351
|
The PKA-C3 catalytic subunit is required in two pairs of interneurons for successful mating of Drosophila. Sci Rep 2018; 8:2458. [PMID: 29410515 PMCID: PMC5802784 DOI: 10.1038/s41598-018-20697-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Protein kinase A (PKA) has been shown to play a role in a plethora of cellular processes ranging from development to memory formation. Its activity is mediated by the catalytic subunits whereby many species express several paralogs. Drosophila encodes three catalytic subunits (PKA-C1–3) and whereas PKA-C1 has been well studied, the functions of the other two subunits were unknown. PKA-C3 is the orthologue of mammalian PRKX/Pkare and they are structurally more closely related to each other than to other catalytic subunits within their species. PRKX is expressed in the nervous system in mice but its function is also unknown. We now show that the loss of PKA-C3 in Drosophila causes copulation defects, though the flies are active and show no defects in other courtship behaviours. This phenotype is specifically due to the loss of PKA-C3 because PKA-C1 cannot replace PKA-C3. PKA-C3 is expressed in two pairs of interneurons that send projections to the ventro-lateral protocerebrum and the mushroom bodies and that synapse onto motor neurons in the ventral nerve cord. Rescue experiments show that expression of PKA-C3 in these interneurons is sufficient for copulation, suggesting a role in relaying information from the sensory system to motor neurons to initiate copulation.
Collapse
|
352
|
Cell-Type Transcriptomes of the Multicellular Green Alga Volvox carteri Yield Insights into the Evolutionary Origins of Germ and Somatic Differentiation Programs. G3-GENES GENOMES GENETICS 2018; 8:531-550. [PMID: 29208647 PMCID: PMC5919742 DOI: 10.1534/g3.117.300253] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Germ-soma differentiation is a hallmark of complex multicellular organisms, yet its origins are not well understood. Volvox carteri is a simple multicellular green alga that has recently evolved a simple germ-soma dichotomy with only two cell-types: large germ cells called gonidia and small terminally differentiated somatic cells. Here, we provide a comprehensive characterization of the gonidial and somatic transcriptomes of V. carteri to uncover fundamental differences between the molecular and metabolic programming of these cell-types. We found extensive transcriptome differentiation between cell-types, with somatic cells expressing a more specialized program overrepresented in younger, lineage-specific genes, and gonidial cells expressing a more generalist program overrepresented in more ancient genes that shared striking overlap with stem cell-specific genes from animals and land plants. Directed analyses of different pathways revealed a strong dichotomy between cell-types with gonidial cells expressing growth-related genes and somatic cells expressing an altruistic metabolic program geared toward the assembly of flagella, which support organismal motility, and the conversion of storage carbon to sugars, which act as donors for production of extracellular matrix (ECM) glycoproteins whose secretion enables massive organismal expansion. V. carteri orthologs of diurnally controlled genes from C. reinhardtii, a single-celled relative, were analyzed for cell-type distribution and found to be strongly partitioned, with expression of dark-phase genes overrepresented in somatic cells and light-phase genes overrepresented in gonidial cells- a result that is consistent with cell-type programs in V. carteri arising by cooption of temporal regulons in a unicellular ancestor. Together, our findings reveal fundamental molecular, metabolic, and evolutionary mechanisms that underlie the origins of germ-soma differentiation in V. carteri and provide a template for understanding the acquisition of germ-soma differentiation in other multicellular lineages.
Collapse
|
353
|
Wiegmann BM, Richards S. Genomes of Diptera. CURRENT OPINION IN INSECT SCIENCE 2018; 25:116-124. [PMID: 29602357 DOI: 10.1016/j.cois.2018.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
Diptera (true flies) are among the most diverse holometabolan insect orders and were the first eukaryotic order to have a representative genome fully sequenced. 110 fly species have publically available genome assemblies and many hundreds of population-level genomes have been generated in the model organisms Drosophila melanogaster and the malaria mosquito Anopheles gambiae. Comparative genomics carried out in a phylogenetic context is illuminating many aspects of fly biology, providing unprecedented insight into variability in genome structure, gene content, genetic mechanisms, and rates and patterns of evolution in genes, populations, and species. Despite the rich availability of genomic resources in flies, there remain many fly lineages to which new genome sequencing efforts should be directed. Such efforts would be most valuable in fly families or clades that exhibit multiple origins of key fly behaviors such as blood feeding, phytophagy, parasitism, pollination, and mycophagy.
Collapse
Affiliation(s)
- Brian M Wiegmann
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, United States.
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77006, United States
| |
Collapse
|
354
|
Petrovsky R, Krohne G, Großhans J. Overexpression of the lamina proteins Lamin and Kugelkern induces specific ultrastructural alterations in the morphology of the nuclear envelope of intestinal stem cells and enterocytes. Eur J Cell Biol 2018; 97:102-113. [PMID: 29395481 DOI: 10.1016/j.ejcb.2018.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 11/30/2022] Open
Abstract
The nuclear envelope has a stereotypic morphology consisting of a flat double layer of the inner and outer nuclear membrane, with interspersed nuclear pores. Underlying and tightly linked to the inner nuclear membrane is the nuclear lamina, a proteinous layer of intermediate filament proteins and associated proteins. Physiological, experimental or pathological alterations in the constitution of the lamina lead to changes in nuclear morphology, such as blebs and lobulations. It has so far remained unclear whether the morphological changes depend on the differentiation state and the specific lamina protein. Here we analysed the ultrastructural morphology of the nuclear envelope in intestinal stem cells and differentiated enterocytes in adult Drosophila flies, in which the proteins Lam, Kugelkern or a farnesylated variant of LamC were overexpressed. Surprisingly, we detected distinct morphological features specific for the respective protein. Lam induced envelopes with multiple layers of membrane and lamina, surrounding the whole nucleus whereas farnesylated LamC induced the formation of a thick fibrillary lamina. In contrast, Kugelkern induced single-layered and double-layered intranuclear membrane structures, which are likely be derived from infoldings of the inner nuclear membrane or of the double layer of the envelope.
Collapse
Affiliation(s)
- Roman Petrovsky
- Institute for Developmental Biochemistry, University of Göttingen, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany
| | - Georg Krohne
- Division of Electron Microscopy, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jörg Großhans
- Institute for Developmental Biochemistry, University of Göttingen, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
355
|
GFZF, a Glutathione S-Transferase Protein Implicated in Cell Cycle Regulation and Hybrid Inviability, Is a Transcriptional Coactivator. Mol Cell Biol 2018; 38:MCB.00476-17. [PMID: 29158293 DOI: 10.1128/mcb.00476-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/10/2017] [Indexed: 01/11/2023] Open
Abstract
The core promoters of protein-encoding genes play a central role in regulating transcription. M1BP is a transcriptional activator that associates with a core promoter element known as Motif 1 that resides at thousands of genes in Drosophila To gain insight into how M1BP functions, we identified an interacting protein called GFZF. GFZF had been previously identified in genetic screens for factors involved in maintenance of hybrid inviability, the G2-M DNA damage checkpoint, and RAS/mitogen-activated protein kinase (MAPK) signaling, but its contribution to these processes was unknown. Here, we show that GFZF resides in the nucleus and functions as a transcriptional coactivator. In addition, we show that GFZF is a glutathione S-transferase (GST). Thus, GFZF is the first transcriptional coactivator with intrinsic GST activity, and its identification as a transcriptional coactivator provides an explanation for its role in numerous biological processes.
Collapse
|
356
|
Zumaya-Estrada FA, Martínez-Barnetche J, Lavore A, Rivera-Pomar R, Rodríguez MH. Comparative genomics analysis of triatomines reveals common first line and inducible immunity-related genes and the absence of Imd canonical components among hemimetabolous arthropods. Parasit Vectors 2018; 11:48. [PMID: 29357911 PMCID: PMC5778769 DOI: 10.1186/s13071-017-2561-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
Background Insects operate complex humoral and cellular immune strategies to fend against invading microorganisms. The majority of these have been characterized in Drosophila and other dipterans. Information on hemipterans, including Triatominae vectors of Chagas disease remains incomplete and fractionated. Results We identified putative immune-related homologs of three Triatominae vectors of Chagas disease, Triatoma pallidipennis, T. dimidiata and T. infestans (TTTs), using comparative transcriptomics based on established immune response gene references, in conjunction with the predicted proteomes of Rhodnius prolixus, Cimex lecticularis and Acyrthosiphon pisum hemimetabolous. We present a compressive description of the humoral and cellular innate immune components of these TTTs and extend the immune information of other related hemipterans. Key homologs of the constitutive and induced immunity genes were identified in all the studied hemipterans. Conclusions Our results in the TTTs extend previous observations in other hemipterans lacking several components of the Imd signaling pathway. Comparison with other hexapods, using published data, revealed that the absence of various Imd canonical components is common in several hemimetabolous species. Electronic supplementary material The online version of this article (10.1186/s13071-017-2561-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jesús Martínez-Barnetche
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública, Cuernavaca, México
| | - Andrés Lavore
- Centro de Bioinvestigaciones (CeBio) and Centro de Investigación y Transferencia del Noroeste de Buenos Aires (CITNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina
| | - Rolando Rivera-Pomar
- Centro de Bioinvestigaciones (CeBio) and Centro de Investigación y Transferencia del Noroeste de Buenos Aires (CITNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina.,Laboratorio de Genética y Genómica Funcional. Centro Regional de Estudios Genómicos. Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mario Henry Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública, Cuernavaca, México.
| |
Collapse
|
357
|
Cejuela JM, Vinchurkar S, Goldberg T, Prabhu Shankar MS, Baghudana A, Bojchevski A, Uhlig C, Ofner A, Raharja-Liu P, Jensen LJ, Rost B. LocText: relation extraction of protein localizations to assist database curation. BMC Bioinformatics 2018; 19:15. [PMID: 29343218 PMCID: PMC5773052 DOI: 10.1186/s12859-018-2021-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022] Open
Abstract
Background The subcellular localization of a protein is an important aspect of its function. However, the experimental annotation of locations is not even complete for well-studied model organisms. Text mining might aid database curators to add experimental annotations from the scientific literature. Existing extraction methods have difficulties to distinguish relationships between proteins and cellular locations co-mentioned in the same sentence. Results LocText was created as a new method to extract protein locations from abstracts and full texts. LocText learned patterns from syntax parse trees and was trained and evaluated on a newly improved LocTextCorpus. Combined with an automatic named-entity recognizer, LocText achieved high precision (P = 86%±4). After completing development, we mined the latest research publications for three organisms: human (Homo sapiens), budding yeast (Saccharomyces cerevisiae), and thale cress (Arabidopsis thaliana). Examining 60 novel, text-mined annotations, we found that 65% (human), 85% (yeast), and 80% (cress) were correct. Of all validated annotations, 40% were completely novel, i.e. did neither appear in the annotations nor the text descriptions of Swiss-Prot. Conclusions LocText provides a cost-effective, semi-automated workflow to assist database curators in identifying novel protein localization annotations. The annotations suggested through text-mining would be verified by experts to guarantee high-quality standards of manually-curated databases such as Swiss-Prot. Electronic supplementary material The online version of this article (doi:10.1186/s12859-018-2021-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Miguel Cejuela
- Bioinformatics & Computational Biology, Department of Informatics, Technical University of Munich (TUM), Boltzmannstr. 3, Garching, 85748, Germany.
| | - Shrikant Vinchurkar
- Microsoft, Microsoft Development Center Copenhagen, Kanalvej 7, Kongens Lyngby, 2800, Denmark
| | - Tatyana Goldberg
- Bioinformatics & Computational Biology, Department of Informatics, Technical University of Munich (TUM), Boltzmannstr. 3, Garching, 85748, Germany
| | - Madhukar Sollepura Prabhu Shankar
- Bioinformatics & Computational Biology, Department of Informatics, Technical University of Munich (TUM), Boltzmannstr. 3, Garching, 85748, Germany
| | - Ashish Baghudana
- Department of Computer Science and Information Systems, Birla Institute of Technology and Science K. K. Birla Goa Campus, Zuarinagar, 403726, Goa, India
| | - Aleksandar Bojchevski
- Bioinformatics & Computational Biology, Department of Informatics, Technical University of Munich (TUM), Boltzmannstr. 3, Garching, 85748, Germany
| | - Carsten Uhlig
- Bioinformatics & Computational Biology, Department of Informatics, Technical University of Munich (TUM), Boltzmannstr. 3, Garching, 85748, Germany
| | - André Ofner
- Bioinformatics & Computational Biology, Department of Informatics, Technical University of Munich (TUM), Boltzmannstr. 3, Garching, 85748, Germany
| | - Pandu Raharja-Liu
- Bioinformatics & Computational Biology, Department of Informatics, Technical University of Munich (TUM), Boltzmannstr. 3, Garching, 85748, Germany
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, 2200, Denmark.
| | - Burkhard Rost
- Bioinformatics & Computational Biology, Department of Informatics, Technical University of Munich (TUM), Boltzmannstr. 3, Garching, 85748, Germany. .,Institute for Advanced Study (TUM-IAS), Lichtenbergstr. 2a, Garching/Munich, 85748, Germany. .,TUM School of Life Sciences Weihenstephan (WZW), Alte Akademie 8, Freising, Germany. .,Columbia University, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, USA. .,New York Consortium on Membrane Protein Structure (NYCOMPS), 701 West, 168th Street, New York, 10032, NY, USA.
| |
Collapse
|
358
|
Horváth B, Kalinka AT. The genetics of egg retention and fertilization success in Drosophila: One step closer to understanding the transition from facultative to obligate viviparity. Evolution 2018; 72:318-336. [PMID: 29265369 DOI: 10.1111/evo.13411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/16/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
Oviparous, facultative egg retention enables Drosophila females to withhold fertilized eggs in their reproductive tracts until circumstances favor oviposition. The propensity to retain fertilized eggs varies greatly between species, and is correlated with other reproductive traits, such as egg size and ovariole number. While previous studies have described the phenomenon, no study to date has characterized within-species variation or the genetic basis of the trait. Here, we develop a novel microscope-based method for measuring egg retention in Drosophila females and determine the range of phenotypic variation in mated female egg retention in a subset of 91 Drosophila Genetic Reference Panel (DGRP) lines. We inferred the genetic basis of egg retention using a genome-wide association study (GWAS). Further, the scoring of more than 95,000 stained, staged eggs enabled estimates of fertilization success for each line. We found evidence that ovary- and spermathecae-related genes as well as genes affecting olfactory behavior, male mating behavior, male-female attraction and sperm motility may play a crucial role in post-mating physiology. Based on our findings we also propose potential evolutionary routes toward obligate viviparity. In particular, we propose that the loss of fecundity incurred by viviparity could be offset by benefits arising from enhanced mate discrimination, resource specialization, or modified egg morphology.
Collapse
Affiliation(s)
- Barbara Horváth
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Vienna A-1210, Austria.,Vienna Graduate School of Population Genetics, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Vienna A-1210, Austria.,Current Address: Barbara Ellis, Institutionen för ekologi och genetik, Evolutionsbiologiskt Centrum (EBC), Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Alex T Kalinka
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Vienna A-1210, Austria
| |
Collapse
|
359
|
Cook CE, Bergman MT, Cochrane G, Apweiler R, Birney E. The European Bioinformatics Institute in 2017: data coordination and integration. Nucleic Acids Res 2018; 46:D21-D29. [PMID: 29186510 PMCID: PMC5753251 DOI: 10.1093/nar/gkx1154] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/30/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022] Open
Abstract
The European Bioinformatics Institute (EMBL-EBI) supports life-science research throughout the world by providing open data, open-source software and analytical tools, and technical infrastructure (https://www.ebi.ac.uk). We accommodate an increasingly diverse range of data types and integrate them, so that biologists in all disciplines can explore life in ever-increasing detail. We maintain over 40 data resources, many of which are run collaboratively with partners in 16 countries (https://www.ebi.ac.uk/services). Submissions continue to increase exponentially: our data storage has doubled in less than two years to 120 petabytes. Recent advances in cellular imaging and single-cell sequencing techniques are generating a vast amount of high-dimensional data, bringing to light new cell types and new perspectives on anatomy. Accordingly, one of our main focus areas is integrating high-quality information from bioimaging, biobanking and other types of molecular data. This is reflected in our deep involvement in Open Targets, stewarding of plant phenotyping standards (MIAPPE) and partnership in the Human Cell Atlas data coordination platform, as well as the 2017 launch of the Omics Discovery Index. This update gives a birds-eye view of EMBL-EBI's approach to data integration and service development as genomics begins to enter the clinic.
Collapse
Affiliation(s)
- Charles E Cook
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Mary T Bergman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Guy Cochrane
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Rolf Apweiler
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
360
|
Fang S, Zhang L, Guo J, Niu Y, Wu Y, Li H, Zhao L, Li X, Teng X, Sun X, Sun L, Zhang MQ, Chen R, Zhao Y. NONCODEV5: a comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res 2018; 46:D308-D314. [PMID: 29140524 PMCID: PMC5753287 DOI: 10.1093/nar/gkx1107] [Citation(s) in RCA: 371] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/14/2017] [Accepted: 10/25/2017] [Indexed: 02/05/2023] Open
Abstract
NONCODE (http://www.bioinfo.org/noncode/) is a systematic database that is dedicated to presenting the most complete collection and annotation of non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs). Since NONCODE 2016 was released two years ago, the amount of novel identified ncRNAs has been enlarged by the reduced cost of next-generation sequencing, which has produced an explosion of newly identified data. The third-generation sequencing revolution has also offered longer and more accurate annotations. Moreover, accumulating evidence confirmed by biological experiments has provided more comprehensive knowledge of lncRNA functions. The ncRNA data set was expanded by collecting newly identified ncRNAs from literature published over the past two years and integration of the latest versions of RefSeq and Ensembl. Additionally, pig was included in the database for the first time, bringing the total number of species to 17. The number of lncRNAs in NONCODEv5 increased from 527 336 to 548 640. NONCODEv5 also introduced three important new features: (i) human lncRNA-disease relationships and single nucleotide polymorphism-lncRNA-disease relationships were constructed; (ii) human exosome lncRNA expression profiles were displayed; (iii) the RNA secondary structures of NONCODE human transcripts were predicted. NONCODEv5 is also accessible through http://www.noncode.org/.
Collapse
Affiliation(s)
- ShuangSang Fang
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - LiLi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - JinCheng Guo
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - YiWei Niu
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Wu
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Li
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - LianHe Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - XiYuan Li
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - XueYi Teng
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - XianHui Sun
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Sun
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Michael Q Zhang
- School of Medicine, MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
| | - RunSheng Chen
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- To whom correspondence should be addressed. Tel: +86 10 6260 0822; Fax: +86 10 6260 1356; . Correspondence may also be addressed to RunSheng Chen. Tel: +86 10 6488 8543; Fax: +86 10 6487 7837;
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- Chinese Academy of Sciences, LuoYang Branch of Institute of Computing Technology, Luoyang, China
- To whom correspondence should be addressed. Tel: +86 10 6260 0822; Fax: +86 10 6260 1356; . Correspondence may also be addressed to RunSheng Chen. Tel: +86 10 6488 8543; Fax: +86 10 6487 7837;
| |
Collapse
|
361
|
Tomaru M, Ohsako T, Watanabe M, Juni N, Matsubayashi H, Sato H, Takahashi A, Yamamoto MT. Severe Fertility Effects of sheepish Sperm Caused by Failure To Enter Female Sperm Storage Organs in Drosophila melanogaster. G3 (BETHESDA, MD.) 2018; 8:149-160. [PMID: 29158336 PMCID: PMC5765343 DOI: 10.1534/g3.117.300171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022]
Abstract
In Drosophila, mature sperm are transferred from males to females during copulation, stored in the sperm storage organs of females, and then utilized for fertilization. Here, we report a gene named sheepish (shps) of Drosophila melanogaster that is essential for sperm storage in females. shps mutant males, although producing morphologically normal and motile sperm that are effectively transferred to females, produce very few offspring. Direct counts of sperm indicated that the primary defect was correlated to failure of shps sperm to migrate into the female sperm storage organs. Increased sperm motion parameters were seen in the control after transfer to females, whereas sperm from shps males have characteristics of the motion parameters different from the control. The few sperm that occasionally entered the female sperm storage organs showed no obvious defects in fertilization and early embryo development. The female postmating responses after copulation with shps males appeared normal, at least with respect to conformational changes of uterus, mating plug formation, and female remating rates. The shps gene encodes a protein with homology to amine oxidases, including as observed in mammals, with a transmembrane region at the C-terminal end. The shps mutation was characterized by a nonsense replacement in the third exon of CG13611, and shps was rescued by transformants of the wild-type copy of CG13611 Thus, shps may define a new class of gene responsible for sperm storage.
Collapse
Affiliation(s)
- Masatoshi Tomaru
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Takashi Ohsako
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Masahide Watanabe
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Naoto Juni
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Hiroshi Matsubayashi
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Hiromi Sato
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Ayako Takahashi
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Masa-Toshi Yamamoto
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| |
Collapse
|
362
|
RNA-Sequencing of Drosophila melanogaster Head Tissue on High-Sugar and High-Fat Diets. G3-GENES GENOMES GENETICS 2018; 8:279-290. [PMID: 29141990 PMCID: PMC5765356 DOI: 10.1534/g3.117.300397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity has been shown to increase risk for cardiovascular disease and type-2 diabetes. In addition, it has been implicated in aggravation of neurological conditions such as Alzheimer’s. In the model organism Drosophila melanogaster, a physiological state mimicking diet-induced obesity can be induced by subjecting fruit flies to a solid medium disproportionately higher in sugar than protein, or that has been supplemented with a rich source of saturated fat. These flies can exhibit increased circulating glucose levels, increased triglyceride content, insulin-like peptide resistance, and behavior indicative of neurological decline. We subjected flies to variants of the high-sugar diet, high-fat diet, or normal (control) diet, followed by a total RNA extraction from fly heads of each diet group for the purpose of Poly-A selected RNA-Sequencing. Our objective was to identify the effects of obesogenic diets on transcriptome patterns, how they differed between obesogenic diets, and identify genes that may relate to pathogenesis accompanying an obesity-like state. Gene ontology analysis indicated an overrepresentation of affected genes associated with immunity, metabolism, and hemocyanin in the high-fat diet group, and CHK, cell cycle activity, and DNA binding and transcription in the high-sugar diet group. Our results also indicate differences in the effects of the high-fat diet and high-sugar diet on expression profiles in head tissue of flies, despite the reportedly similar phenotypic impacts of the diets. The impacted genes, and how they may relate to pathogenesis in the Drosophila obesity-like state, warrant further experimental investigation.
Collapse
|
363
|
Elsik CG, Tayal A, Unni DR, Burns GW, Hagen DE. Hymenoptera Genome Database: Using HymenopteraMine to Enhance Genomic Studies of Hymenopteran Insects. Methods Mol Biol 2018; 1757:513-556. [PMID: 29761469 DOI: 10.1007/978-1-4939-7737-6_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Hymenoptera Genome Database (HGD; http://hymenopteragenome.org ) is a genome informatics resource for insects of the order Hymenoptera, which includes bees, ants and wasps. HGD provides genome browsers with manual annotation tools (JBrowse/Apollo), BLAST, bulk data download, and a data mining warehouse (HymenopteraMine). This chapter focuses on the use of HymenopteraMine to create annotation data sets that can be exported for use in downstream analyses. HymenopteraMine leverages the InterMine platform to combine genome assemblies and official gene sets with data from OrthoDB, RefSeq, FlyBase, Gene Ontology, UniProt, InterPro, KEGG, Reactome, dbSNP, PubMed, and BioGrid, as well as precomputed gene expression information based on publicly available RNAseq. Built-in template queries provide starting points for data exploration, while the QueryBuilder tool supports construction of complex custom queries. The List Analysis and Genomic Regions search tools execute queries based on uploaded lists of identifiers and genome coordinates, respectively. HymenopteraMine facilitates cross-species data mining based on orthology and supports meta-analyses by tracking identifiers across gene sets and genome assemblies.
Collapse
Affiliation(s)
- Christine G Elsik
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA.
- MU Informatics Institute, University of Missouri, Columbia, MO, USA.
| | - Aditi Tayal
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Deepak R Unni
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Gregory W Burns
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Darren E Hagen
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
364
|
Abstract
For more than 25 years, FlyBase ( flybase.org ) has served as an online database of biological information on the genus Drosophila, concentrating on the model organism D. melanogaster. Traditionally, FlyBase data have been organized and presented at a gene-by-gene level, which remains a useful perspective when the object of interest is a specific gene or gene product. However, in the modern era of a fully sequenced genome and an increasingly characterized proteome, it is often desirable to compile and analyze lists of genes related by a common function. This may be achieved in FlyBase by searching for genes annotated with relevant Gene Ontology (GO) terms and/or protein domain data. In addition, FlyBase provides preassembled lists of functionally related D. melanogaster genes within "Gene Group" reports. These are compiled manually from the published literature or expert databases and greatly facilitate access to, and analysis of, established gene sets. This chapter describes protocols to produce lists of functionally related genes in FlyBase using GO annotations, protein domain data and the Gene Groups resource, and provides guidance and advice for their further analysis and processing.
Collapse
Affiliation(s)
- Alix J Rey
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Helen Attrill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Steven J Marygold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
365
|
The Notch Interactome: Complexity in Signaling Circuitry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:125-140. [PMID: 30030825 DOI: 10.1007/978-3-319-89512-3_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Notch pathway controls a very broad spectrum of cell fates in metazoans during development, influencing proliferation, differentiation and cell death. Given its central role in normal development and homeostasis, misregulation of Notch signals can lead to various disorders including cancer. How the Notch pathway mediates such pleiotropic and differential effects is of fundamental importance. It is becoming increasingly clear through a number of large-scale genetic and proteomic studies that Notch interacts with a staggeringly large number of other genes and pathways in a context-dependent, complex, and highly regulated network, which determines the ultimate biological outcome. How best to interpret and analyze the continuously increasing wealth of data on Notch interactors remains a challenge. Here we review the current state of genetic and proteomic data related to the Notch interactome.
Collapse
|
366
|
Post S, Karashchuk G, Wade JD, Sajid W, De Meyts P, Tatar M. Drosophila Insulin-Like Peptides DILP2 and DILP5 Differentially Stimulate Cell Signaling and Glycogen Phosphorylase to Regulate Longevity. Front Endocrinol (Lausanne) 2018; 9:245. [PMID: 29892262 PMCID: PMC5985746 DOI: 10.3389/fendo.2018.00245] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023] Open
Abstract
Insulin and IGF signaling (IIS) is a complex system that controls diverse processes including growth, development, metabolism, stress responses, and aging. Drosophila melanogaster IIS is propagated by eight Drosophila insulin-like peptides (DILPs), homologs of both mammalian insulin and IGFs, with various spatiotemporal expression patterns and functions. DILPs 1-7 are thought to act through a single Drosophila insulin/IGF receptor, InR, but it is unclear how the DILPs thereby mediate a range of physiological phenotypes. We determined the distinct cell signaling effects of DILP2 and DILP5 stimulation upon Drosophila S2 cells. DILP2 and DILP5 induced similar transcriptional patterns but differed in signal transduction kinetics. DILP5 induced sustained phosphorylation of Akt, while DILP2 produced acute, transient Akt phosphorylation. Accordingly, we used phosphoproteomic analysis to identify distinct patterns of non-genomic signaling induced by DILP2 and DILP5. Across all treatments and replicates, 5,250 unique phosphopeptides were identified, representing 1,575 proteins. Among these peptides, DILP2, but not DILP5, dephosphorylated Ser15 on glycogen phosphorylase (GlyP), and DILP2, but not DILP5, was subsequently shown to repress enzymatic GlyP activity in S2 cells. The functional consequences of this difference were evaluated in adult Drosophila dilp mutants: dilp2 null adults have elevated GlyP enzymatic activity relative to wild type, while dilp5 mutants have reduced GlyP activity. In flies with intact insulin genes, GlyP overexpression extended lifespan in a Ser15 phosphorylation-dependent manner. In dilp2 mutants, that are otherwise long-lived, longevity was repressed by expression of phosphonull GlyP that is enzymatically inactive. Overall, DILP2, unlike DILP5, signals to affect longevity in part through its control of phosphorylation to deactivate glycogen phosphorylase, a central modulator of glycogen storage and gluconeogenesis.
Collapse
Affiliation(s)
- Stephanie Post
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
- *Correspondence: Stephanie Post, ; Marc Tatar,
| | - Galina Karashchuk
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| | - John D. Wade
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- School of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | | | - Pierre De Meyts
- Department of Cell Signalling, de Duve Institute, Brussels, Belgium
- Department of Stem Cell Research Novo Nordisk A/S, Måløv, Denmark
| | - Marc Tatar
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
- *Correspondence: Stephanie Post, ; Marc Tatar,
| |
Collapse
|
367
|
Raciti D, Yook K, Harris TW, Schedl T, Sternberg PW. Micropublication: incentivizing community curation and placing unpublished data into the public domain. Database (Oxford) 2018; 2018:4917853. [PMID: 29688367 PMCID: PMC5836261 DOI: 10.1093/database/bay013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 12/27/2022]
Abstract
Large volumes of data generated by research laboratories coupled with the required effort and cost of curation present a significant barrier to inclusion of these data in authoritative community databases. Further, many publicly funded experimental observations remain invisible to curation simply because they are never published: results often do not fit within the scope of a standard publication; trainee-generated data are forgotten when the experimenter (e.g. student, post-doc) leaves the lab; results are omitted from science narratives due to publication bias where certain results are considered irrelevant for the publication. While authors are in the best position to curate their own data, they face a steep learning curve to ensure that appropriate referential tags, metadata, and ontologies are applied correctly to their observations, a task sometimes considered beyond the scope of their research and other numerous responsibilities. Getting researchers to adopt a new system of data reporting and curation requires a fundamental change in behavior among all members of the research community. To solve these challenges, we have created a novel scholarly communication platform that captures data from researchers and directly delivers them to information resources via Micropublication. This platform incentivizes authors to publish their unpublished observations along with associated metadata by providing a deliberately fast and lightweight but still peer-reviewed process that results in a citable publication. Our long-term goal is to develop a data ecosystem that improves reproducibility and accountability of publicly funded research and in turn accelerates both basic and translational discovery. Database URL www.micropublication.org.
Collapse
Affiliation(s)
- Daniela Raciti
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Karen Yook
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Todd W Harris
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Paul W Sternberg
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
368
|
A conserved maternal-specific repressive domain in Zelda revealed by Cas9-mediated mutagenesis in Drosophila melanogaster. PLoS Genet 2017; 13:e1007120. [PMID: 29261646 PMCID: PMC5752043 DOI: 10.1371/journal.pgen.1007120] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/03/2018] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
Abstract
In nearly all metazoans, the earliest stages of development are controlled by maternally deposited mRNAs and proteins. The zygotic genome becomes transcriptionally active hours after fertilization. Transcriptional activation during this maternal-to-zygotic transition (MZT) is tightly coordinated with the degradation of maternally provided mRNAs. In Drosophila melanogaster, the transcription factor Zelda plays an essential role in widespread activation of the zygotic genome. While Zelda expression is required both maternally and zygotically, the mechanisms by which it functions to remodel the embryonic genome and prepare the embryo for development remain unclear. Using Cas9-mediated genome editing to generate targeted mutations in the endogenous zelda locus, we determined the functional relevance of protein domains conserved amongst Zelda orthologs. We showed that neither a conserved N-terminal zinc finger nor an acidic patch were required for activity. Similarly, a previously identified splice isoform of zelda is dispensable for viability. By contrast, we identified a highly conserved zinc-finger domain that is essential for the maternal, but not zygotic functions of Zelda. Animals homozygous for mutations in this domain survived to adulthood, but embryos inheriting these loss-of-function alleles from their mothers died late in embryogenesis. These mutations did not interfere with the capacity of Zelda to activate transcription in cell culture. Unexpectedly, these mutations generated a hyperactive form of the protein and enhanced Zelda-dependent gene expression. These data have defined a protein domain critical for controlling Zelda activity during the MZT, but dispensable for its roles later in development, for the first time separating the maternal and zygotic requirements for Zelda. This demonstrates that highly regulated levels of Zelda activity are required for establishing the developmental program during the MZT. We propose that tightly regulated gene expression is essential to navigate the MZT and that failure to precisely execute this developmental program leads to embryonic lethality. Following fertilization, the one-celled zygote must be rapidly reprogrammed to enable the development of a new, unique organism. During these initial stages of development there is little or no transcription of the zygotic genome, and maternally deposited products control this process. Among the essential maternal products are mRNAs that encode transcription factors required for preparing the zygotic genome for transcriptional activation. This ensures that there is a precisely coordinated hand-off from maternal to zygotic control. In Drosophila melanogaster, the transcription factor Zelda is essential for activating the zygotic genome and coupling this activation to the degradation of the maternally deposited products. Nonetheless, the mechanism by which Zelda functions remains unclear. Here we used Cas9-mediated genome engineering to determine the functional requirements for highly conserved domains within Zelda. We identified a domain required specifically for Zelda’s role in reprogramming the early embryonic genome, but not essential for its functions later in development. Surprisingly, this domain restricts the ability of Zelda to activate transcription. These data demonstrate that Zelda activity is tightly regulated, and we propose that precise regulation of both the timing and levels of genome activation is required for the embryo to successfully transition from maternal to zygotic control.
Collapse
|
369
|
Jiang M, Gao Z, Wang J, Nurminsky DI. Evidence for a hierarchical transcriptional circuit in Drosophila male germline involving testis-specific TAF and two gene-specific transcription factors, Mod and Acj6. FEBS Lett 2017; 592:46-59. [PMID: 29235675 DOI: 10.1002/1873-3468.12937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023]
Abstract
To analyze transcription factors involved in gene regulation by testis-specific TAF (tTAF), tTAF-dependent promoters were mapped and analyzed in silico. Core promoters show decreased AT content, paucity of classical promoter motifs, and enrichment with translation control element CAAAATTY. Scanning of putative regulatory regions for known position frequency matrices identified 19 transcription regulators possibly contributing to tTAF-driven gene expression. Decreased male fertility associated with mutation in one of the regulators, Acj6, indicates its involvement in male reproduction. Transcriptome study of testes from male mutants for tTAF, Acj6, and previously characterized tTAF-interacting factor Modulo implies the existence of a regulatory hierarchy of tTAF, Modulo and Acj6, in which Modulo and/or Acj6 regulate one-third of tTAF-dependent genes.
Collapse
Affiliation(s)
- Mei Jiang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Zhengliang Gao
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Advanced Institute of Translational Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jian Wang
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, China
| | - Dmitry I Nurminsky
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
370
|
Mohammed J, Flynt AS, Panzarino AM, Mondal MMH, DeCruz M, Siepel A, Lai EC. Deep experimental profiling of microRNA diversity, deployment, and evolution across the Drosophila genus. Genome Res 2017; 28:52-65. [PMID: 29233922 PMCID: PMC5749182 DOI: 10.1101/gr.226068.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/20/2017] [Indexed: 11/24/2022]
Abstract
To assess miRNA evolution across the Drosophila genus, we analyzed several billion small RNA reads across 12 fruit fly species. These data permit comprehensive curation of species- and clade-specific variation in miRNA identity, abundance, and processing. Among well-conserved miRNAs, we observed unexpected cases of clade-specific variation in 5' end precision, occasional antisense loci, and putatively noncanonical loci. We also used strict criteria to identify a large set (649) of novel, evolutionarily restricted miRNAs. Within the bulk collection of species-restricted miRNAs, two notable subpopulations are splicing-derived mirtrons and testes-restricted, recently evolved, clustered (TRC) canonical miRNAs. We quantified miRNA birth and death using our annotation and a phylogenetic model for estimating rates of miRNA turnover. We observed striking differences in birth and death rates across miRNA classes defined by biogenesis pathway, genomic clustering, and tissue restriction, and even identified flux heterogeneity among Drosophila clades. In particular, distinct molecular rationales underlie the distinct evolutionary behavior of different miRNA classes. Mirtrons are associated with high rates of 3' untemplated addition, a mechanism that impedes their biogenesis, whereas TRC miRNAs appear to evolve under positive selection. Altogether, these data reveal miRNA diversity among Drosophila species and principles underlying their emergence and evolution.
Collapse
Affiliation(s)
- Jaaved Mohammed
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853, USA.,Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York 10021, USA.,Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA.,Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Alex S Flynt
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA.,Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA
| | - Alexandra M Panzarino
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | | | - Matthew DeCruz
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Eric C Lai
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York 10021, USA.,Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
371
|
Jung S, Lee T, Cheng CH, Ficklin S, Yu J, Humann J, Main D. Extension modules for storage, visualization and querying of genomic, genetic and breeding data in Tripal databases. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2017; 2017:4718480. [PMID: 31725859 PMCID: PMC5727400 DOI: 10.1093/database/bax092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 01/15/2023]
Abstract
Tripal is an open-source database platform primarily used for development of genomic, genetic and breeding databases. We report here on the release of the Chado Loader, Chado Data Display and Chado Search modules to extend the functionality of the core Tripal modules. These new extension modules provide additional tools for (1) data loading, (2) customized visualization and (3) advanced search functions for supported data types such as organism, marker, QTL/Mendelian Trait Loci, germplasm, map, project, phenotype, genotype and their respective metadata. The Chado Loader module provides data collection templates in Excel with defined metadata and data loaders with front end forms. The Chado Data Display module contains tools to visualize each data type and the metadata which can be used as is or customized as desired. The Chado Search module provides search and download functionality for the supported data types. Also included are the tools to visualize map and species summary. The use of materialized views in the Chado Search module enables better performance as well as flexibility of data modeling in Chado, allowing existing Tripal databases with different metadata types to utilize the module. These Tripal Extension modules are implemented in the Genome Database for Rosaceae (rosaceae.org), CottonGen (cottongen.org), Citrus Genome Database (citrusgenomedb.org), Genome Database for Vaccinium (vaccinium.org) and the Cool Season Food Legume Database (coolseasonfoodlegume.org). Database URL: https://www.citrusgenomedb.org/, https://www.coolseasonfoodlegume.org/, https://www.cottongen.org/, https://www.rosaceae.org/, https://www.vaccinium.org/.
Collapse
Affiliation(s)
- Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Taein Lee
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Chun-Huai Cheng
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Stephen Ficklin
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Jing Yu
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Jodi Humann
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
372
|
Lockwood BL, Julick CR, Montooth KL. Maternal loading of a small heat shock protein increases embryo thermal tolerance in Drosophila melanogaster. J Exp Biol 2017; 220:4492-4501. [PMID: 29097593 PMCID: PMC5769566 DOI: 10.1242/jeb.164848] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023]
Abstract
Maternal investment is likely to have direct effects on offspring survival. In oviparous animals whose embryos are exposed to the external environment, maternal provisioning of molecular factors like mRNAs and proteins may help embryos cope with sudden changes in the environment. Here, we sought to modify the maternal mRNA contribution to offspring embryos and test for maternal effects on acute thermal tolerance in early embryos of Drosophila melanogaster We drove in vivo overexpression of a small heat shock protein gene (Hsp23) in female ovaries and measured the effects of acute thermal stress on offspring embryonic survival and larval development. We report that overexpression of the Hsp23 gene in female ovaries produced offspring embryos with increased thermal tolerance. We also found that brief heat stress in the early embryonic stage (0-1 h old) caused decreased larval performance later in life (5-10 days old), as indexed by pupation height. Maternal overexpression of Hsp23 protected embryos against this heat-induced defect in larval performance. Our data demonstrate that transient products of single genes have large and lasting effects on whole-organism environmental tolerance. Further, our results suggest that maternal effects have a profound impact on offspring survival in the context of thermal variability.
Collapse
Affiliation(s)
- Brent L Lockwood
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Cole R Julick
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
373
|
Manning L, Sheth J, Bridges S, Saadin A, Odinammadu K, Andrew D, Spencer S, Montell D, Starz-Gaiano M. A hormonal cue promotes timely follicle cell migration by modulating transcription profiles. Mech Dev 2017; 148:56-68. [PMID: 28610887 PMCID: PMC5758037 DOI: 10.1016/j.mod.2017.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/30/2017] [Accepted: 06/09/2017] [Indexed: 12/12/2022]
Abstract
Cell migration is essential during animal development. In the Drosophila ovary, the steroid hormone ecdysone coordinates nutrient sensing, growth, and the timing of morphogenesis events including border cell migration. To identify downstream effectors of ecdysone signaling, we profiled gene expression in wild-type follicle cells compared to cells expressing a dominant negative Ecdysone receptor or its coactivator Taiman. Of approximately 400 genes that showed differences in expression, we validated 16 candidate genes for expression in border and centripetal cells, and demonstrated that seven responded to ectopic ecdysone activation by changing their transcriptional levels. We found a requirement for seven putative targets in effective cell migration, including two other nuclear hormone receptors, a calcyphosine-encoding gene, and a prolyl hydroxylase. Thus, we identified multiple new genetic regulators modulated at the level of transcription that allow cells to interpret information from the environment and coordinate cell migration in vivo.
Collapse
Affiliation(s)
- Lathiena Manning
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States; UNC Chapel Hill, NC, United States
| | - Jinal Sheth
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Stacey Bridges
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Afsoon Saadin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Kamsi Odinammadu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Deborah Andrew
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | | | - Denise Montell
- University of Santa Barbara, Santa Barbara, CA, United States.
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States.
| |
Collapse
|
374
|
Marxreiter S, Thummel CS. Adult functions for the Drosophila DHR78 nuclear receptor. Dev Dyn 2017; 247:315-322. [PMID: 29171103 DOI: 10.1002/dvdy.24608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The Testicular Receptors 2 and 4 (TR2, TR4) comprise a small subfamily of orphan nuclear receptors. Genetic studies in mouse models have identified roles for TR4 in developmental progression, fertility, brain development, and metabolism, as well as genetic redundancy with TR2. Here we study the adult functions of the single Drosophila member of this subfamily, DHR78, with the goal of defining its ancestral functions in the absence of genetic redundancy. RESULTS We show that DHR78 mutants have a shortened lifespan, reduced motility, and mated DHR78 mutant females display a reduced feeding rate. Transcriptional profiling reveals a major role for DHR78 in promoting the expression of genes that are expressed in the midgut, suggesting that it contributes to nutrient uptake. We also identify roles for DHR78 in maintaining the expression of genes in the ecdysone and Notch signaling pathways. CONCLUSIONS This study provides a new context for linking the molecular activity of the TR orphan nuclear receptors with their complex roles in adult physiology and lifespan. Developmental Dynamics 247:315-322, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stefanie Marxreiter
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
375
|
A multiplexable TALE-based binary expression system for in vivo cellular interaction studies. Nat Commun 2017; 8:1663. [PMID: 29162808 PMCID: PMC5698491 DOI: 10.1038/s41467-017-01592-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/03/2017] [Indexed: 11/08/2022] Open
Abstract
Binary expression systems have revolutionised genetic research by enabling delivery of loss-of-function and gain-of-function transgenes with precise spatial-temporal resolution in vivo. However, at present, each existing platform relies on a defined exogenous transcription activator capable of binding a unique recognition sequence. Consequently, none of these technologies alone can be used to simultaneously target different tissues or cell types in the same organism. Here, we report a modular system based on programmable transcription activator-like effector (TALE) proteins, which enables parallel expression of multiple transgenes in spatially distinct tissues in vivo. Using endogenous enhancers coupled to TALE drivers, we demonstrate multiplexed orthogonal activation of several transgenes carrying cognate variable activating sequences (VAS) in distinct neighbouring cell types of the Drosophila central nervous system. Since the number of combinatorial TALE–VAS pairs is virtually unlimited, this platform provides an experimental framework for highly complex genetic manipulation studies in vivo. Binary expression systems enable researchers to deliver loss-of-function or gain-of-function transgenes with spatial-temporal resolution in vivo. Here, the authors present a programmable TALE-based system for multiplexed orthogonal activation of transgenes in Drosophila.
Collapse
|
376
|
Dhaygude K, Trontti K, Paviala J, Morandin C, Wheat C, Sundström L, Helanterä H. Transcriptome sequencing reveals high isoform diversity in the ant Formica exsecta. PeerJ 2017; 5:e3998. [PMID: 29177112 PMCID: PMC5701548 DOI: 10.7717/peerj.3998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Transcriptome resources for social insects have the potential to provide new insight into polyphenism, i.e., how divergent phenotypes arise from the same genome. Here we present a transcriptome based on paired-end RNA sequencing data for the ant Formica exsecta (Formicidae, Hymenoptera). The RNA sequencing libraries were constructed from samples of several life stages of both sexes and female castes of queens and workers, in order to maximize representation of expressed genes. We first compare the performance of common assembly and scaffolding software (Trinity, Velvet-Oases, and SOAPdenovo-trans), in producing de novo assemblies. Second, we annotate the resulting expressed contigs to the currently published genomes of ants, and other insects, including the honeybee, to filter genes that have annotation evidence of being true genes. Our pipeline resulted in a final assembly of altogether 39,262 mRNA transcripts, with an average coverage of >300X, belonging to 17,496 unique genes with annotation in the related ant species. From these genes, 536 genes were unique to one caste or sex only, highlighting the importance of comprehensive sampling. Our final assembly also showed expression of several splice variants in 6,975 genes, and we show that accounting for splice variants affects the outcome of downstream analyses such as gene ontologies. Our transcriptome provides an outstanding resource for future genetic studies on F. exsecta and other ant species, and the presented transcriptome assembly can be adapted to any non-model species that has genomic resources available from a related taxon.
Collapse
Affiliation(s)
- Kishor Dhaygude
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Kalevi Trontti
- Department of Biosciences, Neurogenomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Jenni Paviala
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Claire Morandin
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Christopher Wheat
- Department of Zoology Ecology, Stockholm University, Stockholm, Sweden
| | - Liselotte Sundström
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Heikki Helanterä
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| |
Collapse
|
377
|
Gunawardhana KL, Hardin PE. VRILLE Controls PDF Neuropeptide Accumulation and Arborization Rhythms in Small Ventrolateral Neurons to Drive Rhythmic Behavior in Drosophila. Curr Biol 2017; 27:3442-3453.e4. [PMID: 29103936 DOI: 10.1016/j.cub.2017.10.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022]
Abstract
In Drosophila, the circadian clock is comprised of transcriptional feedback loops that control rhythmic gene expression responsible for daily rhythms in physiology, metabolism, and behavior. The core feedback loop, which employs CLOCK-CYCLE (CLK-CYC) activators and PERIOD-TIMELESS (PER-TIM) repressors to drive rhythmic transcription peaking at dusk, is required for circadian timekeeping and overt behavioral rhythms. CLK-CYC also activates an interlocked feedback loop, which uses the PAR DOMAIN PROTEIN 1ε (PDP1ε) activator and the VRILLE (VRI) repressor to drive rhythmic transcription peaking at dawn. Although Pdp1ε mutants disrupt activity rhythms without eliminating clock function, whether vri is required for clock function and/or output is not known. Using a conditionally inactivatable transgene to rescue vri developmental lethality, we show that clock function persists after vri inactivation but that activity rhythms are abolished. The inactivation of vri disrupts multiple output pathways thought to be important for activity rhythms, including PDF accumulation and arborization rhythms in the small ventrolateral neuron (sLNv) dorsal projection. These results demonstrate that vri acts as a key regulator of clock output and suggest that the primary function of the interlocked feedback loop in Drosophila is to drive rhythmic transcription required for overt rhythms.
Collapse
Affiliation(s)
- Kushan L Gunawardhana
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Paul E Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
378
|
Roncalli V, Christie AE, Sommer SA, Cieslak MC, Hartline DK, Lenz PH. A deep transcriptomic resource for the copepod crustacean Labidocera madurae: A potential indicator species for assessing near shore ecosystem health. PLoS One 2017; 12:e0186794. [PMID: 29065152 PMCID: PMC5655441 DOI: 10.1371/journal.pone.0186794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/07/2017] [Indexed: 11/19/2022] Open
Abstract
Coral reef ecosystems of many sub-tropical and tropical marine coastal environments have suffered significant degradation from anthropogenic sources. Research to inform management strategies that mitigate stressors and promote a healthy ecosystem has focused on the ecology and physiology of coral reefs and associated organisms. Few studies focus on the surrounding pelagic communities, which are equally important to ecosystem function. Zooplankton, often dominated by small crustaceans such as copepods, is an important food source for invertebrates and fishes, especially larval fishes. The reef-associated zooplankton includes a sub-neustonic copepod family that could serve as an indicator species for the community. Here, we describe the generation of a de novo transcriptome for one such copepod, Labidocera madurae, a pontellid from an intensively-studied coral reef ecosystem, Kāne'ohe Bay, Oahu, Hawai'i. The transcriptome was assembled using high-throughput sequence data obtained from whole organisms. It comprised 211,002 unique transcripts, including 72,391 with coding regions. It was assessed for quality and completeness using multiple workflows. Bench-marking-universal-single-copy-orthologs (BUSCO) analysis identified transcripts for 88% of expected eukaryotic core proteins. Targeted gene-discovery analyses included searches for transcripts coding full-length "giant" proteins (>4,000 amino acids), proteins and splice variants of voltage-gated sodium channels, and proteins involved in the circadian signaling pathway. Four different reference transcriptomes were generated and compared for the detection of differential gene expression between copepodites and adult females; 6,229 genes were consistently identified as differentially expressed between the two regardless of reference. Automated bioinformatics analyses and targeted manual gene curation suggest that the de novo assembled L. madurae transcriptome is of high quality and completeness. This transcriptome provides a new resource for assessing the global physiological status of a planktonic species inhabiting a coral reef ecosystem that is subjected to multiple anthropogenic stressors. The workflows provide a template for generating and assessing transcriptomes in other non-model species.
Collapse
Affiliation(s)
- Vittoria Roncalli
- Békésy Laboratory of Neurobiology, University of Hawai‘i at Mānoa, Honolulu, HI, United States of America
| | - Andrew E. Christie
- Békésy Laboratory of Neurobiology, University of Hawai‘i at Mānoa, Honolulu, HI, United States of America
| | - Stephanie A. Sommer
- Békésy Laboratory of Neurobiology, University of Hawai‘i at Mānoa, Honolulu, HI, United States of America
| | - Matthew C. Cieslak
- Békésy Laboratory of Neurobiology, University of Hawai‘i at Mānoa, Honolulu, HI, United States of America
| | - Daniel K. Hartline
- Békésy Laboratory of Neurobiology, University of Hawai‘i at Mānoa, Honolulu, HI, United States of America
| | - Petra H. Lenz
- Békésy Laboratory of Neurobiology, University of Hawai‘i at Mānoa, Honolulu, HI, United States of America
| |
Collapse
|
379
|
Abstract
With a century-old history of fundamental discoveries, the fruit fly has long been a favored experimental organism for a wide range of scientific inquiries. But Drosophila is not a “legacy” model organism; technical and intellectual innovations continue to revitalize fly research and drive advances in our understanding of conserved mechanisms of animal biology. Here, we provide an overview of this “ecosystem” and discuss how to address emerging challenges to ensure its continued productivity. Drosophila researchers are fortunate to have a sophisticated and ever-growing toolkit for the analysis of gene function. Access to these tools depends upon continued support for both physical and informational resources. Uncertainty regarding stable support for bioinformatic databases is a particular concern, at a time when there is the need to make the vast knowledge of functional biology provided by this model animal accessible to scientists studying other organisms. Communication and advocacy efforts will promote appreciation of the value of the fly in delivering biomedically important insights. Well-tended traditions of large-scale tool development, open sharing of reagents, and community engagement provide a strong basis for coordinated and proactive initiatives to improve the fly research ecosystem. Overall, there has never been a better time to be a fly pusher.
Collapse
|
380
|
Shrestha S, Vanasse A, Cooper LN, Antosh MP. Gene Expression as a Dosimeter in Irradiated Drosophila melanogaster. J Comput Biol 2017; 24:1265-1274. [PMID: 29035581 PMCID: PMC5729855 DOI: 10.1089/cmb.2017.0170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Biological indicators would be of use in radiation dosimetry in situations where an exposed person is not wearing a dosimeter, or when physical dosimeters are insufficient to estimate the risk caused by the radiation exposure. In this work, we investigate the use of gene expression as a dosimeter. Gene expression analysis was done on 15,222 genes of Drosophila melanogaster (fruit flies) at days 2, 10, and 20 postirradiation, with X-ray exposures of 10, 1000, 5000, 10,000, and 20,000 roentgens. Several genes were identified, which could serve as a biodosimeter in an irradiated D. melanogaster model. Many of these genes have human homologues. Six genes showed a linear response (R2 > 0.9) with dose at all time points. One of these genes, inverted repeat-binding protein, is a known DNA repair gene and has a human homologue (XRCC6). The lowest dose, 10 roentgen, is very low for fruit flies. If the lowest dose is excluded, 13 genes showed a linear response with dose at all time points. This includes 5 of 6 genes that were linear with all radiation doses included. Of these 13 genes, 4 have human homologues and 8 have known functions. The expression of this panel of genes, particularly those with human homologues, could potentially be used as the biological indicator of radiation exposure in dosimetry applications.
Collapse
Affiliation(s)
- Samana Shrestha
- 1 Department of Physics, University of Rhode Island , Kingston, Rhode Island
| | - Adam Vanasse
- 1 Department of Physics, University of Rhode Island , Kingston, Rhode Island
| | - Leon N Cooper
- 2 Department of Physics, Brown University , Providence, Rhode Island.,3 Institute for Brain and Neural Systems, Brown University , Providence, Rhode Island
| | - Michael P Antosh
- 1 Department of Physics, University of Rhode Island , Kingston, Rhode Island.,3 Institute for Brain and Neural Systems, Brown University , Providence, Rhode Island
| |
Collapse
|
381
|
Niu X, Kassa A, Hu X, Robeson J, McMahon M, Richtman NM, Steimel JP, Kernodle BM, Crane VC, Sandahl G, Ritland JL, Presnail JK, Lu AL, Wu G. Control of Western Corn Rootworm (Diabrotica virgifera virgifera) Reproduction through Plant-Mediated RNA Interference. Sci Rep 2017; 7:12591. [PMID: 28974735 PMCID: PMC5626700 DOI: 10.1038/s41598-017-12638-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/13/2017] [Indexed: 12/27/2022] Open
Abstract
RNA interference (RNAi) in transgenic maize has recently emerged as an alternative mode of action for western corn rootworm (Diabrotica virgifera virgifera) control which can be combined with protein-based rootworm control options for improved root protection and resistance management. Currently, transgenic RNAi-based control has focused on suppression of genes that when silenced lead to larval mortality. We investigated control of western corn rootworm reproduction through RNAi by targeting two reproductive genes, dvvgr and dvbol, with the goal of reducing insect fecundity as a new tool for pest management. The results demonstrated that exposure of adult beetles, as well as larvae to dvvgr or dvbol dsRNA in artificial diet, caused reduction of fecundity. Furthermore, western corn rootworm beetles that emerged from larval feeding on transgenic maize roots expressing dvbol dsRNA also showed significant fecundity reduction. This is the first report of reduction of insect reproductive fitness through plant-mediated RNAi, demonstrating the feasibility of reproductive RNAi as a management tool for western corn rootworm.
Collapse
Affiliation(s)
- Xiping Niu
- DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA
| | - Adane Kassa
- DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA
| | - Xu Hu
- DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA.
| | | | | | | | | | | | | | - Gary Sandahl
- DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA
| | | | - James K Presnail
- DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA.,Evogene Ltd, Saint Louis, MO, USA
| | - Albert L Lu
- DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA
| | - Gusui Wu
- DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA
| |
Collapse
|
382
|
Niu X, Kassa A, Hu X, Robeson J, McMahon M, Richtman NM, Steimel JP, Kernodle BM, Crane VC, Sandahl G, Ritland JL, Presnail JK, Lu AL, Wu G. Control of Western Corn Rootworm (Diabrotica virgifera virgifera) Reproduction through Plant-Mediated RNA Interference. Sci Rep 2017. [PMID: 28974735 DOI: 10.1038/s41598-017-12638-12633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
RNA interference (RNAi) in transgenic maize has recently emerged as an alternative mode of action for western corn rootworm (Diabrotica virgifera virgifera) control which can be combined with protein-based rootworm control options for improved root protection and resistance management. Currently, transgenic RNAi-based control has focused on suppression of genes that when silenced lead to larval mortality. We investigated control of western corn rootworm reproduction through RNAi by targeting two reproductive genes, dvvgr and dvbol, with the goal of reducing insect fecundity as a new tool for pest management. The results demonstrated that exposure of adult beetles, as well as larvae to dvvgr or dvbol dsRNA in artificial diet, caused reduction of fecundity. Furthermore, western corn rootworm beetles that emerged from larval feeding on transgenic maize roots expressing dvbol dsRNA also showed significant fecundity reduction. This is the first report of reduction of insect reproductive fitness through plant-mediated RNAi, demonstrating the feasibility of reproductive RNAi as a management tool for western corn rootworm.
Collapse
Affiliation(s)
- Xiping Niu
- DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA
| | - Adane Kassa
- DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA
| | - Xu Hu
- DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA.
| | | | | | | | | | | | | | - Gary Sandahl
- DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA
| | | | - James K Presnail
- DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA
- Evogene Ltd, Saint Louis, MO, USA
| | - Albert L Lu
- DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA
| | - Gusui Wu
- DuPont Pioneer, 7300 NW 62nd Ave., Johnston, IA, USA
| |
Collapse
|
383
|
Lee MJ, Sung HY, Jo H, Kim HW, Choi MS, Kwon JY, Kang K. Ionotropic Receptor 76b Is Required for Gustatory Aversion to Excessive Na+ in Drosophila. Mol Cells 2017; 40:787-795. [PMID: 29081083 PMCID: PMC5682255 DOI: 10.14348/molcells.2017.0160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022] Open
Abstract
Avoiding ingestion of excessively salty food is essential for cation homeostasis that underlies various physiological processes in organisms. The molecular and cellular basis of the aversive salt taste, however, remains elusive. Through a behavioral reverse genetic screening, we discover that feeding suppression by Na+-rich food requires Ionotropic Receptor 76b (Ir76b) in Drosophila labellar gustatory receptor neurons (GRNs). Concentrated sodium solutions with various anions caused feeding suppression dependent on Ir76b. Feeding aversion to caffeine and high concentrations of divalent cations and sorbitol was unimpaired in Ir76b-deficient animals, indicating sensory specificity of Ir76b-dependent Na+ detection and the irrelevance of hyperosmolarity-driven mechanosensation to Ir76b-mediated feeding aversion. Ir76b-dependent Na+-sensing GRNs in both L- and s-bristles are required for repulsion as opposed to the previous report where the L-bristle GRNs direct only low-Na+ attraction. Our work extends the physiological implications of Ir76b from low-Na+ attraction to high-Na+ aversion, prompting further investigation of the physiological mechanisms that modulate two competing components of Na+-evoked gustation coded in heterogeneous Ir76b-positive GRNs.
Collapse
Affiliation(s)
- Min Jung Lee
- Samsung Medical Center, Department of Anatomy and Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419,
Korea
- Dong-A ST Research Institute, Yongin 17073,
Korea
| | - Ha Yeon Sung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419,
Korea
| | - HyunJi Jo
- Samsung Medical Center, Department of Anatomy and Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419,
Korea
| | - Hyung-Wook Kim
- College of Life Sciences, Sejong University, Seoul 05006,
Korea
| | - Min Sung Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419,
Korea
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419,
Korea
| | - KyeongJin Kang
- Samsung Medical Center, Department of Anatomy and Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419,
Korea
| |
Collapse
|
384
|
Zarndt R, Walls SM, Ocorr K, Bodmer R. Reduced Cardiac Calcineurin Expression Mimics Long-Term Hypoxia-Induced Heart Defects in Drosophila. CIRCULATION. CARDIOVASCULAR GENETICS 2017; 10:e001706. [PMID: 28986453 PMCID: PMC5669044 DOI: 10.1161/circgenetics.117.001706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hypoxia is often associated with cardiopulmonary diseases, which represent some of the leading causes of mortality worldwide. Long-term hypoxia exposures, whether from disease or environmental condition, can cause cardiomyopathy and lead to heart failure. Indeed, hypoxia-induced heart failure is a hallmark feature of chronic mountain sickness in maladapted populations living at high altitude. In a previously established Drosophila heart model for long-term hypoxia exposure, we found that hypoxia caused heart dysfunction. Calcineurin is known to be critical in cardiac hypertrophy under normoxia, but its role in the heart under hypoxia is poorly understood. METHODS AND RESULTS In the present study, we explore the function of calcineurin, a gene candidate we found downregulated in the Drosophila heart after lifetime and multigenerational hypoxia exposure. We examined the roles of 2 homologs of Calcineurin A, CanA14F, and Pp2B in the Drosophila cardiac response to long-term hypoxia. We found that knockdown of these calcineurin catalytic subunits caused cardiac restriction under normoxia that are further aggravated under hypoxia. Conversely, cardiac overexpression of Pp2B under hypoxia was lethal, suggesting that a hypertrophic signal in the presence of insufficient oxygen supply is deleterious. CONCLUSIONS Our results suggest a key role for calcineurin in cardiac remodeling during long-term hypoxia with implications for diseases of chronic hypoxia, and it likely contributes to mechanisms underlying these disease states.
Collapse
Affiliation(s)
- Rachel Zarndt
- From the Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute (R.Z., S.M.W., K.O., R.B.) and Biomedical Sciences Graduate Program, School of Medicine, University of California at San Diego (R.Z.), La Jolla, CA
| | - Stanley M Walls
- From the Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute (R.Z., S.M.W., K.O., R.B.) and Biomedical Sciences Graduate Program, School of Medicine, University of California at San Diego (R.Z.), La Jolla, CA
| | - Karen Ocorr
- From the Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute (R.Z., S.M.W., K.O., R.B.) and Biomedical Sciences Graduate Program, School of Medicine, University of California at San Diego (R.Z.), La Jolla, CA.
| | - Rolf Bodmer
- From the Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute (R.Z., S.M.W., K.O., R.B.) and Biomedical Sciences Graduate Program, School of Medicine, University of California at San Diego (R.Z.), La Jolla, CA.
| |
Collapse
|
385
|
Rapid DNA Synthesis During Early Drosophila Embryogenesis Is Sensitive to Maternal Humpty Dumpty Protein Function. Genetics 2017; 207:935-947. [PMID: 28942426 DOI: 10.1534/genetics.117.300318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022] Open
Abstract
Problems with DNA replication cause cancer and developmental malformations. It is not fully understood how DNA replication is coordinated with development and perturbed in disease. We had previously identified the Drosophila gene humpty dumpty (hd), and showed that null alleles cause incomplete DNA replication, tissue undergrowth, and lethality. Animals homozygous for the missense allele, hd272-9 , were viable, but adult females had impaired amplification of eggshell protein genes in the ovary, resulting in the maternal effects of thin eggshells and embryonic lethality. Here, we show that expression of an hd transgene in somatic cells of the ovary rescues amplification and eggshell synthesis but not embryo viability. The germline of these mothers remain mutant for the hd272-9 allele, resulting in reduced maternal Hd protein and embryonic arrest during mitosis of the first few S/M nuclear cleavage cycles with chromosome instability and chromosome bridges. Epistasis analysis of hd with the rereplication mutation plutonium indicates that the chromosome bridges of hd embryos are the result of a failed attempt to segregate incompletely replicated sister chromatids. This study reveals that maternally encoded Humpty dumpty protein is essential for DNA replication and genome integrity during the little-understood embryonic S/M cycles. Moreover, the two hd272-9 maternal-effect phenotypes suggest that ovarian gene amplification and embryonic cleavage are two time periods in development that are particularly sensitive to mild deficits in DNA replication function. This last observation has broader relevance for interpreting why mild mutations in the human ortholog of humpty dumpty and other DNA replication genes cause tissue-specific malformations of microcephalic dwarfisms.
Collapse
|
386
|
Tango7 regulates cortical activity of caspases during reaper-triggered changes in tissue elasticity. Nat Commun 2017; 8:603. [PMID: 28928435 PMCID: PMC5605750 DOI: 10.1038/s41467-017-00693-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 07/20/2017] [Indexed: 11/08/2022] Open
Abstract
Caspases perform critical functions in both living and dying cells; however, how caspases perform physiological functions without killing the cell remains unclear. Here we identify a novel physiological function of caspases at the cortex of Drosophila salivary glands. In living glands, activation of the initiator caspase dronc triggers cortical F-actin dismantling, enabling the glands to stretch as they accumulate secreted products in the lumen. We demonstrate that tango7, not the canonical Apaf-1-adaptor dark, regulates dronc activity at the cortex; in contrast, dark is required for cytoplasmic activity of dronc during salivary gland death. Therefore, tango7 and dark define distinct subcellular domains of caspase activity. Furthermore, tango7-dependent cortical dronc activity is initiated by a sublethal pulse of the inhibitor of apoptosis protein (IAP) antagonist reaper. Our results support a model in which biological outcomes of caspase activation are regulated by differential amplification of IAP antagonists, unique caspase adaptor proteins, and mutually exclusive subcellular domains of caspase activity. Caspases are known for their role in cell death, but they can also participate in other physiological functions without killing the cells. Here the authors show that unique caspase adaptor proteins can regulate caspase activity within mutually-exclusive and independently regulated subcellular domains.
Collapse
|
387
|
Abstract
Regulation of gene expression by DNA-binding transcription factors is essential for proper control of growth and development in all organisms. In this study, we annotate and characterize growth and developmental phenotypes for transcription factor genes in the model filamentous fungus Neurospora crassa. We identified 312 transcription factor genes, corresponding to 3.2% of the protein coding genes in the genome. The largest class was the fungal-specific Zn2Cys6 (C6) binuclear cluster, with 135 members, followed by the highly conserved C2H2 zinc finger group, with 61 genes. Viable knockout mutants were produced for 273 genes, and complete growth and developmental phenotypic data are available for 242 strains, with 64% possessing at least one defect. The most prominent defect observed was in growth of basal hyphae (43% of mutants analyzed), followed by asexual sporulation (38%), and the various stages of sexual development (19%). Two growth or developmental defects were observed for 21% of the mutants, while 8% were defective in all three major phenotypes tested. Analysis of available mRNA expression data for a time course of sexual development revealed mutants with sexual phenotypes that correlate with transcription factor transcript abundance in wild type. Inspection of this data also implicated cryptic roles in sexual development for several cotranscribed transcription factor genes that do not produce a phenotype when mutated.
Collapse
|
388
|
Parejo M, Wragg D, Henriques D, Vignal A, Neuditschko M. Genome-wide scans between two honeybee populations reveal putative signatures of human-mediated selection. Anim Genet 2017; 48:704-707. [PMID: 28872253 PMCID: PMC5697678 DOI: 10.1111/age.12599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2017] [Indexed: 12/26/2022]
Abstract
Human‐mediated selection has left signatures in the genomes of many domesticated animals, including the European dark honeybee, Apis mellifera mellifera, which has been selected by apiculturists for centuries. Using whole‐genome sequence information, we investigated selection signatures in spatially separated honeybee subpopulations (Switzerland, n = 39 and France, n = 17). Three different test statistics were calculated in windows of 2 kb (fixation index, cross‐population extended haplotype homozygosity and cross‐population composite likelihood ratio) and combined into a recently developed composite selection score. Applying a stringent false discovery rate of 0.01, we identified six significant selective sweeps distributed across five chromosomes covering eight genes. These genes are associated with multiple molecular and biological functions, including regulation of transcription, receptor binding and signal transduction. Of particular interest is a selection signature on chromosome 1, which corresponds to the WNT4 gene, the family of which is conserved across the animal kingdom with a variety of functions. In Drosophila melanogaster, WNT4 alleles have been associated with differential wing, cross vein and abdominal phenotypes. Defining phenotypic characteristics of different Apis mellifera ssp., which are typically used as selection criteria, include colour and wing venation pattern. This signal is therefore likely to be a good candidate for human mediated‐selection arising from different applied breeding practices in the two managed populations.
Collapse
Affiliation(s)
- M Parejo
- Agroscope, Swiss Bee Research Centre, 3003, Bern, Switzerland.,Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3003, Bern, Switzerland
| | - D Wragg
- Institut National de la Recherche Agronomique, 31326, Castanet-Tolosan, France.,The Roslin Institute, University of Edinburgh, EH25 9RG, Edinburgh, UK
| | - D Henriques
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança, 5301-855, Bragança, Portugal
| | - A Vignal
- Institut National de la Recherche Agronomique, 31326, Castanet-Tolosan, France
| | - M Neuditschko
- Agroscope, Swiss Bee Research Centre, 3003, Bern, Switzerland
| |
Collapse
|
389
|
Karaiskos N, Wahle P, Alles J, Boltengagen A, Ayoub S, Kipar C, Kocks C, Rajewsky N, Zinzen RP. The Drosophila embryo at single-cell transcriptome resolution. Science 2017; 358:194-199. [PMID: 28860209 DOI: 10.1126/science.aan3235] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/24/2017] [Indexed: 01/22/2023]
Abstract
By the onset of morphogenesis, Drosophila embryos consist of about 6000 cells that express distinct gene combinations. Here, we used single-cell sequencing of precisely staged embryos and devised DistMap, a computational mapping strategy to reconstruct the embryo and to predict spatial gene expression approaching single-cell resolution. We produced a virtual embryo with about 8000 expressed genes per cell. Our interactive Drosophila Virtual Expression eXplorer (DVEX) database generates three-dimensional virtual in situ hybridizations and computes gene expression gradients. We used DVEX to uncover patterned expression of transcription factors and long noncoding RNAs, as well as signaling pathway components. Spatial regulation of Hippo signaling during early embryogenesis suggests a mechanism for establishing asynchronous cell proliferation. Our approach is suitable to generate transcriptomic blueprints for other complex tissues.
Collapse
Affiliation(s)
- Nikos Karaiskos
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Philipp Wahle
- Systems Biology of Neural Tissue Differentiation, BIMSB, MDC, 13125 Berlin, Germany
| | - Jonathan Alles
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Anastasiya Boltengagen
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Salah Ayoub
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Claudia Kipar
- Systems Biology of Neural Tissue Differentiation, BIMSB, MDC, 13125 Berlin, Germany
| | - Christine Kocks
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.
| | - Robert P Zinzen
- Systems Biology of Neural Tissue Differentiation, BIMSB, MDC, 13125 Berlin, Germany.
| |
Collapse
|
390
|
Abstract
One of the most powerful ways to develop hypotheses regarding the biological functions of conserved genes in a given species, such as humans, is to first look at what is known about their function in another species. Model organism databases and other resources are rich with functional information but difficult to mine. Gene2Function addresses a broad need by integrating information about conserved genes in a single online resource.
Collapse
|
391
|
Single vector non-leaky gene expression system for Drosophila melanogaster. Sci Rep 2017; 7:6899. [PMID: 28761084 PMCID: PMC5537222 DOI: 10.1038/s41598-017-07282-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/23/2017] [Indexed: 12/28/2022] Open
Abstract
An ideal transgenic gene expression system is inducible, non-leaky, and well tolerated by the target organism. While the former has been satisfactorily realized, leakiness and heavy physiological burden imposed by the existing systems are still prominent hurdles in their successful implementation. Here we describe a new system for non-leaky expression of transgenes in Drosophila. PRExpress is based on a single transgenic construct built from endogenous components, the inducible hsp70 promoter and a multimerized copy of a Polycomb response element (PRE) controlled by epigenetic chromatin regulators of the Polycomb group. We show that this system is non-leaky, rapidly and strongly inducible, and reversible. To make the application of PRExpress user-friendly, we deliver the construct via site-specific integration.
Collapse
|
392
|
Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH. Phase separation drives heterochromatin domain formation. Nature 2017; 547:241-245. [PMID: 28636597 PMCID: PMC6022742 DOI: 10.1038/nature22989] [Citation(s) in RCA: 1284] [Impact Index Per Article: 160.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
Constitutive heterochromatin is an important component of eukaryotic genomes that has essential roles in nuclear architecture, DNA repair and genome stability, and silencing of transposon and gene expression. Heterochromatin is highly enriched for repetitive sequences, and is defined epigenetically by methylation of histone H3 at lysine 9 and recruitment of its binding partner heterochromatin protein 1 (HP1). A prevalent view of heterochromatic silencing is that these and associated factors lead to chromatin compaction, resulting in steric exclusion of regulatory proteins such as RNA polymerase from the underlying DNA. However, compaction alone does not account for the formation of distinct, multi-chromosomal, membrane-less heterochromatin domains within the nucleus, fast diffusion of proteins inside the domain, and other dynamic features of heterochromatin. Here we present data that support an alternative hypothesis: that the formation of heterochromatin domains is mediated by phase separation, a phenomenon that gives rise to diverse non-membrane-bound nuclear, cytoplasmic and extracellular compartments. We show that Drosophila HP1a protein undergoes liquid-liquid demixing in vitro, and nucleates into foci that display liquid properties during the first stages of heterochromatin domain formation in early Drosophila embryos. Furthermore, in both Drosophila and mammalian cells, heterochromatin domains exhibit dynamics that are characteristic of liquid phase-separation, including sensitivity to the disruption of weak hydrophobic interactions, and reduced diffusion, increased coordinated movement and inert probe exclusion at the domain boundary. We conclude that heterochromatic domains form via phase separation, and mature into a structure that includes liquid and stable compartments. We propose that emergent biophysical properties associated with phase-separated systems are critical to understanding the unusual behaviours of heterochromatin, and how chromatin domains in general regulate essential nuclear functions.
Collapse
Affiliation(s)
- Amy R Strom
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Alexander V Emelyanov
- Albert Einstein College of Medicine, Department of Cell Biology, New York, New York, USA
| | - Mustafa Mir
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Dmitry V Fyodorov
- Albert Einstein College of Medicine, Department of Cell Biology, New York, New York, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Gary H Karpen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
393
|
Eppig JT. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse. ILAR J 2017; 58:17-41. [PMID: 28838066 PMCID: PMC5886341 DOI: 10.1093/ilar/ilx013] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided.
Collapse
Affiliation(s)
- Janan T. Eppig
- Janan T. Eppig, PhD, is Professor Emeritus at The Jackson Laboratory in Bar Harbor, Maine
| |
Collapse
|
394
|
Cox JE, Thummel CS, Tennessen JM. Metabolomic Studies in Drosophila. Genetics 2017; 206:1169-1185. [PMID: 28684601 PMCID: PMC5500124 DOI: 10.1534/genetics.117.200014] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
Metabolomic analysis provides a powerful new tool for studies of Drosophila physiology. This approach allows investigators to detect thousands of chemical compounds in a single sample, representing the combined contributions of gene expression, enzyme activity, and environmental context. Metabolomics has been used for a wide range of studies in Drosophila, often providing new insights into gene function and metabolic state that could not be obtained using any other approach. In this review, we survey the uses of metabolomic analysis since its entry into the field. We also cover the major methods used for metabolomic studies in Drosophila and highlight new directions for future research.
Collapse
Affiliation(s)
- James E Cox
- Department of Biochemistry and
- The Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
395
|
Garcia JF, Carbone MA, Mackay TFC, Anholt RRH. Regulation of Drosophila Lifespan by bellwether Promoter Alleles. Sci Rep 2017; 7:4109. [PMID: 28646164 PMCID: PMC5482829 DOI: 10.1038/s41598-017-04530-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/16/2017] [Indexed: 01/24/2023] Open
Abstract
Longevity varies among individuals, but how natural genetic variation contributes to variation in lifespan is poorly understood. Drosophila melanogaster presents an advantageous model system to explore the genetic underpinnings of longevity, since its generation time is brief and both the genetic background and rearing environment can be precisely controlled. The bellwether (blw) gene encodes the α subunit of mitochondrial ATP synthase. Since metabolic rate may influence lifespan, we investigated whether alternative haplotypes in the blw promoter affect lifespan when expressed in a co-isogenic background. We amplified 521 bp upstream promoter sequences containing alternative haplotypes and assessed promoter activity both in vitro and in vivo using a luciferase reporter system. The AG haplotype showed significantly greater expression of luciferase than the GT haplotype. We then overexpressed a blw cDNA construct driven by either the AG or GT haplotype promoter in transgenic flies and showed that the AG haplotype also results in greater blw cDNA expression and a significant decrease in lifespan relative to the GT promoter haplotype, in male flies only. Thus, our results show that naturally occurring regulatory variants of blw affect lifespan in a sex-specific manner.
Collapse
Affiliation(s)
- Júlia Frankenberg Garcia
- Program in Genetics, W. M. Keck Center for Behavioral Biology, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Mary Anna Carbone
- Program in Genetics, W. M. Keck Center for Behavioral Biology, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Trudy F C Mackay
- Program in Genetics, W. M. Keck Center for Behavioral Biology, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Robert R H Anholt
- Program in Genetics, W. M. Keck Center for Behavioral Biology, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
396
|
Knowlton MN, Smith CL. Naming CRISPR alleles: endonuclease-mediated mutation nomenclature across species. Mamm Genome 2017; 28:367-376. [PMID: 28589392 PMCID: PMC5569137 DOI: 10.1007/s00335-017-9698-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/27/2017] [Indexed: 12/29/2022]
Abstract
The widespread use of CRISPR/Cas and other targeted endonuclease technologies in many species has led to an explosion in the generation of new mutations and alleles. The ability to generate many different mutations from the same target sequence either by homology-directed repair with a donor sequence or non-homologous end joining-induced insertions and deletions necessitates a means for representing these mutations in literature and databases. Standardized nomenclature can be used to generate unambiguous, concise, and specific symbols to represent mutations and alleles. The research communities of a variety of species using CRISPR/Cas and other endonuclease-mediated mutation technologies have developed different approaches to naming and identifying such alleles and mutations. While some organism-specific research communities have developed allele nomenclature that incorporates the method of generation within the official allele or mutant symbol, others use metadata tags that include method of generation or mutagen. Organism-specific research community databases together with organism-specific nomenclature committees are leading the way in providing standardized nomenclature and metadata to facilitate the integration of data from alleles and mutations generated using CRISPR/Cas and other targeted endonucleases.
Collapse
Affiliation(s)
| | - Cynthia L Smith
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, 04609, USA
| |
Collapse
|
397
|
Sikkink KL, Kobiela ME, Snell-Rood EC. Genomic adaptation to agricultural environments: cabbage white butterflies (Pieris rapae) as a case study. BMC Genomics 2017; 18:412. [PMID: 28549454 PMCID: PMC5446745 DOI: 10.1186/s12864-017-3787-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/11/2017] [Indexed: 12/30/2022] Open
Abstract
Background Agricultural environments have long presented an opportunity to study evolution in action, and genomic approaches are opening doors for testing hypotheses about adaptation to crops, pesticides, and fertilizers. Here, we begin to develop the cabbage white butterfly (Pieris rapae) as a system to test questions about adaptation to novel, agricultural environments. We focus on a population in the north central United States as a unique case study: here, canola, a host plant, has been grown during the entire flight period of the butterfly over the last three decades. Results First, we show that the agricultural population has diverged phenotypically relative to a nonagricultural population: when reared on a host plant distantly related to canola, the agricultural population is smaller and more likely to go into diapause than the nonagricultural population. Second, drawing from deep sequencing runs from six individuals from the agricultural population, we assembled the gut transcriptome of this population. Then, we sequenced RNA transcripts from the midguts of 96 individuals from this canola agricultural population and the nonagricultural population in order to describe patterns of genomic divergence between the two. While population divergence is low, 235 genes show evidence of significant differentiation between populations. These genes are significantly enriched for cofactor and small molecule metabolic processes, and many genes also have transporter or catalytic activity. Analyses of population structure suggest the agricultural population contains a subset of the genetic variation in the nonagricultural population. Conclusions Taken together, our results suggest that adaptation of cabbage whites to an agricultural environment occurred at least in part through selection on standing genetic variation. Both the phenotypic and genetic data are consistent with the idea that this pest has adapted to an abundant and predictable agricultural resource through a narrowing of niche breadth and loss of genetic variants rather than de novo gain of adaptive alleles. The present research develops genomic resources to pave the way for future studies using cabbage whites as a model contributing to our understanding of adaptation to agricultural environments. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3787-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristin L Sikkink
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Ave, 140 Gortner Lab, Saint Paul, MN, 55108, USA.
| | - Megan E Kobiela
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Ave, 140 Gortner Lab, Saint Paul, MN, 55108, USA
| | - Emilie C Snell-Rood
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Ave, 140 Gortner Lab, Saint Paul, MN, 55108, USA
| |
Collapse
|
398
|
Yang H, Basquin D, Pauli D, Oliver B. Drosophila melanogaster positive transcriptional elongation factors regulate metabolic and sex-biased expression in adults. BMC Genomics 2017; 18:384. [PMID: 28521739 PMCID: PMC5436443 DOI: 10.1186/s12864-017-3755-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/03/2017] [Indexed: 11/22/2022] Open
Abstract
Background Transcriptional elongation is a generic function, but is also regulated to allow rapid transcription responses. Following relatively long initiation and promoter clearance, RNA polymerase II can pause and then rapidly elongate following recruitment of positive elongation factors. Multiple elongation complexes exist, but the role of specific components in adult Drosophila is underexplored. Results We conducted RNA-seq experiments to analyze the effect of RNAi knockdown of Suppressor of Triplolethal and lilliputian. We similarly analyzed the effect of expressing a dominant negative Cyclin-dependent kinase 9 allele. We observed that almost half of the genes expressed in adults showed reduced expression, supporting a broad role for the three tested genes in steady-state transcript abundance. Expression profiles following lilliputian and Suppressor of Triplolethal RNAi were nearly identical raising the possibility that they are obligatory co-factors. Genes showing reduced expression due to these RNAi treatments were short and enriched for genes encoding metabolic or enzymatic functions. The dominant-negative Cyclin-dependent kinase 9 profiles showed both overlapping and specific differential expression, suggesting involvement in multiple complexes. We also observed hundreds of genes with sex-biased differential expression following treatment. Conclusion Transcriptional profiles suggest that Lilliputian and Suppressor of Triplolethal are obligatory cofactors in the adult and that they can also function with Cyclin-dependent kinase 9 at a subset of loci. Our results suggest that transcriptional elongation control is especially important for rapidly expressed genes to support digestion and metabolism, many of which have sex-biased function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3755-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haiwang Yang
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD, 20892, USA.
| | - Denis Basquin
- Department of Genetics & Evolution, Sciences III, University of Geneva, Boulevard d'Yvoy 4, CH 1205, Geneva, Switzerland
| | - Daniel Pauli
- Department of Genetics & Evolution, Sciences III, University of Geneva, Boulevard d'Yvoy 4, CH 1205, Geneva, Switzerland
| | - Brian Oliver
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
399
|
Rizzo NP, Bejsovec A. SoxNeuro and Shavenbaby act cooperatively to shape denticles in the embryonic epidermis of Drosophila. Development 2017; 144:2248-2258. [PMID: 28506986 DOI: 10.1242/dev.150169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/03/2017] [Indexed: 01/31/2023]
Abstract
During development, extracellular signals are integrated by cells to induce the transcriptional circuitry that controls morphogenesis. In the fly epidermis, Wingless (Wg)/Wnt signaling directs cells to produce either a distinctly shaped denticle or no denticle, resulting in a segmental pattern of denticle belts separated by smooth, or 'naked', cuticle. Naked cuticle results from Wg repression of shavenbaby (svb), which encodes a transcription factor required for denticle construction. We have discovered that although the svb promoter responds differentially to altered Wg levels, Svb alone cannot produce the morphological diversity of denticles found in wild-type belts. Instead, a second Wg-responsive transcription factor, SoxNeuro (SoxN), cooperates with Svb to shape the denticles. Co-expressing ectopic SoxN with svb rescued diverse denticle morphologies. Conversely, removing SoxN activity eliminated the residual denticles found in svb mutant embryos. Furthermore, several known Svb target genes are also activated by SoxN, and we have discovered two novel target genes of SoxN that are expressed in denticle-producing cells and that are regulated independently of Svb. We conclude that proper denticle morphogenesis requires transcriptional regulation by both SoxN and Svb.
Collapse
Affiliation(s)
| | - Amy Bejsovec
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
400
|
Velazquez-Ulloa NA. A Drosophila model for developmental nicotine exposure. PLoS One 2017; 12:e0177710. [PMID: 28498868 PMCID: PMC5428972 DOI: 10.1371/journal.pone.0177710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/02/2017] [Indexed: 01/08/2023] Open
Abstract
Despite the known health risks of tobacco smoking, many people including pregnant women continue smoking. The effects of developmental nicotine exposure are known, but the underlying mechanisms are not well understood. Drosophila melanogaster is a model organism that can be used for uncovering genetic and molecular mechanisms for drugs of abuse. Here I show that Drosophila can be a model to elucidate the mechanisms for nicotine’s effects on a developing organism. Drosophila reared on nicotine food display developmental and behavioral effects similar to those in mammals including decreased survival and weight, increased developmental time, and decreased sensitivity to acute nicotine and ethanol. The Drosophila nicotinic acetylcholine receptor subunit alpha 7 (Dα7) mediates some of these effects. A novel role for Dα7 on ethanol sedation in Drosophila is also shown. Future research taking advantage of the genetic and molecular tools for Drosophila will allow additional discovery of the mechanisms behind the effects of nicotine during development.
Collapse
|