351
|
Yanagisawa S. Characterization of a nitrate-inducible transcriptional repressor NIGT1 provides new insights into DNA recognition by the GARP family proteins. PLANT SIGNALING & BEHAVIOR 2013; 8:e24447. [PMID: 23603966 PMCID: PMC3909032 DOI: 10.4161/psb.24447] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The GARP domain is a single Myb-related DNA-binding domain found in plant transcription factors. Proteins containing the GARP domain (GARP family proteins) are suggested to be involved in the regulation of various physiological processes through their interactions with ostensibly different DNA sequences. Our recent study on a nitrate-inducible gene encoding a GARP family protein, referred to as NIGT1 (Nitrate-Inducible, GARP-type Transcriptional Repressor 1), not only suggests a previously unidentified role for the GARP family proteins in higher plants but also provides a hypothesis for why NIGT1 can show dual specificity on DNA binding and why respective GARP family proteins can recognize very different DNA sequences.
Collapse
|
352
|
Sawaki N, Tsujimoto R, Shigyo M, Konishi M, Toki S, Fujiwara T, Yanagisawa S. A nitrate-inducible GARP family gene encodes an auto-repressible transcriptional repressor in rice. PLANT & CELL PHYSIOLOGY 2013; 54:506-17. [PMID: 23324170 DOI: 10.1093/pcp/pct007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nitrogen is the most important macronutrient in plants and its supply induces responses in gene expression, metabolism and developmental processes. However, the molecular mechanisms underlying the nitrogen responses remain poorly understood. Here we show that the supply of nitrate but not ammonium immediately induces the expression of a transcriptional repressor gene in rice, designated NIGT1 (Nitrate-Inducible, GARP-type Transcriptional Repressor 1). The results of DNA-binding site selection experiments and electrophoretic mobility shift assays indicated that NIGT1 binds to DNA containing either of two consensus sequences, GAATC or GAATATTC. In transient reporter assays, NIGT1 was found to repress transcription from the promoters containing the identified NIGT1-binding sequences in vivo. Furthermore, NIGT1 repressed the activity of its own promoter, suggesting an autorepression mechanism. Consistently, nitrate-induced NIGT1 expression was found to be down-regulated after a transient peak during nitrate treatment, and the nitrate-induced expression of NIGT1 decreased in transgenic rice plants in which this gene was constitutively overexpressed. Furthermore, the chlorophyll content that could be a marker of nitrogen utilization was found to be decreased in NIGT1 overexpressors of rice grown with nitrate medium but not with ammonium medium. Thus, we propose NIGT1 as a nitrate-inducible and autorepressible transcriptional repressor that may play a role in the nitrogen response in rice. Taken together with the fact that the NIGT1-binding sites are conserved in promoter sequences of Arabidopsis NIGT1 homologs, our findings imply the presence of a time-dependent complex system for nitrate-responsive transcriptional regulation that is conserved in both monocots and dicots.
Collapse
Affiliation(s)
- Naoya Sawaki
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
| | | | | | | | | | | | | |
Collapse
|
353
|
Barajas-López JDD, Kremnev D, Shaikhali J, Piñas-Fernández A, Strand Å. PAPP5 is involved in the tetrapyrrole mediated plastid signalling during chloroplast development. PLoS One 2013; 8:e60305. [PMID: 23555952 PMCID: PMC3612061 DOI: 10.1371/journal.pone.0060305] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/25/2013] [Indexed: 12/17/2022] Open
Abstract
The initiation of chloroplast development in the light is dependent on nuclear encoded components. The nuclear genes encoding key components in the photosynthetic machinery are regulated by signals originating in the plastids. These plastid signals play an essential role in the regulation of photosynthesis associated nuclear genes (PhANGs) when proplastids develop into chloroplasts. One of the plastid signals is linked to the tetrapyrrole biosynthesis and accumulation of the intermediates the Mg-ProtoIX and its methyl ester Mg-ProtoIX-ME. Phytochrome-Associated Protein Phosphatase 5 (PAPP5) was isolated in a previous study as a putative Mg-ProtoIX interacting protein. In order to elucidate if there is a biological link between PAPP5 and the tetrapyrrole mediated signal we generated double mutants between the Arabidopsis papp5 and the crd mutants. The crd mutant over-accumulates Mg-ProtoIX and Mg-ProtoIX-ME and the tetrapyrrole accumulation triggers retrograde signalling. The crd mutant exhibits repression of PhANG expression, altered chloroplast morphology and a pale phenotype. However, in the papp5crd double mutant, the crd phenotype is restored and papp5crd accumulated wild type levels of chlorophyll, developed proper chloroplasts and showed normal induction of PhANG expression in response to light. Tetrapyrrole feeding experiments showed that PAPP5 is required to respond correctly to accumulation of tetrapyrroles in the cell and that PAPP5 is most likely a component in the plastid signalling pathway down stream of the tetrapyrrole Mg-ProtoIX/Mg-ProtoIX-ME. Inhibition of phosphatase activity phenocopied the papp5crd phenotype in the crd single mutant demonstrating that PAPP5 phosphatase activity is essential to mediate the retrograde signal and to suppress PhANG expression in the crd mutant. Thus, our results suggest that PAPP5 receives an inbalance in the tetrapyrrole biosynthesis through the accumulation of Mg-ProtoIX and acts as a negative regulator of PhANG expression during chloroplast biogenesis and development.
Collapse
Affiliation(s)
| | - Dmitry Kremnev
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Jehad Shaikhali
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Aurora Piñas-Fernández
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
354
|
Rauf M, Arif M, Dortay H, Matallana-Ramírez LP, Waters MT, Gil Nam H, Lim PO, Mueller-Roeber B, Balazadeh S. ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription. EMBO Rep 2013; 14:382-8. [PMID: 23459204 DOI: 10.1038/embor.2013.24] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/27/2013] [Accepted: 02/08/2013] [Indexed: 11/09/2022] Open
Abstract
Leaf senescence is a key physiological process in all plants. Its onset is tightly controlled by transcription factors, of which NAC factor ORE1 (ANAC092) is crucial in Arabidopsis thaliana. Enhanced expression of ORE1 triggers early senescence by controlling a downstream gene network that includes various senescence-associated genes. Here, we report that unexpectedly ORE1 interacts with the G2-like transcription factors GLK1 and GLK2, which are important for chloroplast development and maintenance, and thereby for leaf maintenance. ORE1 antagonizes GLK transcriptional activity, shifting the balance from chloroplast maintenance towards deterioration. Our finding identifies a new mechanism important for the control of senescence by ORE1.
Collapse
Affiliation(s)
- Mamoona Rauf
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Pan Y, Bradley G, Pyke K, Ball G, Lu C, Fray R, Marshall A, Jayasuta S, Baxter C, van Wijk R, Boyden L, Cade R, Chapman NH, Fraser PD, Hodgman C, Seymour GB. Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits. PLANT PHYSIOLOGY 2013; 161:1476-85. [PMID: 23292788 PMCID: PMC3585610 DOI: 10.1104/pp.112.212654] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/03/2013] [Indexed: 05/18/2023]
Abstract
Carotenoids represent some of the most important secondary metabolites in the human diet, and tomato (Solanum lycopersicum) is a rich source of these health-promoting compounds. In this work, a novel and fruit-related regulator of pigment accumulation in tomato has been identified by artificial neural network inference analysis and its function validated in transgenic plants. A tomato fruit gene regulatory network was generated using artificial neural network inference analysis and transcription factor gene expression profiles derived from fruits sampled at various points during development and ripening. One of the transcription factor gene expression profiles with a sequence related to an Arabidopsis (Arabidopsis thaliana) ARABIDOPSIS PSEUDO RESPONSE REGULATOR2-LIKE gene (APRR2-Like) was up-regulated at the breaker stage in wild-type tomato fruits and, when overexpressed in transgenic lines, increased plastid number, area, and pigment content, enhancing the levels of chlorophyll in immature unripe fruits and carotenoids in red ripe fruits. Analysis of the transcriptome of transgenic lines overexpressing the tomato APPR2-Like gene revealed up-regulation of several ripening-related genes in the overexpression lines, providing a link between the expression of this tomato gene and the ripening process. A putative ortholog of the tomato APPR2-Like gene in sweet pepper (Capsicum annuum) was associated with pigment accumulation in fruit tissues. We conclude that the function of this gene is conserved across taxa and that it encodes a protein that has an important role in ripening.
Collapse
|
356
|
Barajas-López JDD, Blanco NE, Strand Å. Plastid-to-nucleus communication, signals controlling the running of the plant cell. BIOCHIMICA ET BIOPHYSICA ACTA 2013. [PMID: 22749883 DOI: 10.1016/j.bbamcr.2012.06.020 [epub ahead of print]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The presence of genes encoding organellar proteins in both the nucleus and the organelle necessitates tight coordination of expression by the different genomes, and this has led to the evolution of sophisticated intracellular signaling networks. Organelle-to-nucleus signaling, or retrograde control, coordinates the expression of nuclear genes encoding organellar proteins with the metabolic and developmental state of the organelle. Complex networks of retrograde signals orchestrate major changes in nuclear gene expression and coordinate cellular activities and assist the cell during plant development and stress responses. It has become clear that, even though the chloroplast depends on the nucleus for its function, plastid signals play important roles in an array of different cellular processes vital to the plant. Hence, the chloroplast exerts significant control over the running of the cell. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
|
357
|
Wang P, Fouracre J, Kelly S, Karki S, Gowik U, Aubry S, Shaw MK, Westhoff P, Slamet-Loedin IH, Quick WP, Hibberd JM, Langdale JA. Evolution of GOLDEN2-LIKE gene function in C(3) and C (4) plants. PLANTA 2013; 237:481-95. [PMID: 22968911 PMCID: PMC3555242 DOI: 10.1007/s00425-012-1754-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/26/2012] [Indexed: 05/03/2023]
Abstract
A pair of GOLDEN2-LIKE transcription factors is required for normal chloroplast development in land plant species that encompass the range from bryophytes to angiosperms. In the C(4) plant maize, compartmentalized function of the two GLK genes in bundle sheath and mesophyll cells regulates dimorphic chloroplast differentiation, whereas in the C(3) plants Physcomitrella patens and Arabidopsis thaliana the genes act redundantly in all photosynthetic cells. To assess whether the cell-specific function of GLK genes is unique to maize, we analyzed gene expression patterns in the C(4) monocot Sorghum bicolor and C(4) eudicot Cleome gynandra. Compartmentalized expression was observed in S. bicolor, consistent with the development of dimorphic chloroplasts in this species, but not in C. gynandra where bundle sheath and mesophyll chloroplasts are morphologically similar. The generation of single and double mutants demonstrated that GLK genes function redundantly in rice, as in other C(3) plants, despite the fact that GLK gene duplication in monocots preceded the speciation of rice, maize and sorghum. Together with phylogenetic analyses of GLK gene sequences, these data have allowed speculation on the evolutionary trajectory of GLK function. Based on current evidence, most species that retain single GLK genes belong to orders that contain only C(3) species. We therefore propose that the ancestral state is a single GLK gene, and hypothesize that GLK gene duplication enabled sub-functionalization, which in turn enabled cell-specific function in C(4) plants with dimorphic chloroplasts. In this scenario, GLK gene duplication preconditioned the evolution of C(4) physiology that is associated with chloroplast dimorphism.
Collapse
Affiliation(s)
- Peng Wang
- Department of Plant Sciences, University of Oxford, South Parks Rd., Oxford, OX1-3RB UK
| | - Jim Fouracre
- Department of Plant Sciences, University of Oxford, South Parks Rd., Oxford, OX1-3RB UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Rd., Oxford, OX1-3RB UK
| | | | - Udo Gowik
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sylvain Aubry
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2-3EA UK
| | - Michael K. Shaw
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd., Oxford, OX1-3RE UK
| | - Peter Westhoff
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | | | - Julian M. Hibberd
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2-3EA UK
| | - Jane A. Langdale
- Department of Plant Sciences, University of Oxford, South Parks Rd., Oxford, OX1-3RB UK
| |
Collapse
|
358
|
Wang P, Fouracre J, Kelly S, Karki S, Gowik U, Aubry S, Shaw MK, Westhoff P, Slamet-Loedin IH, Quick WP, Hibberd JM, Langdale JA. Evolution of GOLDEN2-LIKE gene function in C(3) and C (4) plants. PLANTA 2013; 237:481-495. [PMID: 22968911 DOI: 10.1007/s00425-012-1754-3 [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/26/2012] [Indexed: 05/28/2023]
Abstract
A pair of GOLDEN2-LIKE transcription factors is required for normal chloroplast development in land plant species that encompass the range from bryophytes to angiosperms. In the C(4) plant maize, compartmentalized function of the two GLK genes in bundle sheath and mesophyll cells regulates dimorphic chloroplast differentiation, whereas in the C(3) plants Physcomitrella patens and Arabidopsis thaliana the genes act redundantly in all photosynthetic cells. To assess whether the cell-specific function of GLK genes is unique to maize, we analyzed gene expression patterns in the C(4) monocot Sorghum bicolor and C(4) eudicot Cleome gynandra. Compartmentalized expression was observed in S. bicolor, consistent with the development of dimorphic chloroplasts in this species, but not in C. gynandra where bundle sheath and mesophyll chloroplasts are morphologically similar. The generation of single and double mutants demonstrated that GLK genes function redundantly in rice, as in other C(3) plants, despite the fact that GLK gene duplication in monocots preceded the speciation of rice, maize and sorghum. Together with phylogenetic analyses of GLK gene sequences, these data have allowed speculation on the evolutionary trajectory of GLK function. Based on current evidence, most species that retain single GLK genes belong to orders that contain only C(3) species. We therefore propose that the ancestral state is a single GLK gene, and hypothesize that GLK gene duplication enabled sub-functionalization, which in turn enabled cell-specific function in C(4) plants with dimorphic chloroplasts. In this scenario, GLK gene duplication preconditioned the evolution of C(4) physiology that is associated with chloroplast dimorphism.
Collapse
Affiliation(s)
- Peng Wang
- Department of Plant Sciences, University of Oxford, South Parks Rd., Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
359
|
Abstract
Intracellular signaling from plastids to the nucleus, called retrograde signaling, coordinates the expression of nuclear and plastid genes and is essential for plastid biogenesis and for maintaining plastid function at optimal levels. Recent identification of several components involved in plastid retrograde generation, transmission, and control of nuclear gene expression has provided significant insight into the regulatory network of plastid retrograde signaling. Here, we review the current knowledge of multiple plastid retrograde signaling pathways, which are derived from distinct sources, and of possible plastid signaling molecules. We describe the retrograde signaling-dependent regulation of nuclear gene expression, which involves multilayered transcriptional control, as well as the transcription factors involved. We also summarize recent advances in the identification of key components mediating signal transduction from plastids to the nucleus.
Collapse
Affiliation(s)
- Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | |
Collapse
|
360
|
Kobayashi K, Narise T, Sonoike K, Hashimoto H, Sato N, Kondo M, Nishimura M, Sato M, Toyooka K, Sugimoto K, Wada H, Masuda T, Ohta H. Role of galactolipid biosynthesis in coordinated development of photosynthetic complexes and thylakoid membranes during chloroplast biogenesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:250-61. [PMID: 22978702 DOI: 10.1111/tpj.12028] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 08/21/2012] [Accepted: 09/10/2012] [Indexed: 05/17/2023]
Abstract
The galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the predominant lipids in thylakoid membranes and indispensable for photosynthesis. Among the three isoforms that catalyze MGDG synthesis in Arabidopsis thaliana, MGD1 is responsible for most galactolipid synthesis in chloroplasts, whereas MGD2 and MGD3 are required for DGDG accumulation during phosphate (Pi) starvation. A null mutant of Arabidopsis MGD1 (mgd1-2), which lacks both galactolipids and shows a severe defect in chloroplast biogenesis under nutrient-sufficient conditions, accumulated large amounts of DGDG, with a strong induction of MGD2/3 expression, during Pi starvation. In plastids of Pi-starved mgd1-2 leaves, biogenesis of thylakoid-like internal membranes, occasionally associated with invagination of the inner envelope, was observed, together with chlorophyll accumulation. Moreover, the mutant accumulated photosynthetic membrane proteins upon Pi starvation, indicating a compensation for MGD1 deficiency by Pi stress-induced galactolipid biosynthesis. However, photosynthetic activity in the mutant was still abolished, and light-harvesting/photosystem core complexes were improperly formed, suggesting a requirement for MGDG for proper assembly of these complexes. During Pi starvation, distribution of plastid nucleoids changed concomitantly with internal membrane biogenesis in the mgd1-2 mutant. Moreover, the reduced expression of nuclear- and plastid-encoded photosynthetic genes observed in the mgd1-2 mutant under Pi-sufficient conditions was restored after Pi starvation. In contrast, Pi starvation had no such positive effects in mutants lacking chlorophyll biosynthesis. These observations demonstrate that galactolipid biosynthesis and subsequent membrane biogenesis inside the plastid strongly influence nucleoid distribution and the expression of both plastid- and nuclear-encoded photosynthetic genes, independently of photosynthesis.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Takafumi Narise
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Yokohama, 226-8501, Midori-ku, Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Tokyo, 162-8480, Shinjuku-ku, Japan
| | - Haruki Hashimoto
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
| | - Naoki Sato
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
| | - Maki Kondo
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Mayuko Sato
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kiminori Toyooka
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Hajime Wada
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
| | - Tatsuru Masuda
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
| | - Hiroyuki Ohta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Yokohama, 226-8501, Midori-ku, Japan
| |
Collapse
|
361
|
Terry MJ, Smith AG. A model for tetrapyrrole synthesis as the primary mechanism for plastid-to-nucleus signaling during chloroplast biogenesis. FRONTIERS IN PLANT SCIENCE 2013; 4:14. [PMID: 23407626 PMCID: PMC3570980 DOI: 10.3389/fpls.2013.00014] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 01/20/2013] [Indexed: 05/18/2023]
Abstract
Chloroplast biogenesis involves the co-ordinated expression of the chloroplast and nuclear genomes, requiring information to be sent from the developing chloroplasts to the nucleus. This is achieved through retrograde signaling pathways and can be demonstrated experimentally using the photobleaching herbicide, norflurazon, which in seedlings results in chloroplast damage and the reduced expression of many photosynthesis-related, nuclear genes. Genetic analysis of this pathway points to a major role for tetrapyrrole synthesis in retrograde signaling, as well as a strong interaction with light signaling pathways. Currently, the best model to explain the genetic data is that a specific heme pool generated by flux through ferrochelatase-1 functions as a positive signal to promote the expression of genes required for chloroplast development. We propose that this heme-related signal is the primary positive signal during chloroplast biogenesis, and that treatments and mutations affecting chloroplast transcription, RNA editing, translation, or protein import all impact on the synthesis and/or processing of this signal. A positive signal is consistent with the need to provide information on chloroplast status at all times. We further propose that GUN1 normally serves to restrict the production of the heme signal. In addition to a positive signal re-enforcing chloroplast development under normal conditions, aberrant chloroplast development may produce a negative signal due to accumulation of unbound chlorophyll biosynthesis intermediates, such as Mg-porphyrins. Under these conditions a rapid shut-down of tetrapyrrole synthesis is required. We propose that accumulation of these intermediates results in a rapid light-dependent inhibition of nuclear gene expression that is most likely mediated via singlet oxygen generated by photo-excitation of Mg-porphyrins. Thus, the tetrapyrrole pathway may provide both positive and inhibitory signals to control expression of nuclear genes.
Collapse
Affiliation(s)
- Matthew J. Terry
- Centre for Biological Sciences, University of SouthamptonSouthampton, UK
- Institute for Life Sciences, University of SouthamptonSouthampton, UK
- *Correspondence: Matthew J. Terry, Centre for Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK. e-mail:
| | - Alison G. Smith
- Department of Plant Sciences, University of CambridgeCambridge, UK
| |
Collapse
|
362
|
Kobayashi K, Masuda T. Spatial and Temporal Regulation of Chloroplast Development in Arabidopsis Root. ADVANCED TOPICS IN SCIENCE AND TECHNOLOGY IN CHINA 2013. [DOI: 10.1007/978-3-642-32034-7_81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
363
|
Lepistö A, Toivola J, Nikkanen L, Rintamäki E. Retrograde signaling from functionally heterogeneous plastids. FRONTIERS IN PLANT SCIENCE 2012; 3:286. [PMID: 23267363 PMCID: PMC3526119 DOI: 10.3389/fpls.2012.00286] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/03/2012] [Indexed: 05/25/2023]
Abstract
Structural and functional components of chloroplast are encoded by genes localized both to nuclear and plastid genomes of plant cell. Development from etioplasts to chloroplasts is triggered by light receptors that activate the expression of photosynthesis-associated nuclear genes (PhaNGs). In addition to photoreceptor-mediated pathways, retrograde signals from the chloroplast to the nucleus activate or repress the expression of nuclear genes involved in acclimatory or stress responses in plant leaves. A plant mesophyll cell contains up to 100 chloroplasts that function autonomously, raising intriguing questions about homogeneity and coordination of retrograde signals transmitted from chloroplast to nucleus. We have previously demonstrated that the knockout of the chloroplast regulatory protein, chloroplast NADPH-dependent thioredoxin reductase (NTRC) leads to a heterogeneous population of chloroplasts with a range of different functional states. The heterogeneous chloroplast population activates both redox-dependent and undifferentiated plastid-generated retrograde signaling pathways in the mutant leaves. Transcriptome data from the ntrc knockout lines suggest that the induction of the redox-dependent signaling pathway depends on light conditions and leads to activation of stress-responsive gene expression. Analysis of mutants in different developmental stages allows to dissect signals from normal and anomalous chloroplasts. Thus, the signals derived from anomalous chloroplasts repress expression of PhaNGs as well as genes associated with light receptor signaling and differentiation of stomata, implying interaction between retrograde pathways and plant development. Analysis of the nuclear gene expression in mutants of retrograde signaling pathways in ntrc background would reveal the components that mediate signals generated from heterogeneous plastids to nucleus.
Collapse
Affiliation(s)
| | | | | | - Eevi Rintamäki
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of TurkuTurku, Finland
| |
Collapse
|
364
|
Kang Z, Li G, Huang J, Niu X, Zou H, Zang G, Wenwen Y, Wang G. Photosynthetic and physiological analysis of the rice high-chlorophyll mutant (Gc). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 60:81-7. [PMID: 22922107 DOI: 10.1016/j.plaphy.2012.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/16/2012] [Indexed: 05/26/2023]
Abstract
Chlorophyll (Chl) molecules are essential for harvesting light energy in photosynthesis. A rice high-chlorophyll mutant (Gc) with significantly increased Chl b was identified previously in Zhenshan 97B (Oryza sativa indica). However, the mechanism underlying this higher Chl b content and its effects on photosynthetic efficiency are still unclear. Immunoblot and blue native polyacrylamide gel electrophoresis (BN-PAGE) with a second dimension electrophoresis followed by the matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) analysis showed that a few core proteins of photosystem I (PSI) and photosystem II (PSII), and light-harvesting complex II (LHCII) proteins were overexpressed in the mutant plants. Remarkable differences in chloroplast ultrastructure were observed between the wild-type and mutant plants, with the latter having more highly stacked and larger grana. Chl florescence analysis demonstrated that Gc had markedly increased quantum efficiency of photosystem II (ΦPSII), photochemical quenching (qP), non-photochemical quenching (qN) and electron transport rate (ETR). This morphological and physiological adaptation might confer a higher photosynthetic capacity in Gc than the wild-type.
Collapse
Affiliation(s)
- Zhenhui Kang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China
| | | | | | | | | | | | | | | |
Collapse
|
365
|
Paparelli E, Gonzali S, Parlanti S, Novi G, Giorgi FM, Licausi F, Kosmacz M, Feil R, Lunn JE, Brust H, van Dongen JT, Steup M, Perata P. Misexpression of a chloroplast aspartyl protease leads to severe growth defects and alters carbohydrate metabolism in Arabidopsis. PLANT PHYSIOLOGY 2012; 160:1237-50. [PMID: 22987884 PMCID: PMC3490589 DOI: 10.1104/pp.112.204016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The crucial role of carbohydrate in plant growth and morphogenesis is widely recognized. In this study, we describe the characterization of nana, a dwarf Arabidopsis (Arabidopsis thaliana) mutant impaired in carbohydrate metabolism. We show that the nana dwarf phenotype was accompanied by altered leaf morphology and a delayed flowering time. Our genetic and molecular data indicate that the mutation in nana is due to a transfer DNA insertion in the promoter region of a gene encoding a chloroplast-located aspartyl protease that alters its pattern of expression. Overexpression of the gene (oxNANA) phenocopies the mutation. Both nana and oxNANA display alterations in carbohydrate content, and the extent of these changes varies depending on growth light intensity. In particular, in low light, soluble sugar levels are lower and do not show the daily fluctuations observed in wild-type plants. Moreover, nana and oxNANA are defective in the expression of some genes implicated in sugar metabolism and photosynthetic light harvesting. Interestingly, some chloroplast-encoded genes as well as genes whose products seem to be involved in retrograde signaling appear to be down-regulated. These findings suggest that the NANA aspartic protease has an important regulatory function in chloroplasts that not only influences photosynthetic carbon metabolism but also plastid and nuclear gene expression.
Collapse
|
366
|
Wang ZY, Bai MY, Oh E, Zhu JY. Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 2012; 46:701-24. [PMID: 23020777 DOI: 10.1146/annurev-genet-102209-163450] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In plants, the steroidal hormone brassinosteroid (BR) regulates numerous developmental processes, including photomorphogenesis. Genetic, proteomic, and genomic studies in Arabidopsis have illustrated a fully connected BR signal transduction pathway from the cell surface receptor kinase BRI1 to the BZR1 family of transcription factors. Genome-wide analyses of protein-DNA interactions have identified thousands of BZR1 target genes that link BR signaling to various cellular, metabolic, and developmental processes, as well as other signaling pathways. In controlling photomorphogenesis, BR signaling is highly integrated with the light, gibberellin, and auxin pathways through both direct interactions between signaling proteins and transcriptional regulation of key components of these pathways. BR signaling also cross talks with other receptor kinase pathways to modulate stomata development and innate immunity. The molecular connections in the BR signaling network demonstrate a robust steroid signaling system that has evolved in plants to orchestrate signal transduction, genome expression, metabolism, defense, and development.
Collapse
Affiliation(s)
- Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA.
| | | | | | | |
Collapse
|
367
|
Chiang YH, Zubo YO, Tapken W, Kim HJ, Lavanway AM, Howard L, Pilon M, Kieber JJ, Schaller GE. Functional characterization of the GATA transcription factors GNC and CGA1 reveals their key role in chloroplast development, growth, and division in Arabidopsis. PLANT PHYSIOLOGY 2012; 160:332-48. [PMID: 22811435 PMCID: PMC3440210 DOI: 10.1104/pp.112.198705] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/16/2012] [Indexed: 05/17/2023]
Abstract
Chloroplasts develop from proplastids in a process that requires the interplay of nuclear and chloroplast genomes, but key steps in this developmental process have yet to be elucidated. Here, we show that the nucleus-localized transcription factors GATA NITRATE-INDUCIBLE CARBON-METABOLISM-INVOLVED (GNC) and CYTOKININ-RESPONSIVE GATA1 (CGA1) regulate chloroplast development, growth, and division in Arabidopsis (Arabidopsis thaliana). GNC and CGA1 are highly expressed in green tissues, and the phytohormone cytokinin regulates their expression. A gnc cga1 mutant exhibits a reduction in overall chlorophyll levels as well as in chloroplast size in the hypocotyl. Ectopic overexpression of either GNC or CGA1 promotes chloroplast biogenesis in hypocotyl cortex and root pericycle cells, based on increases in the number and size of the chloroplasts, and also results in expanded zones of chloroplast production into the epidermis of hypocotyls and cotyledons and into the cortex of roots. Ectopic overexpression also promotes the development of etioplasts from proplastids in dark-grown seedlings, subsequently enhancing the deetiolation process. Inducible expression of GNC demonstrates that GNC-mediated chloroplast biogenesis can be regulated postembryonically, notably so for chloroplast production in cotyledon epidermal cells. Analysis of the gnc cga1 loss-of-function and overexpression lines supports a role for these transcription factors in regulating the effects of cytokinin on chloroplast division. These data support a model in which GNC and CGA1 serve as two of the master transcriptional regulators of chloroplast biogenesis, acting downstream of cytokinin and mediating the development of chloroplasts from proplastids and enhancing chloroplast growth and division in specific tissues.
Collapse
|
368
|
Kobayashi K, Obayashi T, Masuda T. Role of the G-box element in regulation of chlorophyll biosynthesis in Arabidopsis roots. PLANT SIGNALING & BEHAVIOR 2012; 7:922-6. [PMID: 22827944 PMCID: PMC3474686 DOI: 10.4161/psb.20760] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Regulation of chlorophyll metabolism comprises strong transcriptional control together with a range of post-translational mechanisms during chloroplast biogenesis. Recently we reported that chlorophyll biosynthesis in Arabidopsis thaliana roots is regulated by auxin/cytokinin signaling via the combination of two transcription factors, LONG-HYPOCOTYL5 (HY5) and GOLDEN2-LIKE2 (GLK2). In this study, we examined the involvement of cis-elements in the expression of chlorophyll biosynthesis genes. Searches for predicted cis-elements in key chlorophyll biosynthesis genes and their co-expressed genes revealed coexistence of the G-box motif and the CCAATC motif, which may be targeted by HY5 and GLK factors, respectively, in their promoter regions. Deletion of the G-box from the promoter of the CHLH gene encoding the H subunit of Mg-chelatase resulted in the absence of its expression in roots but not in shoots, showing a differing involvement of the G-box in CHLH expression between shoots and roots. Our data suggest that transcription factors and cis-elements participating chlorophyll biosynthesis are substantially changed during organ differentiation, which may be linked to the differentiation of plastids.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|
369
|
Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat Cell Biol 2012; 14:802-9. [PMID: 22820378 PMCID: PMC3703456 DOI: 10.1038/ncb2545] [Citation(s) in RCA: 600] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 06/13/2012] [Indexed: 11/08/2022]
Abstract
Plant growth is coordinately regulated by environmental and hormonal signals. Brassinosteroid (BR) plays essential roles in growth regulation by light and temperature, but the interactions between BR and these environmental signals remain poorly understood at the molecular level. Here, we show that direct interaction between the dark- and heat-activated transcription factor phytochrome-interacting factor 4 (PIF4) and the BR-activated transcription factor BZR1 integrates the hormonal and environmental signals. BZR1 and PIF4 interact with each other in vitro and in vivo, bind to nearly 2,000 common target genes, and synergistically regulate many of these target genes, including the PRE family helix-loop-helix factors required for promoting cell elongation. Genetic analysis indicates that BZR1 and PIFs are interdependent in promoting cell elongation in response to BR, darkness or heat. These results show that the BZR1-PIF4 interaction controls a core transcription network, enabling plant growth co-regulation by the steroid and environmental signals.
Collapse
|
370
|
Lepistö A, Rintamäki E. Coordination of plastid and light signaling pathways upon development of Arabidopsis leaves under various photoperiods. MOLECULAR PLANT 2012; 5:799-816. [PMID: 22199239 PMCID: PMC3399700 DOI: 10.1093/mp/ssr106] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/25/2011] [Indexed: 05/19/2023]
Abstract
Plants synchronize their cellular and physiological functions according to the photoperiod (the length of the light period) in the cycle of 24 h. Photoperiod adjusts several traits in the plant life cycle, including flowering and senescence in annuals and seasonal growth cessation in perennials. Photoperiodic development is controlled by the coordinated action of photoreceptors and the circadian clock. During the past 10 years, remarkable progress has been made in understanding the molecular mechanism of the circadian clock, especially with regard to the transition of Arabidopsis from the vegetative growth to the reproductive phase. Besides flowering photoperiod also modifies plant photosynthetic structures and traits. Light signals controlling biogenesis of chloroplasts and development of leaf photosynthetic structures are perceived both by photoreceptors and in chloroplasts. In this review, we provide evidence suggesting that the photoperiodic development of Arabidopsis leaves mimics the acclimation of plant to various light intensities. Furthermore, the chloroplast-to-nucleus retrograde signals that adjust acclimation to light intensity are proposed to contribute also to the signaling pathways that control photoperiodic acclimation of leaves.
Collapse
Affiliation(s)
| | - Eevi Rintamäki
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
371
|
Kindgren P, Norén L, López JDDB, Shaikhali J, Strand A. Interplay between Heat Shock Protein 90 and HY5 controls PhANG expression in response to the GUN5 plastid signal. MOLECULAR PLANT 2012; 5:901-13. [PMID: 22201048 DOI: 10.1093/mp/ssr112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The presence of genes encoding organellar proteins in different cellular compartments necessitates a tight coordination of expression by the different genomes of the eukaryotic cell. This coordination of gene expression is achieved by organelle-to-nucleus or retrograde communication. Stress-induced perturbations of the tetrapyrrole pathway trigger large changes in nuclear gene expression in plants. Recently, we identified HSP90 proteins as ligands of the putative plastid signal Mg-ProtoIX. In order to investigate whether the interaction between HSP90 and Mg-ProtoIX is biologically relevant, we produced transgenic lines with reduced levels of cytosolic HSP90 in wild-type and gun5 backgrounds. Our work reveals that HSP90 proteins respond to the tetrapyrrole-mediated plastid signal to control expression of photosynthesis-associated nuclear genes (PhANG) during the response to oxidative stress. We also show that the hy5 mutant is insensitive to tetrapyrrole accumulation and that Mg-ProtoIX, cytosolic HSP90, and HY5 are all part of the same signaling pathway. These findings suggest that a regulatory complex controlling gene expression that includes HSP90 proteins and a transcription factor that is modified by tetrapyrroles in response to changes in the environment is evolutionarily conserved between yeast and plants.
Collapse
Affiliation(s)
- Peter Kindgren
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | | | | | | | | |
Collapse
|
372
|
Powell ALT, Nguyen CV, Hill T, Cheng KL, Figueroa-Balderas R, Aktas H, Ashrafi H, Pons C, Fernández-Muñoz R, Vicente A, Lopez-Baltazar J, Barry CS, Liu Y, Chetelat R, Granell A, Van Deynze A, Giovannoni JJ, Bennett AB. Uniform ripening Encodes a Golden 2-like Transcription Factor Regulating Tomato Fruit Chloroplast Development. Science 2012; 336:1711-5. [DOI: 10.1126/science.1222218] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Modern tomato (Solanum lycopersicum) varieties are bred for uniform ripening (u) light green fruit phenotypes to facilitate harvests of evenly ripened fruit. U encodes a Golden 2-like (GLK) transcription factor, SlGLK2, which determines chlorophyll accumulation and distribution in developing fruit. In tomato, two GLKs—SlGLK1 and SlGLK2—are expressed in leaves, but only SlGLK2 is expressed in fruit. Expressing GLKs increased the chlorophyll content of fruit, whereas SlGLK2 suppression recapitulated the u mutant phenotype. GLK overexpression enhanced fruit photosynthesis gene expression and chloroplast development, leading to elevated carbohydrates and carotenoids in ripe fruit. SlGLK2 influences photosynthesis in developing fruit, contributing to mature fruit characteristics and suggesting that selection of u inadvertently compromised ripe fruit quality in exchange for desirable production traits.
Collapse
|
373
|
Barajas-López JDD, Blanco NE, Strand Å. Plastid-to-nucleus communication, signals controlling the running of the plant cell. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:425-37. [PMID: 22749883 DOI: 10.1016/j.bbamcr.2012.06.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 12/30/2022]
Abstract
The presence of genes encoding organellar proteins in both the nucleus and the organelle necessitates tight coordination of expression by the different genomes, and this has led to the evolution of sophisticated intracellular signaling networks. Organelle-to-nucleus signaling, or retrograde control, coordinates the expression of nuclear genes encoding organellar proteins with the metabolic and developmental state of the organelle. Complex networks of retrograde signals orchestrate major changes in nuclear gene expression and coordinate cellular activities and assist the cell during plant development and stress responses. It has become clear that, even though the chloroplast depends on the nucleus for its function, plastid signals play important roles in an array of different cellular processes vital to the plant. Hence, the chloroplast exerts significant control over the running of the cell. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
|
374
|
Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat Commun 2012; 3:926. [PMID: 22735454 DOI: 10.1038/ncomms1926] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/28/2012] [Indexed: 12/19/2022] Open
Abstract
Chloroplasts have a critical role in plant immunity as a site for the production for salicylic acid and jasmonic acid, important mediators of plant immunity. However, the molecular link between chloroplasts and the cytoplasmic-nuclear immune system remains largely unknown. Here we show that pathogen-associated molecular pattern (PAMP) signals are quickly relayed to chloroplasts and evoke specific Ca(2+) signatures in the stroma. We further demonstrate that a chloroplast-localized protein, named calcium-sensing receptor (CAS), is involved in stromal Ca(2+) transients and responsible for both PAMP-induced basal resistance and R gene-mediated hypersensitive cell death. CAS acts upstream of salicylic acid accumulation. Transcriptome analysis demonstrates that CAS is involved in PAMP-induced expression of defence genes and suppression of chloroplast gene expression possibly through (1)O(2)-mediated retrograde signalling, allowing chloroplast-mediated transcriptional reprogramming during plant immune responses. The present study reveals a previously unknown chloroplast-mediated signalling pathway linking chloroplasts to cytoplasmic-nuclear immune responses.
Collapse
|
375
|
Liu J, Hua W, Yang HL, Zhan GM, Li RJ, Deng LB, Wang XF, Liu GH, Wang HZ. The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3727-40. [PMID: 22442419 PMCID: PMC3388832 DOI: 10.1093/jxb/ers066] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/05/2012] [Accepted: 02/08/2012] [Indexed: 05/20/2023]
Abstract
Seed yield and oil content are two important agricultural characteristics in oil crop breeding, and a lot of functional gene research is being concentrated on increasing these factors. In this study, by differential gene expression analyses between rapeseed lines (zy036 and 51070) which exhibit different levels of seed oil production, BnGRF2 (Brassica napus growth-regulating factor 2-like gene) was identified in the high oil-producing line zy036. To elucidate the possible roles of BnGRF2 in seed oil production, the cDNA sequences of the rapeseed GRF2 gene were isolated. The Blastn result showed that rapeseed contained BnGRF2a/2b which were located in the A genome (A1 and A3) and C genome (C1 and C6), respectively, and the dominantly expressed gene BnGRF2a was chosen for transgenic research. Analysis of 35S-BnGRF2a transgenic Arabidopsis showed that overexpressed BnGRF2a resulted in an increase in seed oil production of >50%. Moreover, BnGRF2a also induced a >20% enlargement in extended leaves and >40% improvement in photosynthetic efficiency because of an increase in the chlorophyll content. Furthermore, transcriptome analyses indicated that some genes associated with cell proliferation, photosynthesis, and oil synthesis were up-regulated, which revealed that cell number and plant photosynthesis contributed to the increased seed weight and oil content. Because of less efficient self-fertilization induced by the longer pistil in the 35S-BnGRF2a transgenic line, Napin-BnGRF2a transgenic lines were further used to identify the function of BnGRF2, and the results showed that seed oil production also could increase >40% compared with the wild-type control. The results suggest that improvement to economically important characteristics in oil crops may be achieved by manipulation of the GRF2 expression level.
Collapse
Affiliation(s)
- Jing Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, P.R.China
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, P.R.China
| | - Hong-Li Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, P.R.China
| | - Gao-Miao Zhan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, P.R.China
| | - Rong-Jun Li
- College of Life Sciences, Wuhan University, Wuhan 430072, P.R.China
| | - Lin-Bin Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, P.R.China
| | - Xin-Fa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, P.R.China
| | - Gui-Hua Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, P.R.China
| | - Han-Zhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, P.R.China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
376
|
Distinct phytochrome actions in nonvascular plants revealed by targeted inactivation of phytobilin biosynthesis. Proc Natl Acad Sci U S A 2012; 109:8310-5. [PMID: 22566621 DOI: 10.1073/pnas.1201744109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The red/far-red light photoreceptor phytochrome mediates photomorphological responses in plants. For light sensing and signaling, phytochromes need to associate with open-chain tetrapyrrole molecules as the chromophore. Biosynthesis of tetrapyrrole chromophores requires members of ferredoxin-dependent bilin reductases (FDBRs). It was shown that LONG HYPOCOTYL 2 (HY2) is the only FDBR in flowering plants producing the phytochromobilin (PΦB) for phytochromes. However, in the moss Physcomitrella patens, we found a second FDBR that catalyzes the formation of phycourobilin (PUB), a tetrapyrrole pigment usually found as the protein-bound form in cyanobacteria and red algae. Thus, we named the enzyme PUB synthase (PUBS). Severe photomorphogenic phenotypes, including the defect of phytochrome-mediated phototropism, were observed in Physcomitrella patens when both HY2 and PUBS were disrupted by gene targeting. This indicates HY2 and PUBS function redundantly in phytochrome-mediated responses of nonvascular plants. Our studies also show that functional PUBS orthologs are found in selected lycopod and chlorophyte genomes. Using mRNA sequencing for transcriptome profiling, we demonstrate that expression of the majority of red-light-responsive genes are misregulated in the pubs hy2 double mutant. These studies showed that moss phytochromes rapidly repress expression of genes involved in cell wall organization, transcription, hormone responses, and protein phosphorylation but activate genes involved in photosynthesis and stress signaling during deetiolation. We propose that, in nonvascular plants, HY2 and PUBS produce structurally different but functionally similar chromophore precursors for phytochromes. Holophytochromes regulate biological processes through light signaling to efficiently reprogram gene expression for vegetative growth in the light.
Collapse
|
377
|
Soule KM, Rumpho ME. LIGHT-REGULATED PHOTOSYNTHETIC GENE EXPRESSION AND PHOSPHORIBULOKINASE ENZYME ACTIVITY IN THE HETEROKONT ALGA VAUCHERIA LITOREA (XANTHOPHYCEAE) AND ITS SYMBIOTIC MOLLUSKAN PARTNER ELYSIA CHLOROTICA (GASTROPODA)(1). JOURNAL OF PHYCOLOGY 2012; 48:373-383. [PMID: 27009727 DOI: 10.1111/j.1529-8817.2012.01111.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photosynthesis is composed of tightly coupled reactions requiring finely tuned nucleocytosolic-plastid interaction. Herein, we examined the influence of light on select photosynthetic gene expression and enzyme activity in the plastid-containing mollusk (sea slug) Elysia chlorotica and its heterokont algal prey Vaucheria litorea C. Agardh. Transcript levels of nuclear photosynthetic genes (psbO and prk) were significantly lower in E. chlorotica compared with V. litorea, whereas plastid photosynthesis genes (psaA and rbcL) were more comparable, although still lower in the animal. None of the genes responded similarly to changes in light conditions over a 24 h period in the sea slug compared with the alga. Activity of the nuclear-encoded photosynthetic enzyme phosphoribulokinase (PRK) exhibited redox regulation in vitro in crude extracts of both organisms sequentially treated with oxidizing and reducing agents. However, PRK was differentially affected in vivo by redox and light versus dark treatment in V. litorea, but not in E. chlorotica. Overall, these results support the active transcription of algal nuclear and plastid genes in E. chlorotica, as well as sustained activity of a nuclear-encoded plastid enzyme, even after several months of starvation (absence of algal prey). The apparent absence of tight transcriptional regulation and redox control suggests that essential nuclear-encoded regulatory factors in V. litorea are probably not present in the sea slug. These findings are discussed relative to light regulation of photosynthetic gene expression in the green and red algal lineages and in the context of the sea slug/algal plastid kleptoplastic association.
Collapse
Affiliation(s)
- Kara M Soule
- Department of Molecular and Biomedical Sciences, University of Maine, 5735 Hitchner Hall, Orono, Maine 04469, USA
| | - Mary E Rumpho
- Department of Molecular and Biomedical Sciences, University of Maine, 5735 Hitchner Hall, Orono, Maine 04469, USA
| |
Collapse
|
378
|
Kobayashi K, Baba S, Obayashi T, Sato M, Toyooka K, Keränen M, Aro EM, Fukaki H, Ohta H, Sugimoto K, Masuda T. Regulation of root greening by light and auxin/cytokinin signaling in Arabidopsis. THE PLANT CELL 2012; 24:1081-95. [PMID: 22415275 PMCID: PMC3336121 DOI: 10.1105/tpc.111.092254] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 02/10/2012] [Accepted: 02/25/2012] [Indexed: 05/18/2023]
Abstract
Tight coordination between plastid differentiation and plant development is best evidenced by the synchronized development of photosynthetic tissues and the biogenesis of chloroplasts. Here, we show that Arabidopsis thaliana roots demonstrate accelerated chlorophyll accumulation and chloroplast development when they are detached from shoots. However, this phenomenon is repressed by auxin treatment. Mutant analyses suggest that auxin transported from the shoot represses root greening via the function of indole-3-acetic acid14, auxin response factor7 (ARF7), and ARF19. Cytokinin signaling, on the contrary, is required for chlorophyll biosynthesis in roots. The regulation by auxin/cytokinin is dependent on the transcription factor long hypocotyl5 (HY5), which is required for the expression of key chlorophyll biosynthesis genes in roots. The expression of yet another root greening transcription factor, golden2-like2 (GLK2), was found to be regulated in opposing directions by auxin and cytokinin. Furthermore, both the hormone signaling and the GLK transcription factors modified the accumulation of HY5 in roots. Overexpression of GLKs in the hy5 mutant provided evidence that GLKs require HY5 to maximize their activities in root greening. We conclude that the combination of HY5 and GLKs, functioning downstream of light and auxin/cytokinin signaling pathways, is responsible for coordinated expression of the key genes in chloroplast biogenesis.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
379
|
Vriet C, Russinova E, Reuzeau C. Boosting crop yields with plant steroids. THE PLANT CELL 2012; 24:842-57. [PMID: 22438020 PMCID: PMC3336137 DOI: 10.1105/tpc.111.094912] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/13/2012] [Accepted: 02/20/2012] [Indexed: 05/18/2023]
Abstract
Plant sterols and steroid hormones, the brassinosteroids (BRs), are compounds that exert a wide range of biological activities. They are essential for plant growth, reproduction, and responses to various abiotic and biotic stresses. Given the importance of sterols and BRs in these processes, engineering their biosynthetic and signaling pathways offers exciting potentials for enhancing crop yield. In this review, we focus on how alterations in components of sterol and BR metabolism and signaling or application of exogenous steroids and steroid inhibitors affect traits of agronomic importance. We also discuss areas for future research and identify the fine-tuning modulation of endogenous BR content as a promising strategy for crop improvement.
Collapse
Affiliation(s)
- Cécile Vriet
- CropDesign N.V., a BASF Plant Science Company, 9052 Ghent, Belgium
| | - Eugenia Russinova
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Gent University, 9052 Ghent, Belgium
| | - Christophe Reuzeau
- CropDesign N.V., a BASF Plant Science Company, 9052 Ghent, Belgium
- Address correspondence to
| |
Collapse
|
380
|
León P, Gregorio J, Cordoba E. ABI4 and its role in chloroplast retrograde communication. FRONTIERS IN PLANT SCIENCE 2012; 3:304. [PMID: 23335930 PMCID: PMC3541689 DOI: 10.3389/fpls.2012.00304] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/18/2012] [Indexed: 05/17/2023]
Abstract
The acquisition of plastids is a landmark event in plant evolution. The proper functionality of these organelles depends on strict and continuous communication between the plastids and the nucleus to precisely adjust gene expression in response to the organelle's requirements. Signals originating from the plastids impact the expression of a variety of nuclear genes, and this retrograde communication is essential to couple the nuclear expression of plastid-localized products with organelle gene expression and, ultimately, functionality. Major advances have been made in this field over the past few years with the characterization of independent retrograde signaling pathways and the identification of some of their components. One such factor is the nuclear transcriptional factor ABI4 (ABA-INSENTIVE 4). ABI4, together with the plastid PPR GUN1 protein, has been proposed to function as a node of convergence for multiple plastid retrograde signaling pathways. ABI4 is conserved among plants and also plays important roles in various critical developmental and metabolic processes. ABI4 is a versatile regulator that positively and negatively modulates the expression of many genes, including other transcriptional factors. However, its mode of action during plastid retrograde signaling is not fully understood. In this review, we describe the current evidence that supports the participation of ABI4 in different retrograde communication pathways. ABI4 is regulated at the transcriptional and post-transcriptional level. A known regulator of ABI4 includes the PTM transcription factor, which moves from the chloroplast to the nucleus. This transcription factor is a candidate for the transmission of retrograde signals between the plastid and ABI4.
Collapse
Affiliation(s)
- Patricia León
- *Correspondence: Patricia León, Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, México. e-mail:
| | | | | |
Collapse
|
381
|
Reňák D, Dupl'áková N, Honys D. Wide-scale screening of T-DNA lines for transcription factor genes affecting male gametophyte development in Arabidopsis. ACTA ACUST UNITED AC 2011; 25:39-60. [PMID: 22101548 DOI: 10.1007/s00497-011-0178-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 11/06/2011] [Indexed: 12/29/2022]
Abstract
Male gametophyte development leading to the formation of a mature pollen grain is precisely controlled at various levels, including transcriptional, post-transcriptional and post-translational, during its whole progression. Transcriptomic studies exploiting genome-wide microarray technologies revealed the uniqueness of pollen transcriptome and the dynamics of early and late successive global gene expression programs. However, the knowledge of transcription regulation is still very limited. In this study, we focused on the identification of pollen-expressed transcription factor (TF) genes involved in the regulation of male gametophyte development. To achieve this, the reverse genetic approach was used. Seventy-four T-DNA insertion lines were screened, representing 49 genes of 21 TF families active in either early or late pollen development. In the screen, ten phenotype categories were distinguished, affecting various structural or functional aspects, including pollen abortion, presence of inclusions, variable pollen grain size, disrupted cell wall structure, cell cycle defects, and male germ unit organization. Thirteen lines were not confirmed to contain the T-DNA insertion. Among 61 confirmed lines, about half (29 lines) showed strong phenotypic changes (i.e., ≥ 25% aberrant pollen) including four lines that produced a remarkably high proportion (70-100%) of disturbed pollen. However, the remaining 32 lines exhibited mild defects or resembled wild-type appearance. There was no significant bias toward any phenotype category among early and late TF genes, nor, interestingly, within individual TF families. Presented results have a potential to serve as a basal information resource for future research on the importance of respective TFs in male gametophyte development.
Collapse
Affiliation(s)
- David Reňák
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | | | | |
Collapse
|
382
|
Abstract
Brassinosteroids (BRs) are endogenous plant hormones essential for the proper regulation of multiple physiological processes required for normal plant growth and development. Since their discovery more than 30 years ago, extensive research on the mechanisms of BR action using biochemistry, mutant studies, proteomics and genome-wide transcriptome analyses, has helped refine the BR biosynthetic pathway, identify the basic molecular components required to relay the BR signal from perception to gene regulation, and expand the known physiological responses influenced by BRs. These mechanistic advances have helped answer the intriguing question of how BRs can have such dramatic pleiotropic effects on a broad range of diverse developmental pathways and have further pointed to BR interactions with other plant hormones and environmental cues. This chapter briefly reviews historical aspects of BR research and then summarizes the current state of knowledge on BR biosynthesis, metabolism and signal transduction. Recent studies uncovering novel phosphorelays and gene regulatory networks through which BR influences both vegetative and reproductive development are examined and placed in the context of known BR physiological responses including cell elongation and division, vascular differentiation, flowering, pollen development and photomorphogenesis.
Collapse
Affiliation(s)
- Steven D Clouse
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609 USA
| |
Collapse
|
383
|
Langdale JA. C4 cycles: past, present, and future research on C4 photosynthesis. THE PLANT CELL 2011; 23:3879-92. [PMID: 22128120 PMCID: PMC3246324 DOI: 10.1105/tpc.111.092098] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 11/04/2011] [Accepted: 11/09/2011] [Indexed: 05/18/2023]
Abstract
In the late 1960s, a vibrant new research field was ignited by the discovery that instead of fixing CO(2) into a C(3) compound, some plants initially fix CO(2) into a four-carbon (C(4)) compound. The term C(4) photosynthesis was born. In the 20 years that followed, physiologists, biochemists, and molecular and developmental biologists grappled to understand how the C(4) photosynthetic pathway was partitioned between two morphologically distinct cell types in the leaf. By the early 1990s, much was known about C(4) biochemistry, the types of leaf anatomy that facilitated the pathway, and the patterns of gene expression that underpinned the biochemistry. However, virtually nothing was known about how the pathway was regulated. It should have been an exciting time, but many of the original researchers were approaching retirement, C(4) plants were proving recalcitrant to genetic manipulation, and whole-genome sequences were not even a dream. In combination, these factors led to reduced funding and the failure to attract young people into the field; the endgame seemed to be underway. But over the last 5 years, there has been a resurgence of interest and funding, not least because of ambitious multinational projects that aim to increase crop yields by introducing C(4) traits into C(3) plants. Combined with new technologies, this renewed interest has resulted in the development of more sophisticated approaches toward understanding how the C(4) pathway evolved, how it is regulated, and how it might be manipulated. The extent of this resurgence is manifest by the publication in 2011 of more than 650 pages of reviews on different aspects of C(4). Here, I provide an overview of our current understanding, the questions that are being addressed, and the issues that lie ahead.
Collapse
Affiliation(s)
- Jane A Langdale
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom.
| |
Collapse
|
384
|
Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. PLANT METHODS 2011; 7:30. [PMID: 21961694 PMCID: PMC3203094 DOI: 10.1186/1746-4811-7-30] [Citation(s) in RCA: 602] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 09/30/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant protoplasts, a proven physiological and versatile cell system, are widely used in high-throughput analysis and functional characterization of genes. Green protoplasts have been successfully used in investigations of plant signal transduction pathways related to hormones, metabolites and environmental challenges. In rice, protoplasts are commonly prepared from suspension cultured cells or etiolated seedlings, but only a few studies have explored the use of protoplasts from rice green tissue. RESULTS Here, we report a simplified method for isolating protoplasts from normally cultivated young rice green tissue without the need for unnecessary chemicals and a vacuum device. Transfections of the generated protoplasts with plasmids of a wide range of sizes (4.5-13 kb) and co-transfections with multiple plasmids achieved impressively high efficiencies and allowed evaluations by 1) protein immunoblotting analysis, 2) subcellular localization assays, and 3) protein-protein interaction analysis by bimolecular fluorescence complementation (BiFC) and firefly luciferase complementation (FLC). Importantly, the rice green tissue protoplasts were photosynthetically active and sensitive to the retrograde plastid signaling inducer norflurazon (NF). Transient expression of the GFP-tagged light-related transcription factor OsGLK1 markedly upregulated transcript levels of the endogeneous photosynthetic genes OsLhcb1, OsLhcp, GADPH and RbcS, which were reduced to some extent by NF treatment in the rice green tissue protoplasts. CONCLUSIONS We show here a simplified and highly efficient transient gene expression system using photosynthetically active rice green tissue protoplasts and its broad applications in protein immunoblot, localization and protein-protein interaction assays. These rice green tissue protoplasts will be particularly useful in studies of light/chloroplast-related processes.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jianbin Su
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Shan Duan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Ying Ao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jinran Dai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jun Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Peng Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yuge Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Bing Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Dongru Feng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jinfa Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Hongbin Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
385
|
Xu YZ, Arrieta-Montiel MP, Virdi KS, de Paula WB, Widhalm JR, Basset GJ, Davila JI, Elthon TE, Elowsky CG, Sato SJ, Clemente TE, Mackenzie SA. MutS HOMOLOG1 is a nucleoid protein that alters mitochondrial and plastid properties and plant response to high light. THE PLANT CELL 2011; 23:3428-41. [PMID: 21934144 PMCID: PMC3203434 DOI: 10.1105/tpc.111.089136] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/21/2011] [Accepted: 08/30/2011] [Indexed: 05/20/2023]
Abstract
Mitochondrial-plastid interdependence within the plant cell is presumed to be essential, but measurable demonstration of this intimate interaction is difficult. At the level of cellular metabolism, several biosynthetic pathways involve both mitochondrial- and plastid-localized steps. However, at an environmental response level, it is not clear how the two organelles intersect in programmed cellular responses. Here, we provide evidence, using genetic perturbation of the MutS Homolog1 (MSH1) nuclear gene in five plant species, that MSH1 functions within the mitochondrion and plastid to influence organellar genome behavior and plant growth patterns. The mitochondrial form of the protein participates in DNA recombination surveillance, with disruption of the gene resulting in enhanced mitochondrial genome recombination at numerous repeated sequences. The plastid-localized form of the protein interacts with the plastid genome and influences genome stability and plastid development, with its disruption leading to variegation of the plant. These developmental changes include altered patterns of nuclear gene expression. Consistency of plastid and mitochondrial response across both monocot and dicot species indicate that the dual-functioning nature of MSH1 is well conserved. Variegated tissues show changes in redox status together with enhanced plant survival and reproduction under photooxidative light conditions, evidence that the plastid changes triggered in this study comprise an adaptive response to naturally occurring light stress.
Collapse
|
386
|
Chen T, Ye R, Fan X, Li X, Lin Y. Identification of C4 photosynthesis metabolism and regulatory-associated genes in Eleocharis vivipara by SSH. PHOTOSYNTHESIS RESEARCH 2011; 108:157-170. [PMID: 21739352 DOI: 10.1007/s11120-011-9668-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 06/27/2011] [Indexed: 05/31/2023]
Abstract
This is the first effort to investigate the candidate genes involved in kranz developmental regulation and C(4) metabolic fluxes in Eleocharis vivipara, which is a leafless freshwater amphibious plant and possesses a distinct culms anatomy structure and photosynthetic pattern in contrasting environments. A terrestrial specific SSH library was constructed to investigate the genes involved in kranz anatomy developmental regulation and C(4) metabolic fluxes. A total of 73 ESTs and 56 unigenes in 384 clones were identified by array hybridization and sequencing. In total, 50 unigenes had homologous genes in the databases of rice and Arabidopsis. The real-time quantitative PCR results showed that most of the genes were accumulated in terrestrial culms and ABA-induced culms. The C(4) marker genes were stably accumulated during the culms development process in terrestrial culms. With respect to C(3) culms, C(4) photosynthesis metabolism consumed much more transporters and translocators related to ion metabolism, organic acids and carbohydrate metabolism, phosphate metabolism, amino acids metabolism, and lipids metabolism. Additionally, ten regulatory genes including five transcription factors, four receptor-like proteins, and one BURP protein were identified. These regulatory genes, which co-accumulated with the culms developmental stages, may play important roles in culms structure developmental regulation, bundle sheath chloroplast maturation, and environmental response. These results shed new light on the C(4) metabolic fluxes, environmental response, and anatomy structure developmental regulation in E. vivipara.
Collapse
Affiliation(s)
- Taiyu Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | |
Collapse
|
387
|
Tanaka R, Kobayashi K, Masuda T. Tetrapyrrole Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0145. [PMID: 22303270 PMCID: PMC3268503 DOI: 10.1199/tab.0145] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Higher plants produce four classes of tetrapyrroles, namely, chlorophyll (Chl), heme, siroheme, and phytochromobilin. In plants, tetrapyrroles play essential roles in a wide range of biological activities including photosynthesis, respiration and the assimilation of nitrogen/sulfur. All four classes of tetrapyrroles are derived from a common biosynthetic pathway that resides in the plastid. In this article, we present an overview of tetrapyrrole metabolism in Arabidopsis and other higher plants, and we describe all identified enzymatic steps involved in this metabolism. We also summarize recent findings on Chl biosynthesis and Chl breakdown. Recent advances in this field, in particular those on the genetic and biochemical analyses of novel enzymes, prompted us to redraw the tetrapyrrole metabolic pathways. In addition, we also summarize our current understanding on the regulatory mechanisms governing tetrapyrrole metabolism. The interactions of tetrapyrrole biosynthesis and other cellular processes including the plastid-to-nucleus signal transduction are discussed.
Collapse
Affiliation(s)
- Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | | | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
388
|
Ye H, Li L, Yin Y. Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:455-68. [PMID: 21554539 DOI: 10.1111/j.1744-7909.2011.01046.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Brassinosteroids (BRs) play important roles in plant growth, development and responses to environmental cues. BRs signal through plasma membrane receptor BRI1 and co-receptor BAK1, and several positive (BSK1, BSU1, PP2A) and negative (BKI1, BIN2 and 14-3-3) regulators to control the activities of BES1 and BZR1 family transcription factors, which regulate the expression of hundreds to thousands of genes for various BR responses. Recent studies identified novel signaling components in the BR pathways and started to establish the detailed mechanisms on the regulation of BR signaling. In addition, the molecular mechanism and transcriptional network through which BES1 and BZR1 control gene expression and various BR responses are beginning to be revealed. BES1 recruits histone demethylases ELF6 and REF6 as well as a transcription elongation factor IWS1 to regulate target gene expression. Identification of BES1 and BZR1 target genes established a transcriptional network for BR response and crosstalk with other signaling pathways. Recent studies also revealed regulatory mechanisms of BRs in many developmental processes and regulation of BR biosynthesis. Here we provide an overview and discuss some of the most recent progress in the regulation of BR signaling and biosynthesis pathways.
Collapse
Affiliation(s)
- Huaxun Ye
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, USA
| | | | | |
Collapse
|
389
|
Gowik U, Bräutigam A, Weber KL, Weber APM, Westhoff P. Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4? THE PLANT CELL 2011; 23:2087-105. [PMID: 21705644 PMCID: PMC3160039 DOI: 10.1105/tpc.111.086264] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/24/2011] [Accepted: 06/15/2011] [Indexed: 05/18/2023]
Abstract
Selective pressure exerted by a massive decline in atmospheric CO(2) levels 55 to 40 million years ago promoted the evolution of a novel, highly efficient mode of photosynthetic carbon assimilation known as C(4) photosynthesis. C(4) species have concurrently evolved multiple times in a broad range of plant families, and this multiple and parallel evolution of the complex C(4) trait indicates a common underlying evolutionary mechanism that might be elucidated by comparative analyses of related C(3) and C(4) species. Here, we use mRNA-Seq analysis of five species within the genus Flaveria, ranging from C(3) to C(3)-C(4) intermediate to C(4) species, to quantify the differences in the transcriptomes of closely related plant species with varying degrees of C(4)-associated characteristics. Single gene analysis defines the C(4) cycle enzymes and transporters more precisely and provides new candidates for yet unknown functions as well as identifies C(4) associated pathways. Molecular evidence for a photorespiratory CO(2) pump prior to the establishment of the C(4) cycle-based CO(2) pump is provided. Cluster analysis defines the upper limit of C(4)-related gene expression changes in mature leaves of Flaveria as 3582 alterations.
Collapse
Affiliation(s)
- Udo Gowik
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, 40225 Duesseldorf, Germany.
| | | | | | | | | |
Collapse
|
390
|
Clouse SD. Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. THE PLANT CELL 2011; 23:1219-30. [PMID: 21505068 PMCID: PMC3101532 DOI: 10.1105/tpc.111.084475] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/25/2011] [Accepted: 04/04/2011] [Indexed: 05/17/2023]
Abstract
Brassinosteroid (BR) signal transduction research has progressed rapidly from the initial discovery of the BR receptor to a complete definition of the basic molecular components required to relay the BR signal from perception by receptor kinases at the cell surface to activation of a small family of transcription factors that regulate the expression of more than a thousand genes in a BR-dependent manner. These mechanistic advances have helped answer the intriguing question of how a single molecule, such as a hormone, can have dramatic pleiotropic effects on a broad range of diverse developmental pathways and have shed light on how BRs interact with other plant hormones and environmental cues to shape the growth of the whole plant. This review summarizes the current state of BR signal transduction research and then examines recent articles uncovering gene regulatory networks through which BR influences both vegetative and reproductive development.
Collapse
Affiliation(s)
- Steven D Clouse
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina 27695, USA.
| |
Collapse
|
391
|
Abstract
C4 photosynthesis is an adaptation that evolved to alleviate the detrimental effects of photorespiration as a result of the gradual decline in atmospheric carbon dioxide levels. In most C4 plants, two cell types, bundle sheath and mesophyll, cooperate in carbon fixation, and, in so doing, are able to alleviate photorespiratory losses. Although much of the biochemistry is well characterized, little is known about the genetic mechanisms underlying the cell-type specificity driving C4 . However, several studies have shown that regulation acts at multiple levels, including transcriptional, post-transcriptional, post-translational and epigenetic. One example of such a regulatory mechanism is the cell-specific accumulation of major photorespiratory transcripts/proteins in bundle sheath cells, where ribulose-1,5-bisphosphate carboxylase/oxygenase is localized. Although many of the genes are expressed in the bundle sheath, some are expressed in both cell types, implicating post-transcriptional control mechanisms. Recently, ultra-high-throughput sequencing techniques and sophisticated mass spectrometry instrumentation have provided new opportunities to further our understanding of C4 regulation. Computational pipelines are being developed to accommodate the mass of data associated with these techniques. Finally, we discuss a readily transformable C4 grass--Setaria viridis--that has great potential to serve as a model for the genetic dissection of C4 photosynthesis in the grasses.
Collapse
Affiliation(s)
- Lin Wang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14850, USA
| | - Richard B Peterson
- Department of Biochemistry & Genetics, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Thomas P Brutnell
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
392
|
Pogson BJ, Albrecht V. Genetic dissection of chloroplast biogenesis and development: an overview. PLANT PHYSIOLOGY 2011; 155:1545-51. [PMID: 21330494 PMCID: PMC3091115 DOI: 10.1104/pp.110.170365] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/03/2011] [Indexed: 05/20/2023]
|
393
|
Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim YS, Penfold CA, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. THE PLANT CELL 2011; 23:873-94. [PMID: 21447789 PMCID: PMC3082270 DOI: 10.1105/tpc.111.083345] [Citation(s) in RCA: 566] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 01/21/2011] [Accepted: 02/28/2011] [Indexed: 05/17/2023]
Abstract
Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little information on how these function in the global control of the process. We used microarray analysis to obtain a high-resolution time-course profile of gene expression during development of a single leaf over a 3-week period to senescence. A complex experimental design approach and a combination of methods were used to extract high-quality replicated data and to identify differentially expressed genes. The multiple time points enable the use of highly informative clustering to reveal distinct time points at which signaling and metabolic pathways change. Analysis of motif enrichment, as well as comparison of transcription factor (TF) families showing altered expression over the time course, identify clear groups of TFs active at different stages of leaf development and senescence. These data enable connection of metabolic processes, signaling pathways, and specific TF activity, which will underpin the development of network models to elucidate the process of senescence.
Collapse
Affiliation(s)
- Emily Breeze
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
| | - Elizabeth Harrison
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
| | - Stuart McHattie
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
- Warwick Systems Biology, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Linda Hughes
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
| | - Richard Hickman
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
- Warwick Systems Biology, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Claire Hill
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
| | - Steven Kiddle
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
- Warwick Systems Biology, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Youn-sung Kim
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
| | | | - Dafyd Jenkins
- Warwick Systems Biology, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Cunjin Zhang
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
| | - Karl Morris
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
| | - Carol Jenner
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
| | - Stephen Jackson
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
| | - Brian Thomas
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
| | - Alexandra Tabrett
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
| | - Roxane Legaie
- Warwick Systems Biology, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jonathan D. Moore
- Warwick Systems Biology, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David L. Wild
- Warwick Systems Biology, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sascha Ott
- Warwick Systems Biology, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David Rand
- Warwick Systems Biology, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jim Beynon
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
- Warwick Systems Biology, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Katherine Denby
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
- Warwick Systems Biology, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Andrew Mead
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
| | - Vicky Buchanan-Wollaston
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
- Warwick Systems Biology, University of Warwick, Coventry CV4 7AL, United Kingdom
- Address correspondence to
| |
Collapse
|
394
|
Yu X, Li L, Zola J, Aluru M, Ye H, Foudree A, Guo H, Anderson S, Aluru S, Liu P, Rodermel S, Yin Y. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:634-46. [PMID: 21214652 DOI: 10.1111/j.1365-313x.2010.04449.x] [Citation(s) in RCA: 403] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Brassinosteroids (BRs) are important regulators for plant growth and development. BRs signal to control the activities of the BES1 and BZR1 family transcription factors. The transcriptional network through which BES1 and BZR regulate large number of target genes is mostly unknown. By combining chromatin immunoprecipitation coupled with Arabidopsis tiling arrays (ChIP-chip) and gene expression studies, we have identified 1609 putative BES1 target genes, 404 of which are regulated by BRs and/or in gain-of-function bes1-D mutant. BES1 targets contribute to BR responses and interactions with other hormonal or light signaling pathways. Computational modeling of gene expression data using Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) reveals that BES1-targeted transcriptional factors form a gene regulatory network (GRN). Mutants of many genes in the network displayed defects in BR responses. Moreover, we found that BES1 functions to inhibit chloroplast development by repressing the expression of GLK1 and GLK2 transcription factors, confirming a hypothesis generated from the GRN. Our results thus provide a global view of BR regulated gene expression and a GRN that guides future studies in understanding BR-regulated plant growth.
Collapse
Affiliation(s)
- Xiaofei Yu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
395
|
Helfer A, Nusinow DA, Chow BY, Gehrke AR, Bulyk ML, Kay SA. LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock. Curr Biol 2011; 21:126-33. [PMID: 21236673 PMCID: PMC3057456 DOI: 10.1016/j.cub.2010.12.021] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 01/11/2023]
Abstract
Circadian clocks provide an adaptive advantage by allowing organisms to anticipate daily and seasonal environmental changes [1, 2]. Eukaryotic oscillators rely on complex hierarchical networks composed of transcriptional and posttranslational regulatory circuits [3]. In Arabidopsis, current representations of the circadian clock consist of three or four interlocked transcriptional feedback loops [3, 4]. Although molecular components contributing to different domains of these circuits have been described, how the loops are connected at the molecular level is not fully understood. Genetic screens previously identified LUX ARRHYTHMO (LUX) [5], also known as PHYTOCLOCK1 (PCL1) [6], an evening-expressed putative transcription factor essential for circadian rhythmicity. We determined the in vitro DNA-binding specificity for LUX by using universal protein binding microarrays; we then demonstrated that LUX directly regulates the expression of PSEUDO RESPONSE REGULATOR9 (PRR9), a major component of the morning transcriptional feedback circuit, through association with the newly discovered DNA binding site. We also show that LUX binds to its own promoter, defining a new negative autoregulatory feedback loop within the core clock. These novel connections between the archetypal loops of the Arabidopsis clock represent a significant advance toward defining the molecular dynamics underlying the circadian network in plants and provide the first mechanistic insight into the molecular function of the previously orphan clock factor LUX.
Collapse
Affiliation(s)
- Anne Helfer
- Section of Cell and Developmental Biology, Division of Biological Sciences; University of California San Diego, La Jolla, CA 92093, USA
- Center for Chronobiology; University of California San Diego, La Jolla, CA 92093, USA
| | - Dmitri A. Nusinow
- Section of Cell and Developmental Biology, Division of Biological Sciences; University of California San Diego, La Jolla, CA 92093, USA
- Center for Chronobiology; University of California San Diego, La Jolla, CA 92093, USA
| | - Brenda Y. Chow
- Section of Cell and Developmental Biology, Division of Biological Sciences; University of California San Diego, La Jolla, CA 92093, USA
- Center for Chronobiology; University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew R. Gehrke
- Division of Genetics, Department of Medicine; Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine; Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology; Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology (HST), Harvard Medical School, Boston, MA 02115, USA
| | - Steve A. Kay
- Section of Cell and Developmental Biology, Division of Biological Sciences; University of California San Diego, La Jolla, CA 92093, USA
- Center for Chronobiology; University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
396
|
Ort DR, Melis A. Optimizing antenna size to maximize photosynthetic efficiency. PLANT PHYSIOLOGY 2011; 155:79-85. [PMID: 21078863 PMCID: PMC3014228 DOI: 10.1104/pp.110.165886] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 11/10/2010] [Indexed: 05/18/2023]
Affiliation(s)
- Donald R Ort
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture Agricultural Research Service, Institute of Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
397
|
Retrograde signaling pathway from plastid to nucleus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:167-204. [PMID: 21875565 DOI: 10.1016/b978-0-12-386037-8.00002-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plastids are a diverse group of organelles found in plants and some parasites. Because genes encoding plastid proteins are divided between the nuclear and plastid genomes, coordinated expression of genes in two separate genomes is indispensable for plastid function. To coordinate nuclear gene expression with the functional or metabolic state of plastids, plant cells have acquired a retrograde signaling pathway from plastid to nucleus, also known as the plastid signaling pathway. To date, several metabolic processes within plastids have been shown to affect the expression of nuclear genes. Recent progress in this field has also revealed that the plastid signaling pathway interacts and shares common components with other intracellular signaling pathways. This review summarizes our current knowledge on retrograde signaling from plastid to nucleus in plant cells and its role in plant growth and development.
Collapse
|
398
|
Bräutigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL, Carr KM, Gowik U, Maß J, Lercher MJ, Westhoff P, Hibberd JM, Weber AP. An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species. PLANT PHYSIOLOGY 2011; 155:142-56. [PMID: 20543093 PMCID: PMC3075794 DOI: 10.1104/pp.110.159442] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 06/09/2010] [Indexed: 05/18/2023]
Abstract
C(4) photosynthesis involves alterations to the biochemistry, cell biology, and development of leaves. Together, these modifications increase the efficiency of photosynthesis, and despite the apparent complexity of the pathway, it has evolved at least 45 times independently within the angiosperms. To provide insight into the extent to which gene expression is altered between C(3) and C(4) leaves, and to identify candidates associated with the C(4) pathway, we used massively parallel mRNA sequencing of closely related C(3) (Cleome spinosa) and C(4) (Cleome gynandra) species. Gene annotation was facilitated by the phylogenetic proximity of Cleome and Arabidopsis (Arabidopsis thaliana). Up to 603 transcripts differ in abundance between these C(3) and C(4) leaves. These include 17 transcription factors, putative transport proteins, as well as genes that in Arabidopsis are implicated in chloroplast movement and expansion, plasmodesmatal connectivity, and cell wall modification. These are all characteristics known to alter in a C(4) leaf but that previously had remained undefined at the molecular level. We also document large shifts in overall transcription profiles for selected functional classes. Our approach defines the extent to which transcript abundance in these C(3) and C(4) leaves differs, provides a blueprint for the NAD-malic enzyme C(4) pathway operating in a dicotyledon, and furthermore identifies potential regulators. We anticipate that comparative transcriptomics of closely related species will provide deep insight into the evolution of other complex traits.
Collapse
|
399
|
Sharpe RM, Mahajan A, Takacs EM, Stern DB, Cahoon AB. Developmental and cell type characterization of bundle sheath and mesophyll chloroplast transcript abundance in maize. Curr Genet 2010; 57:89-102. [PMID: 21152918 DOI: 10.1007/s00294-010-0329-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/16/2010] [Accepted: 11/20/2010] [Indexed: 12/20/2022]
Abstract
The C4 grass Zea mays separates light and light-independent photosynthetic processes into two leaf cell types: bundle sheath (BS) and mesophyll (M). When mature, BS and M cells have anatomically and biochemically distinct chloroplasts that must cooperate to complete the process of photosynthesis. This report compares changes in transcript abundance between young and mature maize BS and M chloroplasts from specific segments of the leaf developmental gradient. Representative transcripts encoding components of Photosystem I, Photosystem II, Cytochrome b (6) f, thylakoidal NADH dehydrogenase; and the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase as well as nine nuclear-coded transcripts encoding chloroplast proteins were measured using quantitative RT-PCR. In addition, 887 nuclear genes encoding plastid-localized proteins, as well as 64 chloroplast and 34 mitochondrial genes were assayed utilizing a cDNA microarray. In 9 out of the 18 chloroplast-encoded genes and 84 genes from the 985 element microarray revealed greater than twofold transcript abundance differences between developmental stages and/or cell types. Patterns for transcripts associated with operons and gene clusters suggest differing regulatory mechanisms for particular polycistronic stretches. In summary, this report provides evidence that cell type-specific transcript abundance varies more in the young developing chloroplast, and differences plateau or subside as chloroplasts mature.
Collapse
Affiliation(s)
- Richard M Sharpe
- Department of Biology, Middle Tennessee State University, Box 60, Murfreesboro, TN 37132, USA
| | | | | | | | | |
Collapse
|
400
|
Inaba T, Ito-Inaba Y. Versatile roles of plastids in plant growth and development. PLANT & CELL PHYSIOLOGY 2010; 51:1847-1853. [PMID: 20889507 DOI: 10.1093/pcp/pcq147] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plastids, found in plants and some parasites, are of endosymbiotic origin. The best-characterized plastid is the plant cell chloroplast. Plastids provide essential metabolic and signaling functions, such as the photosynthetic process in chloroplasts. However, the role of plastids is not limited to production of metabolites. Plastids affect numerous aspects of plant growth and development through biogenesis, varying functional states and metabolic activities. Examples include, but are not limited to, embryogenesis, leaf development, gravitropism, temperature response and plant-microbe interactions. In this review, we summarize the versatile roles of plastids in plant growth and development.
Collapse
Affiliation(s)
- Takehito Inaba
- Interdisciplinary Research Organization, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192 Japan.
| | | |
Collapse
|