351
|
Hasegawa M, Cuenda A, Spillantini MG, Thomas GM, Buée-Scherrer V, Cohen P, Goedert M. Stress-activated protein kinase-3 interacts with the PDZ domain of alpha1-syntrophin. A mechanism for specific substrate recognition. J Biol Chem 1999; 274:12626-31. [PMID: 10212242 DOI: 10.1074/jbc.274.18.12626] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanisms for selective targeting to unique subcellular sites play an important role in determining the substrate specificities of protein kinases. Here we show that stress-activated protein kinase-3 (SAPK3, also called ERK6 and p38gamma), a member of the mitogen-activated protein kinase family that is abundantly expressed in skeletal muscle, binds through its carboxyl-terminal sequence -KETXL to the PDZ domain of alpha1-syntrophin. SAPK3 phosphorylates alpha1-syntrophin at serine residues 193 and 201 in vitro and phosphorylation is dependent on binding to the PDZ domain of alpha1-syntrophin. In skeletal muscle SAPK3 and alpha1-syntrophin co-localize at the neuromuscular junction, and both proteins can be co-immunoprecipitated from transfected COS cell lysates. Phosphorylation of a PDZ domain-containing protein by an associated protein kinase is a novel mechanism for determining both the localization and the substrate specificity of a protein kinase.
Collapse
Affiliation(s)
- M Hasegawa
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
352
|
Sweeney G, Somwar R, Ramlal T, Volchuk A, Ueyama A, Klip A. An inhibitor of p38 mitogen-activated protein kinase prevents insulin-stimulated glucose transport but not glucose transporter translocation in 3T3-L1 adipocytes and L6 myotubes. J Biol Chem 1999; 274:10071-8. [PMID: 10187787 DOI: 10.1074/jbc.274.15.10071] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The precise mechanisms underlying insulin-stimulated glucose transport still require investigation. Here we assessed the effect of SB203580, an inhibitor of the p38 MAP kinase family, on insulin-stimulated glucose transport in 3T3-L1 adipocytes and L6 myotubes. We found that SB203580, but not its inactive analogue (SB202474), prevented insulin-stimulated glucose transport in both cell types with an IC50 similar to that for inhibition of p38 MAP kinase (0.6 microM). Basal glucose uptake was not affected. Moreover, SB203580 added only during the transport assay did not inhibit basal or insulin-stimulated transport. SB203580 did not inhibit insulin-stimulated translocation of the glucose transporters GLUT1 or GLUT4 in 3T3-L1 adipocytes as assessed by immunoblotting of subcellular fractions or by immunofluorescence of membrane lawns. L6 muscle cells expressing GLUT4 tagged on an extracellular domain with a Myc epitope (GLUT4myc) were used to assess the functional insertion of GLUT4 into the plasma membrane. SB203580 did not affect the insulin-induced gain in GLUT4myc exposure at the cell surface but largely reduced the stimulation of glucose uptake. SB203580 had no effect on insulin-dependent insulin receptor substrate-1 phosphorylation, association of the p85 subunit of phosphatidylinositol 3-kinase with insulin receptor substrate-1, nor on phosphatidylinositol 3-kinase, Akt1, Akt2, or Akt3 activities in 3T3-L1 adipocytes. In conclusion, in the presence of SB203580, insulin caused normal translocation and cell surface membrane insertion of glucose transporters without stimulating glucose transport. We propose that insulin stimulates two independent signals contributing to stimulation of glucose transport: phosphatidylinositol 3-kinase leads to glucose transporter translocation and a pathway involving p38 MAP kinase leads to activation of the recruited glucose transporter at the membrane.
Collapse
Affiliation(s)
- G Sweeney
- Programme in Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, M5G 1X8 Canada
| | | | | | | | | | | |
Collapse
|
353
|
Lu HT, Yang DD, Wysk M, Gatti E, Mellman I, Davis RJ, Flavell RA. Defective IL-12 production in mitogen-activated protein (MAP) kinase kinase 3 (Mkk3)-deficient mice. EMBO J 1999; 18:1845-57. [PMID: 10202148 PMCID: PMC1171270 DOI: 10.1093/emboj/18.7.1845] [Citation(s) in RCA: 307] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) pathway, like the c-Jun N-terminal kinase (JNK) MAPK pathway, is activated in response to cellular stress and inflammation and is involved in many fundamental biological processes. To study the role of the p38 MAPK pathway in vivo, we have used homologous recombination in mice to inactivate the Mkk3 gene, one of the two specific MAPK kinases (MAPKKs) that activate p38 MAPK. Mkk3(-/-) mice were viable and fertile; however, they were defective in interleukin-12 (IL-12) production by macrophages and dendritic cells. Interferon-gamma production following immunization with protein antigens and in vitro differentiation of naive T cells is greatly reduced, suggesting an impaired type I cytokine immune response. The effect of the p38 MAPK pathway on IL-12 expression is at least partly transcriptional, since inhibition of this pathway blocks IL-12 p40 promoter activity in macrophage cell lines and IL-12 p40 mRNA is reduced in MKK3-deficient mice. We conclude that the p38 MAP kinase, activated through MKK3, is required for the production of inflammatory cytokines by both antigen-presenting cells and CD4(+) T cells.
Collapse
Affiliation(s)
- H T Lu
- Howard Hughes Medical Institute and Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
354
|
Hale KK, Trollinger D, Rihanek M, Manthey CL. Differential Expression and Activation of p38 Mitogen-Activated Protein Kinase α, β, γ, and δ in Inflammatory Cell Lineages. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.7.4246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Four p38 mitogen-activated protein kinases (p38α, β, γ, δ) have been described. To understand the role of p38 family members in inflammation, we determined their relative expression in cells that participate in the inflammatory process. Expression was measured at the level of mRNA by reverse-transcriptase PCR and protein by Western blot analysis. p38α was the dominant form of p38 in monocytes; expression of p38δ was low and p38β was undetected. In macrophages, p38α and p38δ were abundant, but p38β was undetected. p38α and p38δ were also expressed by neutrophils, CD4+ T cells, and endothelial cells. Again, p38β was not detected in neutrophils, although low amounts were present in CD4+ T cells. In contrast, p38β was abundant in endothelial cells. p38γ protein was not detected in any cell type, although p38γ mRNA was present in endothelial cells. Immunokinase assays showed a strong activation of p38α and a lesser activation of p38δ in LPS-stimulated macrophages. Abs specific for mono- and dual-phophorylated forms of p38 suggested that LPS induces dual phosphorylation of p38α, but primarily mono-phosphorylation of p38δ. IL-1β activated p38α and p38β in endothelial cells. However, p38α was the more activated form based on kinase assays and phosphorylation analysis. Expression and activation patterns of p38α in macrophages and endothelial cells suggest that p38α plays a major role in the inflammatory response. Additional studies will be needed to define the contribution of p38δ to macrophage, neutrophil, and T cell functions, and of p38β to signaling in endothelial cells and T cells.
Collapse
|
355
|
Wysk M, Yang DD, Lu HT, Flavell RA, Davis RJ. Requirement of mitogen-activated protein kinase kinase 3 (MKK3) for tumor necrosis factor-induced cytokine expression. Proc Natl Acad Sci U S A 1999; 96:3763-8. [PMID: 10097111 PMCID: PMC22368 DOI: 10.1073/pnas.96.7.3763] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The p38 mitogen-activated protein kinase is activated by treatment of cells with cytokines and by exposure to environmental stress. The effects of these stimuli on p38 MAP kinase are mediated by the MAP kinase kinases (MKKs) MKK3, MKK4, and MKK6. We have examined the function of the p38 MAP kinase signaling pathway by investigating the effect of targeted disruption of the Mkk3 gene. Here we report that Mkk3 gene disruption caused a selective defect in the response of fibroblasts to the proinflammatory cytokine tumor necrosis factor, including reduced p38 MAP kinase activation and cytokine expression. These data demonstrate that the MKK3 protein kinase is a critical component of a tumor necrosis factor-stimulated signaling pathway that causes increased expression of inflammatory cytokines.
Collapse
Affiliation(s)
- M Wysk
- Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
356
|
Harada J, Sugimoto M. An inhibitor of p38 and JNK MAP kinases prevents activation of caspase and apoptosis of cultured cerebellar granule neurons. JAPANESE JOURNAL OF PHARMACOLOGY 1999; 79:369-78. [PMID: 10230866 DOI: 10.1254/jjp.79.369] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Both p38 mitogen-activated protein kinase (p38) and c-Jun N-terminal kinase (JNK) are known to play important roles in neuronal apoptosis. However, the relationship between these kinases and caspases, another key mediator of apoptosis, is unclear. In the present study, we investigated the possible effects of SB203580 [(4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-i mid azole], an inhibitor of p38, on caspase activation and apoptosis of cultured rat cerebellar granule neurons. In granule neurons, SB203580 prevented apoptosis that was induced by lowering the concentration of KCl in the culture medium for 24 hr. SB203580 also prevented augmentation of caspase-3-like protease activity at 8 hr after the low KCl treatment. The IC50 values of SB203580 for both events were between 3 microM and 10 microM. Expression and phosphorylation of c-Jun, potently induced by low KCl treatment, were prevented by SB203580 at 10 microM. Z-Asp-CH2-DCB, a caspase inhibitor with anti-apoptotic activity, did not inhibit the induction and phosphorylation of c-Jun. Granule neurons displayed high levels of p38 and JNK activities. SB203580 inhibited not only p38 but also JNK activities extracted from granule neurons. These results suggest that activation of c-Jun by p38 and/or JNK mediates the activation of caspase in the low KCl-induced apoptosis in cerebellar granule neurons.
Collapse
Affiliation(s)
- J Harada
- Neuroscience Research Laboratories, Sankyo Co., Ltd., Tokyo, Japan
| | | |
Collapse
|
357
|
Zetser A, Gredinger E, Bengal E. p38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the Mef2c transcription factor. J Biol Chem 1999; 274:5193-200. [PMID: 9988769 DOI: 10.1074/jbc.274.8.5193] [Citation(s) in RCA: 357] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Differentiation of muscle cells is regulated by extracellular growth factors that transmit largely unknown signals into the cells. Some of these growth factors induce mitogen-activated protein kinase (MAPK) cascades within muscle cells. In this work we show that the kinase activity of p38 MAPK is induced early during terminal differentiation of L8 cells. Addition of a specific p38 inhibitor SB 203580 to myoblasts blocked their fusion to multinucleated myotubes and prevented the expression of MyoD and MEF2 family members and myosin light chain 2. The expression of MKK6, a direct activator of p38, or of p38 itself enhanced the activity of MyoD in converting 10T1/2 fibroblasts to muscle, whereas treatment with SB 203580 inhibited MyoD. Several lines of evidence suggesting that the involvement of p38 in MyoD activity is mediated via its co-activator MEF2C, a known substrate of p38, are presented. In these experiments we show that MEF2C protein and MEF2-binding sites are necessary for the p38 MAPK pathway to regulate the transcription of muscle creatine kinase reporter gene. Our results indicate that the p38 MAPK pathway promotes skeletal muscle differentiation at least in part via activation of MEF2C.
Collapse
Affiliation(s)
- A Zetser
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | |
Collapse
|
358
|
Hoffmeyer A, Grosse-Wilde A, Flory E, Neufeld B, Kunz M, Rapp UR, Ludwig S. Different mitogen-activated protein kinase signaling pathways cooperate to regulate tumor necrosis factor alpha gene expression in T lymphocytes. J Biol Chem 1999; 274:4319-27. [PMID: 9933633 DOI: 10.1074/jbc.274.7.4319] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor a (TNF-alpha) is a potent proinflammatory cytokine and plays a crucial role in early events of inflammation. TNF-alpha is primarily produced by monocytes and T lymphocytes. In particular, T-cell-derived TNF-alpha plays a critical role in autoimmune inflammation and superantigen-induced septic shock. However, little is known about the intracellular signaling pathways that regulate TNF expression in T cells. Here we show that extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38-mitogen-activated protein kinase (MAPK) pathways control the transcription and synthesis of TNF-alpha in A3.01 T cells that produce the cytokine upon T cell activation by costimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA) and ionomycin. Selective activation of each of the distinct MAPK pathways by expression of constitutively active kinases is sufficient for TNF-alpha promoter induction. Furthermore, blockage of all three pathways almost abolishes TPA/ionomycin-induced transcriptional activation of the TNF-alpha promoter. Selective inhibition of one or more MAPK pathways impairs TNF-alpha induction by TPA/ionomycin, indicating a cooperation between these signal transduction pathways. Our approach revealed that the MAPK kinase 6 (MKK6)/p38 pathway is involved in both transcriptional and posttranscriptional regulation of TNF expression. Moreover, analysis of the progressive 5' deletion mutants of the TNF-alpha promoter indicates that distinct promoter regions are targeted by either ERK-, JNK-, or p38-activating pathways. Thus, unlike what has been reported for other TNF-alpha-producing cells, all three MAPK pathways are critical and cooperate to regulate transcription of the TNF-alpha gene in T lymphocytes, suggesting a T-cell-specific regulation of the cytokine.
Collapse
Affiliation(s)
- A Hoffmeyer
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), Universität Würzburg, D-97078 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
359
|
Varley CL, Armitage S, Dickson AJ. Activation of stress-activated protein kinases by hepatocyte isolation induces gene 33 expression. Biochem Biophys Res Commun 1999; 254:728-33. [PMID: 9920809 DOI: 10.1006/bbrc.1998.0117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gene 33 is a putative immediate early gene and we have shown that mRNA encoding for gene 33 exhibits a transient increase as a result of the procedures used for hepatocyte isolation. The stress-activated protein kinases p46 JNK, p54 JNK, and p38 SAPK are activated by hepatocyte isolation and precede changes in gene 33 mRNA content. Although each SAPK isoform shows a distinctive profile of activity during isolation and subsequent hepatocyte culture, in each case the activation is transient and is largely reversed within 3 h of hepatocyte isolation. SB 203580, a p38 SAPK inhibitor, prevents the change to gene 33 expression in response to hepatocyte isolation. Given the possible role of gene 33 as an immediate early gene, the data presented here have general implications for control of hepatocyte proliferation and differentiation.
Collapse
Affiliation(s)
- C L Varley
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | | | | |
Collapse
|
360
|
New L, Zhao M, Li Y, Bassett WW, Feng Y, Ludwig S, Padova FD, Gram H, Han J. Cloning and characterization of RLPK, a novel RSK-related protein kinase. J Biol Chem 1999; 274:1026-32. [PMID: 9873047 DOI: 10.1074/jbc.274.2.1026] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel protein kinase whose activity can be stimulated by mitogen in vivo was cloned and characterized. The cDNA of this gene encodes an 802-amino acid protein (termed RLPK) with the highest homology (37% identity) to the two protein kinase families, p90(RSK) and p70(RSK). Like p90(RSR), but not p70(RSK), RLPK also contains two complete nonidentical protein kinase domains. RLPK mRNA is widely expressed in all human tissues examined and is enriched in the brain, heart, and placenta. In HeLa cells, transiently expressed epitope-tagged RLPK can be strongly induced by epidermal growth factor, serum, and phorbol 12-myristate 13-acetate, but only moderately up-regulated by tumor necrosis factor-alpha and other stress-related stimuli. The activity of RLPK stimulated by epidermal growth factor was not inhibited by several known protein kinase C inhibitors nor by rapamycin, a known specific inhibitor for p70(RSK), but could be inhibited by herbimycin A, a tyrosine kinase inhibitor, and partially inhibited by PD98059 or SB203580, inhibitors for the mitogen-activated protein kinase pathways. Recombinant RLPK possesses high phosphorylation activity toward histone 2B and the S6 peptide, RRRLSSLRA. Although purified recombinant RLPK can be phosphorylated by ERK2 and p38alpha in vitro, its activity is not affected by this phosphorylation. Moreover, the treatment of RLPK with acid phosphatase did not reduce its in vitro kinase activity. These data suggest that RLPK is structurally similar to previously isolated RSKs, but its regulatory mechanism may be distinct from either p70(RSK) or p90(RSK)s.
Collapse
Affiliation(s)
- L New
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
361
|
Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 1999; 79:143-80. [PMID: 9922370 DOI: 10.1152/physrev.1999.79.1.143] [Citation(s) in RCA: 1988] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitogen-activated protein kinases (MAPK) are serine-threonine protein kinases that are activated by diverse stimuli ranging from cytokines, growth factors, neurotransmitters, hormones, cellular stress, and cell adherence. Mitogen-activated protein kinases are expressed in all eukaryotic cells. The basic assembly of MAPK pathways is a three-component module conserved from yeast to humans. The MAPK module includes three kinases that establish a sequential activation pathway comprising a MAPK kinase kinase (MKKK), MAPK kinase (MKK), and MAPK. Currently, there have been 14 MKKK, 7 MKK, and 12 MAPK identified in mammalian cells. The mammalian MAPK can be subdivided into five families: MAPKerk1/2, MAPKp38, MAPKjnk, MAPKerk3/4, and MAPKerk5. Each MAPK family has distinct biological functions. In Saccharomyces cerevisiae, there are five MAPK pathways involved in mating, cell wall remodelling, nutrient deprivation, and responses to stress stimuli such as osmolarity changes. Component members of the yeast pathways have conserved counterparts in mammalian cells. The number of different MKKK in MAPK modules allows for the diversity of inputs capable of activating MAPK pathways. In this review, we define all known MAPK module kinases from yeast to humans, what is known about their regulation, defined MAPK substrates, and the function of MAPK in cell physiology.
Collapse
Affiliation(s)
- C Widmann
- Program in Molecular Signal Transduction, Division of Basic Sciences, National Jewish Medical and Research Center, Denver, Colorado, USA
| | | | | | | |
Collapse
|
362
|
Zhao M, New L, Kravchenko VV, Kato Y, Gram H, di Padova F, Olson EN, Ulevitch RJ, Han J. Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol 1999; 19:21-30. [PMID: 9858528 PMCID: PMC83862 DOI: 10.1128/mcb.19.1.21] [Citation(s) in RCA: 358] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the MEF2 family of transcription factors bind as homo- and heterodimers to the MEF2 site found in the promoter regions of numerous muscle-specific, growth- or stress-induced genes. We showed previously that the transactivation activity of MEF2C is stimulated by p38 mitogen-activated protein (MAP) kinase. In this study, we examined the potential role of the p38 MAP kinase pathway in regulating the other MEF2 family members. We found that MEF2A, but not MEF2B or MEF2D, is a substrate for p38. Among the four p38 group members, p38 is the most potent kinase for MEF2A. Threonines 312 and 319 within the transcription activation domain of MEF2A are the regulatory sites phosphorylated by p38. Phosphorylation of MEF2A in a MEF2A-MEF2D heterodimer enhances MEF2-dependent gene expression. These results demonstrate that the MAP kinase signaling pathway can discriminate between different MEF2 isoforms and can regulate MEF2-dependent genes through posttranslational activation of preexisting MEF2 protein.
Collapse
Affiliation(s)
- M Zhao
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
363
|
Engelman JA, Lisanti MP, Scherer PE. Specific inhibitors of p38 mitogen-activated protein kinase block 3T3-L1 adipogenesis. J Biol Chem 1998; 273:32111-20. [PMID: 9822687 DOI: 10.1074/jbc.273.48.32111] [Citation(s) in RCA: 299] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
SB203580 and SB202190, pyridinyl imidazoles that selectively inhibit p38 mitogen-activated protein (MAP) kinase, are widely utilized to assess the physiological roles of p38. Here, we demonstrate that treatment of 3T3-L1 fibroblasts with these p38 MAP kinase inhibitors prevents their differentiation into adipocytes as judged by an absence of lipid accumulation, a lack of expression of adipocyte-specific genes, and a fibroblastic morphological appearance. In 3T3-L1 fibroblasts and developing adipocytes, p38 is active. p38 activity decreases dramatically during later stages of differentiation. In accordance with the time course of p38 activity, p38 inhibitor treatment during only the early stages of differentiation is sufficient to block adipogenesis. In addition, we constructed a 3T3-L1 cell line harboring an inducible dominant negative p38 mutant. The induction of this dominant negative mutant of p38 prevents adipocyte differentiation. Thus, it is likely that the antiadipogenic activity of SB203580 and SB202190 is indeed due to inhibition of p38 MAP kinase. This study points out that CCAAT/enhancer-binding protein beta (C/EBPbeta), a transcription factor critical for the initial stages of 3T3-L1 adipogenesis, bears a consensus site for p38 phosphorylation and serves as a substrate for p38 MAP kinase in vitro. Although the induction of C/EBPbeta is not significantly altered in the presence of the p38 inhibitor, the amount of in vivo phosphorylated C/EBPbeta is reduced by SB203580. The transcriptional induction of PPARgamma, a gene whose expression is induced by C/EBPbeta, and a factor critically involved in terminal differentiation of adipocytes, is impaired in the presence of p38 inhibitors. Thus, transcription factors such as C/EBPbeta that promote adipocyte differentiation may be p38 targets during adipogenesis. Collectively, the data in this study suggest that p38 MAP kinase activity is important for proper 3T3-L1 differentiation.
Collapse
Affiliation(s)
- J A Engelman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
364
|
Pierrat B, Correia JS, Mary JL, Tomás-Zuber M, Lesslauer W. RSK-B, a novel ribosomal S6 kinase family member, is a CREB kinase under dominant control of p38alpha mitogen-activated protein kinase (p38alphaMAPK). J Biol Chem 1998; 273:29661-71. [PMID: 9792677 DOI: 10.1074/jbc.273.45.29661] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel ribosomal S6 kinase (RSK) family member, RSK-B, was identified in a p38alphaMAPK-baited intracellular interaction screen. RSK-B presents two catalytic domains typical for the RSK family. The protein kinase C-like N-terminal and the calcium/calmodulin kinase-like C-terminal domains both contain conserved ATP-binding and activation consensus sequences. RSK-B is a p38alphaMAPK substrate, and activated by p38alphaMAPK and, more weakly, by ERK1. RSK-B phosphorylates the cAMP response element-binding protein (CREB) and c-Fos peptides. In intracellular assays, RSK-B drives cAMP response element- and AP1-dependent reporter expression. RSK-B locates to the cell nucleus and co-translocates p38alphaMAPK. In conclusion, RSK-B is a novel CREB kinase under dominant p38alphaMAPK control, also phosphorylating additional substrates.
Collapse
Affiliation(s)
- B Pierrat
- Department of Preclinical Research, Central Nervous System Diseases, F. Hoffmann-LaRoche Ltd., CH-4070 Basel, Switzerland
| | | | | | | | | |
Collapse
|
365
|
Keesler GA, Bray J, Hunt J, Johnson DA, Gleason T, Yao Z, Wang SW, Parker C, Yamane H, Cole C, Lichenstein HS. Purification and activation of recombinant p38 isoforms alpha, beta, gamma, and delta. Protein Expr Purif 1998; 14:221-8. [PMID: 9790884 DOI: 10.1006/prep.1998.0947] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
p38 is a proline-directed serine/threonine kinase that is activated by inflammatory cytokines and cellular stress. At present, four isoforms of p38 have been identified and termed alpha, beta, gamma, and delta. We expressed each p38 homolog in Escherichia coli and purified the recombinant isoforms. p38alpha and C-terminal Flag-tagged p38beta were purified by Q-Sepharose fast flow, hydroxyapatite, and Q-Sepharose high-performance chromatography. His-tagged p38gamma was purified using Ni2+-NTA resin followed by Mono Q chromatography. Glutathione S-transferase-Flag p38delta was purified using M2 affinity agarose and gel-filtration chromatography. Upstream activators of p38, constitutively active (ca) MKK3 and MKK6, were also cloned, purified, and used to activate each p38 isoform. p38 alpha, gamma, and delta were phosphorylated by both MKK6 and caMKK3. p38beta was phosphorylated only by MKK6. Mass spectrometry analysis and kinase assays showed that MKK6 was the superior reagent for phosphorylating and activating all p38 isoforms.
Collapse
|
366
|
Roberts ML, Cowsert LM. Interleukin-1 beta and reactive oxygen species mediate activation of c-Jun NH2-terminal kinases, in human epithelial cells, by two independent pathways. Biochem Biophys Res Commun 1998; 251:166-72. [PMID: 9790925 DOI: 10.1006/bbrc.1998.9434] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The c-Jun N terminal kinases (JNKs) are members of the mitogen activated protein kinases family, which have been shown to be preferentially activated either by cytokines or stress stimuli. In this study we identify a selective and potent antisense oligonucleotide to RhoA (ISIS 17131) and investigate its effect on JNK activation induced by IL-1beta and H2O2 in A549 cells. The RhoA antisense oligonucleotide was able to inhibit JNK activation when A549 cells were stimulated by H2O2, but did not have any effect on IL-1beta induced JNK activation. Consistent with the idea that the phosphatidylinositol 3-kinase (PI 3-kinase) activates the small G protein exchange factors, H2O2 activated the PI 3-kinase. Additionally, Wortmannin, a potent inhibitor of the PI 3-kinase and phospholipase A2 (PLA2), and AACOCF3, also a PLA2 inhibitor, were able to inhibit JNK activation induced by H2O2, but they had no effect on JNK activation when stimulated by IL-1beta. These results suggest that, in A549, IL-1beta and H2O2 induce JNK activation by two independent pathways.
Collapse
Affiliation(s)
- M L Roberts
- Department of Molecular Pharmacology, ISIS Pharmaceuticals, 2280 Faraday Avenue, Carlsbad, California, 92008, USA
| | | |
Collapse
|
367
|
De Silva H, Cioffi C, Yin T, Sandhu G, Webb RL, Whelan J. Identification of a novel stress activated kinase in kidney and heart. Biochem Biophys Res Commun 1998; 250:647-52. [PMID: 9784400 DOI: 10.1006/bbrc.1998.9365] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously described the patterns of stress kinase activation in rat kidney and heart in response to ischemia/reperfusion (Yin et al., 1997, J. Biol. Chem. 272, 19943-19950). During the course of these studies, we observed the activation of a novel kinase capable of phosphorylating c-Jun on serines 63 and 73. The molecular weight of this kinase is approximately 37 kD, significantly below the molecular weight of all previously identified Jun N-terminal kinase (JNK) isoforms. The pattern of activation of this 37 kD kinase in response to ischemia/reperfusion in both kidney and heart is distinct from that of known JNK isoforms. Western analysis of human renal proximal tubular epithelial (RPTE) cells, using a non-isoform specific phospho-JNK antibody, revealed the phosphorylation (activation) of a 37 kD protein in response to hypoxia. The 37 kD protein in RPTE cells is phosphorylated by other stress stimuli capable of activating JNK. Western analysis of tissues, using a non-isoform specific JNK antibody, identifies a cross-reactive 37 kD protein expressed in the liver, thymus and lymph node which is likely to correspond to the 37 kDa stress-activated kinase. The results of this study have led to the identification of a potentially novel kinase closely related to JNK but showing a distinct pattern of activation.
Collapse
Affiliation(s)
- H De Silva
- Novartis Institute for Biomedical Research, 556 Morris Avenue, Summit, New Jersey, 07901, USA
| | | | | | | | | | | |
Collapse
|
368
|
Efimova T, LaCelle P, Welter JF, Eckert RL. Regulation of human involucrin promoter activity by a protein kinase C, Ras, MEKK1, MEK3, p38/RK, AP1 signal transduction pathway. J Biol Chem 1998; 273:24387-95. [PMID: 9733728 DOI: 10.1074/jbc.273.38.24387] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Involucrin is a marker of keratinocyte terminal differentiation. Our previous studies show that involucrin mRNA levels are increased by the keratinocyte differentiating agent, 12-O-tetradecanoylphorbol-13-acetate (TPA) (Welter, J. F., Crish, J. F., Agarwal, C., and Eckert, R. L. (1995) J. Biol. Chem. 270, 12614-12622). We now study the signaling cascade responsible for this regulation. Protein kinase C and tyrosine kinase inhibitors inhibit both the TPA-dependent mRNA increase and the TPA-dependent increase in hINV promoter activity. The relevant response element is located within the promoter proximal regulatory region and includes an AP1 site, AP1-1. Co-transfection of the hINV promoter with dominant negative forms of Ras, MEKK1, MEK1, MEK7, MEK3, p38/RK, and c-Jun inhibit the TPA-dependent increase. Wild type MEKK1 enhances promoter activity and the activity can be inhibited by dominant negative MEKK1, MEK1, MEK7, MEK3, p38/RK, and c-Jun. In contrast, wild type Raf-1, ERK1, ERK2, MEK4, or JNK1 produced no change in activity and the dominant negative forms of these kinases failed to suppress TPA-dependent transcription. Treatment with an S6 kinase (S6K) inhibitor, or transfection with constitutively active S6K produced relatively minor changes in promoter activity, ruling out a regulatory role for S6K. These results suggest that activation of involucrin transcription involves a pathway that includes protein kinase C, Ras, MEKK1, MEK3, and p38/RK. Additional pathways that transfer MEKK1 activation via MEK1 and MEK7 also may function, but the downstream targets of these kinases need to be identified. AP1 transcription factors appear to be the ultimate target of this regulation.
Collapse
Affiliation(s)
- T Efimova
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | | | | | |
Collapse
|
369
|
Parker CG, Hunt J, Diener K, McGinley M, Soriano B, Keesler GA, Bray J, Yao Z, Wang XS, Kohno T, Lichenstein HS. Identification of stathmin as a novel substrate for p38 delta. Biochem Biophys Res Commun 1998; 249:791-6. [PMID: 9731215 DOI: 10.1006/bbrc.1998.9250] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
p38 mitogen-activated protein kinases (MAPK) are a family of kinases that are activated by cellular stresses and inflammatory cytokines. Although there are many similarities shared by the isoforms of p38 (alpha, beta, gamma, and delta), p38 delta differs from the others in some respects such as inhibitor sensitivity and substrate specificity. Utilizing in a solution kinase assay, we identified a novel p38 delta substrate as stathmin. Stathmin is a cytoplasmic protein that was previously reported to be a substrate of several intracellular signaling kinases and has recently been linked to regulation of microtubule dynamics. p38 delta has significantly higher in vitro phosphorylating activity against stathmin than other p38 isoforms or related MAPKs. In transient expression studies, we found that in addition to different stimuli osmotic stress activates p38 delta to phosphorylate stathmin. The sites of phosphorylation were mapped to Ser-25 and Ser-38, both in vitro and in cells.
Collapse
|
370
|
Sugden PH, Clerk A. "Stress-responsive" mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res 1998; 83:345-52. [PMID: 9721691 DOI: 10.1161/01.res.83.4.345] [Citation(s) in RCA: 304] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- P H Sugden
- NHLI Division, Imperial College School of Medicine, London, UK.
| | | |
Collapse
|
371
|
Hedges JC, Yamboliev IA, Ngo M, Horowitz B, Adam LP, Gerthoffer WT. p38 mitogen-activated protein kinase expression and activation in smooth muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C527-34. [PMID: 9688607 DOI: 10.1152/ajpcell.1998.275.2.c527] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is relatively little known about expression and activation of p38 mitogen-activated protein kinases (MAPKs) through G protein-linked, seven-transmembrane-spanning (STM) receptors in mammalian smooth muscle. To investigate the role of p38 MAPK in smooth muscle, we cloned and sequenced the p38 MAPK expressed in canine smooth muscles. A full-length clone of the canine p38 MAPK expressed in colonic smooth muscle was obtained by RT-PCR. The deduced amino acid sequence revealed 99% identity to the human p38 MAPK and differed from the human enzyme in only two conservative substitutions. The deduced molecular mass of the canine p38 MAPK is 41.2 kDa, with a calculated isoelectric point of 5.41. Canine p38 MAPK was found to be expressed in colonic, tracheal, and vascular smooth muscles and underwent increased tyrosine phosphorylation in response to motor neurotransmitters, acetylcholine (ACh) and neurokinin A (NKA), in colonic smooth muscle. There was an eightfold increase in p38 MAPK phosphorylation after a 10-min incubation with ACh and a threefold increase with NKA. We also identified a p38 immunoreactive kinase activity isolated from colonic smooth muscle homogenate by Mono Q chromatography. Partially purified p38 MAPK and activated recombinant p38 MAPK (Mpk2) phosphorylated both the known p38 MAPK substrate ATF2, as well as porcine stomach h-caldesmon in vitro. The results suggest that elements of the "stress-response" pathway may be coupled to transcriptional control as well as to cytoskeletal and possibly contractile protein phosphorylation in mammalian smooth muscle.
Collapse
Affiliation(s)
- J C Hedges
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada 89557-0046, USA
| | | | | | | | | | | |
Collapse
|
372
|
Miralles F, Parra M, Caelles C, Nagamine Y, Félez J, Muñoz-Cánoves P. UV irradiation induces the murine urokinase-type plasminogen activator gene via the c-Jun N-terminal kinase signaling pathway: requirement of an AP1 enhancer element. Mol Cell Biol 1998; 18:4537-47. [PMID: 9671463 PMCID: PMC109039 DOI: 10.1128/mcb.18.8.4537] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/1997] [Accepted: 05/01/1998] [Indexed: 02/08/2023] Open
Abstract
UV irradiation leads to severe damage, such as cutaneous inflammation, immunosuppression, and cancer, but it also results in a gene induction protective response termed the UV response. The signal triggering the UV response was thought to originate from DNA damage; recent findings, however, have shown that it is initiated at or near the cell membrane and transmitted via cytoplasmic kinase cascades to induce gene transcription. Urokinase-type plasminogen activator (uPA) was the first protein shown to be UV inducible in xeroderma pigmentosum DNA repair-deficient human cells. However, the underlying molecular mechanisms responsible for the induction were not elucidated. We have found that the endogenous murine uPA gene product is transcriptionally upregulated by UV in NIH 3T3 fibroblast and F9 teratocarcinoma cells. This induction required an activator protein 1 (AP1) enhancer element located at -2.4 kb, since deletion of this site abrogated the induction. We analyzed the contribution of the three different types of UV-inducible mitogen-activated protein (MAP) kinases (ERK, JNK/SAPK, and p38) to the activation of the murine uPA promoter by UV. MEKK1, a specific JNK activator, induced transcription from the uPA promoter in the absence of UV treatment, whereas coexpression of catalytically inactive MEKK1(K432M) and of cytoplasmic JNK inhibitor JIP-1 inhibited UV-induced uPA transcriptional activity. In contrast, neither dominant negative MKK6 (or SB203580) nor PD98059, which specifically inhibit p38 and ERK MAP kinase pathways, respectively, could abrogate the UV-induced effect. Moreover, our results indicated that wild-type N-terminal c-Jun, but not mutated c-Jun (Ala-63/73), was able to mediate UV-induced uPA transcriptional activity. Taken together, we show for the first time that kinases of the JNK family can activate the uPA promoter. This activation links external UV stimulation and AP1-dependent uPA transcription, providing a transcription-coupled signal transduction pathway for the induction of the murine uPA gene by UV.
Collapse
Affiliation(s)
- F Miralles
- Institut de Recerca Oncològica, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
373
|
New L, Jiang Y, Zhao M, Liu K, Zhu W, Flood LJ, Kato Y, Parry GC, Han J. PRAK, a novel protein kinase regulated by the p38 MAP kinase. EMBO J 1998. [PMID: 9628874 DOI: 10.1093/3mboj/17.12.3372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have identified and cloned a novel serine/ threonine kinase, p38-regulated/activated protein kinase (PRAK). PRAK is a 471 amino acid protein with 20-30% sequence identity to the known MAP kinase-regulated protein kinases RSK1/2/3, MNK1/2 and MAPKAP-K2/3. PRAK was found to be expressed in all human tissues and cell lines examined. In HeLa cells, PRAK was activated in response to cellular stress and proinflammatory cytokines. PRAK activity was regulated by p38alpha and p38beta both in vitro and in vivo and Thr182 was shown to be the regulatory phosphorylation site. Activated PRAK in turn phosphorylated small heat shock protein 27 (HSP27) at the physiologically relevant sites. An in-gel kinase assay demonstrated that PRAK is a major stress-activated kinase that can phosphorylate small heat shock protein, suggesting a potential role for PRAK in mediating stress-induced HSP27 phosphorylation in vivo.
Collapse
Affiliation(s)
- L New
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
374
|
Clerk A, Michael A, Sugden PH. Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal rat ventricular myocytes by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine: a role in cardiac myocyte hypertrophy? J Biophys Biochem Cytol 1998; 142:523-35. [PMID: 9679149 PMCID: PMC2133061 DOI: 10.1083/jcb.142.2.523] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We examined the activation of the p38 mitogen-activated protein kinase (p38-MAPK) pathway by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine in primary cultures of cardiac myocytes from neonatal rat hearts. Both agonists increased the phosphorylation (activation) of p38-MAPK by approximately 12-fold. A p38-MAPK substrate, MAPK-activated protein kinase 2 (MAPKAPK2), was activated approximately fourfold and 10 microM SB203580, a p38-MAPK inhibitor, abolished this activation. Phosphorylation of the MAPKAPK2 substrate, heat shock protein 25/27, was also increased. Using selective inhibitors, activation of the p38-MAPK pathway by endothelin-1 was shown to involve protein kinase C but not Gi/Go nor the extracellularly responsive kinase (ERK) pathway. SB203580 failed to inhibit the morphological changes associated with cardiac myocyte hypertrophy induced by endothelin-1 or phenylephrine between 4 and 24 h. However, it decreased the myofibrillar organization and cell profile at 48 h. In contrast, inhibition of the ERK cascade with PD98059 prevented the increase in myofibrillar organization but not cell profile. These data are not consistent with a role for the p38-MAPK pathway in the immediate induction of the morphological changes of hypertrophy but suggest that it may be necessary over a longer period to maintain the response.
Collapse
Affiliation(s)
- A Clerk
- Division of Biomedical Sciences, Imperial College School of Medicine, Charing Cross Campus, London W6 8RF, United Kingdom.
| | | | | |
Collapse
|
375
|
Hii CS, Huang ZH, Bilney A, Costabile M, Murray AW, Rathjen DA, Der CJ, Ferrante A. Stimulation of p38 phosphorylation and activity by arachidonic acid in HeLa cells, HL60 promyelocytic leukemic cells, and human neutrophils. Evidence for cell type-specific activation of mitogen-activated protein kinases. J Biol Chem 1998; 273:19277-82. [PMID: 9668117 DOI: 10.1074/jbc.273.30.19277] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although it is well appreciated that arachidonic acid, a second messenger molecule that is released by ligand-stimulated phospholipase A2, stimulates a wide range of cell types, the mechanisms that mediate the actions of arachidonic acid are still poorly understood. We now report that arachidonic acid stimulated the appearance of dual-phosphorylated (active) p38 mitogen-activated protein kinase as detected by Western blotting in HeLa cells, HL60 cells, human neutrophils, and human umbilical vein endothelial cells but not Jurkat cells. An increase in p38 kinase activity caused by arachidonic acid was also observed. Further studies with neutrophils show that the stimulation of p38 dual phosphorylation by arachidonic acid was transient, peaking at 5 min, and was concentration-dependent. The effect of arachidonic acid was not affected by either nordihydroguaiaretic acid, an inhibitor of the 5-, 12-, and 15-lipoxygenases or by indomethacin, an inhibitor of cyclooxygenase. Arachidonic acid also stimulated the phosphorylation and/or activity of the extracellular signal-regulated protein kinase and of c-jun N-terminal kinase in a cell-type-specific manner. An examination of the mechanisms through which arachidonic acid stimulated the phosphorylation/activity of p38 and extracellular signal-regulated protein kinase in neutrophils revealed an involvement of protein kinase C. Thus, arachidonic acid stimulated the translocation of protein kinase C alpha, betaI, and betaII to a particulate fraction, and the effects of arachidonic acid on mitogen-activated protein kinase phosphorylation/activity were partially inhibited by GF109203X, an inhibitor of protein kinase C. This study is the first to demonstrate that a polyunsaturated fatty acid causes the dual phosphorylation and activation of p38.
Collapse
Affiliation(s)
- C S Hii
- Department of Immunopathology, Women's and Children's Hospital, North Adelaide, South Australia 5006.
| | | | | | | | | | | | | | | |
Collapse
|
376
|
Gum RJ, McLaughlin MM, Kumar S, Wang Z, Bower MJ, Lee JC, Adams JL, Livi GP, Goldsmith EJ, Young PR. Acquisition of sensitivity of stress-activated protein kinases to the p38 inhibitor, SB 203580, by alteration of one or more amino acids within the ATP binding pocket. J Biol Chem 1998; 273:15605-10. [PMID: 9624152 DOI: 10.1074/jbc.273.25.15605] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase compete with ATP for binding. Mutation of 23 residues in the ATP pocket indicated that several residues which affected binding of pyridinyl imidazole photoaffinity cross-linker 125I-SB 206718 did not affect kinase activity, and vice versa, suggesting that pyridinyl imidazoles bind p38 differently than ATP. Two close homologues of p38, SAPK3 and SAPK4, are not inhibited by SB 203580 and differ from p38 by three amino acids near the hinge of the ATP pocket. Substitution of the three amino acids in p38 by those in SAPK3/4 (Thr-106, His-107, and Leu-108 to Met, Pro, and Phe) resulted in decreased 125I-SB 206718 cross-linking and loss of inhibition by SB 203580. Substitution of just Thr-106 by Met resulted in incomplete loss of inhibition. Conversely, substitution of the three amino acids of p38 into SAPK3, SAPK4, or the more distantly related JNK1 resulted in inhibition by SB 203580, whereas mutation of just Met-106 to Thr resulted in weaker inhibition. These results indicate that these three amino acids can confer specificity and sensitivity to SB 203580 for at least two different classes of MAPKs.
Collapse
Affiliation(s)
- R J Gum
- Department of Molecular Biology, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
377
|
New L, Jiang Y, Zhao M, Liu K, Zhu W, Flood LJ, Kato Y, Parry GC, Han J. PRAK, a novel protein kinase regulated by the p38 MAP kinase. EMBO J 1998; 17:3372-84. [PMID: 9628874 PMCID: PMC1170675 DOI: 10.1093/emboj/17.12.3372] [Citation(s) in RCA: 266] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have identified and cloned a novel serine/ threonine kinase, p38-regulated/activated protein kinase (PRAK). PRAK is a 471 amino acid protein with 20-30% sequence identity to the known MAP kinase-regulated protein kinases RSK1/2/3, MNK1/2 and MAPKAP-K2/3. PRAK was found to be expressed in all human tissues and cell lines examined. In HeLa cells, PRAK was activated in response to cellular stress and proinflammatory cytokines. PRAK activity was regulated by p38alpha and p38beta both in vitro and in vivo and Thr182 was shown to be the regulatory phosphorylation site. Activated PRAK in turn phosphorylated small heat shock protein 27 (HSP27) at the physiologically relevant sites. An in-gel kinase assay demonstrated that PRAK is a major stress-activated kinase that can phosphorylate small heat shock protein, suggesting a potential role for PRAK in mediating stress-induced HSP27 phosphorylation in vivo.
Collapse
Affiliation(s)
- L New
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
378
|
Lazou A, Sugden PH, Clerk A. Activation of mitogen-activated protein kinases (p38-MAPKs, SAPKs/JNKs and ERKs) by the G-protein-coupled receptor agonist phenylephrine in the perfused rat heart. Biochem J 1998; 332 ( Pt 2):459-65. [PMID: 9601075 PMCID: PMC1219501 DOI: 10.1042/bj3320459] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated the ability of phenylephrine (PE), an alpha-adrenergic agonist and promoter of hypertrophic growth in the ventricular myocyte, to activate the three best-characterized mitogen-activated protein kinase (MAPK) subfamilies, namely p38-MAPKs, SAPKs/JNKs (i.e. stress-activated protein kinases/c-Jun N-terminal kinases) and ERKs (extracellularly responsive kinases), in perfused contracting rat hearts. Perfusion of hearts with 100 microM PE caused a rapid (maximal at 10 min) 12-fold activation of two p38-MAPK isoforms, as measured by subsequent phosphorylation of a p38-MAPK substrate, recombinant MAPK-activated protein kinase 2 (MAPKAPK2). This activation coincided with phosphorylation of p38-MAPK. Endogenous MAPKAPK2 was activated 4-5-fold in these perfusions and this was inhibited completely by the p38-MAPK inhibitor, SB203580 (10 microM). Activation of p38-MAPK and MAPKAPK2 was also detected in non-contracting hearts perfused with PE, indicating that the effects were not dependent on the positive inotropic/chronotropic properties of the agonist. Although SAPKs/JNKs were also rapidly activated, the activation (2-3-fold) was less than that of p38-MAPK. The ERKs were activated by perfusion with PE and the activation was at least 50% of that seen with 1 microM PMA, the most powerful activator of the ERKs yet identified in cardiac myocytes. These results indicate that, in addition to the ERKs, two MAPK subfamilies, whose activation is more usually associated with cellular stresses, are activated by the Gq/11-protein-coupled receptor (Gq/11PCR) agonist, PE, in whole hearts. These data indicate that Gq/11PCR agonists activate multiple MAPK signalling pathways in the heart, all of which may contribute to the overall response (e.g. the development of the hypertrophic phenotype).
Collapse
Affiliation(s)
- A Lazou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotelian University of Thessaloniki, Thessaloniki 54006, Greece
| | | | | |
Collapse
|
379
|
Eyers PA, Craxton M, Morrice N, Cohen P, Goedert M. Conversion of SB 203580-insensitive MAP kinase family members to drug-sensitive forms by a single amino-acid substitution. CHEMISTRY & BIOLOGY 1998; 5:321-8. [PMID: 9653550 DOI: 10.1016/s1074-5521(98)90170-3] [Citation(s) in RCA: 237] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Specific inhibitors of protein kinases have great therapeutic potential, but the molecular basis underlying their specificity is only poorly understood. We have investigated the drug SB 203580 which belongs to a class of pyridinyl imidazoles that inhibits the stress-activated protein (SAP) kinases SAPK2a/p38 and SAPK2b/p38 beta 2 but not other mitogen-activated protein kinase family members. Like inhibitors of other protein kinases, SB 203580 binds in the ATP-binding pocket of SAPK2a/p38. RESULTS The SAP kinases SAPK1 gamma/JNK1, SAPK3 and SAPK4 are not inhibited by SB 203580, because they have methionine in the position equivalent to Thr106 in the ATP-binding region of SAPK2a/p38 and SAPK2b/p38 beta 2. Using site-directed mutagenesis of five SAP kinases and the type I and type II TGF beta receptors, we have established that for a protein kinase to be inhibited by SB 203580, the sidechain of this residue must be no larger than that of threonine. Sensitivity to inhibition by SB 203580 is greatly enhanced when the sidechain is even smaller, as in serine, alanine or glycine. Thus, the type I TGF beta receptor, which has serine at the position equivalent to Thr106 of SAPK2a/p38 and SAPK2b/p38 beta 2, is inhibited by SB 203580. CONCLUSIONS These findings explain how drugs that target the ATP-binding site can inhibit protein kinases specifically, and show that the presence of threonine or a smaller amino acid at the position equivalent to Thr106 of SAPK2a/p38 and SAPK2b/p38 beta 2 is diagnostic of whether a protein kinase is sensitive to the pyridinyl imidazole class of inhibitor.
Collapse
Affiliation(s)
- P A Eyers
- Department of Biochemistry, University of Dundee, UK
| | | | | | | | | |
Collapse
|