351
|
Malik AK, Monahan PE, Allen DL, Chen BG, Samulski RJ, Kurachi K. Kinetics of recombinant adeno-associated virus-mediated gene transfer. J Virol 2000; 74:3555-65. [PMID: 10729130 PMCID: PMC111864 DOI: 10.1128/jvi.74.8.3555-3565.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors have been shown to be useful for efficient gene delivery to a variety of dividing and nondividing cells. Mechanisms responsible for the long-term, persistent expression of the rAAV transgene are not well understood. In this study we investigated the kinetics of rAAV-mediated human factor IX (hFIX) gene transfer into human primary myoblasts and myotubes. Transduction of both myoblasts and myotubes occured with a similar and high efficiency. After 3 to 4 weeks of transduction, rAAV with a cytomegalovirus (CMV) promoter showed 10- to 15-fold higher expression than that with a muscle-specific creatine kinase enhancer linked to beta-actin promoter. Factor IX expression from transduced myoblasts as well as myotubes reached levels as high as approximately 2 microgram of hFIX/10(6) cells/day. Southern blot analyses of high-molecular-weight (HMW) cellular genomic and Hirt DNAs isolated from rAAV/CMVhFIXm1-transduced cells showed that the conversion of single-stranded vector genomes to double-stranded DNA forms, but not the level of the integrated forms in HMW DNA, correlated with increasing expression of the transgene. Together, these results indicate that rAAV can transduce both proliferating and terminally differentiated muscle cells at about the same efficiency, that expression of transgenes increases linearly over their lifetime with no initial lag phase, and that increasing expression correlates with the appearance of double-stranded episomal rAAV genomes. Evidence showing that the rAAV virions can copackage hFIX, presumably nonspecifically, was also obtained.
Collapse
Affiliation(s)
- A K Malik
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109-0618, USA
| | | | | | | | | | | |
Collapse
|
352
|
Miao CH, Nakai H, Thompson AR, Storm TA, Chiu W, Snyder RO, Kay MA. Nonrandom transduction of recombinant adeno-associated virus vectors in mouse hepatocytes in vivo: cell cycling does not influence hepatocyte transduction. J Virol 2000; 74:3793-803. [PMID: 10729154 PMCID: PMC111888 DOI: 10.1128/jvi.74.8.3793-3803.2000] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant adeno-associated virus vectors (rAAV) show promise in preclinical trials for the treatment of genetic diseases including hemophilia. Liver-directed gene transfer results in a slow rise in transgene expression, reaching steady-state levels over a period of 5 weeks concomitant with the conversion of the single-stranded rAAV molecules into high-molecular-weight concatemers in about 5% of hepatocytes. Immunohistochemistry and RNA in situ hybridization show that the transgene product is made in about approximately 5% of hepatocytes, suggesting that most rAAV-mediated gene expression occurs in hepatocytes containing the double-stranded concatemers. In this study, the mechanism(s) involved in stable transduction in vivo was evaluated. While only approximately 5% of hepatocytes are stably transduced, in situ hybridization experiments demonstrated that the vast majority of the hepatocytes take up AAV-DNA genomes after portal vein infusion of the vector. Two different vectors were infused together or staggered by 1, 3, or 5 weeks, and two-color fluorescent in situ hybridization and molecular analyses were performed 5 weeks after the infusion of the second vector. These experiments revealed that a small but changing subpopulation of hepatocytes were permissive to stable transduction. Furthermore, in animals that received a single infusion of two vectors, about one-third of the transduced cells contained heteroconcatemers, suggesting that dimer formation was a critical event in the process of concatemer formation. To determine if the progression through the cell cycle was important for rAAV transduction, animals were continuously infused with 5'-bromo-2'-deoxyuridine (BrdU), starting at the time of administration of a rAAV vector that expressed cytoplasmic beta-galactosidase. Colabeling for beta-galactosidase and BrdU revealed that there was no preference for transduction of cycling cells. This was further confirmed by demonstrating no increase in rAAV transduction efficiencies in animals whose livers were induced to cycle at the time of or after vector administration. Taken together, our studies suggest that while virtually all hepatocytes take up vector, unknown cellular factors are required for stable transduction, and that dimer formation is a critical event in the transduction pathway. These studies have important implications for understanding the mechanism of integration and may be useful for improving liver gene transfer in vivo.
Collapse
Affiliation(s)
- C H Miao
- Puget Sound Blood Center, University of Washington, Seattle, Washington, California, USA
| | | | | | | | | | | | | |
Collapse
|
353
|
Turnbull AE, Skulimowski A, Smythe JA, Alexander IE. Adeno-associated virus vectors show variable dependence on divalent cations for thermostability: implications for purification and handling. Hum Gene Ther 2000; 11:629-35. [PMID: 10724041 DOI: 10.1089/10430340050015815] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) shows significant promise as a vector for gene transfer in pre-clinical models of human disease, and is currently being evaluated in human clinical trials. As a consequence, increasing attention is being turned to the important tasks of optimizing rAAV titer, purity, and stability. We have observed dramatic variation in divalent cation dependence for thermostability of different rAAV vectors. To further investigate this observation, the thermostability of eight different vector constructs ranging in size from 73 to 107% of wild-type genome size (4.68 kilobases) was determined in the presence and absence of divalent cations. Virions containing smaller genomes (i.e., <85% wild type) were relatively divalent cation independent for thermostability. In contrast, virions containing recombinant genomes close to, or exceeding, wild-type size (i.e., >95% wild type) were dependent on divalent cations for thermostability. Genome sequence also appeared to be a factor in the thermostability of the larger rAAV vectors. These observations are of both practical and theoretical significance. Divalent cations should be included in all buffer solutions used during rAAV purification and storage, and unnecessary heat exposure avoided. These data also demonstrate that different recombinants of a particular virus should not be assumed to possess the same thermostability profile.
Collapse
Affiliation(s)
- A E Turnbull
- Gene Therapy Research Unit, New Children's Hospital and Children's Medical Research Institute, Parramatta, NSW, Australia
| | | | | | | |
Collapse
|
354
|
Beall CJ, Phipps AJ, Mathes LE, Stromberg P, Johnson PR. Transfer of the feline erythropoietin gene to cats using a recombinant adeno-associated virus vector. Gene Ther 2000; 7:534-9. [PMID: 10757028 DOI: 10.1038/sj.gt.3301126] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic renal failure and the associated erythropoietin-responsive anemia afflicts over 2 million domestic cats in the United States, resulting in morbidity that can affect the owner-pet relationship. Although treatment of cats with recombinant human erythropoietin (Epo) protein can be effective, response to the drug often dissipates over time, probably due to the development of antibodies reactive with the human protein. As an alternate approach to the treatment of this disease, we have developed a recombinant adeno-associated virus vector containing the feline erythropoietin gene (rAAV/feEpo). This vector, when administered intramuscularly to normal healthy cats, caused a dose-related increase in hematocrit over a 7-week period after injection. Thus, the rAAV/feEpo vector holds promise as a simple, safe and effective therapy for the anemia of chronic renal failure in domestic cats.
Collapse
Affiliation(s)
- C J Beall
- Children's Research Institute, Children's Hospital, Inc, Columbus, OH 43205, USA
| | | | | | | | | |
Collapse
|
355
|
Pruchnic R, Cao B, Peterson ZQ, Xiao X, Li J, Samulski RJ, Epperly M, Huard J. The use of adeno-associated virus to circumvent the maturation-dependent viral transduction of muscle fibers. Hum Gene Ther 2000; 11:521-36. [PMID: 10724031 DOI: 10.1089/10430340050015716] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Muscle-based gene therapy using adenovirus, retrovirus, and herpes simplex virus has been hindered by viral cytotoxicity, host immune response, and the maturation-dependent viral transduction of muscle fibers. The development of new mutant vectors has greatly reduced the toxicity and the immune rejection problems, but the inability of viral vectors to penetrate and transduce mature myofibers remains an important issue. Research has been focused on the characterization of barriers to viral transduction in mature myofibers to develop strategies to circumvent the maturation-dependent viral transduction of myofibers. Here, we report that adeno-associated virus (AAV) can be used to overcome the maturation-dependent viral transduction of myofibers. We have investigated by which mechanism AAV can penetrate and efficiently transduce mature muscle fibers, and have shown that this viral vector is not blocked by the basal lamina and that AAV transduction of myofibers is independent of myoblast mediation. Although AAV can efficiently transduce mature myofibers, a differential transduction is still observed among the different types of myofibers that correlates with the expression of the heparan sulfate proteoglycan receptors, the muscle maturity, the number of viral particles used, and the time postinjection. The identification of the mechanisms by which AAV transduces mature myofibers will help in the development of strategies to achieve an efficient muscle-based gene therapy for inherited and acquired diseases.
Collapse
Affiliation(s)
- R Pruchnic
- Department of Orthopedic Surgery, Children's Hospital of Pittsburgh and University of Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
356
|
Fields PA, Kowalczyk DW, Arruda VR, Armstrong E, McCleland ML, Hagstrom JN, Pasi KJ, Ertl HC, Herzog RW, High KA. Role of vector in activation of T cell subsets in immune responses against the secreted transgene product factor IX. Mol Ther 2000; 1:225-35. [PMID: 10933938 DOI: 10.1006/mthe.2000.0032] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Defining immune responses against the secreted transgene product in a gene therapy setting is critical for treatment of genetic diseases such as hemophilia B (coagulation factor IX deficiency). We have previously shown that intramuscular administration of an adeno-associated viral (AAV) vector results in stable expression of therapeutic levels of factor IX (F.IX) and may be associated with humoral immune responses against F.IX. This study demonstrates that intramuscular injection of an AAV vector expressing F.IX fails to activate F.IX-specific cytotoxic T lymphocytes (CTLs) in hemostatically normal or in hemophilia B mice, so that there is an absence of cellular immune responses against F.IX. However, transgene-derived F.IX can cause B cell responses characterized by production of T helper cell-dependent antibodies (predominantly IgG1, but also IgG2 subclasses) resulting from activation of CD4+ T helper cells primarily of the Th2 subset. In contrast, administration of an adenoviral vector efficiently activated F.IX-specific CTLs and T helper cells of both Th1 and Th2 subsets, leading to inflammation and destruction of transduced muscle tissue and activation of B cells as well. Therefore, vector sequences fundamentally influence T cell responses against transgene-encoded F.IX. In conclusion, activation of the immune system in AAV-mediated gene transfer is restricted to pathways mediated by F.IX antigen presentation through MHC class II determinants resulting in T and B cell responses that are more comparable to responses in the setting of protein infusion rather than of viral infection/gene transfer.
Collapse
Affiliation(s)
- P A Fields
- Department of Pediatrics, University of Pennsylvania Medical Center and The Children's Hospital of Philadelphia, 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
357
|
Maruyama H, Sugawa M, Moriguchi Y, Imazeki I, Ishikawa Y, Ataka K, Hasegawa S, Ito Y, Higuchi N, Kazama JJ, Gejyo F, Miyazaki JI. Continuous erythropoietin delivery by muscle-targeted gene transfer using in vivo electroporation. Hum Gene Ther 2000; 11:429-37. [PMID: 10697117 DOI: 10.1089/10430340050015897] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been demonstrated that gene transfer by in vivo electroporation of mouse muscle increases the level of gene expression by more than 100-fold over simple plasmid DNA injection. We tested continuous rat erythropoietin (Epo) delivery by this method in normal rats, using plasmid DNA expressing rat Epo (pCAGGS-Epo) as the vector. A pair of electrodes was inserted into the thigh muscles of rat hind limbs and 100 microg of pCAGGS-Epo was injected between the electrodes. Eight 100-V, 50-msec electric pulses were delivered through the electrodes. Each rat was injected with a total of 400 microg of pCAGGS-Epo, which was delivered to the medial and lateral sides of each thigh. The presence of vector-derived Epo mRNA at the DNA injection site was confirmed by RT-PCR. The serum Epo levels peaked at 122.2 +/- 33.0 mU/ml on day 7 and gradually decreased to 35.9 +/- 18.2 mU/ml on day 32. The hematocrit levels increased continuously, from the preinjection level of 49.5 +/- 1.1 to 67.8 +/- 2.2% on day 32 (p < 0.001). In pCAGGS-Epo treated rats, endogenous Epo secretion was downregulated on day 32. In a control experiment, intramuscular injection of pCAGGS-Epo without subsequent electroporation did not significantly enhance the serum Epo levels. These results demonstrate that muscle-targeted pCAGGS-Epo transfer by in vivo electroporation is a useful procedure for the continuous delivery of Epo.
Collapse
Affiliation(s)
- H Maruyama
- Department of Medicine II, Niigata University School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
358
|
Rivera VM, Wang X, Wardwell S, Courage NL, Volchuk A, Keenan T, Holt DA, Gilman M, Orci L, Cerasoli F, Rothman JE, Clackson T. Regulation of protein secretion through controlled aggregation in the endoplasmic reticulum. Science 2000; 287:826-30. [PMID: 10657290 DOI: 10.1126/science.287.5454.826] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A system for direct pharmacologic control of protein secretion was developed to allow rapid and pulsatile delivery of therapeutic proteins. A protein was engineered so that it accumulated as aggregates in the endoplasmic reticulum. Secretion was then stimulated by a synthetic small-molecule drug that induces protein disaggregation. Rapid and transient secretion of growth hormone and insulin was achieved in vitro and in vivo. A regulated pulse of insulin secretion resulted in a transient correction of serum glucose concentrations in a mouse model of hyperglycemia. This approach may make gene therapy a viable method for delivery of polypeptides that require rapid and regulated delivery.
Collapse
Affiliation(s)
- V M Rivera
- ARIAD Gene Therapeutics, 26 Landsdowne Street, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
359
|
Abstract
Gene therapy for muscular dystrophy (MD) presents significant challenges, including the large amount of muscle tissue in the body, the large size of many genes defective in different muscular dystrophies, and the possibility of a host immune response against the therapeutic gene. Overcoming these challenges requires the development and delivery of suitable gene transfer vectors. Encouraging progress has been made in modifying adenovirus (Ad) vectors to reduce immune response and increase capacity. Recently developed gutted Ad vectors can deliver full-length dystrophin cDNA expression vectors to muscle tissue. Using muscle-specific promoters to drive dystrophin expression, a strong immune response has not been observed in mdx mice. Adeno-associated virus (AAV) vectors can deliver small genes to muscle without provocation of a significant immune response, which should allow long-term expression of several MD genes. AAV vectors have also been used to deliver sarcoglycan genes to entire muscle groups. These advances and others reviewed here suggest that barriers to gene therapy for MD are surmountable.
Collapse
Affiliation(s)
- D Hartigan-O'Connor
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0618, USA
| | | |
Collapse
|
360
|
Halbert CL, Rutledge EA, Allen JM, Russell DW, Miller AD. Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. J Virol 2000; 74:1524-32. [PMID: 10627564 PMCID: PMC111488 DOI: 10.1128/jvi.74.3.1524-1532.2000] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vectors derived from adeno-associated virus type 2 (AAV2) promote gene transfer and expression in the lung; however, we have found that while gene expression can persist for at least 8 months in mice, it was reduced dramatically in rabbits over a period of 2 months. The efficiency and persistence of AAV2-mediated gene expression in the human lung have yet to be determined, but it seems likely that readministration will be necessary over the lifetime of an individual. Unfortunately, we have found that transduction by a second administration of an AAV2 vector is blocked, presumably due to neutralizing antibodies generated in response to the primary vector exposure. Here, we have explored the use of AAV2 vectors pseudotyped with capsid proteins from AAV serotypes 2, 3, and 6 for readministration in the mouse lung. We found that an AAV6 vector transduced airway epithelial and alveolar cells in the lung at rates that were at least as high as those of AAV2 pseudotype vectors, while transduction rates mediated by AAV3 were much lower. AAV6 pseudotype vector transduction was unaffected by prior administration of an AAV2 or AAV3 vector, and transduction by an AAV2 pseudotype vector was unaffected by prior AAV6 vector administration, showing that cross-reactive neutralizing antibodies against AAV2 and AAV6 are not generated in mice. Interestingly, while prior administration of an AAV2 vector completely blocked transduction by a second AAV2 pseudotype vector, prior administration of an AAV6 vector only partially inhibited transduction by a second administration of an AAV6 pseudotype vector. Analysis of sera obtained from mice and humans showed that AAV6 is less immunogenic than AAV2, which helps explain this finding. These results support the development of AAV6 vectors for lung gene therapy both alone and in combination with AAV2 vectors.
Collapse
Affiliation(s)
- C L Halbert
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
361
|
Hauswirth WW, LaVail MM, Flannery JG, Lewin AS. Ribozyme gene therapy for autosomal dominant retinal disease. Clin Chem Lab Med 2000; 38:147-53. [PMID: 10834402 DOI: 10.1515/cclm.2000.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Gene delivery to cells of the retina, particularly to photoreceptor cells, has broad potential both for answering basic questions of retinal biology and for more applied therapeutic purposes. The use of ribozymes as therapy for autosomal dominant retinal diseases is a promising technique, and the theoretical and practical basis for their use is discussed. The process involves designing and testing ribozymes first in vitro and then in animal models of retinal disease. Viral vectors based on the nonpathogenic human adeno-associated virus, when coupled with the strong, rod photoreceptor specific opsin promoter, offer an efficient and nontoxic way to deliver and express ribozymes in photoreceptor cells for long time periods of time. Effective ribozyme-mediated therapy also demands careful in vitro analysis of a ribozyme's ability to efficiently and specifically distinguish between mutant and wild type RNAs. Finally, effective demonstration of therapy in an animal model requires careful analysis of any rescue effect in the retina using multiple criteria, including biochemical, structural and physiological assays. For this purpose, ribozyme therapy in a transgenic rat model of retinitis pigmentosa containing a dominant rod opsin mutation (proline-to-histidine change at position 23) is discussed in detail.
Collapse
Affiliation(s)
- W W Hauswirth
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville 32610-0266, USA.
| | | | | | | |
Collapse
|
362
|
Kamholz J, Menichella D, Jani A, Garbern J, Lewis RA, Krajewski KM, Lilien J, Scherer SS, Shy ME. Charcot-Marie-Tooth disease type 1: molecular pathogenesis to gene therapy. Brain 2000; 123 ( Pt 2):222-33. [PMID: 10648431 DOI: 10.1093/brain/123.2.222] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Charcot-Marie-Tooth disease type 1 (CMT1) is caused by mutations in the peripheral myelin protein, 22 kDa (PMP22) gene, protein zero (P0) gene, early growth response gene 2 (EGR-2) and connexin-32 gene, which are expressed in Schwann cells, the myelinating cells of the peripheral nervous system. Although the clinical and pathological phenotypes of the various forms of CMT1 are similar, including distal muscle weakness and sensory loss, their molecular pathogenesis is likely to be quite distinct. In addition, while demyelination is the hallmark of CMT1, the clinical signs and symptoms of the disease are probably produced by axonal degeneration, not demyelination itself. In this review we discuss the molecular pathogenesis of CMT1, as well as approaches to an effective gene therapy for this disease.
Collapse
Affiliation(s)
- J Kamholz
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
363
|
Xiao X, Li J, Tsao YP, Dressman D, Hoffman EP, Watchko JF. Full functional rescue of a complete muscle (TA) in dystrophic hamsters by adeno-associated virus vector-directed gene therapy. J Virol 2000; 74:1436-42. [PMID: 10627554 PMCID: PMC111478 DOI: 10.1128/jvi.74.3.1436-1442.2000] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/1999] [Accepted: 10/09/1999] [Indexed: 11/20/2022] Open
Abstract
Limb girdle muscular dystrophy (LGMD) 2F is caused by mutations in the delta-sarcoglycan (SG) gene. Previously, we have shown successful application of a recombinant adeno-associated virus (AAV) vector for genetic and biochemical rescue in the Bio14.6 hamster, a homologous animal model for LGMD 2F (J. Li et al., Gene Ther. 6:74-82, 1999). In this report, we show efficient and long-term delta-SG expression accompanied by nearly complete recovery of physiological function deficits after a single-dose AAV vector injection into the tibialis anterior muscle of the dystrophic hamsters. AAV vector treatment led to more than 97% recovery in muscle strength for both the specific twitch force and the specific tetanic force, when compared to the age-matched control. Vector treatment also prevented pathological muscle hypertrophy and resulted in normal muscle weight and size. Finally, vector-treated muscle showed substantial improvement of the histopathology. This is the first report of successful functional rescue of an entire muscle after AAV-mediated gene delivery. This report also demonstrates the feasibility of in vivo gene therapy for LGMD patients by using AAV vectors.
Collapse
Affiliation(s)
- X Xiao
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA. xiaox+@pitt.edu
| | | | | | | | | | | |
Collapse
|
364
|
Congenital Hemorrhagic Disorders: New Insights into the Pathophysiology and Treatment of Hemophilia. Hematology 2000. [DOI: 10.1182/asheducation.v2000.1.241.20000241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diagnostic and treatment strategies related to hemophilia are rapidly evolving. This article focuses on some of the issues of importance. Diagnostic advances in molecular genetics are reviewed by Dr. Ginsburg in Section I, including the current state of knowledge regarding the mutations responsible for hemophilia, with reference to the potential clinical applications of DNA diagnosis and prenatal testing.Within the area of new therapeutic approaches in hemophilia, recombinant factor VIII and factor IX concentrates, their use and availability are addressed by Dr. Lusher in Section II as well as the use of so-called “primary prophylaxis” with the aim of decreasing long-term hemophilia athropathy. The use of radionuclide synovectomy as replacement for more invasive methods is also reviewed.Various approaches to the ongoing challenge of the management of hemophilia patients with inhibitors against factor VIII and factor IX are reviewed by Dr. Hedner in Section III, including the principles for immune tolerance induction and the use of recombinant factor VIIa to induce hemostasis in bleeding patients with inhibitors.In Section IV, gene therapy in hemophilia is reviewed by Dr. High, who focuses on recent developments in the rapidly moving field of gene therapy for hemophilia. Three phase I trials of gene therapy for hemophilia were initiated in 1999, and additional proposed trials are currently in the regulatory review process. Certain aspects of the pathophysiology of hemophilia make it an attractive model for a gene-based approach to treatment. These include latitude in choice of target tissue, a wide therapeutic window, the availability of small and large animal models of the disease, and the ease of determining therapeutic efficacy. Since there is very little published information regarding the ongoing trials, this section reviews the approaches being used, the published pre-clinical data, and considerations affecting clinical trial design in hemophilia gene therapy.
Collapse
|
365
|
Hansen J, Qing K, Kwon HJ, Mah C, Srivastava A. Impaired intracellular trafficking of adeno-associated virus type 2 vectors limits efficient transduction of murine fibroblasts. J Virol 2000; 74:992-6. [PMID: 10623762 PMCID: PMC111620 DOI: 10.1128/jvi.74.2.992-996.2000] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although adeno-associated virus type 2 (AAV) has gained attention as a potentially useful alternative to the more commonly used retrovirus- and adenovirus-based vectors for human gene therapy, efficient gene transfer and transgene expression by AAV vectors require that the following two obstacles be overcome. First, the target cell must express the receptor and the coreceptor for AAV infection, and second, the cell must allow for viral second-strand DNA synthesis. We now describe a third obstacle, impaired intracellular trafficking of AAV to the nucleus, which results in the lack of transgene expression in murine fibroblasts which do express the AAV receptor and the coreceptor and which are permissive for viral second-strand DNA synthesis. We document that AAV vectors bind efficiently and gain entry successfully into NIH 3T3 cells, but trafficking into the nucleus is significantly impaired in these cells. In contrast, viral trafficking to the nucleus in cells known to be efficiently transduced by AAV vectors is both rapid and efficient. The demonstration of yet another obstacle in AAV-mediated gene transfer has implications for the optimal use of these vectors in human gene therapy.
Collapse
Affiliation(s)
- J Hansen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
366
|
Abstract
Potential applications and impact of the adeno-associated virus (AAV) as a gene transfer vector have expanded rapidly in the last decade. Recent advances in the production of high-titer purified rAAV vector stocks have made the transition to human clinical trials a reality in the last moments of the millenium. Production improvements will be complemented in the coming years with understanding of and innovations in the targeting and packaging of rAAV, the design of transgene cassettes, and the host immune response to the vectors. These expected areas of progress are discussed, with special attention to clinical applications for which rAAV vectors may help close the gap towards successful gene therapy. Gene Therapy (2000) 7, 24-30.
Collapse
Affiliation(s)
- P E Monahan
- Gene Therapy Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7570, USA
| | | |
Collapse
|
367
|
Abstract
AbstractThe diagnostic and treatment strategies related to hemophilia are rapidly evolving. This article focuses on some of the issues of importance. Diagnostic advances in molecular genetics are reviewed by Dr. Ginsburg in Section I, including the current state of knowledge regarding the mutations responsible for hemophilia, with reference to the potential clinical applications of DNA diagnosis and prenatal testing.Within the area of new therapeutic approaches in hemophilia, recombinant factor VIII and factor IX concentrates, their use and availability are addressed by Dr. Lusher in Section II as well as the use of so-called “primary prophylaxis” with the aim of decreasing long-term hemophilia athropathy. The use of radionuclide synovectomy as replacement for more invasive methods is also reviewed.Various approaches to the ongoing challenge of the management of hemophilia patients with inhibitors against factor VIII and factor IX are reviewed by Dr. Hedner in Section III, including the principles for immune tolerance induction and the use of recombinant factor VIIa to induce hemostasis in bleeding patients with inhibitors.In Section IV, gene therapy in hemophilia is reviewed by Dr. High, who focuses on recent developments in the rapidly moving field of gene therapy for hemophilia. Three phase I trials of gene therapy for hemophilia were initiated in 1999, and additional proposed trials are currently in the regulatory review process. Certain aspects of the pathophysiology of hemophilia make it an attractive model for a gene-based approach to treatment. These include latitude in choice of target tissue, a wide therapeutic window, the availability of small and large animal models of the disease, and the ease of determining therapeutic efficacy. Since there is very little published information regarding the ongoing trials, this section reviews the approaches being used, the published pre-clinical data, and considerations affecting clinical trial design in hemophilia gene therapy.
Collapse
|
368
|
Kawashiri MA, Rader DJ. Gene therapy for lipid disorders. CURRENT CONTROLLED TRIALS IN CARDIOVASCULAR MEDICINE 2000; 1:120-127. [PMID: 11714424 PMCID: PMC59613 DOI: 10.1186/cvm-1-2-120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/18/2000] [Accepted: 09/24/2000] [Indexed: 12/27/2022]
Abstract
Lipid disorders are associated with atherosclerotic vascular disease, and therapy is associated with a substantial reduction in cardiovascular events. Current approaches to the treatment of lipid disorders are ineffective in a substantial number of patients. New therapies for refractory hypercholesterolemia, severe hypertriglyceridemia, and low levels of high-density lipoprotein cholesterol are needed: somatic gene therapy is one viable approach. The molecular etiology and pathophysiology of most of the candidate diseases are well understood. Animal models exist for the diseases and in many cases preclinical proof-of-principle studies have already been performed. There has been progress in the development of vectors that provide long-term gene expression. New clinical gene therapy trials for lipid disorders are likely to be initiated within the next few years.
Collapse
Affiliation(s)
| | - Daniel J Rader
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
369
|
Allen JM, Halbert CL, Miller AD. Improved adeno-associated virus vector production with transfection of a single helper adenovirus gene, E4orf6. Mol Ther 2000; 1:88-95. [PMID: 10933916 DOI: 10.1006/mthe.1999.0010] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent advances in adeno-associated virus (AAV) vector production have eliminated the need for adenovirus infection by transfection of plasmids encoding the adenovirus E2A, E4orf6, and VA RNA transcription units. We report here the generation of significantly higher AAV vector titers with transfection of the single adenovirus gene, E4orf6, when used in conjunction with the split AAV packaging plasmids MTrep and CMVcap. Transduction in a murine lung model with these higher titer vector stocks was greater than that observed with traditional preparation methods. The generation of higher titer AAV vector stocks with fewer adenovirus gene products and free of replication-competent AAV will enhance the potential for AAV in clinical applications.
Collapse
Affiliation(s)
- J M Allen
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
370
|
Clark KR, Sferra TJ, Lo W, Qu G, Chen R, Johnson PR. Gene transfer into the CNS using recombinant adeno-associated virus: analysis of vector DNA forms resulting in sustained expression. J Drug Target 1999; 7:269-83. [PMID: 10682906 DOI: 10.3109/10611869909085510] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recombinant adeno-associated virus (rAAV) vectors have shown significant promise as vehicles for in vivo gene transfer, particularly for transduction of organs composed primarily of non-dividing cells (i.e., muscle, CNS, and liver). However, the mechanistic basis for this desirable property remains unclear. To investigate the fate of rAAV genomes in mouse brain, we stereotactically injected an rAAV vector carrying the E. coli lacZ gene into the caudate of BALB/c mice and demonstrate efficient transduction of mouse brain cells that possess cellular morphology consistent with post-mitotic neurons. We observed a significant increase in beta-galactosidase expression from 5 to 56 days after injection that paralleled the disappearance of single-stranded DNA input genomes. Analysis of in vivo viral DNA forms over time out to 5 months after inoculation revealed that rAAV genomes associated with high molecular weight mouse chromosomal DNA by 14 days after injection and persisted for the length of this study. The pattern of Southern hybridization was consistent with random viral integration in predominantly head-to-tail concatameric arrays. Importantly, we also documented an additional DNA species that appears to be a monomeric episomal circular form based on nuclease sensitivity assays. These data are the first to document the existence of multiple vector DNA forms present within the adult murine brain following direct rAAV inoculation and therefore, provide insight into the molecular events that ultimately result in long-term rAAV mediated transgene expression.
Collapse
Affiliation(s)
- K R Clark
- Children's Hospital Research Foundation, Children's Hospital, Division of Molecular Medicine, College of Medicine, The Ohio State University, Columbus 43205, USA.
| | | | | | | | | | | |
Collapse
|
371
|
Imai E, Isaka Y. New paradigm of gene therapy: skeletal-muscle-targeting gene therapy for kidney disease. Nephron Clin Pract 1999; 83:296-300. [PMID: 10575290 DOI: 10.1159/000045420] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- E Imai
- Division of Nephrology, Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, Osaka, Japan.
| | | |
Collapse
|
372
|
Afione SA, Wang J, Walsh S, Guggino WB, Flotte TR. Delayed expression of adeno-associated virus vector DNA. Intervirology 1999; 42:213-20. [PMID: 10567839 DOI: 10.1159/000024980] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Two previous reports indicated that recombinant adeno-associated virus (rAAV) vectors were dependent on helper adenovirus (Ad) for efficient conversion of single-stranded (ss) rAAV DNA to the double-stranded (ds) form. This finding is somewhat paradoxical, however, since during a latent infection wild-type (wt)-AAV is rapidly converted to a ds form in the absence of Ad. Our hypothesis was that the effect observed in the previous studies was due to kinetic factors, i.e. to a relative delay in conversion to ds-DNA rather than to an absolute requirement for Ad. To test this, Hela cells were infected with a rAAV-CMV-green fluorescent protein (GFP) vector either in the presence or absence of Ad. Within the first 2 days, Ad infection resulted in a 4-fold increase in AAV vector expression and an augmentation of conversion to a ds-AAV DNA. By 6 days, however, the total number of GFP-expressing cells in the Ad-free culture had exceeded the original number in the Ad co-infected cells, and the conversion to ds-DNA episomes was substantial and ongoing.
Collapse
Affiliation(s)
- S A Afione
- Department of Physiology and Pediatrics, Johns Hopkins University, Baltimore, Md., USA
| | | | | | | | | |
Collapse
|
373
|
Baum BJ, Berkman ME, Marmary Y, Goldsmith CM, Baccaglini L, Wang S, Wellner RB, Hoque AT, Atkinson JC, Yamagishi H, Kagami H, Parlow AF, Chao J. Polarized secretion of transgene products from salivary glands in vivo. Hum Gene Ther 1999; 10:2789-97. [PMID: 10584925 DOI: 10.1089/10430349950016528] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previously (Kagami et al. Hum. Gene Ther. 1996;7:2177-2184) we have shown that salivary glands are able to secrete a transgene-encoded protein into serum as well as saliva. This result and other published data suggest that salivary glands may be a useful target site for vectors encoding therapeutic proteins for systemic delivery. The aim of the present study was to assess in vivo if transgene-encoded secretory proteins follow distinct, polarized sorting pathways as has been shown to occur "classically" in cell biological studies in vitro. Four first-generation, E1-, type 5 recombinant adenoviruses were used to deliver different transgenes to a rat submandibular cell line in vitro or to rat submandibular glands in vivo. Subsequently, the secretory distribution of the encoded proteins was determined. Luciferase, which has no signal peptide, served as a cell-associated, negative control and was used to correct for any nonspecific secretory protein release from cells. The three remaining transgene products tested, human tissue kallikrein (hK1), human growth hormone (hGH), and human alpha1-antitrypsin (halpha1AT), were predominantly secreted (>96%) in vitro. Most importantly, in vivo, after a parasympathomimetic secretory stimulus, both hK1 and hGH were secreted primarily in an exocrine manner into saliva. Conversely, halpha1AT was predominantly secreted into the bloodstream, i.e., in an endocrine manner. The aggregate results are consistent with the recognition of signals encoded within the transgenes that result in specific patterns of polarized protein secretion from rat submandibular gland cells in vivo.
Collapse
Affiliation(s)
- B J Baum
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
374
|
Yang J, Zhou W, Zhang Y, Zidon T, Ritchie T, Engelhardt JF. Concatamerization of adeno-associated virus circular genomes occurs through intermolecular recombination. J Virol 1999; 73:9468-77. [PMID: 10516055 PMCID: PMC112981 DOI: 10.1128/jvi.73.11.9468-9477.1999] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-term recombinant AAV (rAAV) transgene expression in muscle has been associated with the molecular conversion of single-stranded rAAV genomes to high-molecular-weight head-to-tail circular concatamers. However, the mechanisms by which these large multimeric concatamers form remain to be defined. To this end, we tested whether concatamerization of rAAV circular intermediates occurs through intra- or intermolecular mechanisms of amplification. Coinfection of the tibialis muscle of mice with rAAV alkaline phosphatase (Alkphos)- and green fluorescent protein (GFP)-encoding vectors was used to evaluate the frequency of circular concatamer formation by intermolecular recombination of independent viral genomes. The GFP shuttle vector also encoded ampicillin resistance and contained a bacterial origin of replication to allow for bacterial rescue of circular intermediates from Hirt DNA of infected muscle samples. The results demonstrated a time-dependent increase in the abundance of rescued plasmids encoding both GFP and Alkphos, which reached 33% of the total circular intermediates by 120 days postinfection. Furthermore, these large circular concatamers were capable of expressing both GFP- and Alkphos-encoding transgenes following transient transfection in cell lines. These findings demonstrate that concatamerization of AAV genomes in vivo occurs through intermolecular recombination of independent monomer circular viral genomes and suggest new viable strategies for delivering multiple DNA segments at a single locus. Such developments will expand the utility of rAAV for splicing large gene inserts or large promoter-gene combinations carried by two or more independent rAAV vectors.
Collapse
Affiliation(s)
- J Yang
- Department of Anatomy, Center for Gene Therapy, School of Medicine, University of Iowa, Iowa City, USA
| | | | | | | | | | | |
Collapse
|
375
|
Beck SE, Jones LA, Chesnut K, Walsh SM, Reynolds TC, Carter BJ, Askin FB, Flotte TR, Guggino WB. Repeated delivery of adeno-associated virus vectors to the rabbit airway. J Virol 1999; 73:9446-55. [PMID: 10516053 PMCID: PMC112979 DOI: 10.1128/jvi.73.11.9446-9455.1999] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient local expression from recombinant adeno-associated virus (rAAV)-cystic fibrosis (CF) transmembrane conductance regulator (CFTR) vectors has been observed in the airways of rabbits and monkeys for up to 6 months following a single bronchoscopic delivery. However, it is likely that repeated administrations of rAAV vectors will be necessary for sustained correction of the CF defect in the airways. The current study was designed to test the feasibility of repeated airway delivery of rAAV vectors in the rabbit lung. After two doses of rAAV-CFTR to the airways, rabbits generated high titers of serum anti-AAV neutralizing antibodies. Rabbits then received a third dose of a rAAV vector containing the green fluorescent protein (GFP) reporter gene packaged in either AAV serotype 2 (AAV2) or serotype 3 (AAV3) capsids. Each dose consisted of 1 ml containing 5 x 10(9) DNase-resistant particles of rAAV vector, having no detectable replication-competent AAV or adenovirus. Three weeks later, GFP expression was observed in airway epithelial cells despite high anti-AAV neutralizing titers at the time of delivery. There was no significant difference in the efficiency of DNA transfer or expression between the rAAV3 and rAAV2 groups. No significant inflammatory responses to either repeated airway exposure to rAAV2-CFTR vectors or to GFP expression were observed. These experiments demonstrate that serum anti-AAV neutralizing antibody titers do not predict airway neutralization in vivo and that repeated airway delivery rAAV allows for safe and effective gene transfer.
Collapse
Affiliation(s)
- S E Beck
- Eudowood Division of Pediatric Respiratory Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Mandel RJ, Snyder RO, Leff SE. Recombinant adeno-associated viral vector-mediated glial cell line-derived neurotrophic factor gene transfer protects nigral dopamine neurons after onset of progressive degeneration in a rat model of Parkinson's disease. Exp Neurol 1999; 160:205-14. [PMID: 10630205 DOI: 10.1006/exnr.1999.7203] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous work has demonstrated that viral vector mediated gene transfer of glial cell line-derived neurotrophic factor (GDNF), when administered prior to a striatal injection of the specific neurotoxin, 6-hydroxydopamine (6-OHDA), can protect nigral dopamine (DA) neurons from cell death. When considering gene therapy for Parkinson's disease (PD), vector delivery prior to the onset of neuropathology is not possible and chronic delivery will likely be necessary in a GDNF-based PD therapy. The present study was undertaken to determine if GDNF delivered via a recombinant adeno-associated viral vector (rAAV) could affect nigral DA cell survival when initiated just after the administration of striatal 6-OHDA. The onset of rAAV-mediated GDNF transgene expression near the substantia nigra was determined to begin somewhere between 1 and 7 days after the 6-OHDA injection and subsequent vector administration. The cell survival data indicate that rAAV-GDNF delivery results in a highly significant sparing of nigral DA neurons. These data indicate that a single delivery of rAAV encoding GDNF is efficacious when delivered after the onset of progressive degeneration in a rat model of PD.
Collapse
Affiliation(s)
- R J Mandel
- Department of Neuroscience, University of Florida Brain Institute, University of Florida College of Medicine, Gainesville 32610-0244, USA.
| | | | | |
Collapse
|
377
|
Zhang X, De Alwis M, Hart SL, Fitzke FW, Inglis SC, Boursnell ME, Levinsky RJ, Kinnon C, Ali RR, Thrasher AJ. High-titer recombinant adeno-associated virus production from replicating amplicons and herpes vectors deleted for glycoprotein H. Hum Gene Ther 1999; 10:2527-37. [PMID: 10543617 DOI: 10.1089/10430349950016861] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Production of high-titer rAAV is essential for in vivo clinical application. One limiting factor may be the failure of existing systems to replicate the packaging genome in such a way that expression of Rep and Cap proteins is coordinately amplified. DISC-HSV (disabled single-cycle virus) is a genetically modified herpes simplex virus (HSV) that by deletion of glycoprotein H (gH) is infectious only if propagated in a complementing cell line. In this study, we have used DISC-HSV as a helper for rAAV replication, and have simulated to some extent the amplication of the rep and cap genomes seen in wtAAV infection by incorporating both these and vector sequences in HSV amplicons. Facilitated production of AAV Rep and Cap proteins translates into a considerably improved recovery of rAAV, which transduces cells of the neuroretina in vivo with high efficiency. The potential for contamination with infectious herpes particles is eliminated by the use of noncomplementing (gH-) cell lines to propagate the virus, and by standard purification methods. The use of DISC-HSV and herpes-derived amplicons for production of rAAV may be a useful strategy for future in vivo studies and for clinical application.
Collapse
Affiliation(s)
- X Zhang
- Cantab Pharmaceuticals Research, Ltd., Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
378
|
Chao H, Samulski R, Bellinger D, Monahan P, Nichols T, Walsh C. Persistent expression of canine factor IX in hemophilia B canines. Gene Ther 1999; 6:1695-704. [PMID: 10516718 DOI: 10.1038/sj.gt.3301024] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We previously demonstrated that direct intramuscular injection of recombinant adeno-associated virus (rAAV) carrying the human FIX (hFIX) cDNA can safely be administered to hemophilic B canines and express human factor IX protein; however, the functional activity of the hFIX protein could not be assessed due to anti-human FIX antibody (inhibitor) formation. To test the therapeutic efficacy of rAAV in hemophilic dogs, rAAV type 2 (rAAV2) carrying canine FIX (cFIX) cDNA was injected into the skeletal muscle of two dogs at doses of 1012-13particles. Circulating cFIX protein levels were maintained for 1 year at levels of 1-2% of normal. Hemostatic correction (WBCT and APTT) paralleled plasma FIX antigen levels. Both dogs still required plasma infusion for spontaneous and traumatic bleeding events. Inhibitors to cFIX protein were not detected in either animal by Bethesda assay. Neutralizing antibodies directed against AAV-2 capsid were pronounced and persistent. Vector DNA and mRNA transcripts were detected only at the injected skeletal muscle tissue. Analysis of both high and low molecular weight DNA identified both replicative episomal and integrated AAV species. These results demonstrate that persistent secretion of the FIX transgene protein, necessary for successful gene therapy of hemophilia B, can be achieved using the parvovirus-based rAAV vector
Collapse
Affiliation(s)
- H Chao
- UNC Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
379
|
Hernandez YJ, Wang J, Kearns WG, Loiler S, Poirier A, Flotte TR. Latent adeno-associated virus infection elicits humoral but not cell-mediated immune responses in a nonhuman primate model. J Virol 1999; 73:8549-58. [PMID: 10482608 PMCID: PMC112875 DOI: 10.1128/jvi.73.10.8549-8558.1999] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Latent infection with wild-type (wt) adeno-associated virus (AAV) was studied in rhesus macaques, a species that is a natural host for AAV and that has some homology to humans with respect to the preferred locus for wt AAV integration. Each of eight animals was infected with an inoculum of 10(10) IU of wt AAV, administered by either the intranasal, intramuscular, or intravenous route. Two additional animals were infected intranasally with wt AAV and a helper adenovirus (Ad), while one additional animal was inoculated with saline intranasally as a control. There were no detectable clinical or histopathologic responses to wt AAV administration. Molecular analyses, including Southern blot, PCR, and fluorescence in situ hybridization, were performed 21 days after infection. These studies indicated that AAV DNA sequences persisted at the sites of administration, albeit at low copy number, and in peripheral blood mononuclear cells. Site-specific integration into the AAVS1-like locus was observed in a subset of animals. All animals, except those infected by the intranasal route with wt AAV alone, developed a humoral immune response to wt AAV capsid proteins, as evidenced by a >/=fourfold rise in anti-AAV neutralizing titers. However, only animals infected with both wt AAV and Ad developed cell-mediated immune responses to AAV capsid proteins. These findings provide some insights into the nature of anti-AAV immune responses that may be useful in interpreting results of future AAV-based gene transfer studies.
Collapse
Affiliation(s)
- Y J Hernandez
- Gene Therapy Center, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
380
|
Marshall BA, Tordjman K, Host HH, Ensor NJ, Kwon G, Marshall CA, Coleman T, McDaniel ML, Semenkovich CF. Relative hypoglycemia and hyperinsulinemia in mice with heterozygous lipoprotein lipase (LPL) deficiency. Islet LPL regulates insulin secretion. J Biol Chem 1999; 274:27426-32. [PMID: 10488074 DOI: 10.1074/jbc.274.39.27426] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoprotein lipase (LPL) provides tissues with fatty acids, which have complex effects on glucose utilization and insulin secretion. To determine if LPL has direct effects on glucose metabolism, we studied mice with heterozygous LPL deficiency (LPL+/-). LPL+/- mice had mean fasting glucose values that were up to 39 mg/dl lower than LPL+/+ littermates. Despite having lower glucose levels, LPL+/- mice had fasting insulin levels that were twice those of +/+ mice. Hyperinsulinemic clamp experiments showed no effect of genotype on basal or insulin-stimulated glucose utilization. LPL message was detected in mouse islets, INS-1 cells (a rat insulinoma cell line), and human islets. LPL enzyme activity was detected in the media from both mouse and human islets incubated in vitro. In mice, +/- islets expressed half the enzyme activity of +/+ islets. Islets isolated from +/+ mice secreted less insulin in vitro than +/- and -/- islets, suggesting that LPL suppresses insulin secretion. To test this notion directly, LPL enzyme activity was manipulated in INS-1 cells. INS-1 cells treated with an adeno-associated virus expressing human LPL had more LPL enzyme activity and secreted less insulin than adeno-associated virus-beta-galactosidase-treated cells. INS-1 cells transfected with an antisense LPL oligonucleotide had less LPL enzyme activity and secreted more insulin than cells transfected with a control oligonucleotide. These data suggest that islet LPL is a novel regulator of insulin secretion. They further suggest that genetically determined levels of LPL play a role in establishing glucose levels in mice.
Collapse
Affiliation(s)
- B A Marshall
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
381
|
Lipkowitz MS, Hanss B, Tulchin N, Wilson PD, Langer JC, Ross MD, Kurtzman GJ, Klotman PE, Klotman ME. Transduction of renal cells in vitro and in vivo by adeno-associated virus gene therapy vectors. J Am Soc Nephrol 1999; 10:1908-15. [PMID: 10477142 DOI: 10.1681/asn.v1091908] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There has been an increasing interest recently in the possibility of treating renal diseases using gene therapy. The ability to pursue gene therapy for renal diseases has been limited by the availability of an adequate system for gene delivery to the kidney. Adeno-associated virus (AAV) is a defective virus of the parvovirus family that has a number of properties attractive for renal gene delivery: recombinant AAV contains no viral genes; expression of genes delivered by these vectors does not activate cell-mediated immunity; the virus is able to transduce nondividing as well as dividing cells; and both wild-type and recombinant AAV integrate into the host chromosome resulting in long-term gene expression. Studies were performed to determine whether AAV can deliver reporter genes to kidney cells in vitro and in vivo. These studies show that AAV can deliver reporter genes with approximately equal efficiency to human mesangial, proximal tubule, thick ascending limb, collecting tubule, and renal cell carcinoma cells in primary culture. Immortalized mouse mesangial cells are transduced at a much greater efficiency. Transduction can be enhanced by pharmaceutical agents up to sevenfold in primary cells (transducing up to 20% of primary cells per well) and as much as 400-fold in immortalized mesangial cells. AAV delivered in vivo by intraparenchymal injection results in at least 3 mo of reporter gene expression in tubular epithelial, but not glomerular or vascular, cells at the injection site. These data indicate that AAV can deliver genes to renal cells both in vitro and in vivo resulting in prolonged gene expression, and thus AAV can be a useful tool for renal gene delivery.
Collapse
Affiliation(s)
- M S Lipkowitz
- Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA. mlipkow@smtplink:mssm.edu
| | | | | | | | | | | | | | | | | |
Collapse
|
382
|
Koeberl DD, Bonham L, Halbert CL, Allen JM, Birkebak T, Miller AD. Persistent, therapeutically relevant levels of human granulocyte colony-stimulating factor in mice after systemic delivery of adeno-associated virus vectors. Hum Gene Ther 1999; 10:2133-40. [PMID: 10498245 DOI: 10.1089/10430349950017121] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adeno-associated virus (AAV) vectors have been shown to preferentially transduce hepatocytes after systemic administration in adult mice and to provide long-term expression of introduced genes. One application of this technology would be for the production of granulocyte colony-stimulating factor (G-CSF), which increases mature neutrophil numbers in humans and in animals, and has therapeutic effects in disorders featuring chronic neutropenia, including cyclic, severe congenital, and idiopathic neutropenia, and glycogen storage disease type Ib. We have treated mice by tail vein injection of AAV vectors encoding human G-CSF, and have detected high G-CSF levels and marked elevation of neutrophil counts for at least 5 months. A therapeutically relevant amount of G-CSF production was obtained when the liver-specific mouse albumin promoter-enhancer was used to drive G-CSF expression. In mice receiving higher amounts of vector, plasma levels of human G-CSF gradually increased over 3 weeks to high concentrations, whereas for lower amounts human G-CSF remained at initial, low levels. The previously observed effect of gamma irradiation, to increase AAV transduction rates, was diminished when large amounts of vector were used. Absolute neutrophil counts increased 10- to 50-fold for the period of observation to levels that would be therapeutic in the treatment of cyclic neutropenia. In conclusion, gene therapy with AAV vectors synthesizing G-CSF shows promise for the treatment of disorders featuring neutropenia.
Collapse
Affiliation(s)
- D D Koeberl
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | | | | | | | |
Collapse
|
383
|
Watanabe M, Fenton RG, Wigginton JM, McCormick KL, Volker KM, Fogler WE, Roessler PG, Wiltrout RH. Intradermal Delivery of IL-12 Naked DNA Induces Systemic NK Cell Activation and Th1 Response In Vivo That Is Independent of Endogenous IL-12 Production. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.4.1943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
In this study four murine IL-12 naked DNA expression plasmids (pIL-12), containing both the p35 and p40 subunits, were shown to induce systemic biological effects in vivo after intradermal injection. Three of the four IL-12 expression vectors augmented NK activity and induced expression of the IFN-γ and IFN-γ-inducible Mig genes. Both IL-12 p70 heterodimer and IFN-γ proteins were documented in the serum within 24 h after intradermal injection of the pIL-12o− plasmid, which also induced the highest level of NK activity in the spleen and liver among the IL-12 constructs. Interestingly, both p40 mRNA expression at the injection site and serum protein levels followed a biphasic pattern of expression, with peaks on days 1 and 5. Subsequent studies revealed that the ability of intradermally injected pIL-12o− to augment NK lytic activity was prevented by administration of a neutralizing anti-IL-12 mAb. Finally, injection of the pIL-12o− into BALB/c IL-12 p40−/− mice also resulted in a biphasic pattern of IL-12 p70 appearance in the serum, and induced IFN-γ protein and activated NK lytic activity in liver and spleen. These results demonstrate that injection of delivered naked DNA encoding the IL-12 gene mediates the biphasic systemic production of IL-12-inducible genes and augments the cytotoxic function of NK cells in lymphoid and parenchymal organs as a direct result of transgene expression. The results also suggest that these naked DNA plasmids may be useful adjuvants for vaccines against infectious and neoplastic diseases.
Collapse
Affiliation(s)
| | - Robert G. Fenton
- †Department of Experimental Transplantation and Immunology, Division of Clinical Sciences; and
| | - Jon M. Wigginton
- §Pediatric Oncology Branch, Division of Clinical Sciences, National Cancer Institute, Bethesda, MD 20892; and
| | - Kathryn L. McCormick
- ‡Intramural Research Support Program, Science Applications International Corp., National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702
| | - Kirk M. Volker
- *Laboratory of Experimental Immunology, Division of Basic Sciences
| | | | | | | |
Collapse
|
384
|
|
385
|
Russell DW, Kay MA. Adeno-associated virus vectors and hematology. Blood 1999; 94:864-74. [PMID: 10419876 PMCID: PMC3739711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Affiliation(s)
- D W Russell
- Markey Molecular Medicine Center, Department of Medicine, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
386
|
Rivera VM, Ye X, Courage NL, Sachar J, Cerasoli F, Wilson JM, Gilman M. Long-term regulated expression of growth hormone in mice after intramuscular gene transfer. Proc Natl Acad Sci U S A 1999; 96:8657-62. [PMID: 10411931 PMCID: PMC17572 DOI: 10.1073/pnas.96.15.8657] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Effective delivery of secreted proteins by gene therapy will require a vector that directs stable delivery of a transgene and a regulatory system that permits pharmacologic control over the level and kinetics of therapeutic protein expression. We previously described a regulatory system that enables transcription of a target gene to be controlled by rapamycin, an orally bioavailable drug. Here we demonstrate in vivo regulation of gene expression after intramuscular injection of two separate adenovirus or adeno-associated virus (AAV) vectors, one encoding an inducible human growth hormone (hGH) target gene, and the other a bipartite rapamycin-regulated transcription factor. Upon delivery of either vector system into immunodeficient mice, basal plasma hGH expression was undetectable and was induced to high levels after administration of rapamycin. The precise level and duration of hGH expression could be controlled by the rapamycin dosing regimen. Equivalent profiles of induction were observed after repeated administration of single doses of rapamycin over many months. AAV conferred stable expression of regulated hGH in both immunocompetent and immunodeficient mice, whereas adenovirus-directed hGH expression quickly extinguished in immunocompetent animals. These studies demonstrate that the rapamycin-based regulatory system, delivered intramuscularly by AAV, fulfills many of the conditions necessary for the safe and effective delivery of therapeutic proteins by gene therapy.
Collapse
Affiliation(s)
- V M Rivera
- ARIAD Pharmaceuticals, 26 Landsdowne Street, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
387
|
Yewdell JW, Norbury CC, Bennink JR. Mechanisms of exogenous antigen presentation by MHC class I molecules in vitro and in vivo: implications for generating CD8+ T cell responses to infectious agents, tumors, transplants, and vaccines. Adv Immunol 1999; 73:1-77. [PMID: 10399005 DOI: 10.1016/s0065-2776(08)60785-3] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- J W Yewdell
- Laboratory of Viral Diseases, National Institute for Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
388
|
Abstract
Current approaches to the treatment of lipid disorders are inadequate for a substantial number of patients with severe hyperlipoproteinemia, isolated low high-density lipoprotein (HDL) cholesterol levels, or other molecular disorders of lipoprotein metabolism. Therefore, dyslipidemias remain important targets for the development of novel therapies. Gene therapy is a logical therapeutic approach to monogenic lipoprotein disorders, such as homozygous familial hypercholesterolemia, familial lipoprotein lipase deficiency, familial lecithin-cholesterol acyltransferase deficiency, and abetalipoproteinemia, for which current therapies are inadequate. Gene therapy could also be used to increase expression of certain proteins, such as apolipoprotein A-I as a strategy to raise HDL cholesterol levels or apoE as a strategy for severe combined hyperlipidemia. With further progress in the development of vectors, gene therapy for severe dyslipidemia is likely to become a clinical reality.
Collapse
Affiliation(s)
- D J Rader
- Department of Medicine and Pathology and Laboratory Medicine, University of Pennsylvania Health System, Philadelphia, PA 19104-6100, USA
| | | |
Collapse
|
389
|
Kreiss P, Bettan M, Crouzet J, Scherman D. Erythropoietin secretion and physiological effect in mouse after intramuscular plasmid DNA electrotransfer. J Gene Med 1999; 1:245-50. [PMID: 10738557 DOI: 10.1002/(sici)1521-2254(199907/08)1:4<245::aid-jgm49>3.0.co;2-g] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Direct intramuscular plasmid DNA injection has recently been proposed for erythropoietin therapy, as an alternative to either systemic injection of recombinant erythropoietin or the use of viral vectors for erythropoietin gene transfer. However, direct intramuscular plasmid injection has so far been hampered by low efficiency and high interindividual variability. METHOD We explored the use of a new method termed 'intramuscular electrotransfer' for erythropoietin gene expression in the mouse. This method is based on intramuscular plasmid injection followed by application of appropriate electric pulses. RESULTS Intramuscular plasmid electrotransfer in mouse leg led to an increase of approximately 10- to 100-fold in circulating murine erythropoietin level, as compared to naked DNA alone. Using electrotransfer, as little as 1 microgram of an erythropoietin encoding plasmid was sufficient to induce an increase in mouse hematocrit, from 47% up to 80%. This hematocrit increase was stable for at least two months. Moreover, interindividual hematocrit variability was markedly reduced by electrotransfer, as compared with naked DNA injection. CONCLUSION In vivo electrotransfer appears to be a convenient method for obtaining high erythropoietin expression in mice, and it could also be used for the expression of other secreted therapeutic proteins.
Collapse
Affiliation(s)
- P Kreiss
- ENSCP, Departement Bioorganique et Biotechnologie, Paris, France
| | | | | | | |
Collapse
|
390
|
Abstract
Gene therapy for the treatment of many medical problems, including vascular disease, has become the subject of increasing discussion in both the scientific literature and the national press over the past decade. This review will examine the history and current status of gene therapy for vascular proliferative disorders and advanced chronic peripheral and cardiac ischemia.
Collapse
Affiliation(s)
- S L Meyerson
- Department of Surgery, University of Chicago, Illinois, IL 60637, USA
| | | |
Collapse
|
391
|
Nakai H, Iwaki Y, Kay MA, Couto LB. Isolation of recombinant adeno-associated virus vector-cellular DNA junctions from mouse liver. J Virol 1999; 73:5438-47. [PMID: 10364291 PMCID: PMC112600 DOI: 10.1128/jvi.73.7.5438-5447.1999] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors allow for sustained expression of transgene products from mouse liver following a single portal vein administration. Here a rAAV vector expressing human coagulation factor F.IX (hF.IX), AAV-EF1alpha-F.IX (hF.IX expression was controlled by the human elongation factor 1alpha [EF1alpha] enhancer-promoter) was injected into mice via the portal vein or tail vein, or directly into the liver parenchyma, and the forms of rAAV vector DNA extracted from the liver were analyzed. Southern blot analyses suggested that rAAV vector integrated into the host genome, forming mainly head-to-tail concatemers with occasional deletions of the inverted terminal repeats (ITRs) and their flanking sequences. To further confirm vector integration, we developed a shuttle vector system and isolated and sequenced rAAV vector-cellular DNA junctions from transduced mouse livers. Analysis of 18 junctions revealed various rearrangements, including ITR deletions and amplifications of the vector and cellular DNA sequences. The breakpoints of the vector were mostly located within the ITRs, and cellular DNA sequences were recombined with the vector genome in a nonhomologous manner. Two rAAV-targeted DNA sequences were identified as the mouse rRNA gene and the alpha1 collagen gene. These observations serve as direct evidence of rAAV integration into the host genome of mouse liver and allow us to begin to elucidate the mechanisms involved in rAAV integration into tissues in vivo.
Collapse
Affiliation(s)
- H Nakai
- Avigen Inc., Alameda, California 94502, USA.
| | | | | | | |
Collapse
|
392
|
Grimm D, Kern A, Pawlita M, Ferrari F, Samulski R, Kleinschmidt J. Titration of AAV-2 particles via a novel capsid ELISA: packaging of genomes can limit production of recombinant AAV-2. Gene Ther 1999; 6:1322-30. [PMID: 10455443 DOI: 10.1038/sj.gt.3300946] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We demonstrate the rapid and reliable quantification of physical AAV-2 (adeno-associated virus type 2) particles via a novel ELISA based on a monoclonal antibody which selectively recognizes assembled AAV-2 capsids. Titration of a variety of recombinant AAV-2 (rAAV) preparations revealed that at least 80+percent of all particles were empty, compared with a maximum of 50percent in wild-type AAV-2 stocks, indicating that the recombinant genomes were less efficiently encapsidated. This finding was confirmed upon titration of CsCl gradient fractions from recombinant and wild-type AAV-2 stocks. ELISA-based measurement of capsid numbers revealed a large number of physical particles with low densities corresponding to empty capsids in the recombinant, but not in the wild-type AAV-2 preparations. Moreover, additional expression of VP proteins during rAAV production was found to result in an excessive capsid formation, whilst yielding only minor increases in DNA-containing or transducing rAAV particles. We conclude that encapsidation of viral genomes rather than capsid assembly can be limiting for rAAV production, provided that a critical level of VP expression is maintained. The feasibility of quantifying AAV-2 capsid numbers via the ELISA allows determination of physical to DNA-containing or infectious particle ratios. These are important parameters which should help to optimize and standardize the production and application of recombinant AAV-2.
Collapse
Affiliation(s)
- D Grimm
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Angewandte Tumorvirologie, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
393
|
Brockstedt DG, Podsakoff GM, Fong L, Kurtzman G, Mueller-Ruchholtz W, Engleman EG. Induction of immunity to antigens expressed by recombinant adeno-associated virus depends on the route of administration. Clin Immunol 1999; 92:67-75. [PMID: 10413654 DOI: 10.1006/clim.1999.4724] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recombinant adeno-associated virus (rAAV) is a replication-defective parvovirus which is being explored as a vector for gene therapy because of its broad host range, excellent safety profile, and durable transgene expression in infected hosts. rAAV has also been reported by several groups to induce little or no immune response to its encoded transgene products. In this study we examined the immunogenicity of rAAV by studying the immune response of C57BL/6 mice to a single dose of rAAV-encoding ovalbumin (AAV-Ova) administered by a variety of routes. Mice injected with AAV-Ova intraperitoneally (ip), intravenously, or subcutaneously developed potent ovalbumin-specific cytotoxic T lymphocytes (CTL) as well as anti-ovalbumin antibodies and antibodies to AAV. In contrast, mice injected with AAV-Ova intramuscularly developed a humoral response to the virus and the transgene but minimal ovalbumin-specific CTLs. The induced CTL response after ip administration of AAV-Ova protected mice against a subsequent tumor challenge with an ovalbumin-transfected B16 melanoma cell line. Studies of the mechanism by which AAV-Ova induces CTL confirmed that the virus delivers the transgene product into the classical MHC class I pathway of antigen processing. Mice that previously had been exposed to rAAV vectors failed to develop ovalbumin-specific CTL following administration of AAV-Ova. Analysis of these mice revealed the presence of circulating anti-AAV antibodies that blocked rAAV transduction in vitro and inhibited CTL induction in vivo. These results suggest a possible role for rAAV in the immunotherapy of malignancies and viral infections, although induced antibody responses to AAV may limit its ability to be administered for repeated vaccinations.
Collapse
Affiliation(s)
- D G Brockstedt
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
394
|
Abstract
Adeno-associated virus (AAV) is a defective, non-pathogenic human parvovirus that depends for growth on coinfection with a helper adenovirus or herpes virus. Recombinant adeno-associated viruses (rAAVs) have attracted considerable interest as vectors for gene therapy. In contrast to other gene delivery systems, rAAVs lack all viral genes and show long-term gene expression in vivo without immune response or toxicity. Over the past few years, many applications of rAAVs as therapeutic agents have demonstrated the utility of this vector system for long-lasting genetic modification and gene therapy in preclinical models of human disease. New production methods have increased rAAV vector titers and eliminated contamination by adenovirus. In addition, vectors for regulatable gene expression and vectors retargeted to different cells have been engineered. These advancements are expected to accelerate and facilitate further animal model studies, providing validation for use of rAAVs in human clinical trials.
Collapse
Affiliation(s)
- H Büeler
- Institut für Molekularbiologie, Universität Zürich, Switzerland
| |
Collapse
|
395
|
Conway JE, Rhys CM, Zolotukhin I, Zolotukhin S, Muzyczka N, Hayward GS, Byrne BJ. High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 Rep and Cap. Gene Ther 1999; 6:986-93. [PMID: 10455400 DOI: 10.1038/sj.gt.3300937] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recombinant adeno-associated virus type 2 (rAAV) vectors have recently been used to achieve long-term, high level transduction in vivo. Further development of rAAV vectors for clinical use requires significant technological improvements in large-scale vector production. In order to facilitate the production of rAAV vectors, a recombinant herpes simplex virus type I vector (rHSV-1) which does not produce ICP27, has been engineered to express the AAV-2 rep and cap genes. The optimal dose of this vector, d27.1-rc, for AAV production has been determined and results in a yield of 380 expression units (EU) of AAV-GFP produced from 293 cells following transfection with AAV-GFP plasmid DNA. In addition, d27.1-rc was also efficient at producing rAAV from cell lines that have an integrated AAV-GFP provirus. Up to 480 EU/cell of AAV-GFP could be produced from the cell line GFP-92, a proviral, 293 derived cell line. Effective amplification of rAAV vectors introduced into 293 cells by infection was also demonstrated. Passage of rAAV with d27. 1-rc results in up to 200-fold amplification of AAV-GFP with each passage after coinfection of the vectors. Efficient, large-scale production (>109 cells) of AAV-GFP from a proviral cell line was also achieved and these stocks were free of replication-competent AAV. The described rHSV-1 vector provides a novel, simple and flexible way to introduce the AAV-2 rep and cap genes and helper virus functions required to produce high-titer rAAV preparations from any rAAV proviral construct. The efficiency and potential for scalable delivery of d27.1-rc to producer cell cultures should facilitate the production of sufficient quantities of rAAV vectors for clinical application.
Collapse
Affiliation(s)
- J E Conway
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
396
|
Zolotukhin S, Byrne BJ, Mason E, Zolotukhin I, Potter M, Chesnut K, Summerford C, Samulski RJ, Muzyczka N. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther 1999; 6:973-85. [PMID: 10455399 DOI: 10.1038/sj.gt.3300938] [Citation(s) in RCA: 1039] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Conventional methods for rAAV purification that are based on cesium chloride ultracentrifugation have often produced vector preparations of variable quality and resulted in significant loss of particle infectivity. We report here several novel purification strategies that involve the use of non-ionic iodixanol gradients followed by ion exchange or heparin affinity chromatography by either conventional or HPLC columns. These methods result in more than 50% recovery of rAAV from a crude lysate and routinely produce vector that is more than 99% pure. More importantly, the new purification procedures consistently produce rAAV stocks with particle-to-infectivity ratios of less than 100, which is significantly better than conventional methods. The new protocol increases the overall yield of infectious rAAV by at least 10-fold and allows for the complete purification of rAAV in 1 working day. Several of these methods should also be useful for large-scale production.
Collapse
Affiliation(s)
- S Zolotukhin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
397
|
Rizzuto G, Cappelletti M, Maione D, Savino R, Lazzaro D, Costa P, Mathiesen I, Cortese R, Ciliberto G, Laufer R, La Monica N, Fattori E. Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation. Proc Natl Acad Sci U S A 1999; 96:6417-22. [PMID: 10339602 PMCID: PMC26896 DOI: 10.1073/pnas.96.11.6417] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/1998] [Accepted: 03/24/1999] [Indexed: 11/18/2022] Open
Abstract
We show that an electric treatment in the form of high-frequency, low-voltage electric pulses can increase more than 100-fold the production and secretion of a recombinant protein from mouse skeletal muscle. Therapeutical erythopoietin (EPO) levels were achieved in mice with a single injection of as little as 1 microgram of plasmid DNA, and the increase in hematocrit after EPO production was stable and long-lasting. Pharmacological regulation through a tetracycline-inducible promoter allowed regulation of serum EPO and hematocrit levels. Tissue damage after stimulation was transient. The method described thus provides a potentially safe and low-cost treatment for serum protein deficiencies.
Collapse
Affiliation(s)
- G Rizzuto
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, 00040 Pomezia, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
398
|
Abstract
BACKGROUND The ability of tissues to take up naked plasmid DNA in vivo suggests an approach for reconstituting systemic metabolic deficiencies without the disadvantages of viral vectors and lipid-DNA complexes. Plasmid-mediated gene transfer into skeletal muscle was investigated as a means of providing a therapeutic source of insulin. METHODS Four plasmid constructs, each bearing a mouse furin cDNA transgene and rat proinsulin cDNA (modified for processing by furin) driven by four different promoters were injected into the calf muscles of male Balb/c mice. Insulin and C-peptide concentrations were measured by radio-immunoassays having minimal crossreactivity for proinsulin and partially processed proinsulin. RESULTS Intramuscular insulin concentrations increased by up to 3.6-fold over controls seven days after single injections of CMV, beta-actin, hsp70 and myoglobin promoter constructs. The optimal dose for most constructs was 100 micrograms plasmid DNA. Intramuscular plasmid injection into streptozotocin-induced diabetic Balb/c mice raised plasma insulin and C-peptide concentrations, and reduced hyperglycaemia. Two injections (100 micrograms plasmid DNA each) caused higher plasma insulin concentrations and significantly reduced hyperglycemia in diabetic mice than a single injection. Best results were obtained when plasmid injections preceded induction of diabetes by 14 days. CONCLUSIONS Skeletal muscle is a potentially useful platform for ectopic secretion of insulin using naked plasmid as a gene transfer vector. Injection at two sites 14 days before the onset of severe hyperglycemia is optimal. This approach could protect Type I diabetics from fatal ketoacidosis and enhance the action of agents that sensitize tissues to insulin in type II diabetes.
Collapse
Affiliation(s)
- O L Kon
- Department of Biochemistry, National University of Singapore, Republic of Singapore.
| | | | | | | | | |
Collapse
|
399
|
Abstract
Several gene delivery vehicles are being developed for somatic gene therapy and each of these vectors has unique properties which makes them appropriate for different human disease applications. Recombinant adeno-associated viral (rAAV) vectors are proving themselves to be safe and efficacious for the long-term expression of proteins and correction of genetic diseases following a single administration. The increasing number of tissues and diseases being targeted with rAAV vectors demonstrates their versatility and has resulted in different approaches for enhancing vector performance. Improving the methods for large-scale manufacturing, and accumulating safety and efficacy data in animals and humans are areas of intense research.
Collapse
Affiliation(s)
- R O Snyder
- Division of Molecular Medicine, Children's Hospital, Boston, USA.
| |
Collapse
|
400
|
Mir LM, Bureau MF, Gehl J, Rangara R, Rouy D, Caillaud JM, Delaere P, Branellec D, Schwartz B, Scherman D. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci U S A 1999; 96:4262-7. [PMID: 10200250 PMCID: PMC16320 DOI: 10.1073/pnas.96.8.4262] [Citation(s) in RCA: 671] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gene delivery to skeletal muscle is a promising strategy for the treatment of muscle disorders and for the systemic secretion of therapeutic proteins. However, present DNA delivery technologies have to be improved with regard to both the level of expression and interindividual variability. We report very efficient plasmid DNA transfer in muscle fibers by using square-wave electric pulses of low field strength (less than 300 V/cm) and of long duration (more than 1 ms). Contrary to the electropermeabilization-induced uptake of small molecules into muscle fibers, plasmid DNA has to be present in the tissue during the electric pulses, suggesting a direct effect of the electric field on DNA during electrotransfer. This i.m. electrotransfer method increases reporter and therapeutic gene expression by several orders of magnitude in various muscles in mouse, rat, rabbit, and monkey. Moreover, i.m. electrotransfer strongly decreases variability. Stability of expression was observed for at least 9 months. With a pCMV-FGF1 plasmid coding for fibroblast growth factor 1, this protein was immunodetected in the majority of muscle fibers subjected to the electric pulses. DNA electrotransfer in muscle may have broad applications in gene therapy and in physiological, pharmacological, and developmental studies.
Collapse
Affiliation(s)
- L M Mir
- Unité Mixte de Recherche 8532 Centre National de la Recherche Scientifique, Institut Gustave-Roussy, 39 Rue C. Desmoulins, F-94805 Villejuif Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|