351
|
Dzierzbicki P, Kaniak-Golik A, Malc E, Mieczkowski P, Ciesla Z. The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex. Mutat Res 2012; 740:21-33. [PMID: 23276591 DOI: 10.1016/j.mrfmmm.2012.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 12/10/2012] [Accepted: 12/20/2012] [Indexed: 12/17/2022]
Abstract
Oxidative stress is known to enhance the frequency of two major types of alterations in the mitochondrial genome of Saccharomyces cerevisiae: point mutations and large deletions resulting in the generation of respiration-deficient petite rhō mutants. We investigated the effect of antimycin A, a well-known agent inducing oxidative stress, on the stability of mtDNA. We show that antimycin enhances exclusively the generation of respiration-deficient petite mutants and this is accompanied by a significant increase in the level of reactive oxygen species (ROS) and in a marked drop of cellular ATP. Whole mitochondrial genome sequencing revealed that mtDNAs of antimycin-induced petite mutants are deleted for most of the wild-type sequence and usually contain one of the active origins of mtDNA replication: ori1, ori2 ori3 or ori5. We show that the frequency of antimycin-induced rhō mutants is significantly elevated in mutants deleted either for the RAD50 or XRS2 gene, both encoding the components of the MRX complex, which is known to be involved in the repair of double strand breaks (DSBs) in DNA. Furthermore, enhanced frequency of rhō mutants in cultures of antimycin-treated cells lacking Rad50 was further increased by the simultaneous absence of the Ogg1 glycosylase, an important enzyme functioning in mtBER. We demonstrate also that rad50Δ and xrs2Δ deletion mutants display a considerable reduction in the frequency of allelic mitochondrial recombination, suggesting that it is the deficiency in homologous recombination which is responsible for enhanced rearrangements of mtDNA in antimycin-treated cells of these mutants. Finally, we show that the generation of large-scale mtDNA deletions induced by antimycin is markedly decreased in a nuc1Δ mutant lacking the activity of the Nuc1 nuclease, an ortholog of the mammalian mitochondrial nucleases EndoG and ExoG. This result indicates that the nuclease plays an important role in processing of oxidative stress-induced lesions in the mitochondrial genome.
Collapse
Affiliation(s)
- Piotr Dzierzbicki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | |
Collapse
|
352
|
Li C, Wang W, Guo X, Zhang F, Ma W, Zhang Y, Li Y, Bai Y, Lammi MJ. Pathways related to mitochondrial dysfunction in cartilage of endemic osteoarthritis patients in China. SCIENCE CHINA-LIFE SCIENCES 2012; 55:1057-63. [PMID: 23233220 DOI: 10.1007/s11427-012-4418-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/17/2012] [Indexed: 12/17/2022]
Abstract
In this paper, we present the first evidence of differences in the mitochondria-related gene expression profiles of adult articular cartilage derived from patients with Kashin-Beck disease and normal controls. The expression of 705 mitochondria-related genes was analyzed by mitochondria-related gene expression analysis and ingenuity pathways analysis. Mitochondria-related gene expression analysis identified 9 up-regulated genes in Kashin-Beck disease based on their average expression ratio. Three canonical pathways involved in oxidative phosphorylation, apoptosis signaling and pyruvate metabolism were identified, which indicate the involvement of mitochondrial dysfunction in the pathogenesis of Kashin-Beck disease.
Collapse
Affiliation(s)
- Chunyan Li
- Faculty of Public Health, Medical College of Xi'an Jiaotong University, Key Laboratory of Environment and Gene Related Diseases of Ministry of Education, Key Laboratory of Trace elements and Endemic Diseases of Ministry of Health, Xi'an 710061, China
| | | | | | | | | | | | | | | | | |
Collapse
|
353
|
Groenendyk J, Agellon LB, Michalak M. Coping with endoplasmic reticulum stress in the cardiovascular system. Annu Rev Physiol 2012; 75:49-67. [PMID: 23020580 DOI: 10.1146/annurev-physiol-030212-183707] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endoplasmic reticulum (ER) is a multifunctional intracellular organelle, a component of the cellular reticular network that allows cells to adjust to a wide variety of conditions. The cardiomyocyte reticular network is the ideal location of sensors for both intrinsic and extrinsic factors that disrupt energy and/or nutrient homeostasis and lead to ER stress, a disturbance in ER function. ER stress has been linked to both physiological and pathological states in the cardiovascular system; such states include myocardial infarction, oxygen starvation (hypoxia) and fuel starvation, ischemia, pressure overload, dilated cardiomyopathy, hypertrophy, and heart failure. The ER stress coping response (e.g., the unfolded protein response) is composed of discrete pathways that are controlled by a collection of common regulatory components that may function as a single entity involved in reacting to ER stress. These corrective strategies allow the cardiomyocyte reticular network to restore energy and/or nutrient homeostasis and to avoid cell death. Therefore, the identities of the ER stress corrective strategies are important targets for the development of therapeutic approaches for cardiovascular and other acquired disorders.
Collapse
Affiliation(s)
- Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
354
|
Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 2012; 13:659-71. [PMID: 22992591 DOI: 10.1038/nrm3439] [Citation(s) in RCA: 285] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondrial DNA (mtDNA) faces the universal challenges of genome maintenance: the accurate replication, transmission and preservation of its integrity throughout the life of the organism. Although mtDNA was originally thought to lack DNA repair activity, four decades of research on mitochondria have revealed multiple mtDNA repair pathways, including base excision repair, single-strand break repair, mismatch repair and possibly homologous recombination. These mtDNA repair pathways are mediated by enzymes that are similar in activity to those operating in the nucleus, and in all cases identified so far in mammals, they are encoded by nuclear genes.
Collapse
|
355
|
Smith DR. Updating our view of organelle genome nucleotide landscape. Front Genet 2012; 3:175. [PMID: 22973299 PMCID: PMC3438683 DOI: 10.3389/fgene.2012.00175] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/20/2012] [Indexed: 01/25/2023] Open
Abstract
Organelle genomes show remarkable variation in architecture and coding content, yet their nucleotide composition is relatively unvarying across the eukaryotic domain, with most having a high adenine and thymine (AT) content. Recent studies, however, have uncovered guanine and cytosine (GC)-rich mitochondrial and plastid genomes. These sequences come from a small but eclectic list of species, including certain green plants and animals. Here, I review GC-rich organelle DNAs and the insights they have provided into the evolution of nucleotide landscape. I emphasize that GC-biased mitochondrial and plastid DNAs are more widespread than once thought, sometimes occurring together in the same species, and suggest that the forces biasing their nucleotide content can differ both among and within lineages, and may be associated with specific genome architectural features and life history traits.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Botany, Canadian Institute for Advanced Research, University of British Columbia Vancouver, British Columbia, Canada
| |
Collapse
|
356
|
Leite de Oliveira R, Deschoemaeker S, Henze AT, Debackere K, Finisguerra V, Takeda Y, Roncal C, Dettori D, Tack E, Jönsson Y, Veschini L, Peeters A, Anisimov A, Hofmann M, Alitalo K, Baes M, D'hooge J, Carmeliet P, Mazzone M. Gene-targeting of Phd2 improves tumor response to chemotherapy and prevents side-toxicity. Cancer Cell 2012; 22:263-77. [PMID: 22897855 DOI: 10.1016/j.ccr.2012.06.028] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 05/08/2012] [Accepted: 06/26/2012] [Indexed: 12/18/2022]
Abstract
The success of chemotherapy in cancer treatment is limited by scarce drug delivery to the tumor and severe side-toxicity. Prolyl hydroxylase domain protein 2 (PHD2) is an oxygen/redox-sensitive enzyme that induces cellular adaptations to stress conditions. Reduced activity of PHD2 in endothelial cells normalizes tumor vessels and enhances perfusion. Here, we show that tumor vessel normalization by genetic inactivation of Phd2 increases the delivery of chemotherapeutics to the tumor and, hence, their antitumor and antimetastatic effect, regardless of combined inhibition of Phd2 in cancer cells. In response to chemotherapy-induced oxidative stress, pharmacological inhibition or genetic inactivation of Phd2 enhances a hypoxia-inducible transcription factor (HIF)-mediated detoxification program in healthy organs, which prevents oxidative damage, organ failure, and tissue demise. Altogether, our study discloses alternative strategies for chemotherapy optimization.
Collapse
|
357
|
Vadrot N, Ghanem S, Braut F, Gavrilescu L, Pilard N, Mansouri A, Moreau R, Reyl-Desmars F. Mitochondrial DNA maintenance is regulated in human hepatoma cells by glycogen synthase kinase 3β and p53 in response to tumor necrosis factor α. PLoS One 2012; 7:e40879. [PMID: 22911714 PMCID: PMC3401193 DOI: 10.1371/journal.pone.0040879] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 06/18/2012] [Indexed: 12/16/2022] Open
Abstract
During chronic liver inflammation, up-regulated Tumor Necrosis Factor alpha (TNF-α) targets hepatocytes and induces abnormal reactive oxygen species (ROS) production responsible for mitochondrial DNA (mtDNA) alterations. The serine/threonine Glycogen Synthase Kinase 3 beta (GSK3β) plays a pivotal role during inflammation but its involvement in the maintenance of mtDNA remains unknown. The aim of this study was to investigate its involvement in TNF-α induced mtDNA depletion and its interrelationship with p53 a protein known to maintain mtDNA copy numbers. Using quantitative polymerase chain reaction (qPCR) we found that at 30 min in human hepatoma HepG2 cells TNF-α induced 0.55±0.10 mtDNA lesions per 10 Kb and a 52.4±2.8% decrease in mtDNA content dependent on TNF-R1 receptor and ROS production. Both lesions and depletion returned to baseline from 1 to 6 h after TNF-α exposure. Luminol-amplified chemiluminescence (LAC) was used to measure the rapid (10 min) and transient TNF-α induced increase in ROS production (168±15%). A transient 8-oxo-dG level of 1.4±0.3 ng/mg DNA and repair of abasic sites were also measured by ELISA assays. Translocation of p53 to mitochondria was observed by Western Blot and co-immunoprecipitations showed that TNF-α induced p53 binding to GSK3β and mitochondrial transcription factor A (TFAM). In addition, mitochondrial D-loop immunoprecipitation (mtDIP) revealed that TNF-α induced p53 binding to the regulatory D-loop region of mtDNA. The knockdown of p53 by siRNAs, inhibition by the phosphoSer(15)p53 antibody or transfection of human mutant active GSK3βS9A pcDNA3 plasmid inhibited recovery of mtDNA content while blockade of GSK3β activity by SB216763 inhibitor or knockdown by siRNAs suppressed mtDNA depletion. This study is the first to report the involvement of GSK3β in TNF-α induced mtDNA depletion. We suggest that p53 binding to GSK3β, TFAM and D-loop could induce recovery of mtDNA content through mtDNA repair.
Collapse
Affiliation(s)
- Nathalie Vadrot
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Sarita Ghanem
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Françoise Braut
- INSERM U773, CRB3, Equipe El-Benna, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Laura Gavrilescu
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Nathalie Pilard
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Abdellah Mansouri
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Richard Moreau
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Florence Reyl-Desmars
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
- * E-mail:
| |
Collapse
|
358
|
Furda AM, Marrangoni AM, Lokshin A, Van Houten B. Oxidants and not alkylating agents induce rapid mtDNA loss and mitochondrial dysfunction. DNA Repair (Amst) 2012; 11:684-92. [PMID: 22766155 DOI: 10.1016/j.dnarep.2012.06.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 05/30/2012] [Accepted: 06/09/2012] [Indexed: 12/18/2022]
Abstract
Mitochondrial DNA (mtDNA) is essential for proper mitochondrial function and encodes 22 tRNAs, 2 rRNAs and 13 polypeptides that make up subunits of complex I, III, IV, in the electron transport chain and complex V, the ATP synthase. Although mitochondrial dysfunction has been implicated in processes such as premature aging, neurodegeneration, and cancer, it has not been shown whether persistent mtDNA damage causes a loss of oxidative phosphorylation. We addressed this question by treating mouse embryonic fibroblasts with either hydrogen peroxide (H(2)O(2)) or the alkylating agent methyl methanesulfonate (MMS) and measuring several endpoints, including mtDNA damage and repair rates using QPCR, levels of mitochondrial- and nuclear-encoded proteins using antibody analysis, and a pharmacologic profile of mitochondria using the Seahorse Extracellular Flux Analyzer. We show that a 60min treatment with H(2)O(2) causes persistent mtDNA lesions, mtDNA loss, decreased levels of a nuclear-encoded mitochondrial subunit, a loss of ATP-linked oxidative phosphorylation and a loss of total reserve capacity. Conversely, a 60min treatment with 2mM MMS causes persistent mtDNA lesions but no mtDNA loss, no decrease in levels of a nuclear-encoded mitochondrial subunit, and no mitochondrial dysfunction. These results suggest that persistent mtDNA damage is not sufficient to cause mitochondrial dysfunction.
Collapse
Affiliation(s)
- Amy M Furda
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
359
|
Zheng J, Chen LL, Zhang HH, Hu X, Kong W, Hu D. Resveratrol improves insulin resistance of catch-up growth by increasing mitochondrial complexes and antioxidant function in skeletal muscle. Metabolism 2012; 61:954-65. [PMID: 22209670 DOI: 10.1016/j.metabol.2011.11.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/04/2011] [Accepted: 11/05/2011] [Indexed: 11/15/2022]
Abstract
Caloric restriction followed by refeeding, a phenomenon known as catch-up growth (CUG), affects mitochondrial function and results in systemic insulin resistance (IR). We investigated the potential of resveratrol (RES) in CUG to prevent IR by increasing activity of the mitochondrial respiratory chain and antioxidant enzymes in skeletal muscle. Rats (8 weeks of age) were divided into 3 groups: normal chow, CUG, and CUG with RES intervention. Skeletal muscle and systemic IR were measured in each group after 4 and 8 weeks. Mitochondrial biogenesis and function, oxidative stress levels, and antioxidant enzyme activity in skeletal muscle were assessed. Catch-up growth-induced IR resulted in significant reductions in both average glucose infusion rate(60-120) at euglycemia and skeletal muscle glucose uptake. Mitochondrial citrate synthase activity was lower; and the activity of complexes I to IV in the intermyofibrillar and subsarcolemmal (SS) mitochondria were reduced by 20% to 40%, with the decrease being more pronounced in the SS fraction. Reactive oxygen species levels were significantly higher in intermyofibrillar and SS mitochondria, whereas activities of antioxidant enzymes were decreased. Oral administration of RES, however, increased silent information regulator 1 activity and improved mitochondrial number and insulin sensitivity. Resveratrol treatment decreased levels of reactive oxygen species and restored activities of antioxidant enzymes. This study demonstrates that RES protects insulin sensitivity of skeletal muscle by improving activities of mitochondrial complexes and antioxidant defense status in CUG rats. Thus, RES has therapeutic potential for preventing CUG-related metabolic disorders.
Collapse
Affiliation(s)
- Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | | | | | | | |
Collapse
|
360
|
Bess AS, Crocker TL, Ryde IT, Meyer JN. Mitochondrial dynamics and autophagy aid in removal of persistent mitochondrial DNA damage in Caenorhabditis elegans. Nucleic Acids Res 2012; 40:7916-31. [PMID: 22718972 PMCID: PMC3439916 DOI: 10.1093/nar/gks532] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitochondria lack the ability to repair certain helix-distorting lesions that are induced at high levels in mitochondrial DNA (mtDNA) by important environmental genotoxins and endogenous metabolites. These lesions are irreparable and persistent in the short term, but their long-term fate is unknown. We report that removal of such mtDNA damage is detectable by 48 h in Caenorhabditis elegans, and requires mitochondrial fusion, fission and autophagy, providing genetic evidence for a novel mtDNA damage removal pathway. Furthermore, mutations in genes involved in these processes as well as pharmacological inhibition of autophagy exacerbated mtDNA damage-mediated larval arrest, illustrating the in vivo relevance of removal of persistent mtDNA damage. Mutations in genes in these pathways exist in the human population, demonstrating the potential for important gene-environment interactions affecting mitochondrial health after genotoxin exposure.
Collapse
Affiliation(s)
- Amanda S Bess
- Duke University, Nicholas School of Environment, Integrated Toxicology and Environmental Health Program, LSRC, PO Box 90328, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
361
|
Mitochondrial DNA damage and its consequences for mitochondrial gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:979-91. [PMID: 22728831 DOI: 10.1016/j.bbagrm.2012.06.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/06/2012] [Accepted: 06/14/2012] [Indexed: 12/11/2022]
Abstract
How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. This article is part of a special issue entitled: Mitochondrial Gene Expression.
Collapse
|
362
|
Vorlícková M, Tomasko M, Sagi AJ, Bednarova K, Sagi J. 8-oxoguanine in a quadruplex of the human telomere DNA sequence. FEBS J 2011; 279:29-39. [PMID: 22008383 DOI: 10.1111/j.1742-4658.2011.08396.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
8-Oxoguanine is a ubiquitous oxidative base lesion. We report here on the effect of this lesion on the structure and stability of quadruplexes formed by the human telomeric DNA sequence 5'-dG(3)(TTAG(3))(3) in NaCl and KCl. CD, PAGE and absorption-based thermodynamic stability data showed that replacement of any of the tetrad-forming guanines by 8-oxoguanine did not hinder the formation of monomolecular, antiparallel quadruplexes in NaCl. The modified quadruplexes were, however, destabilized in both salts, the extent of this depending on the position of the lesion. These results and the results of previous studies on guanine-to-adenine exchanges and guanine abasic lesions in the same quadruplex show a noticeable trend: it is not the type of the lesion but the position of the modification that determines the effect on the conformation and stability of the quadruplex. The type of lesion only governs the extent of changes, such as of destabilization. Most sensitive sites were found in the middle tetrad of the three-tetrad quadruplex, and the smallest alterations were observed if guanines of the terminal tetrad with the diagonal TTA loop were substituted, although even these substitutions brought about unfavorable enthalpic changes. Interestingly, the majority of these base-modified quadruplexes did not adopt the rearranged folding induced in the unmodified dG(3)(TTAG(3))(3) by potassium ions, an observation that could imply biological relevance of the results.
Collapse
Affiliation(s)
- Michaela Vorlícková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
363
|
Biniecka M, Fox E, Gao W, Ng CT, Veale DJ, Fearon U, O'Sullivan J. Hypoxia induces mitochondrial mutagenesis and dysfunction in inflammatory arthritis. ACTA ACUST UNITED AC 2011; 63:2172-82. [PMID: 21484771 DOI: 10.1002/art.30395] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To assess the levels and spectrum of mitochondrial DNA (mtDNA) point mutations in synovial tissue from patients with inflammatory arthritis in relation to in vivo hypoxia and oxidative stress levels. METHODS Random Mutation Capture assay was used to quantitatively evaluate alterations of the synovial mitochondrial genome. In vivo tissue oxygen levels (tPO(2)) were measured at arthroscopy using a Licox probe. Synovial expression of lipid peroxidation (4-hydroxynonenal [4-HNE]) and mitochondrial cytochrome c oxidase subunit II (CytcO II) deficiency were assessed by immunohistochemistry. In vitro levels of mtDNA point mutations, reactive oxygen species (ROS), mitochondrial membrane potential, and markers of oxidative DNA damage (8-oxo-7,8-dihydro-2'-deoxyguanine [8-oxodG]) and lipid peroxidation (4-HNE) were determined in human synoviocytes under normoxia and hypoxia (1%) in the presence or absence of superoxide dismutase (SOD) or N-acetylcysteine (NAC) or a hydroxylase inhibitor (dimethyloxalylglycine [DMOG]). Patients were categorized according to their in vivo tPO(2) level (<20 mm Hg or >20 mm Hg), and mtDNA point mutations, immunochemistry features, and stress markers were compared between groups. RESULTS The median tPO(2) level in synovial tissue indicated significant hypoxia (25.47 mm Hg). Higher frequency of mtDNA mutations was associated with reduced in vivo oxygen tension (P = 0.05) and with higher synovial 4-HNE cytoplasmic expression (P = 0.04). Synovial expression of CytcO II correlated with in vivo tPO(2) levels (P = 0.03), and levels were lower in patients with tPO(2) <20 mm Hg (P < 0.05). In vitro levels of mtDNA mutations, ROS, mitochondrial membrane potential, 8-oxo-dG, and 4-HNE were higher in synoviocytes exposed to 1% hypoxia (P < 0.05); all of these increased levels were rescued by SOD and DMOG and, with the exception of ROS, by NAC. CONCLUSION These findings demonstrate that hypoxia-induced mitochondrial dysfunction drives mitochondrial genome mutagenesis, and antioxidants significantly rescue these events.
Collapse
Affiliation(s)
- Monika Biniecka
- Dublin Academic Medical Centre, St. Vincent's University Hospital, and The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
364
|
Molina-Jijón E, Tapia E, Zazueta C, El Hafidi M, Zatarain-Barrón ZL, Hernández-Pando R, Medina-Campos ON, Zarco-Márquez G, Torres I, Pedraza-Chaverri J. Curcumin prevents Cr(VI)-induced renal oxidant damage by a mitochondrial pathway. Free Radic Biol Med 2011; 51:1543-57. [PMID: 21839166 DOI: 10.1016/j.freeradbiomed.2011.07.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 07/11/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
Abstract
We report the role of mitochondria in the protective effects of curcumin, a well-known direct and indirect antioxidant, against the renal oxidant damage induced by the hexavalent chromium [Cr(VI)] compound potassium dichromate (K(2)Cr(2)O(7)) in rats. Curcumin was given daily by gavage using three different schemes: (1) complete treatment (100, 200, and 400 mg/kg bw 10 days before and 2 days after K(2)Cr(2)O(7) injection), (2) pretreatment (400 mg/kg bw for 10 days before K(2)Cr(2)O(7) injection), and (3) posttreatment (400 mg/kg bw 2 days after K(2)Cr(2)O(7) injection). Rats were sacrificed 48 h later after a single K(2)Cr(2)O(7) injection (15 mg/kg, sc) to evaluate renal and mitochondrial function and oxidant stress. Curcumin treatment (schemes 1 and 2) attenuated K(2)Cr(2)O(7)-induced renal dysfunction, histological damage, oxidant stress, and the decrease in antioxidant enzyme activity both in kidney tissue and in mitochondria. Curcumin pretreatment attenuated K(2)Cr(2)O(7)-induced mitochondrial dysfunction (alterations in oxygen consumption, ATP content, calcium retention, and mitochondrial membrane potential and decreased activity of complexes I, II, II-III, and V) but was unable to modify renal and mitochondrial Cr(VI) content or to chelate chromium. Curcumin posttreatment was unable to prevent K(2)Cr(2)O(7)-induced renal dysfunction. In further experiments performed in curcumin (400 mg/kg)-pretreated rats it was found that this antioxidant accumulated in kidney and activated Nrf2 at the time when K(2)Cr(2)O(7) was injected, suggesting that both direct and indirect antioxidant effects are involved in the protective effects of curcumin. These findings suggest that the preservation of mitochondrial function plays a key role in the protective effects of curcumin pretreatment against K(2)Cr(2)O(7)-induced renal oxidant damage.
Collapse
Affiliation(s)
- Eduardo Molina-Jijón
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510 University City, DF, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
365
|
Bakthavatchalu V, Dey S, Xu Y, Noel T, Jungsuwadee P, Holley AK, Dhar SK, Batinic-Haberle I, St Clair DK. Manganese superoxide dismutase is a mitochondrial fidelity protein that protects Polγ against UV-induced inactivation. Oncogene 2011; 31:2129-39. [PMID: 21909133 PMCID: PMC3237716 DOI: 10.1038/onc.2011.407] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Manganese superoxide dismutase is a nuclear encoded primary antioxidant enzyme localized exclusively in the mitochondrial matrix. Genotoxic agents, such as ultraviolet (UV) radiation, generates oxidative stress and cause mitochondrial DNA (mtDNA) damage. The mtDNA polymerase (Polγ), a major constituent of nucleoids, is responsible for the replication and repair of the mitochondrial genome. Recent studies suggest that the mitochondria contain fidelity proteins and MnSOD constitutes an integral part of the nucleoid complex. However, it is not known whether or how MnSOD participates in the mitochondrial repair processes. Using skin tissue from C57BL/6 mice exposed to UVB radiation, we demonstrate that MnSOD has a critical role in preventing mtDNA damage by protecting the function of Polγ. Quantitative-PCR analysis shows an increase in mtDNA damage after UVB exposure. Immunofluorescence and immunoblotting studies demonstrate p53 translocation to the mitochondria and interaction with Polγ after UVB exposure. The mtDNA immunoprecipitation assay with Polγ and p53 antibodies in p53(+/+) and p53(-/-) mice demonstrates an interaction between MnSOD, p53 and Polγ. The results suggest that these proteins form a complex for the repair of UVB-associated mtDNA damage. The data also demonstrate that UVB exposure injures the mtDNA D-loop in a p53-dependent manner. Using MnSOD-deficient mice we demonstrate that UVB-induced mtDNA damage is MnSOD dependent. Exposure to UVB results in nitration and inactivation of Polγ, which is prevented by addition of the MnSOD mimetic Mn(III)TE-2-PyP(5+). These results demonstrate for the first time that MnSOD is a fidelity protein that maintains the activity of Polγ by preventing UVB-induced nitration and inactivation of Polγ. The data also demonstrate that MnSOD has a role along with p53 to prevent mtDNA damage.
Collapse
Affiliation(s)
- V Bakthavatchalu
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
366
|
The awakening of an advanced malignant cancer: an insult to the mitochondrial genome. Biochim Biophys Acta Gen Subj 2011; 1820:652-62. [PMID: 21920409 DOI: 10.1016/j.bbagen.2011.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND In only months-to-years a primary cancer can progress to an advanced phenotype that is metastatic and resistant to clinical treatments. As early as the 1900s, it was discovered that the progression of a cancer to the advanced phenotype is often associated with a shift in the metabolic profile of the disease from a state of respiration to anaerobic fermentation - a phenomenon denoted as the Warburg Effect. SCOPE OF REVIEW Reports in the literature strongly suggest that the Warburg Effect is generated as a response to a loss in the integrity of the sequence and/or copy number of the mitochondrial genome content within a cancer. MAJOR CONCLUSIONS Multiple studies regarding the progression of cancer indicate that mutation, and/or, a flux in the copy number, of the mitochondrial genome content can support the early development of a cancer, until; the mutational load and/or the reduction-to-depletion of the copy number of the mitochondrial genome content induces the progression of the disease to an advanced phenotype. GENERAL SIGNIFICANCE Collectively, evidence has revealed that the human cell has incorporated the mitochondrial genome content into a cellular mechanism that, when pathologically actuated, can de(un)differentiate a cancer from the parental tissue of origin into an autonomous disease that disrupts the hierarchical structure-and-function of the human body. This article is part of a Special Issue entitled: Biochemistry of Mitochondria.
Collapse
|
367
|
An OGG1 polymorphism is associated with mitochondrial DNA content in pesticide-exposed fruit growers. Toxicology 2011; 287:8-14. [DOI: 10.1016/j.tox.2011.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/02/2011] [Accepted: 05/04/2011] [Indexed: 12/21/2022]
|
368
|
Savu O, Sunkari VG, Botusan IR, Grünler J, Nikoshkov A, Catrina SB. Stability of mitochondrial DNA against reactive oxygen species (ROS) generated in diabetes. Diabetes Metab Res Rev 2011; 27:470-9. [PMID: 21484980 DOI: 10.1002/dmrr.1203] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Increased production of reactive oxygen species (ROS) in mitochondria has been proposed as the pathogenic mechanism for chronic complications of diabetes. Mitochondrial DNA (mtDNA) is more vulnerable to reactive oxygen species. However, there are few data on the mitochondrial DNA damage in diabetes and these are available only from patients with different duration of the disease and tissues not relevant to the chronic complications of diabetes. We therefore proposed to study the stability of mitochondrial DNA under controlled experimental conditions, to understand its contribution to chronic complications of diabetes. METHODS The mitochondrial DNA damage was evaluated by long-fragment polymerase chain reaction in human dermal fibroblasts exposed to high glucose level and hypoxia (an additional source of reactive oxygen species) or in organs from diabetic animals (db/db mice) at different ages. Reactive oxygen species production was assessed in vitro by fluorescence and in vivo by nitrosylation of the proteins. The antioxidant enzymes were assessed by enzyme activity and by quantitative real-time polymerase chain reaction while the mitochondrial repair activity (base excision repair) was determined by using abasic site-containing oligonucleotides as substrates. RESULTS Hyperglycaemia, when combined with hypoxia, is able to induce mitochondrial DNA damage in human dermal fibroblasts. The deleterious effect is mediated by mitochondrial reactive oxygen species, being abolished when the mitochondria electron transport is blocked. The accumulation of mitochondrial DNA damage in vivo is, however, decreased in 'old' diabetic animals (db/db) despite higher reactive oxygen species levels. This mitochondrial DNA protection might be conferred by an increased base excision repair activity. CONCLUSION Increased base excision repair activity in tissues affected by the chronic complications of diabetes is a potential mechanism that can overcome mitochondrial DNA damage induced by hyperglycaemia-related reactive oxygen species overproduction.
Collapse
Affiliation(s)
- Octavian Savu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Rolf Luft Center for Diabetes and Endocrinology, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
369
|
Lauritzen KH, Cheng C, Wiksen H, Bergersen LH, Klungland A. Mitochondrial DNA toxicity compromises mitochondrial dynamics and induces hippocampal antioxidant defenses. DNA Repair (Amst) 2011; 10:639-53. [PMID: 21550321 DOI: 10.1016/j.dnarep.2011.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/18/2011] [Accepted: 04/06/2011] [Indexed: 11/20/2022]
Abstract
Mitochondria are highly dynamic organelles that can be actively transported within the cell to satisfy local requirements. They are vital for providing cellular energy, but are also an important endogenous source of reactive oxygen species. The distribution of mitochondria is particularly important for neurons because of the morphological complexity of these cells, and because neural processing is metabolically expensive. Defects in mitochondrial distribution, observed in several neurodegenerative diseases, can result in synaptic dysfunction. We have generated transgenic mice expressing an enzyme in forebrain neurons that causes mitochondrial DNA (mtDNA) damage in the form of abasic-sites, creating mtDNA toxicity. Here, we report that mitochondrial distribution is disturbed in hippocampal neurons of these mice. Moreover, mtDNA copy number and mitochondrial transcription are reduced, and oxidative stress is increased. There is also a loss of receptors at excitatory glutamatergic synapses in the dentate gyrus, and the size of the postsynaptic density in this region is abnormal. We speculate that the loss of synaptic mitochondria caused by accumulation in the neuronal cell body contributes to the observed synaptic abnormalities, as well as the overall loss of mtDNA and diminished mitochondrial transcription. Collectively, these changes lead to mitochondria with reduced function and increased oxidative stress.
Collapse
Affiliation(s)
- Knut H Lauritzen
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, NO-0027 Oslo, Norway
| | | | | | | | | |
Collapse
|
370
|
Zheng Q, Oldenburg DJ, Bendich AJ. Independent effects of leaf growth and light on the development of the plastid and its DNA content in Zea species. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2715-30. [PMID: 21266496 DOI: 10.1093/jxb/erq441] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In maize (Zea mays L.), chloroplast development progresses from the basal meristem to the mature leaf tip, and light is required for maturation to photosynthetic competence. During chloroplast greening, it was found that chloroplast DNA (cpDNA) is extensively degraded, falling to undetectable levels in many individual chloroplasts for three maize cultivars, as well as Zea mexicana (the ancestor of cultivated maize) and the perennial species Zea diploperennis. In dark-grown maize seedlings, the proplastid-to-etioplast transition is characterized by plastid enlargement, cpDNA replication, and the retention of high levels of cpDNA. When dark-grown seedlings are transferred to white light, the DNA content per plastid increases slightly during the first 4 h of illumination and then declines rapidly to a minimum at 24 h during the etioplast-to-chloroplast transition. Plastid autofluorescence (from chlorophyll) continues to increase as cpDNA declines, whereas plastid size remains constant. It is concluded that the increase in cpDNA that accompanies plastid enlargement is a consequence of cell and leaf growth, rather than illumination, whereas light stimulates photosynthetic capacity and cpDNA instability. When cpDNA from total tissue was monitored by blot hybridization and real-time quantitative PCR, no decline following transfer from dark to light was observed. The lack of agreement between DNA per plastid and cpDNA per cell may be attributed to nupts (nuclear sequences of plastid origin).
Collapse
Affiliation(s)
- Qi Zheng
- Department of Biology, Box 355325, University of Washington, Seattle, Washington 98195-5325, USA
| | | | | |
Collapse
|
371
|
Vendelbo MH, Nair KS. Mitochondrial longevity pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:634-44. [PMID: 21295080 DOI: 10.1016/j.bbamcr.2011.01.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 12/31/2022]
Abstract
Average lifespan has increased over the last centuries, as a consequence of medical and environmental factors, but maximal life span remains unchanged. Better understanding of the underlying mechanisms of aging and determinants of life span will help to reduce age-related morbidity and facilitate healthy aging. Extension of maximal life span is currently possible in animal models with measures such as genetic manipulations and caloric restriction (CR). CR appears to prolong life by reducing oxidative damage. Reactive oxygen species (ROS) have been proposed to cause deleterious effects on DNA, proteins, and lipids, and generation of these highly reactive molecules takes place in the mitochondria. But ROS is positively implicated in cellular stress defense mechanisms and formation of ROS a highly regulated process controlled by a complex network of intracellular signaling pathways. There are endogenous anti-oxidant defense systems that have the potential to partially counteract ROS impact. In this review, we will describe pathways contributing to the regulation of the age-related decline in mitochondrial function and their impact on longevity. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- M H Vendelbo
- Division of endocrinology, Endocrine research Unit, The Mayo Clinic, 200 1st Street SW Joseph 5-194, Rochester, MN 55905, USA
| | | |
Collapse
|
372
|
Gómez-Lechón MJ, Tolosa L, Castell JV, Donato MT. Mechanism-based selection of compounds for the development of innovative in vitro approaches to hepatotoxicity studies in the LIINTOP project. Toxicol In Vitro 2010; 24:1879-89. [DOI: 10.1016/j.tiv.2010.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/09/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
|
373
|
Thomas RR, Khan SM, Portell FR, Smigrodzki RM, Bennett JP. Recombinant human mitochondrial transcription factor A stimulates mitochondrial biogenesis and ATP synthesis, improves motor function after MPTP, reduces oxidative stress and increases survival after endotoxin. Mitochondrion 2010; 11:108-18. [PMID: 20727424 DOI: 10.1016/j.mito.2010.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/15/2010] [Accepted: 08/06/2010] [Indexed: 11/17/2022]
Abstract
Recombinant human mitochondrial transcription factor A protein (rhTFAM) was evaluated for its acute effects on cultured cells and chronic effects in mice. Fibroblasts incubated with rhTFAM acutely increased respiration in a chloramphenicol-sensitive manner. SH-SY5Y cells showed rhTFAM concentration-dependent reduction of methylpyridinium (MPP(+))-induced oxidative stress and increases in lowered ATP levels and viability. Mice treated with weekly i.v. rhTFAM showed increased mitochondrial gene copy number, complex I protein levels and ATP production rates; oxidative damage to proteins was decreased ~50%. rhTFAM treatment improved motor recovery rate after treatment with MPTP and dose-dependently improved survival in the lipopolysaccharide model of endotoxin sepsis.
Collapse
Affiliation(s)
- Ravindar R Thomas
- Morris Udall Parkinson's Disease Research Center of Excellence, University of Virginia, Charlottesville, VA, United States
| | | | | | | | | |
Collapse
|
374
|
Touati E. When bacteria become mutagenic and carcinogenic: lessons from H. pylori. Mutat Res 2010; 703:66-70. [PMID: 20709622 DOI: 10.1016/j.mrgentox.2010.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 07/30/2010] [Indexed: 12/24/2022]
Abstract
More and more convincing data link bacteria to the development of cancers. How bacteria act as mutagens by altering host genomes, what are the different strategies they develop and what consequences do they have on infection-associated pathogenesis are the main questions addressed in this review, which focuses in particular on Helicobacter pylori infection. H. pylori is a major risk factor for gastric cancer development. Its oncogenic role is mediated by the chronic active inflammation it elicits in the gastric mucosa, associated with its capacity to persistently colonize the human stomach. However, direct genotoxicity of H. pylori through the action of bacterial cytotoxin or resulting from a DNA damaging effect of its metabolic derivatives as nitroso compounds cannot be excluded. Numerous studies have investigated inflammation-associated DNA damaging activity and mutagenic response due to H. pylori infection in both human and animal models. Recent findings on its mutagenic effects at the nuclear and mitochondrial genome and related DNA damage are reviewed. This genotoxic activity associated with oxidative species produced during inflammation is linked to the decreased efficiency of DNA repair systems. DNA methylation, which plays an important role in the regulation of the host response to H. pylori infection, is also documented. Furthermore, H. pylori affects genome integrity by increasing activation-induced cytidine deaminase (AID), a DNA/RNA editing cytidine deaminase linking mutagenesis and tumorigenesis. These different strategies occurring during bacteria-host cell interaction, lead to nucleotide modifications and genome instabilities recognized as early events in the carcinogenesis process and contribute to the oncogenic properties of H. pylori infection.
Collapse
Affiliation(s)
- Eliette Touati
- Institut Pasteur, Unité de Pathogenèse de Helicobacter, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
375
|
Wang Q, Paunesku T, Woloschak G. Tissue and data archives from irradiation experiments conducted at Argonne National Laboratory over a period of four decades. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:317-324. [PMID: 20309706 DOI: 10.1007/s00411-010-0270-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 02/04/2010] [Indexed: 05/27/2023]
Abstract
Irradiation experiments conducted on dogs and mice at Argonne National Laboratory, IL between 1952 and 1992 led to creation of archives of paraffin-embedded tissues accompanied by extensive datasets with gross pathology and histopathology information. Over the past 40 years, these data were investigated computationally, using different statistical approaches. Embedded tissues are used to this day as a source of genomic and mitochondrial DNA for quantitative PCR amplification. Data and paraffin block sections are available upon request-interested researchers should visit the Websites http://janus.northwestern.edu/dog_tissues/introduction.php for dog and http://janus.northwestern.edu/janus2/index.php for mouse archive.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
376
|
Hebert SL, Lanza IR, Nair KS. Mitochondrial DNA alterations and reduced mitochondrial function in aging. Mech Ageing Dev 2010; 131:451-62. [PMID: 20307565 PMCID: PMC2910809 DOI: 10.1016/j.mad.2010.03.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 03/03/2010] [Accepted: 03/14/2010] [Indexed: 12/23/2022]
Abstract
Oxidative damage to mitochondrial DNA increases with aging. This damage has the potential to affect mitochondrial DNA replication and transcription which could alter the abundance or functionality of mitochondrial proteins. This review describes mitochondrial DNA alterations and changes in mitochondrial function that occur with aging. Age-related alterations in mitochondrial DNA as a possible contributor to the reduction in mitochondrial function are discussed.
Collapse
Affiliation(s)
| | | | - K. Sreekumaran Nair
- Corresponding author: K. Sreekumaran Nair, Endocrine Research Unit, Mayo Clinic, 200 First St. SW, Joseph 5-194, Rochester, MN 55905, Telephone: 507-255-2415, Fax: 507-255-4828,
| |
Collapse
|
377
|
Bendich AJ. Mitochondrial DNA, chloroplast DNA and the origins of development in eukaryotic organisms. Biol Direct 2010; 5:42. [PMID: 20587059 PMCID: PMC2907347 DOI: 10.1186/1745-6150-5-42] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 06/29/2010] [Indexed: 01/12/2023] Open
Abstract
Background Several proposals have been made to explain the rise of multicellular life forms. An internal environment can be created and controlled, germ cells can be protected in novel structures, and increased organismal size allows a "division of labor" among cell types. These proposals describe advantages of multicellular versus unicellular organisms at levels of organization at or above the individual cell. I focus on a subsequent phase of evolution, when multicellular organisms initiated the process of development that later became the more complex embryonic development found in animals and plants. The advantage here is realized at the level of the mitochondrion and chloroplast. Hypothesis The extreme instability of DNA in mitochondria and chloroplasts has not been widely appreciated even though it was first reported four decades ago. Here, I show that the evolutionary success of multicellular animals and plants can be traced to the protection of organellar DNA. Three stages are envisioned. Sequestration allowed mitochondria and chloroplasts to be placed in "quiet" germ line cells so that their DNA is not exposed to the oxidative stress produced by these organelles in "active" somatic cells. This advantage then provided Opportunity, a period of time during which novel processes arose for signaling within and between cells and (in animals) for cell-cell recognition molecules to evolve. Development then led to the enormous diversity of animals and plants. Implications The potency of a somatic stem cell is its potential to generate cell types other than itself, and this is a systems property. One of the biochemical properties required for stemness to emerge from a population of cells might be the metabolic quiescence that protects organellar DNA from oxidative stress. Reviewers This article was reviewed by John Logsdon, Arcady Mushegian, and Patrick Forterre.
Collapse
Affiliation(s)
- Arnold J Bendich
- Department of Biology, University of Washington, Seattle, WA 98195-5325, USA.
| |
Collapse
|
378
|
Liu P, Demple B. DNA repair in mammalian mitochondria: Much more than we thought? ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:417-426. [PMID: 20544882 DOI: 10.1002/em.20576] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
For many years, the repair of most damage in mitochondrial DNA (mtDNA) was thought limited to short-patch base excision repair (SP-BER), which replaces a single nucleotide by the sequential action of DNA glycosylases, an apurinic/apyrimidinic (AP) endonuclease, the mitochondrial DNA polymerase gamma, an abasic lyase activity, and mitochondrial DNA ligase. However, the likely array of lesions inflicted on mtDNA by oxygen radicals and the possibility of replication errors and disruptions indicated that such a restricted repair repertoire would be inadequate. Recent studies have considerably expanded our knowledge of mtDNA repair to include long-patch base excision repair (LP-BER), mismatch repair, and homologous recombination and nonhomologous end-joining. In addition, elimination of mutagenic 8-oxodeoxyguanosine triphosphate (8-oxodGTP) helps prevent cell death due to the accumulation of this oxidation product in mtDNA. Although it was suspected for many years that irreparably damaged mtDNA might be targeted for degradation, only recently was clear evidence provided for this hypothesis. Therefore, multiple DNA repair pathways and controlled degradation of mtDNA function together to maintain the integrity of mitochondrial genome.
Collapse
Affiliation(s)
- Pingfang Liu
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | | |
Collapse
|
379
|
Quinzii CM, López LC, Gilkerson RW, Dorado B, Coku J, Naini AB, Lagier-Tourenne C, Schuelke M, Salviati L, Carrozzo R, Santorelli F, Rahman S, Tazir M, Koenig M, DiMauro S, Hirano M. Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency. FASEB J 2010; 24:3733-43. [PMID: 20495179 DOI: 10.1096/fj.09-152728] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Coenzyme Q(10) (CoQ(10)) is essential for electron transport in the mitochondrial respiratory chain and antioxidant defense. The relative importance of respiratory chain defects, ROS production, and apoptosis in the pathogenesis of CoQ(10) deficiency is unknown. We determined previously that severe CoQ(10) deficiency in cultured skin fibroblasts harboring COQ2 and PDSS2 mutations produces divergent alterations of bioenergetics and oxidative stress. Here, to better understand the pathogenesis of CoQ(10) deficiency, we have characterized the effects of varying severities of CoQ(10) deficiency on ROS production and mitochondrial bioenergetics in cells harboring genetic defects of CoQ(10) biosynthesis. Levels of CoQ(10) seem to correlate with ROS production; 10-15% and >60% residual CoQ(10) are not associated with significant ROS production, whereas 30-50% residual CoQ(10) is accompanied by increased ROS production and cell death. Our results confirm that varying degrees of CoQ(10) deficiency cause variable defects of ATP synthesis and oxidative stress. These findings may lead to more rational therapeutic strategies for CoQ(10) deficiency.
Collapse
Affiliation(s)
- Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, 630 W. 168th St., P&S 4-423, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
380
|
Deng X, Vidal R, Englander EW. Accumulation of oxidative DNA damage in brain mitochondria in mouse model of hereditary ferritinopathy. Neurosci Lett 2010; 479:44-8. [PMID: 20478358 DOI: 10.1016/j.neulet.2010.05.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/07/2010] [Accepted: 05/07/2010] [Indexed: 01/18/2023]
Abstract
Tissue iron content is strictly regulated to concomitantly satisfy specialized metabolic requirements and avoid toxicity. Ferritin, a multi-subunit iron storage protein, is central to maintenance of iron homeostasis in the brain. Mutations in the ferritin light chain (FTL)-encoding gene underlie the autosomal dominant, neurodegenerative disease, neuroferritinopathy/hereditary ferritinopathy (HF). HF is characterized by progressive accumulation of ferritin and iron. To gain insight into mechanisms by which FTL mutations promote neurodegeneration, a transgenic mouse, expressing human mutant form of FTL, was recently generated. The FTL mouse exhibits buildup of iron in the brain and presents manifestations of oxidative stress reminiscent of the human disease. Here, we asked whether oxidative DNA damage accumulates in the FTL mouse brain. Long-range PCR (L-PCR) amplification-mediated DNA damage detection assays revealed that the integrity of mitochondrial DNA (mtDNA) in the brain was significantly compromised in the 12- but not 6-month-old FTL mice. Furthermore, L-PCR employed in conjunction with DNA modifying enzymes, which target specific DNA adducts, revealed the types of oxidative adducts accumulating in mtDNA in the FTL brain. Consistently with DNA damage predicted to form under conditions of excessive oxidative stress, detected adducts include, oxidized guanines, abasic sites and strand breaks. Elevated mtDNA damage may impair mitochondrial function and brain energetics and in the long term contribute to neuronal loss and exacerbate neurodegeneration in HF.
Collapse
Affiliation(s)
- Xiaoling Deng
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | |
Collapse
|
381
|
Production of reactive oxygen species by the mitochondrial electron transport chain in Drosophila melanogaster. J Bioenerg Biomembr 2010; 42:135-42. [PMID: 20300811 DOI: 10.1007/s10863-010-9281-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 02/17/2010] [Indexed: 12/19/2022]
Abstract
Mitochondrial free radicals and in particular mitochondrial Reactive Oxygen Species (mtROS) are considered to be totally or partially responsible for several different diseases including Parkinson, diabetes or cancer. Even more importantly, mtROS have also been proposed as the main driving force behind the aging process. Thus, in the last decade, there has been a growing interest in the role of free radicals as signalling molecules. Collectively this makes understanding mechanisms controlling free radical production extremely important. There is extensive published literature on mammalian models (essentially rat, mouse and guinea pig) however; this is not the case in Drosophila melanogaster. Drosophila is an excellent model to study different physiological and pathological processes. Additionally a robust method to study mtROS is extremely useful. In the present article, we describe a simple--but extremely sensitive--method to study mtROS production in Drosophila. We have performed various experiments to determine which specific respiratory complexes produce free radicals in the electron transport chain of Drosophila melanogaster. Complex I is the main generator of ROS in Drosophila mitochondria, leaking electrons either in the forward or reverse direction. The production of ROS during reverse electron transport can be prevented either by rotenone or by the oxidation of NADH by complex I. These results clearly show that Drosophila mitochondria function in a very similar way to mammalian mitochondria, and therefore are a very relevant experimental model for biochemical studies related to ageing.
Collapse
|
382
|
Role of calcineurin, hnRNPA2 and Akt in mitochondrial respiratory stress-mediated transcription activation of nuclear gene targets. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1055-65. [PMID: 20153290 DOI: 10.1016/j.bbabio.2010.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/01/2010] [Accepted: 02/07/2010] [Indexed: 01/18/2023]
Abstract
Pathophysiological conditions causing mitochondrial dysfunction and altered transmembrane potential (psim) initiate a mitochondrial respiratory stress response, also known as mitochondrial retrograde response, in a variety of mammalian cells. An increase in the cytosolic Ca2+ [Ca2+]c as part of this signaling cascade activates Ca2+ responsive phosphatase, calcineurin (Cn). Activation of IGF1R accompanied by increased glycolysis, invasiveness, and resistance to apoptosis is a phenotypic hallmark of C2C12 skeletal muscle cells subjected to this stress. The signaling is associated with activation and increased nuclear translocation of a number of transcription factors including a novel NFkappaB (cRel:p50) pathway, NFAT, CREB and C/EBPdelta. This culminates in the upregulation of a number of nuclear genes including Cathepsin L, RyR1, Glut4 and Akt1. We observed that stress regulated transcription activation of nuclear genes involves a cooperative interplay between NFkappaB (cRel:p50), C/EBPdelta, CREB, and NFAT. Our results show that the functional synergy of these factors requires the stress-activated heterogeneous nuclear ribonucleoprotein, hnRNPA2 as a transcriptional coactivator. We report here that mitochondrial stress leads to induced expression and activation of serine threonine kinase Akt1. Interestingly, we observe that Akt1 phosphorylates hnRNPA2 under mitochondrial stress conditions, which is a crucial step for the recruitment of this coactivator to the stress target promoters and culmination in mitochondrial stress-mediated transcription activation of target genes. We propose that mitochondrial stress plays an important role in tumor progression and emergence of invasive phenotypes.
Collapse
|
383
|
Abstract
With the aging of the population, we are seeing a global increase in the prevalence of age-related disorders, especially in developed countries. Chronic diseases disproportionately affect the older segment of the population, contributing to disability, a diminished quality of life and an increase in healthcare costs. Increased life expectancy reflects the success of contemporary medicine, which must now respond to the challenges created by this achievement, including the growing burden of chronic illnesses, injuries and disabilities. A well-developed theoretical framework is required to understand the molecular basis of aging. Such a framework is a prerequisite for the development of clinical interventions that will constitute an efficient response to the challenge of age-related health issues. This review critically analyzes the experimental evidence that supports and refutes the Free Radical/Mitochondrial Theory of Aging, which has dominated the field of aging research for almost half a century.
Collapse
Affiliation(s)
- Mikhail F Alexeyev
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
384
|
Rebelo AP, Williams SL, Moraes CT. In vivo methylation of mtDNA reveals the dynamics of protein-mtDNA interactions. Nucleic Acids Res 2009; 37:6701-15. [PMID: 19740762 PMCID: PMC2777446 DOI: 10.1093/nar/gkp727] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To characterize the organization of mtDNA–protein complexes (known as nucleoids) in vivo, we have probed the mtDNA surface exposure using site-specific DNA methyltransferases targeted to the mitochondria. We have observed that DNA methyltransferases have different accessibility to different sites on the mtDNA based on the levels of protein occupancy. We focused our studies on selected regions of mtDNA that are believed to be major regulatory regions involved in transcription and replication. The transcription termination region (TERM) within the tRNALeu(UUR) gene was consistently and strongly protected from methylation, suggesting frequent and high affinity binding of mitochondrial transcription termination factor 1 (mTERF1) to the site. Protection from methylation was also observed in other regions of the mtDNA, including the light and heavy strand promoters (LSP, HSP) and the origin of replication of the light strand (OL). Manipulations aiming at increasing or decreasing the levels of the mitochondrial transcription factor A (TFAM) led to decreased in vivo methylation, whereas manipulations that stimulated mtDNA replication led to increased methylation. We also analyzed the effect of ATAD3 and oxidative stress in mtDNA exposure. Our data provide a map of human mtDNA accessibility and demonstrate that nucleoids are dynamically associated with proteins.
Collapse
Affiliation(s)
- Adriana P Rebelo
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | |
Collapse
|
385
|
Selective inhibition of hypoxia-inducible factor (HIF) prolyl-hydroxylase 1 mediates neuroprotection against normoxic oxidative death via HIF- and CREB-independent pathways. J Neurosci 2009; 29:8828-38. [PMID: 19587290 DOI: 10.1523/jneurosci.1779-09.2009] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress contributes to tissue injury in conditions ranging from cardiovascular disease to stroke, spinal cord injury, neurodegeneration, and perhaps even aging. Yet the efficacy of antioxidants in human disease has been mixed at best. We need a better understanding of the mechanisms by which established antioxidants combat oxidative stress. Iron chelators are well established inhibitors of oxidative death in both neural and non-neural tissues, but their precise mechanism of action remains elusive. The prevailing but not completely substantiated view is that iron chelators prevent oxidative injury by suppressing Fenton chemistry and the formation of highly reactive hydroxyl radicals. Here, we show that iron chelation protects, rather unexpectedly, by inhibiting the hypoxia-inducible factor prolyl 4-hydroxylase isoform 1 (PHD1), an iron and 2-oxoglutarate-dependent dioxygenase. PHD1 and its isoforms 2 and 3 are best known for stabilizing transcriptional regulators involved in hypoxic adaptation, such as HIF-1alpha and cAMP response element-binding protein (CREB). Yet we find that global hypoxia-inducible factor (HIF)-PHD inhibition protects neurons even when HIF-1alpha and CREB are directly suppressed. Moreover, two global HIF-PHD inhibitors continued to be neuroprotective even in the presence of diminished HIF-2alpha levels, which itself increases neuronal susceptibility to oxidative stress. Finally, RNA interference to PHD1 but not isoforms PHD2 or PHD3 prevents oxidative death, independent of HIF activation. Together, these studies suggest that iron chelators can prevent normoxic oxidative neuronal death through selective inhibition of PHD1 but independent of HIF-1alpha and CREB; and that HIF-2alpha, not HIF-1alpha, regulates susceptibility to normoxic oxidative neuronal death.
Collapse
|
386
|
Is multiple sclerosis a mitochondrial disease? Biochim Biophys Acta Mol Basis Dis 2009; 1802:66-79. [PMID: 19607913 PMCID: PMC2790545 DOI: 10.1016/j.bbadis.2009.07.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is a relatively common and etiologically unknown disease with no cure. It is the leading cause of neurological disability in young adults, affecting over two million people worldwide. Traditionally, MS has been considered a chronic, inflammatory disorder of the central white matter in which ensuing demyelination results in physical disability. Recently, MS has become increasingly viewed as a neurodegenerative disorder in which axonal injury, neuronal loss, and atrophy of the central nervous system leads to permanent neurological and clinical disability. In this article, we discuss the latest developments on MS research, including etiology, pathology, genetic association, EAE animal models, mechanisms of neuronal injury and axonal transport, and therapeutics. In this article, we also focus on the mechanisms of mitochondrial dysfunction that are involved in MS, including mitochondrial DNA defects, and mitochondrial structural/functional changes.
Collapse
|