength of the yeast two-hybrid system is the provision for genetic selection techniques that enable the identification of specific protein/protein interactions. We now report the development of a modified yeast two-hybrid system which enables genetic selection against a specific protein/protein interaction. This reverse two-hybrid system utilizes a yeast strain which is resistant to cycloheximide due to the presence of a mutant cyh2 gene. This strain also contains the wild-type CYH2 allele under the transcriptional control of the Gal1 promoter. Expression of the wild-type Gal4 protein is sufficient to restore growth sensitivity to cycloheximide. Growth sensitivity towards cycloheximide is also restored by the coexpression of the avian c-Rel protein and its I kappa B alpha counterpart, p40, as Gal4 fusion proteins. Restoration of growth sensitivity towards cycloheximide requires the association of c-Rel and p40 at the Gal1 promoter and correlates with the ability of the c-Rel/p40 interaction to activate expression from the Gal1 promoter. A genetic selection scheme against specific protein/protein interactions may be a valuable tool for the analysis of protein/protein interactions.
Collapse
Affiliation(s)
- C A Leanna
- Biochemistry Department, University of Missouri-Columbia 65212, USA
| | | |
Collapse
|
389
|
Beauparlant P, Kwon H, Clarke M, Lin R, Sonenberg N, Wainberg M, Hiscott J. Transdominant mutants of I kappa B alpha block Tat-tumor necrosis factor synergistic activation of human immunodeficiency virus type 1 gene expression and virus multiplication. J Virol 1996; 70:5777-85. [PMID: 8709193 PMCID: PMC190591 DOI: 10.1128/jvi.70.9.5777-5785.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) contains two binding sites for the NF-kappa B/Rel family of transcription factors which are required for the transcriptional activation of viral genes by inflammatory cytokines such as tumor necrosis factor alpha (TNF-alpha) and interleukin-1. In the present study, we examined the effect of transdominant mutants of I kappa B alpha on the synergistic activation of the HIV-1 LTR by TNF-alpha and the HIV-1 transactivator, Tat, in Jurkat T cells. The synergistic induction of HIV-1 LTR-driven gene expression represented a 50- to 70-fold stimulation and required both an intact HIV-1 enhancer and Tat-TAR element interaction, since mutations in Tat protein (R52Q, R53Q) or in the bulge region of the TAR element that eliminated Tat binding to TAR were unable to stimulate LTR expression. Coexpression of I kappa B alpha inhibited Tat-TNF-alpha activation of HIV LTR in a dose-dependent manner. Transdominant forms of I kappa B alpha, mutated in critical serine or threonine residues required for inducer-mediated (S32A, S36A) and/or constitutive (S283A, T291A, T299A) phosphorylation of I kappa B alpha were tested for their capacity to block HIV-1 LTR transactivation. I kappa B alpha molecules mutated in the N-terminal sites were not degraded following inducer-mediated stimulation (t1/2, > 4 h) and were able to efficiently block HIV-1 LTR transactivation. Strikingly, the I kappa B alpha (S32A, S36A) transdominant mutant was at least five times as effective as wild-type I kappa B alpha in inhibiting synergistic induction of the HIV-1 LTR. This mutant also effectively inhibited HIV-1 multiplication in a single-cycle infection model in Cos-1 cells, as measured by Northern (RNA) blot analysis of viral mRNA species and viral protein production. These experiments suggest a strategy that may contribute to inhibition of HIV-1 gene expression by interfering with the NF-kappa B/Rel signaling pathway.
Collapse
Affiliation(s)
- P Beauparlant
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
390
|
Bennett BL, Lacson RG, Chen CC, Cruz R, Wheeler JS, Kletzien RF, Tomasselli AG, Heinrikson RL, Manning AM. Identification of signal-induced IkappaB-alpha kinases in human endothelial cells. J Biol Chem 1996; 271:19680-8. [PMID: 8702671 DOI: 10.1074/jbc.271.33.19680] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Activation of the nuclear transcription factor-kappaB is an early event in endothelial activation. NF-kappaB activation is regulated by the inducible phosphorylation and subsequent degradation of the inhibitory subunit IkappaB-alpha. We identified two discrete kinases of approximately 36 and 41 kDa in the cytoplasm of human umbilical vein endothelial cells that specifically bind to and phosphorylate the IkappaB-alpha subunit. IkappaB-alpha kinase activity is transiently elevated following treatment with either tumor necrosis factor alpha, interleukin-1beta, or bacterial lipopolysaccharides and precedes activation of either mitogen-activated kinase or Jun kinase. Furthermore, activation of the IkappaB-alpha kinases precedes both the appearance of hyperphosphorylated IkappaB-alpha and its subsequent degradation, as well as the translocation of NF-kappaB to the nucleus. Deletion mutagenesis of the IkappaB-alpha polypeptide revealed that these kinases bind in or around the ankyrin repeat domains and phosphorylate residues within the C terminus. These kinases, however, were not identical to casein kinase II and displayed a pharmacologic profile distinct from other known kinases. These kinases may represent components of a signal transduction pathway regulating IkappaB-alpha levels in vascular endothelium.
Collapse
Affiliation(s)
- B L Bennett
- Cell Biology and Inflammation Research, Upjohn Laboratories, Kalamazoo, Michigan 49007, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
391
|
Su F, Schneider RJ. Hepatitis B virus HBx protein activates transcription factor NF-kappaB by acting on multiple cytoplasmic inhibitors of rel-related proteins. J Virol 1996; 70:4558-66. [PMID: 8676482 PMCID: PMC190392 DOI: 10.1128/jvi.70.7.4558-4566.1996] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The HBx protein is a small polypeptide encoded by mammalian hepadnaviruses that is essential for viral infectivity and is thought to play a role in development of hepatocellular carcinoma during chronic hepatitis B virus infection. HBx is a transactivator that stimulates Ras signal transduction pathways in the cytoplasm and certain transcription elements in the nucleus. To better understand the activities of HBx protein and its mechanism of action, we have explored the manner by which HBx activates the transcription factor NF-kappaB during transient expression. We show that HBx induces prolonged formation, in a Ras-dependent manner, of transcriptionally active NF-kappaB DNA-binding complexes, which make up the family of Rel-related proteins, p50, p52, RelA, and c-Rel. HBx was found to activate NF-kappaB through two distinct cytoplasmic pathways by acting on both the 37-kDa IkappaBalpha inhibitor and the 105-kappaDa NF-kappaB1 precursor inhibitor protein, known as p105. HBx induces phosphorylation of IkappaBalpha, a three- to fourfold reduction in IKBalpha stability, and concomitant nuclear accumulation of NF-kappaB DNA-binding complexes, similar to that reported for human T-cell leukemia virus type 1 Tax protein. In addition, HBx mediates a striking reduction in cytoplasmic p105 NF-kappaB1 inhibitor and p50 protein levels and release of RelA protein that was sequestered by the p105 inhibitor, concomitant with nuclear accumulation of NF-kappaB complexes. HBx mediated only a slight reduction in the cytoplasmic levels of NF-kappaB2 p100 protein, an additional precursor inhibitor of NF-kappaB, which is thought to be less efficiently processed or less responsive to release of NF-kappaB. No evidence was found for HBx activation of NF-kappaB by targeting acidic sphingomyelinase- controlled pathways. Studies also suggest that stimulation of NF-kappaB by HBx does not involve activation of Ras via the neutral sphingomyelin-ceramide pathway. Thus, HBx protein is shown to activate the NF-kappaB family of Rel-related proteins by acting on two distinct NF-kappaB cytoplasmic inhibitors.
Collapse
Affiliation(s)
- F Su
- Department of Biochemistry and Kaplan Cancer Center, New York University School of Medicine, New York 10016, USA
| | | |
Collapse
|
392
|
Demarchi F, d'Adda di Fagagna F, Falaschi A, Giacca M. Activation of transcription factor NF-kappaB by the Tat protein of human immunodeficiency virus type 1. J Virol 1996; 70:4427-37. [PMID: 8676466 PMCID: PMC190376 DOI: 10.1128/jvi.70.7.4427-4437.1996] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A recombinant Tat protein was used to investigate the molecular mechanisms of transcriptional activation of the human immunodeficiency virus type 1 long terminal repeat (LTR). Liposome-mediated delivery of this protein to responsive cells results in dose-dependent LTR activation. As evaluated by mRNA quantitation with competitive PCR, the activation response is rapid and transient, peaking at 5 h after the beginning of Tat treatment. In vivo footprinting experiments at the LTR showed that transcriptional activation is concomitant with a modification of the protein-DNA interaction pattern at the downstream kappaB site of the enhancer and at the adjacent Sp1 boxes. The effects of Tat on the enhancer are mediated by Tat-induced nuclear translocation of NF-kappaB, which parallels the kinetics of transcriptional activation. This induction results from degradation of the inhibitor IkappaB-alpha, is blocked under antioxidant conditions and by a protease inhibitor, and occurs as a rapid response in different cell types. The functional response to Tat is impaired upon cell treatment with a kappaB site decoy or with sodium salicylate, an inhibitor of NF-kappaB activation. These results show that NF-kappaB activation by Tat is important for LTR transcriptional activation. Furthermore, they suggest that some of the pleiotropic effects of Tat on cellular functions can be mediated by induction of NF-kappaB.
Collapse
Affiliation(s)
- F Demarchi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | |
Collapse
|
393
|
Schwarz EM, Van Antwerp D, Verma IM. Constitutive phosphorylation of IkappaBalpha by casein kinase II occurs preferentially at serine 293: requirement for degradation of free IkappaBalpha. Mol Cell Biol 1996; 16:3554-9. [PMID: 8668171 PMCID: PMC231350 DOI: 10.1128/mcb.16.7.3554] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
IkappaBalpha is a phosphoprotein that sequesters the NF-kappaB/Rel transcription factors in the cytoplasm by physical association. Following induction by a wide variety of agents, IkappaBalpha is further phosphorylated and degraded, allowing NF-kappaB/Rel proteins to translocate to the nucleus and induce transcription. We have previously reported that the constitutive phosphorylation site resides in the C-terminal PEST region of IkappaBalpha and is phosphorylated by casein kinase II (CKII). Here we show that serine 293 is the preferred CKII phosphorylation site. Additionally, we show compensatory phosphorylation by CKII at neighboring serine and threonine residues. Thus, only when all five of the serine and threonine residues in the C-terminal region of IkappaBalpha are converted to alanine (MutF), is constitutive phosphorylation abolished. Finally, we show that constitutive phosphorylation is required for efficient degradation of free IkappaBalpha, in that unassociated Mutf has a half-life two times longer than wild-type IkappaBalpha. A serine residue alone at position 293, as well as aspartic acid at this position, can revert the Mutf phenotype. Therefore, the constitutive CKII phosphorylation site is an integral part of the PEST region of IkappaBalpha, and this phosphorylation is required for rapid proteolysis of the unassociated protein.
Collapse
Affiliation(s)
- E M Schwarz
- Laboratory of Genetics, The Salk Institute, San Diego, California, 92186, USA
| | | | | |
Collapse
|
394
|
Kretz-Remy C, Mehlen P, Mirault ME, Arrigo AP. Inhibition of I kappa B-alpha phosphorylation and degradation and subsequent NF-kappa B activation by glutathione peroxidase overexpression. J Cell Biol 1996; 133:1083-93. [PMID: 8655581 PMCID: PMC2120847 DOI: 10.1083/jcb.133.5.1083] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We report here that both kappa B-dependent transactivation of a reporter gene and NF-kappa B activation in response to tumor necrosis factor (TNF alpha) or H2O2 treatments are deficient in human T47D cell transfectants that overexpress seleno-glutathione peroxidase (GSHPx). These cells feature low reactive oxygen species (ROS) levels and decreased intracellular ROS burst in response to TNF alpha treatment. Decreased ROS levels and NF-kappa B activation were likely to result from GSHPx increment since these phenomena were no longer observed when GSHPx activity was reduced by selenium depletion. The cellular contents of the two NF-kappa B subunits (p65 and p50) and of the inhibitory subunit I kappa B-alpha were unaffected by GSHPx overexpression, suggesting that increased GSHPx activity interfered with the activation, but not the synthesis or stability, of Nf-kappa B. Nuclear translocation of NF-kappa B as well as I kappa B-alpha degradation were inhabited in GSHPx-overexpressing cells exposed to oxidative stress. Moreover, in control T47D cells exposed to TNF alpha, a time correlation was observed between elevated ROS levels and I kappa B-alpha degradation. We also show that, in growing T47D cells, GSHPx overexpression altered the isoform composition of I kappa B-alpha, leading to the accumulation of the more basic isoform of this protein. GSHPx overexpression also abolished the TNF alpha-mediated transient accumulation of the acidic and highly phosphorylated I kappa B-alpha isoform. These results suggest that intracellular ROS are key elements that regulate the phosphorylation of I kappa B-alpha, a phenomenon that precedes and controls the degradation of this protein, and then NF-kappa B activation.
Collapse
Affiliation(s)
- C Kretz-Remy
- Centre National de la Recherche Scientifique Unité Mixte de Recherche Université Claude Bernard Lyon-I, France
| | | | | | | |
Collapse
|
395
|
Hirano M, Osada S, Aoki T, Hirai S, Hosaka M, Inoue J, Ohno S. MEK kinase is involved in tumor necrosis factor alpha-induced NF-kappaB activation and degradation of IkappaB-alpha. J Biol Chem 1996; 271:13234-8. [PMID: 8662753 DOI: 10.1074/jbc.271.22.13234] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Signal-dependent activation of the transcription factor NF-kappaB is dominantly regulated by degradation of IkappaB-alpha protein. However, the signaling pathways that lead to the degradation are not clear. Here we report that mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) kinase, an activator of stress-activated protein kinases/jun kinase-1 (SAPKs/JNK1), is involved in such signaling pathways. The transient overexpression of MEK kinase in NIH3T3 fibroblasts activates kappaB-CAT reporter expression in a synergistic manner with TNFalpha stimulation. In contrast, overexpression of kinase-negative MEK kinase suppresses TNFalpha-induced reporter expression. The overexpression of MEK kinase suppresses the inhibitory activity of co-transfected IkappaB-alpha on the kappaB-CAT or human immunodeficiency virus-long terminal repeat-luciferase reporter expression and causes the simultaneous disappearance of the overexpressed IkappaB-alpha. The disappearance of exogenous IkappaB-alpha by the overexpression of MEK kinase is prevented by calpain inhibitor-I, an inhibitor of IkappaB-alpha degradation. These results suggest that MEK kinase is a signal mediator involved in TNFalpha-induced NF-kappaB activation and that the activation of NF-kappaB by MEK kinase is regulated through the degradation of IkappaB-alpha.
Collapse
Affiliation(s)
- M Hirano
- Department of Molecular Biology, Yokohama City University School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236, Japan
| | | | | | | | | | | | | |
Collapse
|
396
|
Beauparlant P, Lin R, Hiscott J. The role of the C-terminal domain of I kappa B alpha in protein degradation and stabilization. J Biol Chem 1996; 271:10690-6. [PMID: 8631876 DOI: 10.1074/jbc.271.18.10690] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the present study, the role of the I kappa B alpha C terminus in NF-kappa B/I kappa B alpha regulation was examined in NIH 3T3 cells engineered to inducibly express wild type or mutated human I kappa B alpha proteins under the control of the tetracycline responsive promoter. Deletion studies demonstrated that the last C-terminal 30 amino acids (amino acids (aa) 288 to aa 317, deleted in I kappa B alpha delta 3), including most of the PEST domain, were dispensable for I kappa B alpha function. However, deletions from aa 261 to 317 or aa 269 to 317 (I kappa B alpha delta 1 and I kappa B alpha delta 2 respectively), lacked the ability to dissociate NF-kappa B/DNA complexes in vitro and were unable to inhibit NF-kappa B dependent transcription. Moreover, I kappa B alpha delta 1 and I kappa B alpha delta 2 mutants were resistant to inducer-mediated degradation. Analysis of I kappa B alpha deletions in the presence of protein synthesis inhibitors revealed that, independently of stimulation, I kappa B alpha delta 1 and I kappa B alpha delta 2 had a half-life four times shorter than wild type I kappa B alpha and the interaction of I kappa B alpha delta 1 and I kappa B alpha delta 2 with p65 was dramatically decreased in vivo as measured by co-immunoprecipitation. Interestingly, protease inhibitors which blocked inducer-mediated degradation of I kappa B alpha also stabilized the turnover of I kappa B alpha delta 1 and I kappa B alpha delta 2. Based on these studies, we propose that in the absence of stimulation, the C-terminal domain between aa 269 and 287 may play a role to protect I kappa B alpha from a constitutive protease activity.
Collapse
Affiliation(s)
- P Beauparlant
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
397
|
Jacqué JM, Fernández B, Arenzana-Seisdedos F, Thomas D, Baleux F, Virelizier JL, Bachelerie F. Permanent occupancy of the human immunodeficiency virus type 1 enhancer by NF-kappa B is needed for persistent viral replication in monocytes. J Virol 1996; 70:2930-8. [PMID: 8627768 PMCID: PMC190151 DOI: 10.1128/jvi.70.5.2930-2938.1996] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This work aimed to ascertain the role of kappaB-responsive elements of the human immunodeficiency virus type 1 (HIV-1) enhancer not only in early initiation but also in long-term maintenance of proviral transcription in cells of the monocytic lineage. For this purpose, we used three main approaches. The first was to abruptly terminate tumor necrosis factor-induced NF-kappaB binding to the enhancer sequences in U1 monocytic cells, using a short pulse of exogenous tumor necrosis factor. This resulted in concomitant decrease in nuclear NF-kappaB DNA-binding activity and endogenous long terminal repeat transcriptional activity. The second was to suppress the permanent NF-kappaB translocation induced by HIV-1 replication itself in chronically infected U937 cells, using a specific proteasome inhibitor (Z-LLL-H). As early as 2 h after addition of the inhibitor to the culture medium, there was an inhibition of both constitutive activation of NF-kappaB and HIV-1 genome expression. The third approach was to monitor the replication competence in U937 cells of an infectious HIV-1 provirus carrying point mutations in the kappaB-responsive elements of both long terminal repeats. Compared with its wild-type counterpart, this mutated provirus showed a profoundly decreased, Z-LLL-H-insensitive transcriptional and replicative activity in U937 monocytes. Together, our results indicate that occupancy of the viral enhancer by NF-kappaB (p50/p65) heterodimers is required for ongoing transcription of integrated HIV provirus in monocytes, even in cells chronically infected and permanently producing functional HIV Tat protein. Thus, the ability of HIV-1 replication to activate NF-kappaB is crucial to the intense self-perpetuated viral transcription observed in cells of the monocytic lineage.
Collapse
Affiliation(s)
- J M Jacqué
- Unité d'Immunologie Virale, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
398
|
Klement JF, Rice NR, Car BD, Abbondanzo SJ, Powers GD, Bhatt PH, Chen CH, Rosen CA, Stewart CL. IkappaBalpha deficiency results in a sustained NF-kappaB response and severe widespread dermatitis in mice. Mol Cell Biol 1996; 16:2341-9. [PMID: 8628301 PMCID: PMC231222 DOI: 10.1128/mcb.16.5.2341] [Citation(s) in RCA: 269] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The ubiquitous transcription factor NF-kappaB is an essential component in signal transduction pathways, in inflammation, and in the immune response. NF-kappaB is maintained in an inactive state in the cytoplasm by protein-protein interaction with IkappaBalpha. Upon stimulation, rapid degradation of IkappaBalpha allows nuclear translocation of NF-kappaB. To study the importance of IkappaBalpha in signal transduction, IkappaBalpha-deficient mice were derived by gene targeting. Cultured fibroblasts derived from IkappaBalpha-deficient embryos exhibit levels of NF-kappaB1, NF-kappaB2, RelA, c-Rel, and IkappaBbeta similar to those of wild-type fibroblasts. A failure to increase nuclear levels of NF-kappaB indicates that cytoplasmic retention of NF-kappaB may be compensated for by other IkappaB proteins. Treatment of wild-type cells with tumor necrosis factor alpha (TNF-alpha) resulted in rapid, transient nuclear localization of NF-kappaB. IkappaBalpha-deficient fibroblasts are also TNF-alpha responsive, but nuclear localization of NF-kappaB is prolonged, thus demonstrating that a major irreplaceable function Of IkappaBalpha is termination of the NF-kappaB response. Consistent with these observations, and with IkappaBalpha and NF-kappaB's role in regulating inflammatory and immune responses, is the normal development Of IkappaBalpha-deficient mice. However, growth ceases 3 days after birth and death usually occurs at 7 to 10 days of age. An increased percentage of monocytes/macrophages was detected in spleen cells taken from 5-, 7-, and 9-day-old pups. Death is accompanied by severe widespread dermatitis and increased levels of TNF-alpha mRNA in the skin.
Collapse
Affiliation(s)
- J F Klement
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
399
|
Good L, Sun SC. Persistent activation of NF-kappa B/Rel by human T-cell leukemia virus type 1 tax involves degradation of I kappa B beta. J Virol 1996; 70:2730-5. [PMID: 8627746 PMCID: PMC190129 DOI: 10.1128/jvi.70.5.2730-2735.1996] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Activation of the eukaryotic NF-kappaB/Rel transcription factors by various cytokines and mitogens is a transient event, reflecting the fact that these inducers trigger the degradation and resynthesis of the dynamic NF-kappaB/Rel inhibitor IkappaBalpha. However, the tax gene product of the human T-cell leukemia virus type 1 (HTLV-1) is known to induce the persistent nuclear expression of various NF-kappaB/Rel factors, especially the c-Rel proto-oncoprotein, although the underlying mechanism remains unclear. In the present study, we demonstrate that Tax induces the degradation Of IkappaBbeta, another NF-kappaB/Rel cytoplasmic inhibitor that differs from IkappaBalpha in signal responses. Unlike that observed with IkappaBalpha, the degradation Of IkappaBbeta is not associated with its rapid resynthesis, apparently because of the failure of Tax to stimulate IkappaBbeta gene transcription. Thus, expression of Tax in Jurkat T cells leads to the gradual depletion of IkappaBbeta, which is correlated with the induction of c-Rel-containing kappaB binding complexes. Remarkably, in the three HTLV-1-infected T-cell lines investigated, little or no detectable amount of IkappaBbeta was found. We further demonstrate that Tax is able to override the cytoplasmic retention of c-Rel by 1kappaBbeta in transiently transfected cells. Together, these studies suggest that Tax-mediated inactivation Of IkappaBbeta may play a role in the persistent nuclear expression of c-Rel induced by HTLV-I infection.
Collapse
Affiliation(s)
- L Good
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey Medical Center, 17033, USA
| | | |
Collapse
|
400
|
McKinsey TA, Brockman JA, Scherer DC, Al-Murrani SW, Green PL, Ballard DW. Inactivation of IkappaBbeta by the tax protein of human T-cell leukemia virus type 1: a potential mechanism for constitutive induction of NF-kappaB. Mol Cell Biol 1996; 16:2083-90. [PMID: 8628274 PMCID: PMC231195 DOI: 10.1128/mcb.16.5.2083] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In resting T lymphocytes, the transcription factor NF-kappaB is sequestered in the cytoplasm via interactions with members of the I kappa B family of inhibitors, including IkappaBalpha and IkappaBbeta. During normal T-cell activation, IkappaBalpha is rapidly phosphorylated, ubiquitinated, and degraded by the 26S proteasome, thus permitting the release of functional NF-kappaB. In contrast to its transient pattern of nuclear induction during an immune response, NF-kappaB is constitutively activated in cells expressing the Tax transforming protein of human T-cell leukemia virus type I (HTLV-1). Recent studies indicate that HTLV-1 Tax targets IkappaBalpha to the ubiquitin-proteasome pathway. However, it remains unclear how this viral protein induces a persistent rather than transient NF-kappaB response. In this report, we provide evidence that in addition to acting on IkappaBalpha, Tax stimulates the turnover Of IkappaBbeta via a related targeting mechanism. Like IkappaBalpha, Tax-mediated breakdown of IkappaBbeta in transfected T lymphocytes is blocked either by cell-permeable proteasome inhibitors or by mutation Of IkappaBbeta at two serine residues present within its N-terminal region. Despite the dual specificity of HTLV-1 Tax for IkappaBalpha and IkappaBbeta at the protein level, Tax selectively stimulates NF-kappaB-directed transcription of the IkappaBalpha gene. Consequently, IkappaBbeta protein expression is chronically downregulated in HTLV-1-infected T lymphocytes. These findings with IkappaBbeta provide a potential mechanism for the constitutive activation of NF-kappaB in Tax-expressing cells.
Collapse
Affiliation(s)
- T A McKinsey
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|