351
|
Tolnay M, Probst A. REVIEW: tau protein pathology in Alzheimer's disease and related disorders. Neuropathol Appl Neurobiol 1999; 25:171-87. [PMID: 10417659 DOI: 10.1046/j.1365-2990.1999.00182.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abundant neurofibrillary lesions made of hyperphosphorylated microtubule-associated protein tau constitute one of the defining neuropathological features of Alzheimer's disease. However, tau containing filamentous inclusions in neurones and/or glial cells also define a number of other neurodegenerative disorders clinically characterized by dementia and/or motor syndromes. All these disorders, therefore, are grouped under the generic term of tauopathies. In the first part of this review we outline the morphological and biochemical features of some major tauopathies, e. g. Alzheimer's disease, argyrophilic grain disease, Pick's disease, progressive supranuclear palsy and corticobasal degeneration. The impact of the recent finding of tau gene mutations in familial frontotemporal dementia and parkinsonism linked to chromosome 17 on other tauopathies is discussed in the second part. The review closes with a look towards a new understanding of neurodegenerative disorders characterized by filamentous nerve cell inclusions. The recent identification of the major protein component of their respective inclusions led to a surprising convergence of seemingly unrelated disorders. The new findings now allow us to classify neurodegenerative disorders with filamentous nerve cell inclusions into four main categories: (i) the tauopathies; (ii) the alpha-synucleinopathies; (iii) the polyglutamine disorders; and (iv) the iquitin disorders'. Within the proposed classification scheme, tauopathies constitute the most frequent type of disorder.
Collapse
Affiliation(s)
- M Tolnay
- Institute of Pathology, Division of Neuropathology, Basel University, Basel, Switzerland
| | | |
Collapse
|
352
|
Lee KY, Clark AW, Rosales JL, Chapman K, Fung T, Johnston RN. Elevated neuronal Cdc2-like kinase activity in the Alzheimer disease brain. Neurosci Res 1999; 34:21-9. [PMID: 10413323 DOI: 10.1016/s0168-0102(99)00026-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neurofibrillary tangles (NFT) in Alzheimer's disease (AD) consist largely of hyperphosphorylated tau protein. Many of the phosphorylation sites on tau are serine/threonine-proline sequences, several of which are phosphorylated in vitro by neuronal Cdc2-like kinase (Nclk), a kinase composed of Cdk5 and its activator(s). Thus, tau hyperphosphorylation in AD may result in part from deregulation of Nclk. To test this hypothesis, we examined Nclk activity in prefrontal and cerebellar cortex from 15 postmortem AD and 16 age-matched control subjects, and corrected either for Cdk5 level or for neuronal loss. The ratio of Nclk activity in prefrontal versus cerebellar cortex was then compared. When corrections were made for neuronal loss, the ratios of kinase activity in prefrontal versus cerebellar cortex were significantly higher in AD (6.45+/-0.86) than the controls (3.13+/-0.46; P = 0.003). This finding is consistent with a role for Nclk in the pathogenesis of NFT in AD.
Collapse
Affiliation(s)
- K Y Lee
- Department of Cell Biology and Anatomy, The University of Calgary, Alta, Canada.
| | | | | | | | | | | |
Collapse
|
353
|
Tsujioka Y, Takahashi M, Tsuboi Y, Yamamoto T, Yamada T. Localization and expression of cdc2 and cdk4 in Alzheimer brain tissue. Dement Geriatr Cogn Disord 1999; 10:192-8. [PMID: 10325446 DOI: 10.1159/000017119] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Two regulators of the eukaryotic cell cycle, cell division cycle 2 (cdc2) and cyclin-dependent kinase 4 (cdk4), have been reported to be related to Alzheimer's disease (AD) pathology, and especially to hyperphosphorylated tau protein. Using well-characterized polyclonal antibodies which recognize the C termini of cdc2 kinase and cdk4, we examined by immunohistochemistry brain tissues from patients with non-neurological conditions, AD and cerebral infarction. Semiquantitative mRNA analysis by RT-PCR was also done using non-neurological and AD brains. In AD, as previously reported, the antibody to cdc2 showed positive staining of a few intracytoplasmic neurofibrillary tangles (NFTs). In addition, this antibody gave positive immunolabelling in astrocytes and capillaries in all brains studied. In both AD and cerebral infarct cases, the staining of astrocytes was more intense than in non-neurological brain tissue. In all cases, the antibodies to cdk4 showed positive immunolabelling in the nuclei of all cell types except neurons. In AD tissue, the antibody showed additional staining of neuronal nuclei and cytoplasm. In contrast to a previous report, we did not find positive labelling of NFTs with the anti-cdk4 antibody. In infarct areas, particularly strong nuclear staining in glial cells was seen. The relative levels of cdk4 mRNA in AD brains were higher than those in controls. These data suggest that cdc2 kinase appears in glial cells capable of cell division and may play a role in the regulation of amyloid precursor protein processing and NFT formation in neurons. As suggested in a report on rat brain, neuronal expression of cdk4 may reflect some pathological process in damaged cells in AD.
Collapse
Affiliation(s)
- Y Tsujioka
- Department of Internal Medicine and Health Care, Fukuoka University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
354
|
Shea TB, Cressman CM. The order of exposure of tau to signal transduction kinases alters the generation of "AD-like" phosphoepitopes. Cell Mol Neurobiol 1999; 19:223-33. [PMID: 10081606 PMCID: PMC11545423 DOI: 10.1023/a:1006977127422] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. The individual and sequential influence of protein kinase C (PKC), protein kinase A (PKA) and mitogen-activated protein kinase (MAP kinase) on human brain tau was examined. 2. A range of PKC concentrations generated certain phosphoepitopes common with paired helical filaments. These epitopes were masked by higher PKC concentrations, suggesting the presence of multiple tau phosphorylation sites for which PKC exhibited differing affinities and/or conformational alterations in tau induced by sequential PKC-mediated phosphorylation. 3. Prior phosphorylation by PKC enhanced the nature and extent of AD-like tau antigenicity generated by subsequent incubation with MAP kinase yet inhibited that generated by subsequent incubation with PKA. 4. Dephosphorylation of tau prior to incubation with kinases significantly altered the influence of individual and multiple kinase incubation on tau antigenicity in a site-specific manner, indicating that prior in situ phosphorylation events markedly influenced subsequent cell-free phosphorylation. 5. In addition to considerations of the potential impact of tau phosphorylation by individual kinases, these findings extend previous studies which indicate that tau antigenicity, and, presumably, its behavior in situ, is influenced by the sequential and convergent influences of multiple kinases.
Collapse
Affiliation(s)
- T B Shea
- Department of Biological Sciences, University of Massachusetts at Lowell 01854, USA.
| | | |
Collapse
|
355
|
Ekinci FJ, Shea TB. Hyperactivation of mitogen-activated protein kinase increases phospho-tau immunoreactivity within human neuroblastoma: additive and synergistic influence of alteration of additional kinase activities. Cell Mol Neurobiol 1999; 19:249-60. [PMID: 10081608 PMCID: PMC11545435 DOI: 10.1023/a:1006981228331] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mitogen-activated protein (MAP) kinase phosphorylates tau in cell-free analyses, but whether or not it does so within intact cells remains controversial. In the present study, microinjection of MAP kinase into SH-SY-5Y human neuroblastoma cells increased tau immunoreactivity toward the phosphodependent antibodies PHF-1 and AT-8. In contrast, treatment with a specific inhibitor of MAP kinase (PD98059) did not diminish "basal" levels of these immunoreactivities in otherwise untreated cells. These findings indicate that hyperactivation of MAP kinase increases phospho-tau levels within cells, despite that MAP kinase apparently does not substantially influence intracellular tau phosphorylation under normal conditions. These findings underscore that results obtained following inhibition of kinase activities do not necessarily provide an indication of the consequences accompanying hyperactivation of that same kinase. Several studies conducted in cell-free systems indicate that exposure of tau to multiple kinases can have synergistic effects on the nature and extent of tau phosphorylation. We therefore examined whether or not such effects could be demonstrated within these cells. Site-specific phospho-tau immunoreactivity was increased in additive and synergistic manners by treatment of injected cells with TPA (which activates PKC), calcium ionophore (which activates calcium-dependent kinases), and wortmannin (which inhibits PIP3 kinase). Alteration in total tau levels was insufficient to account for the full extent of the increase in phospho-tau immunoreactivity. These additional results indicate that multiple kinase activities modulate the influence of MAP kinase on tau within intact cells.
Collapse
Affiliation(s)
- Fatma J. Ekinci
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts at Lowell, One University Avenue, Lowell, Massachusetts 01854
| | - Thomas B. Shea
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts at Lowell, One University Avenue, Lowell, Massachusetts 01854
| |
Collapse
|
356
|
Schneider A, Biernat J, von Bergen M, Mandelkow E, Mandelkow EM. Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry 1999; 38:3549-58. [PMID: 10090741 DOI: 10.1021/bi981874p] [Citation(s) in RCA: 409] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the hallmarks of Alzheimer's disease is the abnormal state of the microtubule-associated protein tau in neurons. It is both highly phosphorylated and aggregated into paired helical filaments, and it is commonly assumed that the hyperphosphorylation of tau causes its detachment from microtubules and promotes its assembly into PHFs. We have studied the relationship between the phosphorylation of tau by several kinases (MARK, PKA, MAPK, GSK3) and its assembly into PHFs. The proline-directed kinases MAPK and GSK3 are known to phosphorylate most Ser-Pro or Thr-Pro motifs in the regions flanking the repeat domain of tau: they induce the reaction with several antibodies diagnostic of Alzheimer PHFs, but this type of phosphorylation has only a weak effect on tau-microtubule interactions and on PHF assembly. By contrast, MARK and PKA phosphorylate several sites within the repeats (notably the KXGS motifs including Ser262, Ser324, and Ser356, plus Ser320); in addition PKA phosphorylates some sites in the flanking domains, notably Ser214. This type of phosphorylation strongly reduces tau's affinity for microtubules, and at the same time inhibits tau's assembly into PHFs. Thus, contrary to expectations, the phosphorylation that detaches tau from microtubules does not prime it for PHF assembly, but rather inhibits it. Likewise, although the phosphorylation sites on Ser-Pro or Thr-Pro motifs are the most prominent ones on Alzheimer PHFs (by antibody labeling), they are only weakly inhibitory to PHF assembly. This implies that the hyperphosphorylation of tau in Alzheimer's disease is not directly responsible for the pathological aggregation into PHFs; on the contrary, phosphorylation protects tau against aggregation.
Collapse
Affiliation(s)
- A Schneider
- Max-Planck-Unit for Structural Molecular Biology, Notkestrasse 85, D-22603 Hamburg, Germany
| | | | | | | | | |
Collapse
|
357
|
Paudel HK, Li W. Heparin-induced conformational change in microtubule-associated protein Tau as detected by chemical cross-linking and phosphopeptide mapping. J Biol Chem 1999; 274:8029-38. [PMID: 10075702 DOI: 10.1074/jbc.274.12.8029] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Alzheimer's disease, microtubule-associated protein tau becomes abnormally phosphorylated and aggregates into paired helical filaments. Sulfated glycosaminoglycans such as heparin and heparan sulfate were shown to accumulate in pretangle neurons, stimulate in vitro tau phosphorylation, and cause tau aggregation into paired helical filament-like filaments. The sulfated glycosaminoglycan-tau interaction was suggested to be the central event in the development of neuropathology in Alzheimer's disease brain (Goedert, M., Jakes, R., Spillantini, M. G., Hasegawa, M., Smith, M. J., and Crowther, R. A. (1996) Nature 383, 550-553). The biochemical mechanism by which sulfated glycosaminoglycans stimulate tau phosphorylation and cause tau aggregation remains unclear. In this study, disuccinimidyl suberate (DSS), a bifunctional chemical cross-linker, cross-linked tau dimers, tetramers, high molecular size aggregates, and two tau species of sizes 72 and 83 kDa in the presence of heparin. In the absence of heparin only dimeric tau was cross-linked by DSS. Fast protein liquid chromatography gel filtration revealed that 72- and 83-kDa species were formed by intramolecular cross-linking of tau by DSS. These observations indicate that heparin, in addition to causing aggregation, also induces a conformational change in tau in which reactive groups are unmasked or move closer leading to the DSS cross-linking of 72- and 83-kDa species. Heparin-induced structural changes in tau molecule depended on time of heparin exposure. Dimerization and tetramerization peaked at 48 h, whereas conformational change was completed within 30 min of heparin exposure. Heparin exposure beyond 48 h caused an abrupt aggregation of tau into high molecular size species. Heparin stimulated tau phosphorylation by neuronal cdc2-like kinase (NCLK) and cAMP-dependent protein kinase. Phosphopeptide mapping and phosphopeptide sequencing revealed that tau is phosphorylated by NCLK on Thr212 and Thr231 and by cAMP-dependent protein kinase on Ser262 only in the presence of heparin. Heparin stimulation of tau phosphorylation by NCLK showed dependence on time of heparin exposure and correlated with the heparin-induced conformational change of tau. Our data suggest that heparin-induced conformational change exposes new sites for phosphorylation within tau molecule.
Collapse
Affiliation(s)
- H K Paudel
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | |
Collapse
|
358
|
Shea TB, Ekinci FJ. Influence of phospholipids and sequential kinase activities on tau in vitro. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 446:181-201. [PMID: 10079844 DOI: 10.1007/978-1-4615-4869-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- T B Shea
- Department of Biological Sciences, University of Massachusetts at Lowell 01854, USA
| | | |
Collapse
|
359
|
Jicha GA, Berenfeld B, Davies P. Sequence requirements for formation of conformational variants of tau similar to those found in Alzheimer's disease. J Neurosci Res 1999; 55:713-23. [PMID: 10220112 DOI: 10.1002/(sici)1097-4547(19990315)55:6<713::aid-jnr6>3.0.co;2-g] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alz-50 and MC-1 monoclonal antibody reactivity is dependent on both the extreme N-terminus of tau (residues 7-9) and a 30-amino acid sequence of tau (amino acids 312-342) in the third microtubule binding domain, suggesting that the specificity of the Alz-50 and MC-1 antibodies for Alzheimer's disease (AD) pathological tau lies in their ability to recognize a specific conformation of the tau molecule in AD. The present study uses deletional and site-directed mutants of tau to further refine the C-terminal (third microtubule binding domain) epitope requirements for Alz-50, MC-1, and several new antibodies that recognize similar epitopes in tau to amino acids 313-322 of tau, and to demonstrate that intervening portions of the tau molecule are not required for the formation of conformational variants of tau similar to those seen in AD. Further analysis of deletional and site-directed mutations of tau demonstrate subtle variations in the epitope requirements for Alz-50, MC-1, CP-1, CP-2, and CP-28, suggesting that these antibodies, albeit different, all recognize a similar pathological conformation of tau. Additional experiments using synthetic peptides demonstrate that the NH2-terminal (amino acids 1-18) and COOH-terminal (amino acids 309-326) portions of the Alz-50, MC-1, CP-1, CP-2, and CP-28 epitopes can interact with high affinity under near physiological conditions.
Collapse
Affiliation(s)
- G A Jicha
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
360
|
Watanabe A, Takio K, Ihara Y. Deamidation and isoaspartate formation in smeared tau in paired helical filaments. Unusual properties of the microtubule-binding domain of tau. J Biol Chem 1999; 274:7368-78. [PMID: 10066801 DOI: 10.1074/jbc.274.11.7368] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An extensive loss of a selected population of neurons in Alzheimer's disease is closely related to the formation of paired helical filaments (PHFs). The most striking characteristic of PHFs upon Western blotting is their smearing. According to a previously described protocol (Morishima-Kawashima, M., Hasegawa, M., Takio, K., Suzuki, M., Titani, K., and Ihara, Y. (1993) Neuron 10, 1151-1160), smeared tau was purified, and its peptide map was compared with that of soluble (normal) tau. A CNBr fragment from soluble tau (CN5; residues 251-419 according to the 441-residue isoform) containing the microtubule-binding domain migrated at 15 and 18 kDa on SDS-polyacrylamide gel electrophoresis, whereas that from smeared tau exhibited two larger, unusually broad bands at approximately 30 and approximately 45 kDa, presumably representing dimers and trimers of CN5. In the peptide map of smeared tau-derived CN5, distinct peaks eluting at unusual locations were noted. Amino acid sequence and mass spectrometric analyses revealed that these distinct peptides bear isoaspartate at Asn-381 and Asp-387. Because no unusual peptides other than aspartyl or isoaspartyl peptide were found in the digests of smeared tau-derived CN5, it is likely that site-specific deamidation and isoaspartate formation are involved in its dimerization and trimerization and thus in PHF formation in vivo.
Collapse
Affiliation(s)
- A Watanabe
- Division of Biomolecular Characterization, The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
361
|
Arrasate M, Pérez M, Armas-Portela R, Avila J. Polymerization of tau peptides into fibrillar structures. The effect of FTDP-17 mutations. FEBS Lett 1999; 446:199-202. [PMID: 10100642 DOI: 10.1016/s0014-5793(99)00210-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The peptides corresponding to the four repeats found in the microtubule binding region of tau protein were synthesized and their ability for self-aggregation in presence of heparin or chondroitin sulfate was measured. Mainly, only the peptide containing the third tau repeat is able to form polymers in a high proportion. Additionally, the peptide containing the second repeat aggregates with a very low efficiency. However, when this peptide contains the mutation (P301L), described in a fronto temporal dementia, it is able to form polymers at a higher extent. Finally, it is suggested to have a role for the first and fourth tau repeats. It could be to decrease the ability of the third tau repeat for self-aggregation in the presence of heparin.
Collapse
Affiliation(s)
- M Arrasate
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias UAM, Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
362
|
Biernat J, Mandelkow EM. The development of cell processes induced by tau protein requires phosphorylation of serine 262 and 356 in the repeat domain and is inhibited by phosphorylation in the proline-rich domains. Mol Biol Cell 1999; 10:727-40. [PMID: 10069814 PMCID: PMC25198 DOI: 10.1091/mbc.10.3.727] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/1998] [Accepted: 01/04/1999] [Indexed: 11/11/2022] Open
Abstract
The differentiation of neurons and the outgrowth of neurites depends on microtubule-associated proteins such as tau protein. To study this process, we have used the model of Sf9 cells, which allows efficient transfection with microtubule-associated proteins (via baculovirus vectors) and observation of the resulting neurite-like extensions. We compared the phosphorylation of tau23 (the embryonic form of human tau) with mutants in which critical phosphorylation sites were deleted by mutating Ser or Thr residues into Ala. One can broadly distinguish two types of sites, the KXGS motifs in the repeats (which regulate the affinity of tau to microtubules) and the SP or TP motifs in the domains flanking the repeats (which contain epitopes for antibodies diagnostic of Alzheimer's disease). Here we report that both types of sites can be phosphorylated by endogenous kinases of Sf9 cells, and that the phosphorylation pattern of the transfected tau is very similar to that of neurons, showing that Sf9 cells can be regarded as an approximate model for the neuronal balance between kinases and phosphatases. We show that mutations in the repeat domain and in the flanking domains have opposite effects. Mutations of KXGS motifs in the repeats (Ser262, 324, and 356) strongly inhibit the outgrowth of cell extensions induced by tau, even though this type of phosphorylation accounts for only a minor fraction of the total phosphate. This argues that the temporary detachment of tau from microtubules (by phosphorylation at KXGS motifs) is a necessary condition for establishing cell polarity at a critical point in space or time. Conversely, the phosphorylation at SP or TP motifs represents the majority of phosphate (>80%); mutations in these motifs cause an increase in cell extensions, indicating that this type of phosphorylation retards the differentiation of the cells.
Collapse
Affiliation(s)
- J Biernat
- Max-Planck-Unit for Structural Molecular Biology, D-22603 Hamburg, Germany
| | | |
Collapse
|
363
|
Kenner L, Zatloukal K, Stumptner C, Eferl R, Denk H. Altered microtubule-associated tau messenger RNA isoform expression in livers of griseofulvin- and 3,5-diethoxycarbonyl-1, 4-dihydrocollidine-treated mice. Hepatology 1999; 29:793-800. [PMID: 10051481 DOI: 10.1002/hep.510290325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Tau proteins belong to the family of microtubule-associated proteins (MAPs), which so far have been mostly detected in neuronal cells. Different domains on the protein serve different functions. By alternative splicing, several mRNAs and tau isoforms are created from one gene, which contain these functionally important domains to various degrees, and thus differ in their microtubule-related properties. In the present article, several novel observations are reported. Tau mRNA and proteins have been identified and further characterized in mouse liver. It is shown on the basis of mRNA determinations that at least three tau isoforms differing particularly with respect to their amino-terminal domains are present in mouse liver. The major and predominant isoform (isoform 1) lacks portions encoded by exons 2 and 3, which are responsible for cross-talk of microtubules with their environment ("projection domain"). Moreover, mRNA encoding tau protein with four repeats of the microtubule binding domain predominate in embryonal as well as adult mouse liver in contrast to brain, in which a shift from the predominant three-repeat isoform to the four-repeat isoform characterizes the transition from the embryonic to the adult stage. Intoxication with griseofulvin (GF) or 3,5-diethoxycarbonyl-1, 4-dihydrocollidine (DDC) significantly affects in a reversible manner the levels of tau mRNA as well as isoform ratios in mouse liver, but not in mouse brain. Tau mRNAs are significantly increased in intoxicated mouse livers. Moreover, a shift to isoform 1 lacking exons 2 and 3 occurs. However, the increase in liver tau protein was less than expected from increased mRNA levels, which could be the result of translational or posttranslational regulation. The consequences on microtubular function are as yet unclear, but impairment can be expected because the overexpressed tau mRNA isoform lacks the domain that mediates interaction of microtubules with their environment. On the other hand, the ratio of polymerized (microtubules) to nonpolymerized tubulin remained unaffected.
Collapse
Affiliation(s)
- L Kenner
- Department of Pathology, University of Graz, School of Medicine, Graz, Austria
| | | | | | | | | |
Collapse
|
364
|
Goedert M. Neurofibrillary pathology of Alzheimer's disease and other tauopathies. PROGRESS IN BRAIN RESEARCH 1999; 117:287-306. [PMID: 9932415 DOI: 10.1016/s0079-6123(08)64022-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- M Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
365
|
Jicha GA, O'Donnell A, Weaver C, Angeletti R, Davies P. Hierarchical phosphorylation of recombinant tau by the paired-helical filament-associated protein kinase is dependent on cyclic AMP-dependent protein kinase. J Neurochem 1999; 72:214-24. [PMID: 9886072 DOI: 10.1046/j.1471-4159.1999.0720214.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunoaffinity-purified paired helical filaments (PHFs) from Alzheimer's disease (AD) brain homogenates contain an associated protein kinase activity that is able to induce the phosphorylation of PHF proteins on addition of exogenous MgCl2 and ATP. PHF kinase activity is shown to be present in immunoaffinity-purified PHFs from both sporadic and familial AD, Down's syndrome, and Pick's disease but not from normal brain homogenates. Although initial studies failed to show that the kinase was able to induce the phosphorylation of tau, additional studies presented in this article show that only cyclic AMP-dependent protein kinase-pretreated recombinant tau is a substrate for the PHF kinase activity. Deletional mutagenesis, phosphopeptide mapping, and site-directed mutagenesis have identified the PHF kinase phosphorylation sites as amino acids Thr361 and Ser412 in htau40. In addition, the cyclic AMP-dependent protein kinase phosphorylation sites that direct the PHF kinase have been mapped to amino acids Ser356 and Ser409 in htau40. Additional data demonstrate that these hierarchical phosphorylations in the extreme C terminus of tau allow for the incorporation of recombinant tau into exogenously added AD-derived PHFs, providing evidence that certain unique phosphorylations of tau may play a role in the pathogenesis of neurofibrillary pathology in AD.
Collapse
Affiliation(s)
- G A Jicha
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
366
|
Brion JP, Tremp G, Octave JN. Transgenic expression of the shortest human tau affects its compartmentalization and its phosphorylation as in the pretangle stage of Alzheimer's disease. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:255-70. [PMID: 9916940 PMCID: PMC1853433 DOI: 10.1016/s0002-9440(10)65272-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have generated transgenic mice expressing the shortest human tau protein, the microtubule-associated protein that composes paired helical filaments in Alzheimer's disease. Transgenic tau transcripts and proteins were strongly expressed in neurons in the developing and adult brain. In contrast to the endogenous tau that progressively disappeared from neuronal cell bodies during development, the human transgenic tau remained abundant in cell bodies and dendrites of a subset of neurons in the adult. This somatodendritic transgenic tau was immunoreactive with antibodies to tau phosphorylated on Thr181 and Thr231 and with the conformation-dependent Alz50 antibody. A few astrocytes expressing the transgenic tau were strongly immunoreactive with antibodies to additional tau phosphorylation sites, ie, at Ser262/ 356 and Ser396/404. All of these phosphorylation sites have been identified in paired helical filaments-tau proteins. In electron microscopy, the transgenic tau was detected into microtubules in axons and in dendrites but not in cell bodies. Neurofibrillary tangles were not detected in transgenic animals examined up to the age of 19 months. These results indicate that transgenic manipulation of tau expression and intracellular targeting is sufficient per se to affect tau compartmentalization, phosphorylation, and conformation partly as it is observed at the pretangle stage in Alzheimer's disease.
Collapse
Affiliation(s)
- J P Brion
- Laboratory of Pathology and Electron Microscopy, Université Libre de Bruxelles, Brussels, Belgium
| | | | | |
Collapse
|
367
|
Abstract
The molecular mechanism of pathological aggregation of microtubule-associated protein tau during neurodegeneration is unclear. In the present study, the in vitro effect of various metal ions on the aggregation of tau was examined using paired helical filament tau (PHF-tau) obtained from corticobasal degeneration (CBD) and Alzheimer's disease (AD) brains as well as normal human tau proteins isolated from fetal and adult brains and a recombinant system. Among the metal ions tested, Ca2+ and Mg2+ effectively induced formation of approximately 340 kD aggregates of PHF-tau but not normal tau proteins as determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and immunoblotting. Al3+ and Fe2+ precipitated both PHF-tau and normal tau protein as SDS-insoluble pellets. The other metal ions examined (Cu2+, Zn2+, and Li+) were inactive and caused neither aggregation nor precipitation of any tau protein. Intermixing experiments using PHF-tau and various normal tau preparations showed that the 340-kD aggregates induced by Ca2+ contained PHF-tau but not normal tau regardless whether unmodified (recombinant) or highly phosphorylated (fetal brain) tau proteins were used. The present results suggest that post-translational modifications other than the fetal-type phosphorylation are required for Ca2+- and Mg2+-dependent aggregation of PHF-tau and that the regional elevation of these ions may trigger pathological deposition of PHF-tau in certain neurodegenerative disorders.
Collapse
Affiliation(s)
- L S Yang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
368
|
|
369
|
Goedert M, Hasegawa M. The tauopathies: toward an experimental animal model. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:1-6. [PMID: 9916910 PMCID: PMC1853453 DOI: 10.1016/s0002-9440(10)65242-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/16/1998] [Indexed: 01/10/2023]
Affiliation(s)
- M Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.
| | | |
Collapse
|
370
|
Genis I, Fisher A, Michaelson DM. Site-specific dephosphorylation of tau of apolipoprotein E-deficient and control mice by M1 muscarinic agonist treatment. J Neurochem 1999; 72:206-13. [PMID: 9886071 DOI: 10.1046/j.1471-4159.1999.0720206.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Apolipoprotein E (apoE)-deficient mice have memory deficits that are associated with synaptic loss of basal forebrain cholinergic projections and with hyperphosphorylation of distinct epitopes of the microtubule-associated protein tau. Furthermore, treatment of apoE-deficient mice with the M1 selective agonist 1-methylpiperidine-4-spiro-(2'-methylthiazoline) [AF150(S)] abolishes their memory deficits and results in recovery of their brain cholinergic markers. In the present study, we used a panel of anti-tau monoclonal antibodies to further map the tau epitopes that are hyperphosphorylated in apoE-deficient mice and examined the effects of prolonged treatment with AF150(S). This revealed that tau of apoE-deficient mice contains a distinct, hyperphosphorylated "hot spot" domain which is localized N-terminally to the microtubule binding domain of tau, and that AF150(S) has an epitope-specific tau dephosphorylating effect whose magnitude is affected by apoE deficiency. Accordingly, epitopes which reside in the hyperphosphorylated "hot spot" are dephosphorylated by AF150(S) in apoE-deficient mice but are almost unaffected in the controls, whereas epitopes which flank this tau domain are dephosphorylated by AF150(S) in both mice groups. In contrast, epitopes located at the N and C terminals of tau are unaffected by AF150(S) in both groups of mice. These findings suggest that apoE deficiency results in hyperphosphorylation of a distinct tau domain whose excess phosphorylation can be reduced by muscarinic treatment.
Collapse
Affiliation(s)
- I Genis
- Department of Neurobiochemistry, Tel Aviv University, Israel
| | | | | |
Collapse
|
371
|
Moorthamer M, Zumstein-Mecker S, Stephan C, Mittl P, Chaudhuri B. Identification of a human cDNA encoding a kinase-defective cdk5 isoform. Biochem Biophys Res Commun 1998; 253:305-10. [PMID: 9878533 DOI: 10.1006/bbrc.1998.9737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cyclin-dependent kinase 5 (Cdk5) catalytic subunit is expressed in both cycling and noncycling cells and is present in many tissues. Neuronal and muscle cells contain the highest amount of this protein. The p35 protein, which is expressed solely in the brain, activates Cdk5. Cdk5 activity is involved in terminal differentiation of neurons and muscle cells. We attempted to clone cdk5 by PCR from a human fetal brain cDNA library. Surprisingly, we amplified two forms of the cdk5 gene, the wild type and a cdk5 variant that lacks the complete kinase domain VI. The variant is also found in SH-SY-5Y neuroblastoma cells but not in T-cells, HeLa cells, the thymus, and placental tissue. The protein encoded by the cdk5 variant, the Cdk5 isoform (Cdk5i), purifies with p35 when coexpressed in insect cells. The activity associated with the heterodimer Cdk5i/p35 is found to be appreciably weaker than the wild-type Cdk5/p35 kinase. Moreover, Cdk5i/p35 cannot autophosphorylate its two subunits as with Cdk5/p35. Interestingly, kinase-defective Cdk5i can abolish the activity of wild-type Cdk5 when both are coexpressed with p35 in insect cells, suggesting that Cdk5i may have a function in regulating Cdk5 activity in human cells too.
Collapse
Affiliation(s)
- M Moorthamer
- Oncology Research, Novartis Pharma AG, Basel, Switzerland
| | | | | | | | | |
Collapse
|
372
|
Li W, Ma KK, Sun W, Paudel HK. Phosphorylation sensitizes microtubule-associated protein tau to Al(3+)-induced aggregation. Neurochem Res 1998; 23:1467-76. [PMID: 9821149 DOI: 10.1007/bf03181171] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Alzheimer's disease the microtubule-associated protein tau becomes hyperphosphorylated and aggregates into paired helical filaments (PHFs). Although the biochemical basis of the aggregation of tau into PHFs is not very clear, Al3+ has been suggested to play some role. Previous studies have shown that Al3+ alters the phosphorylation state and causes aggregation of tau in experimental animals and cultured neurons. In this study Al3+ inhibited phosphorylation of tau by neuronal cdc2-like kinase and dephosphorylation of phosphorylated tau by phosphatase 2B. These inhibitions are very likely due to Al(3+)-induced aggregations of various proteins present in phosphorylation/dephosphorylation assay mixtures since Al3+ caused aggregations of all proteins examined. Furthermore, compared to other proteins, tau displayed only an average sensitivity towards Al(3+)-induced aggregation. However upon phosphorylation, tau's sensitivity towards Al3+ increased 3.5 fold. In the presence of the metal chelator EDTA, Al(3+)-induced aggregates of tau became soluble, whereas Al(3+)-induced phosphorylated tau aggregates were insoluble in the buffer containing EDTA and remained insensitive to proteolysis. Our data suggest that phosphorylation sensitizes tau to Al3+ and phosphorylated tau transforms irreversibly into a phosphatase and protease resistant aggregate in presence of this metal ion.
Collapse
Affiliation(s)
- W Li
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
373
|
Gupta RP, Abou-Donia MB. Tau proteins-enhanced Ca2+/calmodulin (CaM)-dependent phosphorylation by the brain supernatant of diisopropyl phosphorofluoridate (DFP)-treated hen: tau mutants indicate phosphorylation of more amino acids in tau by CaM kinase II. Brain Res 1998; 813:32-43. [PMID: 9824662 DOI: 10.1016/s0006-8993(98)00988-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diisopropyl phosphorofluoridate (DFP) produces organophosphorus ester-induced delayed neurotoxicity (OPIDN) in hen, human, and other sensitive species. A single dose of DFP (1.7 mg/kg, s.c.) produces mild ataxia in 7-14 days in hens, followed by progression to severe ataxia or paralysis. We studied the effect of DFP administration on Ca2+/calmodulin-dependent phosphorylation of tau proteins by the brain supernatants of control and DFP-treated hens. Brain supernatants from DFP-treated hens showed enhanced in vitro phosphorylation of htau40 and its various mutants, but no change in the two-dimensional phosphopeptide pattern, when compared to control hen brain supernatants. Analysis of tau mutants phosphorylated by brain supernatant and recombinant CaM kinase II alpha-subunit showed that (1) brain supernatant CaM kinase II is mainly responsible for the phosphorylation of Ser416, (2) Ser356, but probably not Ser262, is phosphorylated by CaM kinase II, (3) no amino acid between Lys395-Ala437 except Ser416 is phosphorylated by CaM kinase II, (4) a number of amino acids in the tau molecule, which are phosphorylated by the brain supernatant in the absence of Ca2+/calmodulin are also mildly phosphorylated by CaM kinase II. The enhanced Ca2+/calmodulin-dependent phosphorylation of tau proteins by brain supernatant of DFP-treated hens that includes phosphorylation of a number of amino acids is likely to alter the functional properties of tau proteins in OPIDN. The hyperphosphorylated tau may destabilize microtubules, alter axonal transport, and result in degeneration of axons in OPIDN.
Collapse
Affiliation(s)
- R P Gupta
- Department of Pharmacology and Cancer-Biology, Duke University Medical Center, P.O. Box 3813, Durham, NC 27708, USA
| | | |
Collapse
|
374
|
A protein kinase, PKN, accumulates in Alzheimer neurofibrillary tangles and associated endoplasmic reticulum-derived vesicles and phosphorylates tau protein. J Neurosci 1998. [PMID: 9736660 DOI: 10.1523/jneurosci.18-18-07402.1998] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A possible role for a protein kinase, PKN, a fatty acid-activated serine/threonine kinase with a catalytic domain homologous to the protein kinase C family and a direct target for Rho, was investigated in the pathology of Alzheimer's disease (AD) using a sensitive immunocytochemistry on postmortem human brain tissues and a kinase assay for human tau protein. The present study provides evidences by light, electron, and confocal laser microscopy that in control human brains, PKN is enriched in neurons, where the kinase is concentrated in a subset of endoplasmic reticulum (ER) and ER-derived vesicles localized to the apical compartment of juxtanuclear cytoplasm, as well as late endosomes, multivesicular bodies, Golgi bodies, secretary vesicles, and nuclei. In AD-affected neurons, PKN was redistributed to the cortical cytoplasm and neurites and was closely associated with neurofibrillary tangles (NFTs) and their major constituent, abnormally modified tau. PKN was also found in degenerative neurites within senile plaques. In addition, we report that human tau protein is directly phosphorylated by PKN both in vitro and in vivo. Thus, our results suggest a specific role for PKN in NFT formation and neurodegeneration in AD damaged neurons.
Collapse
|
375
|
Abstract
Abundant tau-positive neurofibrillary lesions constitute a defining neuropathological characteristic of Alzheimer's disease. Filamentous tau pathology is also central to a number of other dementing disorders, such as Pick's disease, progressive supranuclear palsy, corticobasal degeneration and familial frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). The discovery of mutations in the tau gene in FTDP-17 has firmly established the relevance of tau pathology for the neurodegenerative process. Experimental studies have provided a system for the assembly of full-length tau into Alzheimer-like filaments, providing an assay for the testing of compounds that inhabit the formation of tau filaments.
Collapse
|
376
|
Abstract
The neuropathological diagnosis of Alzheimer's disease relies on the presence of both neurofibrillary tangles and senile plaques. The number of neurofibrillary tangles is tightly linked to the degree of dementia, suggesting that the formation of neurofibrillary tangles more directly correlates with neuronal dysfunction. The regional pattern of areas affected by neurofibrillary tangles formation during the course of the disease is relatively stereotyped. Neurofibrillary tangles are composed of highly phosphorylated forms of the microtubule-associated protein tau. Phosphorylated tau proteins accumulate early in neurons, even before formation of neurofibrillary tangles, suggesting that an imbalance between the activities of protein kinases and phosphatases acting on tau is an early phenomenon. The latter might be related to changes in signalling through transduction cascades, since many of the protein kinases generating phosphorylated tau species participate in signalling pathways. The accumulation of neurofibrillary tangles and phosphorylated tau species is associated with disturbances of the microtubule network and, as a consequence of the latter, of axoplasmic flows. The mechanistic relationship between the formation of neurofibrillary tangles and senile plaques is still little understood and in vivo formation of neurofibrillary tangles in experimental models has not yet been achieved. Future animal models, e.g. transgenic animals expressing combined key human proteins, will hopefully reproduce faithfully all the major cellular lesions of the disease.
Collapse
Affiliation(s)
- J P Brion
- Laboratory of Pathology and Electron Microscopy, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
377
|
Wang JZ, Wu Q, Smith A, Grundke-Iqbal I, Iqbal K. Tau is phosphorylated by GSK-3 at several sites found in Alzheimer disease and its biological activity markedly inhibited only after it is prephosphorylated by A-kinase. FEBS Lett 1998; 436:28-34. [PMID: 9771888 DOI: 10.1016/s0014-5793(98)01090-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alzheimer disease is characterized by a specific type of neuronal degeneration in which the microtubule associated protein tau is abnormally hyperphosphorylated causing the disruption of the microtubule network. We have found that the phosphorylation of human tau (tau3L) by A-kinase, GSK-3 or CK-1 inhibits its microtubule assembly-promoting and microtubule-binding activities. However, the inhibition of these activities of tau by GSK-3 is significantly increased if tau is prephosphorylated by A-kinase or CK-1. The most potent inhibition is observed by combination phosphorylation of tau with A-kinase and GSK-3. Under these conditions, only very few microtubules are seen by electron microscopy. Sequencing of 32P-labeled trypsin phosphopeptides from tau prephosphorylated by A-kinase (using unlabeled ATP) and further phosphorylated by GSK-3 in the presence of [gamma-32P]ATP revealed that Ser-195, Ser-198, Ser-199, Ser-202, Thr-205, Thr-231, Ser-235, Ser-262, Ser-356 and Ser-404 are phosphorylated, whereas if tau is not prephosphorylated by A-kinase, GSK-3 phosphorylates it at Thr-181, Ser-184, Ser-262, Ser-356 and Ser-400. These data suggest that (i) prephosphorylation of tau by A-kinase makes additional and different sites accessible for phosphorylation by GSK-3; (ii) phosphorylation of tau at these additional sites further inhibits the biological activity of tau in its ability to bind to microtubules and promote microtubule assembly. Thus a combined role of A-kinase and GSK-3 should be considered in Alzheimer neurofibrillary degeneration.
Collapse
Affiliation(s)
- J Z Wang
- Chemical Neuropathology Department, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314-6399, USA
| | | | | | | | | |
Collapse
|
378
|
Sengupta A, Kabat J, Novak M, Wu Q, Grundke-Iqbal I, Iqbal K. Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules. Arch Biochem Biophys 1998; 357:299-309. [PMID: 9735171 DOI: 10.1006/abbi.1998.0813] [Citation(s) in RCA: 252] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The paired helical filaments (PHFs) found in Alzheimer's disease (AD) brains are composed primarily of the microtubule-associated protein tau. PHF-tau is in a hyperphosphorylated state and is unable to promote microtubule assembly. We investigated whether the inhibition of tau binding to microtubules is increased when tau is phosphorylated by different kinases in combination with GSK-3. We found that when tau was first phosphorylated by A-kinase, C-kinase, cdk5, or CaM kinase II and then by GSK-3, its binding to microtubules was inhibited by 45, 61, 78, and 79%, respectively. Further, the kinase combinations cdk5/GSK-3 and CaM kinase II/GSK-3 rapidly phosphorylated the sites Thr 231 and Ser 235. When these sites were individually replaced by Ala and the phosphorylation experiments repeated, tau binding to microtubules was inhibited by 54 and 71%, respectively. By comparison, when Ser 262 was replaced by Ala, tau binding to microtubules was inhibited by only 8% after phosphorylation by CaM kinase II. From these observations we estimate that the phosphorylation of Thr 231, Ser 235, and Ser 262 contributes approximately 26, approximately 9, and approximately 33%, respectively, of the overall inhibition of tau binding to microtubules. Together, our results indicate that the binding of tau to microtubules is controlled by the phosphorylation of several sites, among which are Thr 231, Ser 235, and Ser 262.
Collapse
Affiliation(s)
- A Sengupta
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314, USA.
| | | | | | | | | | | |
Collapse
|
379
|
Takashima A, Murayama M, Murayama O, Kohno T, Honda T, Yasutake K, Nihonmatsu N, Mercken M, Yamaguchi H, Sugihara S, Wolozin B. Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate tau. Proc Natl Acad Sci U S A 1998; 95:9637-41. [PMID: 9689133 PMCID: PMC21391 DOI: 10.1073/pnas.95.16.9637] [Citation(s) in RCA: 313] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Families bearing mutations in the presenilin 1 (PS1) gene develop Alzheimer's disease. Previous studies have shown that the Alzheimer-associated mutations in PS1 increase production of amyloid beta protein (Abeta1-42). We now show that PS1 also regulates phosphorylation of the microtubule-associated protein tau. PS1 directly binds tau and a tau kinase, glycogen synthase kinase 3beta (GSK-3beta). Deletion studies show that both tau and GSK-3beta bind to the same region of PS1, residues 250-298, whereas the binding domain on tau is the microtubule-binding repeat region. The ability of PS1 to bring tau and GSK-3beta into close proximity suggests that PS1 may regulate the interaction of tau with GSK-3beta. Mutations in PS1 that cause Alzheimer's disease increase the ability of PS1 to bind GSK-3beta and, correspondingly, increase its tau-directed kinase activity. We propose that the increased association of GSK-3beta with mutant PS1 leads to increased phosphorylation of tau.
Collapse
Affiliation(s)
- A Takashima
- Laboratory for Alzheimer's Disease, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 350-01, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
380
|
Anderton BH, Callahan L, Coleman P, Davies P, Flood D, Jicha GA, Ohm T, Weaver C. Dendritic changes in Alzheimer's disease and factors that may underlie these changes. Prog Neurobiol 1998; 55:595-609. [PMID: 9670220 DOI: 10.1016/s0301-0082(98)00022-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It seems likely that the Alzheimer disease (AD)-related dendritic changes addressed in this article are induced by two principally different processes. One process is linked to the plastic response associated with deafferentation, that is, long-lasting transneuronally induced regressive changes in dendritic geometry and structure. The other process is associated with severe alterations of the dendritic- and perikaryal cytoskeleton as seen in neurons with the neurofibrillary pathology of AD, that is, the formation of paired helical filaments formed by hyperphosphorylated microtubule-associated protein tau. As the development of dendritic and cytoskeletal abnormalities are at least mediated by alterations in signal transduction, this article also reviews changes in signal pathways in AD. We also discuss transgenic approaches developed to model and understand cytoskeletal abnormalities.
Collapse
Affiliation(s)
- B H Anderton
- Department of Neuroscience, Institute of Psychiatry, London, U.K..
| | | | | | | | | | | | | | | |
Collapse
|
381
|
Friedhoff P, Schneider A, Mandelkow EM, Mandelkow E. Rapid assembly of Alzheimer-like paired helical filaments from microtubule-associated protein tau monitored by fluorescence in solution. Biochemistry 1998; 37:10223-30. [PMID: 9665729 DOI: 10.1021/bi980537d] [Citation(s) in RCA: 305] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease is characterized by the progressive deposition of two types of fibers in the affected brains, the amyloid fibers (consisting of the Abeta peptide, generating the amyloid plaques) and paired helical filaments (PHFs, made up of tau protein, forming the neurofibrillary tangles). While the principles of amyloid aggregation are known in some detail, the investigation of PHF assembly has been hampered by the low efficiency of tau aggregation, the requirement of high protein concentrations, and the lack of suitable detection methods. Here we report a quantitative assay system that permits monitoring of the assembly of PHFs in real time by the fluorescence of dyes such as thioflavine S or T. Using this assay, we evaluated parameters that influence the efficiency of filament formation. Disulfide-linked dimers of tau constructs representing the repeat domain assemble into PHFs most efficiently, but other tau isoforms or constructs form bona fide PHFs as well. The rate of assembly is greatly enhanced by polyanions such as RNA, heparin, and notably polyglutamate which resembles the acidic tail of tubulin. The assembly is optimal at pH approximately 6 and low ionic strengths (<50 mM) and increases steeply with temperatures above 30 degreesC, indicating that it is an entropy-driven process.
Collapse
Affiliation(s)
- P Friedhoff
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | | | |
Collapse
|
382
|
Xie H, Litersky JM, Hartigan JA, Jope RS, Johnson GV. The interrelationship between selective tau phosphorylation and microtubule association. Brain Res 1998; 798:173-83. [PMID: 9666118 DOI: 10.1016/s0006-8993(98)00407-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to examine the modulation of tau phosphorylation mediated by protein kinase A, a kinase with low intrinsic activity, and by the constitutively active glycogen synthase kinase, as well as to examine the subsequent effects on tau-microtubule association in differentiated human SH-SY5Y neuroblastoma cells. Activation of protein kinase A with forskolin and rolipram significantly increased tau phosphorylation at Ser262/356 only in the presence of okadaic acid, indicating that phosphates at these sites are normally turned over rapidly. In contrast, glycogen synthase kinase appears to maintain tau phosphorylation at Thr181 and Ser396/404 since inhibition of glycogen synthase kinase with lithium reduced phosphorylation at these sites. Lithium treatment also significantly decreased tau and tyrosinated alpha-tubulin levels. Perturbation of microtubules with nocodazole or taxol induced tau dephosphorylation at Tau-1 sites, Thr181 and Ser396/404, indicating that both constitutive kinase activity and microtubule state modulate tau phosphorylation at these sites. Nocodazole- or taxol-induced tau dephosphorylation was blocked by the protein phosphatase 2A/1 inhibitor okadaic acid, but not by the protein phosphatase 2B inhibitor cyclosporin A. In addition, osmotic stress, such as treatment with 20 mM NaCl, selectively increased tau phosphorylation at the Tau-1 epitope. To investigate the effect of phosphorylation on tau association with microtubules and microtubule stability in situ, a Triton X-100 extraction assay was utilized to separate the detergent-soluble cytosolic components from the detergent-insoluble cytoskeletal components. In control cells or cells treated with lithium very little tau was detected in the cytosolic fraction. Activation of protein kinase A in the presence of okadaic acid elevated tau levels in the detergent-soluble fraction, which contained all the tau phosphorylated at Ser262/356, and also decreased microtubule stability, as indicated by decreased acetylated alpha-tubulin levels. In conclusion, the phosphorylation state of tau in differentiated SH-SY5Y cells is regulated by glycogen synthase kinase, microtubule dynamics and osmotic stress at overlapping sites which apparently have little influence on tau-microtubule association. In contrast, phosphorylation of tau at Ser262/356 within the microtubule-binding, which was mediated in part by protein kinase A, prevented the association of tau with microtubules in situ.
Collapse
Affiliation(s)
- H Xie
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1720 Seventh Avenue S., SC1061, Birmingham, AL 35294-0017, USA
| | | | | | | | | |
Collapse
|
383
|
Caillet-Boudin ML, Dupont-Wallois L, Soulié C, Delacourte A. Apolipoprotein E and Tau phosphorylation in human neuroblastoma cells. Neurosci Lett 1998; 250:83-6. [PMID: 9697924 DOI: 10.1016/s0304-3940(98)00448-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phosphorylation is the major post-translational modification of Tau proteins and it plays an important role in Tau biological functions. Hyperphosphorylation of these proteins occurs during neurodegenerative disorders such as Alzheimer's disease. It was hypothesized that some variants of apolipoprotein E (apo E) may have a protective effect against the normal or pathological phosphorylation of Tau proteins. We have recently shown that apo E synthesis occurs in human SY 5Y and Kelly neuroblastoma cell lines which express different isoforms (E3 for SY 5Y; E3 and E4 for Kelly) [Dupont-Wallois, L., Soulié, C., Sergeant, N., Wavrant-de Wrieze, F., Chartier-Harlin, M.C., Delacourte, A. and Caillet-Boudin, M.L., Neurobiol. Dis., 4 (1997) 356-364]. Therefore, this cellular model makes it possible to study the differential influence, if any, of apo E3 and E4 on Tau phosphorylation. Using a large panel of Tau phosphorylation-dependent antibodies, we were not able to detect a significant difference in Tau immunoreactivity linked to the different apo E genotypes, even when the hyperphosphorylation of Tau proteins was induced by treating cells with Okadaic acid (OA), an inhibitor of phosphatase 1 and 2A proteins. Thus, a difference in apo E isoforms had no dramatic effect upon Tau phosphorylation in native or OA treated cells.
Collapse
Affiliation(s)
- M L Caillet-Boudin
- INSERM U422, Pl. Verdun, Lille, France. caillet@.biserte.inserm.lille.fr
| | | | | | | |
Collapse
|
384
|
Pei JJ, Grundke-Iqbal I, Iqbal K, Bogdanovic N, Winblad B, Cowburn RF. Accumulation of cyclin-dependent kinase 5 (cdk5) in neurons with early stages of Alzheimer's disease neurofibrillary degeneration. Brain Res 1998; 797:267-77. [PMID: 9666145 DOI: 10.1016/s0006-8993(98)00296-0] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclin-dependent kinase 5 (cdk5) is one of the candidate kinases involved in the abnormal hyperphosphorylation of tau. To have a direct effect on tau hyperphosphorylation, cdk5 protein levels and enzyme activity should be upregulated in especially those neurons that develop neurofibrillary tangles (NFTs). We studied the distribution of cdk5 immunoreactivity in neurons with or without early- and late-stage NFTs in hippocampal, entorhinal, transentorhinal, temporal and frontal cortices, and cerebellum of Alzheimer's disease (AD) and control brain. The immunocytochemical localisation of cdk5 was compared with that obtained using antibodies to PHF-tau (tau in paired helical filaments of NFTs, mAb AT8) and ubiquitin as markers of early and late stage NFTs, respectively. Immunoreactivities of cdk5 and PHF-tau were found in neuronal perikarya and processes of hippocampal, entorhinal, transentorhinal, temporal and frontal, and cerebellar cortices. An apparent increase of cdk5 immunoreactivity was seen in pretangle neurons and in neurons bearing early stage NFTs. These findings suggest that this kinase might be involved in the formation of NFTs at a relatively early stage in the neocortex.
Collapse
Affiliation(s)
- J J Pei
- Section for Geriatric Medicine, Department of Clinical Neuroscience and Family Medicine, Karolinska Institute, Novum, KFC, S-141 86, Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
385
|
Illenberger S, Zheng-Fischhöfer Q, Preuss U, Stamer K, Baumann K, Trinczek B, Biernat J, Godemann R, Mandelkow EM, Mandelkow E. The endogenous and cell cycle-dependent phosphorylation of tau protein in living cells: implications for Alzheimer's disease. Mol Biol Cell 1998; 9:1495-512. [PMID: 9614189 PMCID: PMC25374 DOI: 10.1091/mbc.9.6.1495] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In Alzheimer's disease the neuronal microtubule-associated protein tau becomes highly phosphorylated, loses its binding properties, and aggregates into paired helical filaments. There is increasing evidence that the events leading to this hyperphosphorylation are related to mitotic mechanisms. Hence, we have analyzed the physiological phosphorylation of endogenous tau protein in metabolically labeled human neuroblastoma cells and in Chinese hamster ovary cells stably transfected with tau. In nonsynchronized cultures the phosphorylation pattern was remarkably similar in both cell lines, suggesting a similar balance of kinases and phosphatases with respect to tau. Using phosphopeptide mapping and sequencing we identified 17 phosphorylation sites comprising 80-90% of the total phosphate incorporated. Most of these are in SP or TP motifs, except S214 and S262. Since phosphorylation of microtubule-associated proteins increases during mitosis, concomitant with increased microtubule dynamics, we analyzed cells mitotically arrested with nocodazole. This revealed that S214 is a prominent phosphorylation site in metaphase, but not in interphase. Phosphorylation of this residue strongly decreases the tau-microtubule interaction in vitro, suppresses microtubule assembly, and may be a key factor in the observed detachment of tau from microtubules during mitosis. Since S214 is also phosphorylated in Alzheimer's disease tau, our results support the view that reactivation of the cell cycle machinery is involved in tau hyperphosphorylation.
Collapse
Affiliation(s)
- S Illenberger
- Max-Planck-Unit for Structural Molecular Biology, D-22603 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
386
|
Oyama F, Murakami N, Ihara Y. Chloroquine myopathy suggests that tau is degraded in lysosomes: implication for the formation of paired helical filaments in Alzheimer's disease. Neurosci Res 1998; 31:1-8. [PMID: 9704973 DOI: 10.1016/s0168-0102(98)00020-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have found that amorphous tau deposits in chloroquine myopathy (CM), a vacuolar myopathy induced by the administration of chloroquine, a well-known lysosomotropic agent. The dynamics of tau in CM and immunocytochemistry strongly suggest that the accumulation of tau is due to defective tau degradation in the lysosomal compartment in the muscle. This observation may offer a new view on the formation of paired helical filaments in Alzheimer's disease: this selective protein degradation pathway may be defective and result in intracellular accumulation of tau, thereby forming the unusual filaments.
Collapse
Affiliation(s)
- F Oyama
- Department of Neuropathology, Faculty of Medicine, University of Tokyo, Japan
| | | | | |
Collapse
|
387
|
Schutkowski M, Bernhardt A, Zhou XZ, Shen M, Reimer U, Rahfeld JU, Lu KP, Fischer G. Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognition. Biochemistry 1998; 37:5566-75. [PMID: 9548941 DOI: 10.1021/bi973060z] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proline residues provide a backbone switch in a polypeptide chain, which is controlled by the cis/trans isomerization about the peptidyl-prolyl bond. Phosphorylation of serine- and threonine-proline motifs has been shown to be a critical regulatory event for many proteins. The biological significance of these motifs has been further highlighted by the discovery of a novel and essential peptidyl-prolyl cis/trans isomerase Pin1. Pin1 is required for progression through mitosis via catalyzing the isomerization of phosphorylated Ser/Thr-Pro motifs specifically present in mitosis-specific phosphoproteins. However, little is known whether the phosphorylation regulates the conformational switch of the Ser/Thr-Pro bonds. Here, we report the synthesis and conformational characterization of a series of peptides that contain the phosphorylated or nonphosphorylated Ser/Thr-Pro motifs. Phosphorylation affected the rate of the cis to trans isomerization of the Thr/Ser-Pro bonds. As determined by a protease-coupled assay, the isomerization rate of phosphorylated Thr-Pro bond was found to be 8-fold slower than that of the nonphosphorylated analogue. Furthermore, studies of the pH dependence of the isomerization of the phosphopeptides reveal that both cis content and the rate constant of prolyl cis to trans isomerization are lower for the dianionic state of the phosphothreonine-containing peptides. These effects of phosphorylation are specific for phosphorylated Ser/Thr since neither phosphorylated Tyr nor glutamic acid was able to affect the prolyl isomerization. Finally, our experiments provide evidence that effective catalysis of cis/trans isomerization of phosphorylated Ser/Thr-Pro bonds by Pin1 is specific to the dianionic form of the substrate. Thus, our results demonstrate that protein phosphorylation specifically regulates the backbone dynamics of the Ser/Thr-Pro motifs and that Pin1 specifically isomerizes the certain conformation of the phosphorylated Ser/Thr-Pro motifs.
Collapse
Affiliation(s)
- M Schutkowski
- Max-Planck-Research Unit Enzymology of Protein Folding, Halle, Germany
| | | | | | | | | | | | | | | |
Collapse
|
388
|
Yoshida H, Watanabe A, Ihara Y. Collapsin response mediator protein-2 is associated with neurofibrillary tangles in Alzheimer's disease. J Biol Chem 1998; 273:9761-8. [PMID: 9545313 DOI: 10.1074/jbc.273.16.9761] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intraneuronal accumulation of paired helical filaments (PHF) is considered to be closely related to the neuronal loss observed in brains of patients affected with Alzheimer's disease. The central issue is whether PHF formation itself causes or accelerates the neuronal perikaryal and neuritic degeneration or whether they are simply the consequence of preceding degeneration. We sought to address the issue in part by characterizing the PHF-associated molecules and thus raised a number of monoclonal antibodies to neurofibrillary tangles. One monoclonal antibody, 3F4, strongly reacted with neurofibrillary tangles and some plaque neurites but few neuropil threads. This monoclonal antibody labeled a 65-kDa protein, but not tau or ubiquitin, on a Western blot of human brain extract and immunoprecipitated the same protein. The peptides released from the purified 65-kDa protein had the same sequences as those of a newly identified protein, human collapsin response mediator protein-2. Incorporation into neurofibrillary tangles may deplete soluble, cytosolic human collapsin response mediator protein-2 and lead to abnormal neuritic and/or axonal outgrowth of the tangle-bearing neuron, thus accelerating the neuritic degeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- H Yoshida
- Department of Neuropathology, Faculty of Medicine, University of Tokyo 113-0033, Tokyo, Japan
| | | | | |
Collapse
|
389
|
Combs CK, Coleman PD, O'Banion MK. Developmental regulation and PKC dependence of Alzheimer's-type tau phosphorylations in cultured fetal rat hippocampal neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 107:143-58. [PMID: 9602100 DOI: 10.1016/s0165-3806(98)00019-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Attempts to describe a mechanism of neurofibrillary tangle formation often focus on site specific phosphorylations of tau protein. These have typically been described in both Alzheimer's disease and developing brains. Therefore, study of the developmental regulation of Alzheimer epitope tau phosphorylations may help explain their persistence or recurrence during Alzheimer's disease. Using fetal rat hippocampal cultures, we report a spatial and temporal expression of tau phosphorylation during neuronal differentiation. We have examined phosphorylation at the epitopes recognized by monoclonal antibodies, PHF-1 and Tau 1. Tau was highly phosphorylated at the PHF-1 epitope at all culture ages examined using both immunohistochemical staining and Western blots. Tau was heavily phosphorylated at the Tau 1 epitope only in older cultures. The populations of tau recognized by the two antibodies also exhibited different solubilities, suggesting different microtubule binding behaviors: tau phosphorylated at PHF-1 was retained in axons following solubilization whereas Tau 1 immunoreactive tau was not retained in any cell compartment. Finally, in this culture system, maintenance of phosphorylation at the PHF-1 epitope, but not the Tau 1 epitope, required protein kinase C activity. These results indicate unique regulatory mechanisms and roles for each of these phosphorylated tau epitopes.
Collapse
Affiliation(s)
- C K Combs
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | |
Collapse
|
390
|
Tanaka T, Zhong J, Iqbal K, Trenkner E, Grundke-Iqbal I. The regulation of phosphorylation of tau in SY5Y neuroblastoma cells: the role of protein phosphatases. FEBS Lett 1998; 426:248-54. [PMID: 9599018 DOI: 10.1016/s0014-5793(98)00346-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In Alzheimer disease brain the microtubule associated protein (MAP) tau is abnormally hyperphosphorylated. The role of protein phosphatases (PP) in the regulation of phosphorylation of tau was studied in undifferentiated SY5Y cells. In cells treated with 10 nM okadaic acid (OA), a PP-2A/PP-1 inhibitor, the PP-1 and -2A activities decreased by 60% and 100% respectively and the activities of MAPKs, cdc2 kinase and cdk5, but not of GSK-3, increased. OA increased the phosphorylation of tau at Thr-231/Ser-235 and Ser-3961404, but not at Ser-262/356 or Ser-199/202. An increase in tyrosinated/detyrosinated tubulin ratio, a decrease in the microtubule binding activities of tau, MAP1b and MAP2, and cell death were observed. Treatment with 1 microm taxol partially inhibited the cell death. These data suggest (1) that OA induced hyperphosphorylation of tau is probably the result of activated MAPK and cdks in addition to decreased PP-2A and PP-1 activities and (2) that in SY5Y cells the OA induced cell death is associated with a decrease in stable microtubules.
Collapse
Affiliation(s)
- T Tanaka
- Osaka Medical School, Department of Psychiatry, Japan
| | | | | | | | | |
Collapse
|
391
|
Sun L, Liu Y, Frémont M, Schwarz S, Siegmann M, Matthies R, Jost JP. A novel 52 kDa protein induces apoptosis and concurrently activates c-Jun N-terminal kinase 1 (JNK1) in mouse C3H10T1/2 fibroblasts. Gene 1998; 208:157-66. [PMID: 9524256 DOI: 10.1016/s0378-1119(97)00626-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A 52 kDa protein (p52) was purified from chicken embryos and its corresponding cDNA was cloned. The p52 cDNA is 1768 bp long and has an open reading frame of 465 amino acids. The sequence of the p52 cDNA shows significant homology with mouse and human cDNAs from the EST database, so do the deduced amino acid sequences, indicating the existence of human and mouse homologues of p52. Northern blot hybridization showed that the p52 mRNA was expressed in a wide range of embryonic and adult tissues. There was more p52 mRNA in embryonic heart and liver than in the brain or muscle. The adult testis had the highest level of p52 mRNA, whereas adult liver had the lowest. Expression of p52 in mouse C3H10T1/2 fibroblasts caused apoptotic cell death, upregulation of transcription factor c-Jun and activation of c-Jun N-terminal kinase 1 (JNK1). In addition, expression of Bcl-2, but not of the dominant negative mutant JNK1, can block the p52-mediated apoptosis. These results indicate that p52 may represent a new cell-death protein inducing apoptosis and activating JNK1 through different pathways.
Collapse
Affiliation(s)
- L Sun
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
392
|
Imahori K, Hoshi M, Ishiguro K, Sato K, Takahashi M, Shiurba R, Yamaguchi H, Takashima A, Uchida T. Possible role of tau protein kinases in pathogenesis of Alzheimer's disease. Neurobiol Aging 1998; 19:S93-8. [PMID: 9562476 DOI: 10.1016/s0197-4580(98)00025-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tau protein kinases (TPK) I and II were isolated as candidate enzymes responsible for the hyperphosphorylation observed in PHF-tau. Four phosphorylation sites of tau were identified for each kinase, accounting for most, but not all, of the major phosphorylation sites of PHF-tau. Immunostaining with anti-TPKI antibody indicated that this kinase is up-regulated in AD brain. Such up-regulation of TPKI and phosphorylatioin of tau were reproduced by treating cultured hippocampal cells with amyloid beta (Abeta) protein. In addition, we found that TPKI can phosphorylate and inactivate pyruvate dehydrogenase (PDH), which is expected to result in depletion of acetyl-CoA, a key substrate of acetyl choline synthesis. Indeed, when septum cells were treated with Abeta, the level of acetyl choline decreased dramatically.
Collapse
Affiliation(s)
- K Imahori
- Mitsubishi Kasei Institute of Life Sciences, Machida, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
393
|
Abstract
The brains of individuals, who are cognitively normal, show age-related changes that include an overall reduction in brain volume and weight, which are associated with gyral atrophy and widening of the sulci of the cerebral cortex, and enlargement of the brain ventricles. These changes are partly the result of nerve cell loss but accurate estimates of neuronal loss are notoriously difficult to make. Microscopically, there are increasing amounts of the age-related pigment, lipofuscin, granulovacuolar degeneration in neurones, Hirano bodies, variable amounts of diffuse deposits of beta-amyloid in the parenchyma, the presence of neurofibrillary tangles mainly confined to the hippocampus and amygdala, and sparse numbers of senile plaques in these brain regions and also in other cortical areas. Of these changes, neurofibrillary tangles and senile plaques are the neuropathological hallmark of Alzheimer's disease in which they are more abundant and widespread. Alzheimer's disease has therefore been regarded as accelerated brain ageing; however, the realization that there is a strong genetic contribution to developing the disease at least implies that it may not be the inevitable, even if frequent, consequence of old age. Understanding the molecular basis of plaque and tangle formation is advancing greatly and is the main focus of research into the cellular and molecular changes observed in the ageing brain.
Collapse
Affiliation(s)
- B H Anderton
- Department of Neuroscience, Institute of Psychiatry, De Crespigny Park, London
| |
Collapse
|
394
|
Hasegawa M, Crowther RA, Jakes R, Goedert M. Alzheimer-like changes in microtubule-associated protein Tau induced by sulfated glycosaminoglycans. Inhibition of microtubule binding, stimulation of phosphorylation, and filament assembly depend on the degree of sulfation. J Biol Chem 1997; 272:33118-24. [PMID: 9407097 DOI: 10.1074/jbc.272.52.33118] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hyperphosphorylated microtubule-associated protein tau is the major proteinaceous component of the paired helical and straight filaments which constitute a defining neuropathological characteristic of Alzheimer's disease and a number of other neurodegenerative disorders. We have recently shown that full-length recombinant tau assembles into Alzheimer-like filaments upon incubation with heparin. Heparin also promotes phosphorylation of tau by a number of protein kinases, prevents tau from binding to taxol-stabilized microtubules, and produces rapid disassembly of microtubules assembled from tau and tubulin. Here, we have used the above parameters to study the interactions between tau protein and a number of naturally occurring and synthetic glycosaminoglycans. We show that the magnitude of the glycosaminoglycan effects is proportional to their degree of sulfation. Thus, the strongly sulfated glycosaminoglycans dextran sulfate, pentosan polysulfate, and heparin were the most potent, whereas the non-sulfated dextran and hyaluronic acid were without effect. The moderately sulfated glycosaminoglycans heparan sulfate, chondroitin sulfate, and dermatan sulfate had intermediate effects, whereas keratan sulfate had little or no effect. These in vitro interactions between tau protein and sulfated glycosaminoglycans reproduced the known characteristics of paired helical filament-tau from Alzheimer's disease brain. Sulfated glycosaminoglycans are present in nerve cells in Alzheimer's disease brain in the early stages of neurofibrillary degeneration, suggesting that their interactions with tau may constitute a central event in the development of the neuronal pathology of Alzheimer's disease.
Collapse
Affiliation(s)
- M Hasegawa
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | |
Collapse
|
395
|
Paudel HK. Phosphorylation by neuronal cdc2-like protein kinase promotes dimerization of Tau protein in vitro. J Biol Chem 1997; 272:28328-34. [PMID: 9353289 DOI: 10.1074/jbc.272.45.28328] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In Alzheimer's disease, the microtubule-associated protein tau forms paired helical filaments (PHFs) that are the major structural component of neurofibrillary tangles. Although tau isolated from PHFs (PHF-tau) is abnormally phosphorylated, the role of this abnormal phosphorylation in PHF assembly is not known. Previously, neuronal cdc2-like protein kinase (NCLK) was shown to phosphorylate tau on sites that are abnormally phosphorylated in PHF-tau (Paudel, H. K., Lew, J., Ali, Z., and Wang, J. H. (1993) J. Biol. Chem. 268, 23512-23518). In this study, phosphorylation by NCLK was found to promote dimerization of recombinant human tau (R-tau) and brain tau (B-tau) purified from brain extract. Chemical cross-linking by disuccinimidyl suberate (DSS), a homobifunctional chemical cross-linker that specifically cross-linked R-tau dimers, and a Superose 12 gel filtration chromatography revealed that R-tau preparations contain mixtures of monomeric and dimeric R-tau species. When the structure of NCLK-phosphorylated R-tau was studied by a similar approach, DSS preferentially cross-linked the phosphorylated R-tau over the nonphosphorylated R-tau, and the phosphorylated R-tau eluted as a dimeric species from the gel filtration column. Phosphorylated R-tau became resistant to DSS upon dephosphorylation and was recovered as a monomeric species from the gel filtration column. In the presence of a low concentration of dithiothreitol (1.65 microM), R-tau formed disulfide cross-linked R-tau dimers. When compared, phosphorylated R-tau formed more disulfide cross-linked dimers than the nonphosphorylated R-tau. B-tau also was specifically cross-linked to dimers by DSS. When B-tau and NCLK-phosphorylated B-tau were treated with DSS, phosphorylated B-tau was preferentially cross-linked over nonphosphorylated counterpart. Taken together, these results suggest that phosphorylation by NCLK promotes dimerization and formation of disulfide cross-linked tau dimers, which is suggested to be the key step leading to PHF assembly (Schweers, O., Mandelkow, E.-M., Biernat, J., and Mandelkow, E. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 8463-8467).
Collapse
Affiliation(s)
- H K Paudel
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, H3T 1E2, Canada.
| |
Collapse
|
396
|
Abstract
The chemical interaction that condenses the hyperphosphorylated protein tau in Alzheimer's disease (AD P-tau) into neurofibrillary tangles and cripples synaptic transmission remains unknown. Only beta-sheet, positive ion salt bridges between phosphates, and hydrophobic association can create tangles of just AD P-tau. We have correlated transmission electron microscope (TEM) images of tau aggregation with different percentages of beta-sheet in aqueous suspensions of tau while using buffers that block dispositive or tripositive ionic bridges between intermolecular phosphates. Circular dichroism (CD) studies were performed at different temperatures from 5-85 degrees C using AD P-tau, AD P-tau dephosphorylated with hydrofluoric acid (HF AD P-tau) or alkaline phosphatase (AP AD P-tau), and recombinant human tau with 3-repeats and two amino terminal inserts (R-39) and using bovine tau (B tau) isolated without heat or acid treatment. Secondary structure was estimated from CD spectra at 5 degrees C using the Lincomb algorithm. Each preparation except one demonstrated an inverse temperature transition, Ti, in the CD at 197 nm. No correlation was found between beta-sheet content and aggregation, leaving only hydrophobic interaction as the remaining possibility. Thirteen of 21 possible phosphorylation sites in AD P-tau lie adjacent to positive residues in tau's primary structure. Occupation of five to nine phosphate sites on AD P-tau appears sufficient to reduce or neutralize tau's basic character. AD P-tau's hydrophobic character is indicated by its low inverse temperature transition, Ti. The Ti for AD P-tau was 24.5 degrees C or 28 degrees C, whereas for B tau with three phosphates it was 32 degrees C, for unphosphorylated tau R-39 it was 38 degrees C, and for dephosphorylated HF AD P-tau it was 37.5 degrees C. The hydrophobic protein elastin and its analogs coalesce and precipitate at their Ti of 24-29 degrees C, well below body temperature. We hypothesize that AD P-tau causes tangle accumulation by this mechanism.
Collapse
Affiliation(s)
- G C Ruben
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.
| | | | | | | |
Collapse
|
397
|
Selective destruction of stable microtubules and axons by inhibitors of protein serine/threonine phosphatases in cultured human neurons. J Neurosci 1997. [PMID: 9221771 DOI: 10.1523/jneurosci.17-15-05726.1997] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Paired helical filaments (PHFs) in the neurofibrillary tangles (NFTs) in Alzheimer's disease (AD) brains are composed of highly phosphorylated isoforms of tau (PHFtau) that fail to bind microtubules (MTs), and the levels of MT-binding competent tau are decreased in AD brains with abundant PHFtau. Because this loss of MT binding could compromise the viability of tangle-bearing AD neurons by destabilizing MTs, we asked whether these events could be initiated by inhibiting protein phosphatase 1 (PP1) and PP2A in cultured human neurons (NT2N cells) using okadaic acid (OK) and calyculin-A (CL-A). The treatment of NT2N cells with OK and CL-A increased tau phosphorylation, decreased the binding of tau to MTs, and selectively depolymerized the more stable detyrosinated MTs but not the more labile tyrosinated MTs. Significantly, this led to the rapid degeneration of axons, which are enriched in the more stable detyrosinated MTs, and PP2A was implicated in the initiation of this cascade of events because PP2A but not PP1 was closely associated with MTs in the NT2N cells. These studies imply that inactivation of PP2A in vulnerable neurons of the AD brain may play a mechanistic role in the conversion of normal tau into PHFtau, in the depolymerization of stable MTs, and in the degeneration of axons emanating from tangle-bearing neurons.
Collapse
|
398
|
|
399
|
Jenkins SM, Johnson GV. Phosphorylation of microtubule-associated protein tau on Ser 262 by an embryonic 100 kDa protein kinase. Brain Res 1997; 767:305-13. [PMID: 9367262 DOI: 10.1016/s0006-8993(97)00615-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study examined the phosphorylation of tau on Ser 262, within the first microtubule-binding domain, by a developmentally regulated 100 kDa protein kinase exhibiting significantly greater activity in the embryonic rat brain than in the adult rat brain. This protein kinase co-purified with microtubules and co-immunoprecipitated with both tau and MAP-2. In addition to phosphorylating tau, MAP-2, and a Ser 262-containing peptide, the present protein kinase activity was shown to autophosphorylate as determined by the in-gel kinase assay in the absence of any protein or peptide polymerized into the matrix. Phosphorylation of tau with this protein kinase significantly reduced the tau-microtubule interaction, and the effect was significantly greater with microtubule-associated protein (MAP) preparations from embryonic brain than with preparations from the adult. Ser 262 is phosphorylated extensively in paired helical filament (PHF) tau from Alzheimer's disease (AD) brain, to a lesser extent in fetal tau, and only to a very minor extent in biopsy-derived human tau. Because the 100 kDa protein kinase activity phosphorylates Ser 262 and is higher in the fetal brain than the adult brain, it is hypothesized that an inappropriate re-expression and/or re-activation of this or a similar developmentally regulated protein kinase could contribute to the phosphorylation of Ser 262 in PHF-tau, and thus play a role in the pathogenesis of AD.
Collapse
Affiliation(s)
- S M Jenkins
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 35294-0017, USA
| | | |
Collapse
|
400
|
Sheppeck JE, Gauss CM, Chamberlin AR. Inhibition of the Ser-Thr phosphatases PP1 and PP2A by naturally occurring toxins. Bioorg Med Chem 1997; 5:1739-50. [PMID: 9354230 DOI: 10.1016/s0968-0896(97)00146-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The okadaic acid class of naturally occurring toxins is a structurally diverse group of molecules that inhibit the protein phosphatases PP1 and PP2A. Studies providing information about the mode of binding between the toxins and the phosphatases contribute to an overall understanding of the signal transduction pathways in which the phosphatases are involved.
Collapse
Affiliation(s)
- J E Sheppeck
- Department of Chemistry, University of California at Irvine 92697, USA
| | | | | |
Collapse
|