351
|
Bousbia S, Raoult D, La Scola B. Pneumonia pathogen detection and microbial interactions in polymicrobial episodes. Future Microbiol 2013; 8:633-60. [DOI: 10.2217/fmb.13.26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recent reports show that microbial communities associated with respiratory infections, such as pneumonia and cystic fibrosis, are more complex than expected. Most of these communities are polymicrobial and might comprise microorganisms originating from several diverse biological and ecological sources. Moreover, unexpected bacteria in the etiology of these respiratory infections have been increasingly identified. These findings were established with the use of efficient microbiological diagnostic tools, particularly molecular tools based on common gene amplification, followed by cloning and sequencing approaches, which facilitated the identification of the polymicrobial flora. Similarly, recent investigations reported that microbial interactions might exist between species in polymicrobial communities, including typical pneumonia pathogens, such as Pseudomonas aeruginosa and Candida albicans. Here, we review recent tools for microbial diagnosis, in particular, of intensive care unit pneumonia and the reported interactions between microbial species that have primarily been identified in the etiology of these infections.
Collapse
Affiliation(s)
- Sabri Bousbia
- Aix-Marseille Université, URMITE, UM 63, CNRS 7278, IRD 198, INSERM U1095, Facultés de Médecine, Marseille, France
- IHU Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique – Hôpitaux de Marseille, Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, URMITE, UM 63, CNRS 7278, IRD 198, INSERM U1095, Facultés de Médecine, Marseille, France
- IHU Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique – Hôpitaux de Marseille, Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique – Hôpitaux de Marseille, Marseille, France
- Aix-Marseille Université, URMITE, UM 63, CNRS 7278, IRD 198, INSERM U1095, Facultés de Médecine, Marseille, France.
| |
Collapse
|
352
|
Welc-Falęciak R, Werszko J, Cydzik K, Bajer A, Michalik J, Behnke JM. Co-infection and genetic diversity of tick-borne pathogens in roe deer from Poland. Vector Borne Zoonotic Dis 2013; 13:277-88. [PMID: 23473225 DOI: 10.1089/vbz.2012.1136] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Wild species are essential hosts for maintaining Ixodes ticks and the tick-borne diseases. The aim of our study was to estimate the prevalence, the rate of co-infection with Babesia, Bartonella, and Anaplasma phagocytophilum, and the molecular diversity of tick-borne pathogens in roe deer in Poland. Almost half of the tested samples provided evidence of infection with at least 1 species. A. phagocytophilum (37.3%) was the most common and Bartonella (13.4%) the rarest infection. A total of 18.3% of all positive samples from roe deer were infected with at least 2 pathogens, and one-third of those were co-infected with A. phagocytophilum, Bartonella, and Babesia species. On the basis of multilocus molecular studies we conclude that: (1) Two different genetic variants of A. phagocytophilum, zoonotic and nonzoonotic, are widely distributed in Polish roe deer population; (2) the roe deer is the host for zoonotic Babesia (Bab. venatorum, Bab. divergens), closely related or identical with strains/species found in humans; (3) our Bab. capreoli and Bab. divergens isolates differed from reported genotypes at 2 conserved base positions, i.e., positions 631 and 663; and (4) this is the first description of Bart. schoenbuchensis infections in roe deer in Poland. We present 1 of the first complex epidemiological studies on the prevalence of Babesia, Bartonella, and A. phagocytophilum in naturally infected populations of roe deer. These game animals clearly have an important role as reservoir hosts of tick-borne pathogens, but the pathogenicity and zoonotic potential of the parasite genotypes hosted by roe deer requires further detailed investigation.
Collapse
Affiliation(s)
- Renata Welc-Falęciak
- Department of Parasitology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
353
|
Paetow LJ, McLaughlin JD, Pauli BD, Marcogliese DJ. Mortality of American bullfrog tadpoles Lithobates catesbeianus infected by Gyrodactylus jennyae and experimentally exposed to Batrachochytrium dendrobatidis. JOURNAL OF AQUATIC ANIMAL HEALTH 2013; 25:15-26. [PMID: 23290030 DOI: 10.1080/08997659.2012.722170] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The fungal pathogen Batrachochytrium dendrobatidis (Bd), which causes the disease chytridiomycosis in postmetamorphic amphibians, has been linked to amphibian population declines. Different amphibian species, however, exhibit different susceptibility to Bd pathogenicity. At the same time, agricultural pesticides commonly found contaminating aquatic habitats have been reported to increase the susceptibility of amphibians to pathogens. To investigate whether certain pesticides are able to alter the pathogenicity of Bd to larval amphibians, we exposed larval American bullfrogs Lithobates catesbeianus to end-use formulations of the herbicides atrazine or glyphosate, and then exposed them to Bd. Following the experimental exposures, a preexisting infection of the tadpoles by the monogenean ectoparasite Gyrodactylus jennyae was detected in all experimental and control tadpoles. Gyrodactylus jennyae infection intensity varied, and individuals with heavy G. jennyae infections suffered more skin erosion due to grazing by the parasite. Tadpoles experimentally exposed to Bd, or to Bd and either herbicide, had significantly reduced survival rates compared with untreated tadpoles that were only infected by G. jennyae. Increased mortality was also correlated with degree of skin erosion; survival of tadpoles with severe skin erosion was significantly reduced compared with that of tadpoles with no, or mild, skin erosion. While infected with G. jennyae, the group of tadpoles with the lowest survival rate (exposed only to Bd) included significantly more individuals exhibiting severe skin erosion and significantly fewer individuals without skin erosion, compared with the control group. These results emphasize the potential pathogenicity of gyrodactylid infections in larval amphibian hosts and suggest that concomitant exposures to Bd may enhance infections and effects of G. jennyae in bullfrog tadpoles.
Collapse
Affiliation(s)
- Linda J Paetow
- Department of Biology, Concordia University, Montreal, Canada.
| | | | | | | |
Collapse
|
354
|
Hayman DTS, Bowen RA, Cryan PM, McCracken GF, O'Shea TJ, Peel AJ, Gilbert A, Webb CT, Wood JLN. Ecology of zoonotic infectious diseases in bats: current knowledge and future directions. Zoonoses Public Health 2013; 60:2-21. [PMID: 22958281 PMCID: PMC3600532 DOI: 10.1111/zph.12000] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Indexed: 01/05/2023]
Abstract
Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics.
Collapse
Affiliation(s)
- D T S Hayman
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Alizon S, de Roode JC, Michalakis Y. Multiple infections and the evolution of virulence. Ecol Lett 2013; 16:556-67. [PMID: 23347009 DOI: 10.1111/ele.12076] [Citation(s) in RCA: 270] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 10/30/2012] [Accepted: 12/17/2012] [Indexed: 12/13/2022]
Abstract
Infections that consist of multiple parasite strains or species are common in the wild and are a major public health concern. Theory suggests that these infections have a key influence on the evolution of infectious diseases and, more specifically, on virulence evolution. However, we still lack an overall vision of the empirical support for these predictions. We argue that within-host interactions between parasites largely determine how virulence evolves and that experimental data support model predictions. Then, we explore the main limitation of the experimental study of such 'mixed infections', which is that it draws conclusions on evolutionary outcomes from studies conducted at the individual level. We also discuss differences between coinfections caused by different strains of the same species or by different species. Overall, we argue that it is possible to make sense out of the complexity inherent to multiple infections and that experimental evolution settings may provide the best opportunity to further our understanding of virulence evolution.
Collapse
Affiliation(s)
- Samuel Alizon
- Laboratoire MIVEGEC (UMR CNRS 5290, UR IRD 224, UM1, UM2), Montpellier, France.
| | | | | |
Collapse
|
356
|
Lello J, Knopp S, Mohammed KA, Khamis IS, Utzinger J, Viney ME. The relative contribution of co-infection to focal infection risk in children. Proc Biol Sci 2013; 280:20122813. [PMID: 23303547 DOI: 10.1098/rspb.2012.2813] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Co-infection is ubiquitous in people in the developing world but little is known regarding the potential for one parasite to act as a risk factor for another. Using generalized linear mixed modelling approaches applied to data from school-aged children from Zanzibar, Tanzania, we determined the strength of association between four focal infections (i.e. Ascaris lumbricoides, Trichuris trichiura, hookworm and self-reported fever, the latter used as a proxy for viral, bacterial or protozoal infections) and the prevalence or intensity of each of the helminth infections. We compared these potential co-infections with additional risk factors, specifically, host sex and age, socioeconomic status and physical environment, and determined what the relative contribution of each risk factor was. We found that the risk of infection with all four focal infections was strongly associated with at least one other infection, and that this was frequently dependent on the intensity of that other infection. In comparison, no other incorporated risk factor was associated with all focal infections. Successful control of infectious diseases requires identification of infection risk factors. This study demonstrates that co-infection is likely to be one of these principal risk factors and should therefore be given greater consideration when designing disease-control strategies. Future work should also incorporate other potential risk factors, including host genetics which were not available in this study and, ideally, assess the risks via experimental manipulation.
Collapse
Affiliation(s)
- Joanne Lello
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| | | | | | | | | | | |
Collapse
|
357
|
Mixed infection in the anteater Tamandua tetradactyla (Mammalia: Pilosa) from Pará State, Brazil: Trypanosoma cruzi, T. rangeli and Leishmania infantum. Parasitology 2012; 140:455-60. [PMID: 23253893 DOI: 10.1017/s0031182012001886] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Some Trypanosoma and Leishmania species are multi-host parasites whose distribution overlaps in several parts of the Brazilian Amazon basin. Despite being a common trait among wild mammals, mixed infections and their consequences for the host's health and parasite transmission are still a poorly known phenomenon. Here we describe a triple mixed infection - Trypanosoma cruzi, T. rangeli and Leishmania infantum - in a bone marrow sample from an anteater Tamandua tetradactyla captured in a house backyard from the endemic Abaetetuba municipality in the Amazon basin. T. cruzi was also isolated from blood samples. The mini-exon multiplex PCR characterization detected the infection by T. rangeli and T. cruzi (TcI genotype), while L. infantum infection was confirmed by an ITS-PCR followed by amplicon sequencing. This is the first description of T. rangeli isolation from bone marrow and the first report of L. infantum infection in xenarthrans. The implications of this finding are discussed considering the influence of mixed infections in the role of this mammal species as a putative reservoir host of these 3 trypanosomatid species.
Collapse
|
358
|
Lass S, Hudson PJ, Thakar J, Saric J, Harvill E, Albert R, Perkins SE. Generating super-shedders: co-infection increases bacterial load and egg production of a gastrointestinal helminth. J R Soc Interface 2012; 10:20120588. [PMID: 23256186 PMCID: PMC3565725 DOI: 10.1098/rsif.2012.0588] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Co-infection by multiple parasites is common within individuals. Interactions between co-infecting parasites include resource competition, direct competition and immune-mediated interactions and each are likely to alter the dynamics of single parasites. We posit that co-infection is a driver of variation in parasite establishment and growth, ultimately altering the production of parasite transmission stages. To test this hypothesis, three different treatment groups of laboratory mice were infected with the gastrointestinal helminth Heligmosomoides polygyrus, the respiratory bacterial pathogen Bordetella bronchiseptica lux+ or co-infected with both parasites. To follow co-infection simultaneously, self-bioluminescent bacteria were used to quantify infection in vivo and in real-time, while helminth egg production was monitored in real-time using faecal samples. Co-infection resulted in high bacterial loads early in the infection (within the first 5 days) that could cause host mortality. Co-infection also produced helminth ‘super-shedders’; individuals that chronically shed the helminth eggs in larger than average numbers. Our study shows that co-infection may be one of the underlying mechanisms for the often-observed high variance in parasite load and shedding rates, and should thus be taken into consideration for disease management and control. Further, using self-bioluminescent bacterial reporters allowed quantification of the progression of infection within the whole animal of the same individuals at a fine temporal scale (daily) and significantly reduced the number of animals used (by 85%) compared with experiments that do not use in vivo techniques. Thus, we present bioluminescent imaging as a novel, non-invasive tool offering great potential to be taken forward into other applications of infectious disease ecology.
Collapse
Affiliation(s)
- Sandra Lass
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
359
|
Prevalence of filarioid nematodes and trypanosomes in American robins and house sparrows, Chicago USA. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2012; 2:42-9. [PMID: 24533314 PMCID: PMC3862512 DOI: 10.1016/j.ijppaw.2012.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/24/2012] [Accepted: 11/28/2012] [Indexed: 02/05/2023]
Abstract
Hosts are commonly infected with a suite of parasites, and interactions among these parasites can affect the size, structure, and behavior of host–parasite communities. As an important step to understanding the significance of co-circulating parasites, we describe prevalence of co-circulating hemoparasites in two important avian amplification hosts for West Nile virus (WNV), the American robin (Turdus migratorius) and house sparrow (Passer domesticus), during the 2010–2011 in Chicago, Illinois, USA. Rates of nematode microfilariemia were 1.5% of the robins (n = 70) and 4.2% of the house sparrows (n = 72) collected during the day and 11.1% of the roosting robins (n = 63) and 0% of the house sparrows (n = 11) collected at night. Phylogenetic analysis of nucleotide sequences of the 18S rRNA and cytochrome oxidase subunit I (COI) genes from these parasites resolved two clades of filarioid nematodes. Microscopy revealed that 18.0% of American robins (n = 133) and 16.9% of house sparrows (n = 83) hosted trypanosomes in the blood. Phylogenetic analysis of nucleotide sequences from the 18s rRNA gene revealed that the trypanosomes fall within previously described avian trypanosome clades. These results document hemoparasites in the blood of WNV hosts in a center of endemic WNV transmission, suggesting a potential for direct or indirect interactions with the virus.
Collapse
|
360
|
Wei Y, Neal P, Telfer S, Begon M. Statistical analysis of an endemic disease from a capture–recapture experiment. J Appl Stat 2012. [DOI: 10.1080/02664763.2012.725467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
361
|
Cobey S, Lipsitch M. Pathogen diversity and hidden regimes of apparent competition. Am Nat 2012; 181:12-24. [PMID: 23234842 DOI: 10.1086/668598] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Competition through cross-reacting host immune responses, a form of apparent competition, is a major driver of pathogen evolution and diversity. Most models of pathogens have focused on intraspecific interactions to explain observed patterns. Two recent experiments suggested that Haemophilus influenzae, a common nasopharyngeal colonizer of humans, might alter the immune environment in a way that favors otherwise less fit serotypes of another common pathogen, pneumococcus. Using a computational model, we demonstrate that H. influenzae, if it consistently raises the fitness of the less fit serotypes, can strongly promote pneumococcal diversity. However, the effects of H. influenzae are so sensitive to the prevalence of H. influenzae that this species is unlikely to be the main driver of serotype coexistence. Interactions that significantly affect diversity could furthermore be extremely difficult to detect through co-occurrence analysis alone. These results suggest that small differences in strains' adaptations to different immunological regimes, which are shaped by coinfections with other pathogens, can have dramatic effects on strain dynamics and patterns of phenotypic variation. Studies of microbial communities might therefore benefit from the use of varied approaches to infer the presence of indirect interactions.
Collapse
Affiliation(s)
- Sarah Cobey
- Center for Communicable Disease Dynamics, Harvard School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
362
|
|
363
|
Abstract
Hosts are often co-infected by several parasite genotypes of the same species or even by different species and this is known to affect virulence evolution. However, epidemiological models typically assume that only one of the co-infecting strains can be transmitted at the same time, which is often at odds with the observed biology. Here, I study the effect of co-transmission on virulence evolution in a case where parasites compete for host resources. For co-infections by strains of the same species, increased co-transmission selects for less virulent strains. This is because co-transmission aligns the interests of co-infecting strains, thus decreasing the selective pressure for increased within-host competitiveness. For co-infection caused by different parasite species, the evolutionary outcome depends on the respective virulence of the two parasite species. Finally, I investigate asymmetric scenarios, for example that of plant viruses that require "helper" molecules produced by viruses from another species to be transmitted. These results show that even if parasite strains compete for host resources, the prevalence of co-infections can be a poor predictor of virulence evolution.
Collapse
Affiliation(s)
- Samuel Alizon
- Laboratoire MIVEGEC (UMR CNRS 5290, IRD 224, UM1, UM2) 911 avenue Agropolis, B.P. 64501, 34394 Montpellier Cedex 5, France.
| |
Collapse
|
364
|
Budischak SA, Jolles AE, Ezenwa VO. Direct and indirect costs of co-infection in the wild: Linking gastrointestinal parasite communities, host hematology, and immune function. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2012; 1:2-12. [PMID: 24533308 PMCID: PMC3904086 DOI: 10.1016/j.ijppaw.2012.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/09/2012] [Accepted: 10/12/2012] [Indexed: 01/21/2023]
Abstract
Most animals are concurrently infected with multiple parasites, and interactions among these parasites may influence both disease dynamics and host fitness. However, the sublethal costs of parasite infections are difficult to measure and the effects of concomitant infections with multiple parasite species on individual physiology and fitness are poorly described for wild hosts. To understand the direct and indirect physiological costs of co-infection, we investigated the relationships among gastrointestinal parasite richness, species identity, and abundance and host hematological parameters, body condition, and investment in lymphocyte defenses. Using aggregate-scale parasite data from African buffalo (Syncerus caffer), we found few direct or indirect associations between infection and hematology in male hosts, and no significant associations were observed in female hosts or with respect to body condition in either sex. These results suggest that only strong physiological effects are detectable with aggregate-scale parasite data, and that hematological variables may be more sensitive to changes in condition than standard body fat condition indices. Analyses accounting for parasite species identity in female buffalo revealed that different parasites show distinct relationships with host hematology, body condition, and immune investment. However, four of six species-specific associations were obscured when parasites were considered in combination. Overall, fitness-related physiological mediators such as hematological indices may provide assessments of direct and indirect effects of parasite infection, particularly when parasite species identity and community composition are considered.
Collapse
Affiliation(s)
- Sarah A. Budischak
- Odum School of Ecology, 140 E. Green St., University of Georgia, Athens, GA 30602-2202, USA
- Corresponding author. Tel.: +1 706 542 7401; fax: +1 706 542 4819.
| | - Anna E. Jolles
- Department of Biomedical Sciences, 105 Dryden Hall, Oregon State University, Corvallis, OR 97331-4801, USA
- Department of Zoology, 3029 Cordley Hall, Oregon State University, Corvallis, OR 97331, USA
| | - Vanessa O. Ezenwa
- Odum School of Ecology, 140 E. Green St., University of Georgia, Athens, GA 30602-2202, USA
- Department of Infectious Diseases, College of Veterinary Medicine, 501 D.W. Brooks Drive, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
365
|
Caron A, de Garine-Wichatitsky M, Ndlovu M, Cumming GS. Linking avian communities and avian influenza ecology in southern Africa using epidemiological functional groups. Vet Res 2012; 43:73. [PMID: 23101696 PMCID: PMC3495702 DOI: 10.1186/1297-9716-43-73] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 10/03/2012] [Indexed: 01/08/2023] Open
Abstract
The ecology of pathogens, and particularly their emergence in multi-host systems, is complex. New approaches are needed to reduce superficial complexities to a level that still allows scientists to analyse underlying and more fundamental processes. One promising approach for simplification is to use an epidemiological-function classification to describe ecological diversity in a way that relates directly to pathogen dynamics. In this article, we develop and apply the epidemiological functional group (EFG) concept to explore the relationships between wild bird communities and avian influenza virus (AIV) in three ecosystems in southern Africa. Using a two year dataset that combined bird counts and bimonthly sampling for AIV, we allocated each bird species to a set of EFGs that captured two overarching epidemiological functions: the capacity of species to maintain AIV in the system, and their potential to introduce the virus. Comparing AIV prevalence between EFGs suggested that the hypothesis that anseriforms (ducks) and charadriiforms (waders) drive AIV epidemiology cannot entirely explain the high prevalence observed in some EFGs. If anseriforms do play an important role in AIV dynamics in each of the three ecosystems, the role of other species in the local maintenance of AIV cannot be ruled out. The EFG concept thus helped us to identify gaps in knowledge and to highlight understudied bird groups that might play a role in AIV epidemiology. In general, the use of EFGs has potential for generating a range of valuable insights in epidemiology, just as functional group approaches have done in ecology.
Collapse
|
366
|
Roberts MG, Heesterbeek JAP. Characterizing the next-generation matrix and basic reproduction number in ecological epidemiology. J Math Biol 2012; 66:1045-64. [DOI: 10.1007/s00285-012-0602-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 09/26/2012] [Indexed: 10/27/2022]
|
367
|
Seguel M, González-Acuña D, Mathieu C, Hernández C, Paredes E. Immunosuppressive syndrome in juvenile black-faced ibises (Theristicus melanopis melanopis) in southern Chile. Avian Dis 2012; 56:611-5. [PMID: 23050484 DOI: 10.1637/9956-100611-case.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the austral summer of 2011, in the rural area of Villarrica county, southern Chile (39 degrees 16'S, 72 degrees 19'W), seven black-faced ibis juveniles (approximately 4 mo old) were observed in the field with weakness; they were unable to follow the group and struggling to take flight. Three of these birds were euthanatized, and complete necropsies were performed. Gross examination showed severe infestation with Colpocephalum trispinum and Ardeicola melanopis lice, moderate emaciation, pale musculature, bursal atrophy, and severe hemorrhagic enteritis due to a heavy proventricular and intestinal infection with Porrocaecum heteropterum nematodes. Fungal pneumonia and severe lymphoid depletion on thymus, spleen, and bursa were diagnosed by microscopic examination. Bursal lesions included apoptosis and necrosis of lymphoid cells, and several cystic follicles. The presence of severe lymphoid depletion associated with fungal pneumonia and severe external and internal parasite infections suggest the presence of an immunosuppressive syndrome in these birds that caused the death of several black-faced ibis juveniles in southern Chile during the summer of 2011.
Collapse
Affiliation(s)
- Mauricio Seguel
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Isla Teja s/n, Valdivia 5090000, Chile
| | | | | | | | | |
Collapse
|
368
|
MHC influences infection with parasites and winter survival in the root vole Microtus oeconomus. Evol Ecol 2012. [DOI: 10.1007/s10682-012-9611-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
369
|
Restif O, Hayman DTS, Pulliam JRC, Plowright RK, George DB, Luis AD, Cunningham AA, Bowen RA, Fooks AR, O'Shea TJ, Wood JLN, Webb CT. Model-guided fieldwork: practical guidelines for multidisciplinary research on wildlife ecological and epidemiological dynamics. Ecol Lett 2012; 15:1083-94. [PMID: 22809422 PMCID: PMC3466409 DOI: 10.1111/j.1461-0248.2012.01836.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/02/2012] [Accepted: 06/20/2012] [Indexed: 12/25/2022]
Abstract
Infectious disease ecology has recently raised its public profile beyond the scientific community due to the major threats that wildlife infections pose to biological conservation, animal welfare, human health and food security. As we start unravelling the full extent of emerging infectious diseases, there is an urgent need to facilitate multidisciplinary research in this area. Even though research in ecology has always had a strong theoretical component, cultural and technical hurdles often hamper direct collaboration between theoreticians and empiricists. Building upon our collective experience of multidisciplinary research and teaching in this area, we propose practical guidelines to help with effective integration among mathematical modelling, fieldwork and laboratory work. Modelling tools can be used at all steps of a field-based research programme, from the formulation of working hypotheses to field study design and data analysis. We illustrate our model-guided fieldwork framework with two case studies we have been conducting on wildlife infectious diseases: plague transmission in prairie dogs and lyssavirus dynamics in American and African bats. These demonstrate that mechanistic models, if properly integrated in research programmes, can provide a framework for holistic approaches to complex biological systems.
Collapse
Affiliation(s)
- Olivier Restif
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
370
|
Affiliation(s)
- Sandra Telfer
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen AB24 2TZ UK
| | - Kevin Bown
- School of Environment and Life Sciences; University of Salford; Salford M5 4WT UK
| |
Collapse
|
371
|
Abstract
The 6th International Conference on Emerging Zoonoses, held at Cancun, Mexico, 24-27 February 2011, offered 84 participants from 18 countries, a snapshot of current research in numerous zoonoses caused by viruses, bacteria or prions. Co-chaired by Professors Heinz Feldmann and Jürgen Richt, the conference explored 10 topics: (i) The ecology of emerging zoonotic diseases; (ii) The role of wildlife in emerging zoonoses; (iii) Cross-species transmission of zoonotic pathogens; (iv) Emerging and neglected influenza viruses; (v) Haemorrhagic fever viruses; (vi) Emerging bacterial diseases; (vii) Outbreak responses to zoonotic diseases; (viii) Food-borne zoonotic diseases; (ix) Prion diseases; and (x) Modelling and prediction of emergence of zoonoses. Human medicine, veterinary medicine and environmental challenges are viewed as a unity, which must be considered under the umbrella of 'One Health'. Several presentations attempted to integrate the insights gained from field data with mathematical models in the search for effective control measures of specific zoonoses. The overriding objective of the research presentations was to create, improve and use the tools essential to address the risk of contagions in a globalized society. In seeking to fulfil this objective, a three-step approach has often been applied: (i) use cultured cells, model and natural animal hosts and human clinical models to study infection; (ii) combine traditional histopathological and biochemical approaches with functional genomics, proteomics and computational biology; and (iii) obtain signatures of virulence and insights into mechanisms of host defense response, immune evasion and pathogenesis. This meeting review summarizes 39 of the conference presentations and mentions briefly the 16 articles in this Special Supplement, most of which were presented at the conference in earlier versions. The full affiliations of all presenters and many colleagues have been included to facilitate further inquiries from readers.
Collapse
Affiliation(s)
- R E Kahn
- Diagnostic Medicine/Pathobiology Department, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
372
|
Maas M, Keet DF, Rutten VPMG, Heesterbeek JAP, Nielen M. Assessing the impact of feline immunodeficiency virus and bovine tuberculosis co-infection in African lions. Proc Biol Sci 2012; 279:4206-14. [PMID: 22915673 DOI: 10.1098/rspb.2012.1503] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bovine tuberculosis (BTB), caused by Mycobacterium bovis, is a disease that was introduced relatively recently into the Kruger National Park (KNP) lion population. Feline immunodeficiency virus (FIV(ple)) is thought to have been endemic in lions for a much longer time. In humans, co-infection between Mycobacterium tuberculosis and human immunodeficiency virus increases disease burden. If BTB were to reach high levels of prevalence in lions, and if similar worsening effects would exist between FIV(ple) and BTB as for their human equivalents, this could pose a lion conservation problem. We collected data on lions in KNP from 1993 to 2008 for spatio-temporal analysis of both FIV(ple) and BTB, and to assess whether a similar relationship between the two diseases exists in lions. We found that BTB prevalence in the south was higher than in the north (72 versus 19% over the total study period) and increased over time in the northern part of the KNP (0-41%). No significant spatio-temporal differences were seen for FIV(ple) in the study period, in agreement with the presumed endemic state of the infection. Both infections affected haematology and blood chemistry values, FIV(ple) in a more pronounced way than BTB. The effect of co-infection on these values, however, was always less than additive. Though a large proportion (31%) of the lions was co-infected with FIV(ple) and M. bovis, there was no evidence for a synergistic relation as in their human counterparts. Whether this results from different immunopathogeneses remains to be determined.
Collapse
Affiliation(s)
- M Maas
- Division of Epidemiology, Department of Farm Animal Health, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
373
|
Tack AJM, Thrall PH, Barrett LG, Burdon JJ, Laine AL. Variation in infectivity and aggressiveness in space and time in wild host-pathogen systems: causes and consequences. J Evol Biol 2012; 25:1918-1936. [PMID: 22905782 DOI: 10.1111/j.1420-9101.2012.02588.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 07/02/2012] [Accepted: 07/05/2012] [Indexed: 12/18/2022]
Abstract
Variation in host resistance and in the ability of pathogens to infect and grow (i.e. pathogenicity) is important as it provides the raw material for antagonistic (co)evolution and therefore underlies risks of disease spread, disease evolution and host shifts. Moreover, the distribution of this variation in space and time may inform us about the mode of coevolutionary selection (arms race vs. fluctuating selection dynamics) and the relative roles of G × G interactions, gene flow, selection and genetic drift in shaping coevolutionary processes. Although variation in host resistance has recently been reviewed, little is known about overall patterns in the frequency and scale of variation in pathogenicity, particularly in natural systems. Using 48 studies from 30 distinct host-pathogen systems, this review demonstrates that variation in pathogenicity is ubiquitous across multiple spatial and temporal scales. Quantitative analysis of a subset of extensively studied plant-pathogen systems shows that the magnitude of within-population variation in pathogenicity is large relative to among-population variation and that the distribution of pathogenicity partly mirrors the distribution of host resistance. At least part of the variation in pathogenicity found at a given spatial scale is adaptive, as evidenced by studies that have examined local adaptation at scales ranging from single hosts through metapopulations to entire continents and - to a lesser extent - by comparisons of pathogenicity with neutral genetic variation. Together, these results support coevolutionary selection through fluctuating selection dynamics. We end by outlining several promising directions for future research.
Collapse
Affiliation(s)
- A J M Tack
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - P H Thrall
- CSIRO-Plant Industry, Canberra, ACT, Australia
| | - L G Barrett
- CSIRO-Plant Industry, Canberra, ACT, Australia
| | - J J Burdon
- CSIRO-Plant Industry, Canberra, ACT, Australia
| | - A-L Laine
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
374
|
Co-infection of Borrelia afzelii and Bartonella spp. in bank voles from a suburban forest. Comp Immunol Microbiol Infect Dis 2012; 35:583-9. [PMID: 22898354 DOI: 10.1016/j.cimid.2012.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/19/2012] [Accepted: 07/24/2012] [Indexed: 11/21/2022]
Abstract
We report the molecular detection of Borrelia afzelii (11%) and Bartonella spp. (56%) in 447 bank voles trapped in a suburban forest in France. Adult voles were infected by significantly more Borrelia afzelii than juveniles (p<0.001), whereas no significant difference was detected in the prevalence of Bartonella spp. between young and adult individuals (p=0.914). Six percent of the animals were co-infected by both bacteria. Analysis of the bank vole carrier status for either pathogen indicated that co-infections occur randomly (p=0.94, CI(95)=[0.53; 1.47]). Sequence analysis revealed that bank voles were infected by a single genotype of Borrelia afzelii and by 32 different Bartonella spp. genotypes, related to three known species specific to rodents (B. taylorii, B. grahamii and B. doshiae) and also two as yet unidentified Bartonella species. Our findings confirm that rodents harbor high levels of potential human pathogens; therefore, widespread surveillance should be undertaken in areas where humans may encounter rodents.
Collapse
|
375
|
Paziewska A, Siński E, Harris PD. Recombination, diversity and allele sharing of infectivity proteins between Bartonella species from rodents. MICROBIAL ECOLOGY 2012; 64:525-536. [PMID: 22419104 PMCID: PMC3391547 DOI: 10.1007/s00248-012-0033-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 02/23/2012] [Indexed: 05/31/2023]
Abstract
The alpha-Proteobacterium Bartonella is a common parasite of voles and mice, giving rise to short-lived (4 weeks to 2 months) infections. Here, we report high sequence diversity in genes of the VirB/VirD type IV secretion system (T4SS), amongst Bartonella from natural rodent populations in NE Poland. The VirB5 protein is predicted to consist of three conserved alpha helices separated by loops of variable length which include numerous indels. The C-terminal domain includes repeat stretches of KEK residues, reflecting underlying homopolymeric stretches of adenine residues. A total of 16 variants of VirB5, associated with host identity, but not bacterial taxon, were identified from 22 Bartonella isolates. One was clearly a recombinant from two others, another included an insertion of two KEK repeats. The virB5 gene appears to evolve via both mutation and recombination, as well as slippage mediated insertion/deletion events. The recombinational units are thought to be relatively short, as there was no evidence of linkage disequilibrium between virB5 and the bepA locus only 5.5 kb distant. The diversity of virB5 is assumed to be related to immunological role of this protein in Bartonella infections; diversity of virB5 may assist persistence of Bartonella in the rodent population, despite the relatively short (3-4 weeks) duration of individual infections. It is clear from the distribution of virB5 and bepA alleles that recombination within and between clades is widespread, and frequently crosses the boundaries of conventionally recognised Bartonella species.
Collapse
Affiliation(s)
- Anna Paziewska
- National Centre for Biosystematics, Natural History Museum, University of Oslo, PO Box 1172, Blindern, Oslo, Norway.
| | | | | |
Collapse
|
376
|
Eswarappa SM, Estrela S, Brown SP. Within-host dynamics of multi-species infections: facilitation, competition and virulence. PLoS One 2012; 7:e38730. [PMID: 22737220 PMCID: PMC3380906 DOI: 10.1371/journal.pone.0038730] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 05/10/2012] [Indexed: 12/20/2022] Open
Abstract
Host individuals are often infected with more than one parasite species (parasites defined broadly, to include viruses and bacteria). Yet, research in infection biology is dominated by studies on single-parasite infections. A focus on single-parasite infections is justified if the interactions among parasites are additive, however increasing evidence points to non-additive interactions being the norm. Here we review this evidence and theoretically explore the implications of non-additive interactions between co-infecting parasites. We use classic Lotka-Volterra two-species competition equations to investigate the within-host dynamical consequences of various mixes of competition and facilitation between a pair of co-infecting species. We then consider the implications of these dynamics for the virulence (damage to host) of co-infections and consequent evolution of parasite strategies of exploitation. We find that whereas one-way facilitation poses some increased virulence risk, reciprocal facilitation presents a qualitatively distinct destabilization of within-host dynamics and the greatest risk of severe disease.
Collapse
Affiliation(s)
- Sandeepa M. Eswarappa
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail: (SME); (SPB)
| | - Sylvie Estrela
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sam P. Brown
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (SME); (SPB)
| |
Collapse
|
377
|
Parasite diversity and coinfection determine pathogen infection success and host fitness. Proc Natl Acad Sci U S A 2012; 109:9006-11. [PMID: 22615371 DOI: 10.1073/pnas.1201790109] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While the importance of changes in host biodiversity for disease risk continues to gain empirical support, the influence of natural variation in parasite diversity on epidemiological outcomes remains largely overlooked. Here, we combined field infection data from 2,191 amphibian hosts representing 158 parasite assemblages with mechanistic experiments to evaluate the influence of parasite richness on both parasite transmission and host fitness. Using a guild of larval trematode parasites (six species) and an amphibian host, our experiments contrasted the effects of parasite richness vs. composition, observed vs. randomized assemblages, and additive vs. replacement designs. Consistent with the dilution effect hypothesis extended to intrahost diversity, increases in parasite richness reduced overall infection success, including infections by the most virulent parasite. However, the effects of parasite richness on host growth and survival were context dependent; pathology increased when parasites were administered additively, even when the presence of the most pathogenic species was held constant, but decreased when added species replaced or reduced virulent species, emphasizing the importance of community composition and assembly. These results were similar or stronger when community structures were weighted by their observed frequencies in nature. The field data also revealed the highly nested structure of parasite assemblages, with virulent species generally occupying basal positions, suggesting that increases in parasite richness and antagonism in nature will decrease virulent infections. Our findings emphasize the importance of parasite biodiversity and coinfection in affecting epidemiological responses and highlight the value of integrating research on biodiversity and community ecology for understanding infectious diseases.
Collapse
|
378
|
References. Parasitology 2012. [DOI: 10.1002/9781119968986.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
379
|
Andersen SB, Boye M, Nash DR, Boomsma JJ. Dynamic Wolbachia prevalence in Acromyrmex leaf-cutting ants: potential for a nutritional symbiosis. J Evol Biol 2012; 25:1340-50. [PMID: 22530696 DOI: 10.1111/j.1420-9101.2012.02521.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wolbachia are renowned as reproductive parasites, but their phenotypic effects in eusocial insects are not well understood. We used a combination of qrt-PCR, fluorescence in situ hybridization and laser scanning confocal microscopy to evaluate the dynamics of Wolbachia infections in the leaf-cutting ant Acromyrmex octospinosus across developmental stages of sterile workers. We confirm that workers are infected with one or two widespread wsp genotypes of Wolbachia, show that colony prevalence is always 100% and characterize two rare recombinant genotypes. One dominant genotype is always present and most abundant, whereas another only proliferates in adult workers of some colonies and is barely detectable in larvae and pupae. An explanation may be that Wolbachia genotypes compete for host resources in immature stages while adult tissues provide substantially more niche space. Tissue-specific prevalence of the two genotypes differs, with the rarer genotype being over-represented in the adult foregut and thorax muscles. Both genotypes occur extracellularly in the foregut, suggesting an unknown mutualistic function in worker ant nutrition. Both genotypes are also abundant in the faecal fluid of the ants, suggesting that they may have extended functional phenotypes in the fungus garden that the ants manure with their own faeces.
Collapse
Affiliation(s)
- S B Andersen
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
380
|
Ulrich Y, Schmid-Hempel P. Host modulation of parasite competition in multiple infections. Proc Biol Sci 2012; 279:2982-9. [PMID: 22492064 DOI: 10.1098/rspb.2012.0474] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Parasite diversity is a constant challenge to host immune systems and has important clinical implications, but factors underpinning its emergence and maintenance are still poorly understood. Hosts typically harbour multiple parasite genotypes that share both host resources and immune responses. Parasite diversity is thus shaped not only by resource competition between co-infecting parasites but also by host-driven immune-mediated competition. We investigated these effects in an insect-trypanosome system, combining in vivo and in vitro single and double inoculations. In vivo, a non-pathogenic, general immune challenge was used to manipulate host immune condition and resulted in a reduced ability of hosts to defend against a subsequent exposure to the trypanosome parasites, illustrating the costs of immune activation. The associated increase in available host space benefited the weaker parasite strains of each pair as much as the otherwise more competitive strains, resulting in more frequent multiple infections in immune-challenged hosts. In vitro assays showed that in the absence of a host, overall parasite diversity was minimal because the outcome of competition was virtually fixed and resulted in strain extinction. Altogether, this shows that parasite competition is largely host-mediated and suggests a role for host immune condition in the maintenance of parasite diversity.
Collapse
Affiliation(s)
- Yuko Ulrich
- Institute of Integrative Biology (IBZ), ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland.
| | | |
Collapse
|
381
|
Paull SH, Song S, McClure KM, Sackett LC, Kilpatrick AM, Johnson PTJ. From superspreaders to disease hotspots: linking transmission across hosts and space. FRONTIERS IN ECOLOGY AND THE ENVIRONMENT 2012; 10:75-82. [PMID: 23482675 PMCID: PMC3589764 DOI: 10.1890/110111] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Since the identification and imprisonment of "Typhoid Mary," a woman who infected at least 47 people with typhoid in the early 1900s, epidemiologists have recognized that 'superspreading' hosts play a key role in disease epidemics. Such variability in transmission also exists among species within a community (amplification hosts) and among habitat patches across a landscape (disease 'hotspots'), underscoring the need for an integrative framework for studying transmission heterogeneity. Here, we synthesize literature on human, plant, and animal diseases to evaluate the relative contributions of host, pathogen, and environmental factors in driving transmission heterogeneity across hosts and space. We show that host and spatial heterogeneity are closely linked and that quantitatively assessing the contribution of infectious individuals, species, or environmental patches to overall transmission can aid management strategies. We conclude by posing hypotheses regarding how pathogen natural history influences transmission heterogeneity and highlight emerging frontiers in the study of transmission heterogeneity.
Collapse
Affiliation(s)
- Sara H Paull
- Department of Ecology and Evolutionary Biology, 334 UCB, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | | | |
Collapse
|
382
|
Froeschke G, Sommer S. Insights into the complex associations between MHC class II DRB polymorphism and multiple gastrointestinal parasite infestations in the striped mouse. PLoS One 2012; 7:e31820. [PMID: 22389675 PMCID: PMC3289624 DOI: 10.1371/journal.pone.0031820] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 01/13/2012] [Indexed: 11/19/2022] Open
Abstract
Differences in host susceptibility to different parasite types are largely based on the degree of matching between immune genes and parasite antigens. Specifically the variable genes of the major histocompatibility complex (MHC) play a major role in the defence of parasites. However, underlying genetic mechanisms in wild populations are still not well understood because there is a lack of studies which deal with multiple parasite infections and their competition within. To gain insights into these complex associations, we implemented the full record of gastrointestinal nematodes from 439 genotyped individuals of the striped mouse, Rhabdomys pumilio. We used two different multivariate approaches to test for associations between MHC class II DRB genotype and multiple nematodes with regard to the main pathogen-driven selection hypotheses maintaining MHC diversity and parasite species-specific co-evolutionary effects. The former includes investigations of a 'heterozygote advantage', or its specific form a 'divergent-allele advantage' caused by highly dissimilar alleles as well as possible effects of specific MHC-alleles selected by a 'rare allele advantage' (= negative 'frequency-dependent selection'). A combination of generalized linear mixed models (GLMMs) and co-inertia (COIA) analyses made it possible to consider multiple parasite species despite the risk of type I errors on the population and on the individual level. We could not find any evidence for a 'heterozygote' advantage but support for 'divergent-allele' advantage and infection intensity. In addition, both approaches demonstrated high concordance of positive as well as negative associations between specific MHC alleles and certain parasite species. Furthermore, certain MHC alleles were associated with more than one parasite species, suggesting a many-to-many gene-parasite co-evolution. The most frequent allele Rhpu-DRB*38 revealed a pleiotropic effect, involving three nematode species. Our study demonstrates the co-existence of specialist and generalist MHC alleles in terms of parasite detection which may be an important feature in the maintenance of MHC polymorphism.
Collapse
Affiliation(s)
| | - Simone Sommer
- Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
- * E-mail:
| |
Collapse
|
383
|
Turner AK, Begon M, Jackson JA, Paterson S. Evidence for selection at cytokine loci in a natural population of field voles (Microtus agrestis). Mol Ecol 2012; 21:1632-46. [PMID: 22364125 DOI: 10.1111/j.1365-294x.2012.05501.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Individuals in natural populations are frequently exposed to a wide range of pathogens. Given the diverse profile of gene products involved in responses to different types of pathogen, this potentially results in complex pathogen-specific selection pressures acting on a broad spectrum of immune system genes in wild animals. Thus far, studies into the evolution of immune genes in natural populations have focused almost exclusively on the Major Histocompatibility Complex (MHC). However, the MHC represents only a fraction of the immune system and there is a need to broaden research in wild species to include other immune genes. Here, we examine the evidence for natural selection in a range of non-MHC genes in a natural population of field voles (Microtus agrestis). We concentrate primarily on genes encoding cytokines, signalling molecules critical in eliciting and mediating immune responses and identify signatures of natural selection acting on several of these genes. In particular, genetic diversity within Interleukin 1 beta and Interleukin 2 appears to have been maintained through balancing selection. Taken together with previous findings that polymorphism within these genes is associated with variation in resistance to multiple pathogens, this suggests that pathogen-mediated selection may be an important force driving genetic diversity at cytokine loci in voles and other natural populations. These results also suggest that, along with the MHC, preservation of genetic variation within cytokine genes should be a priority for the conservation genetics of threatened wildlife populations.
Collapse
Affiliation(s)
- Andrew K Turner
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | | | | | | |
Collapse
|
384
|
Differences in the ecology of Bartonella infections of Apodemus flavicollis and Myodes glareolus in a boreal forest. Parasitology 2012; 139:881-93. [PMID: 22336264 DOI: 10.1017/s0031182012000170] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The epidemiology of Bartonella species infecting Apodemus flavicollis and Myodes glareolus in a forest in Eastern Poland was followed for 2 years using mark-recapture. Infections could be acquired in any month, but prevalence, and probability of infection, peaked in the summer. There were significant differences in the pattern of infections between the two species. Both hosts were primarily infected as juveniles, but the probability of infection was highest for A. flavicollis, which, evidence suggests, experienced longer-lasting infections with a wider range of Bartonella genotypes. There was no evidence of increased host mortality associated with Bartonella, although the infection did affect the probability of recapture. Animals could become re-infected, generally by different Bartonella genotypes. Several longer lasting, poorly resolved infections of A. flavicollis involved more than 1 genotype, and may have resulted from sequential infections. Of 22 Bartonella gltA genotypes collected, only 2 (both B. grahamii) were shared between mice and voles; all others were specific either to A. flavicollis or to M. glareolus, and had their nearest relatives infecting Microtus species in neighbouring fields. This heterogeneity in the patterns of Bartonella infections in wild rodents emphasizes the need to consider variation between both, host species and Bartonella genotypes in ecological and epidemiological studies.
Collapse
|
385
|
Linking metacommunity theory and symbiont evolutionary ecology. Trends Ecol Evol 2012; 27:323-9. [PMID: 22341499 DOI: 10.1016/j.tree.2012.01.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/21/2012] [Accepted: 01/23/2012] [Indexed: 11/20/2022]
Abstract
Processes that occur both within and between hosts can influence the ecological and evolutionary dynamics of symbionts, a broad term that includes parasitic and disease-causing organisms. Metacommunity theory can integrate these local- and regional-scale dynamics to explore symbiont community composition patterns across space. In this article I emphasize that symbionts should be incorporated into the metacommunity concept. I highlight the utility of metacommunity theory by discussing practical and general benefits that emerge from considering symbionts in a metacommunity framework. Specifically, investigating the local and regional drivers of symbiont community and metacommunity structure will lead to a more holistic understanding of symbiont ecology and evolution and could reveal novel insights into the roles of symbiont communities in mediating host health.
Collapse
|
386
|
Little TJ, Allen JE, Babayan SA, Matthews KR, Colegrave N. Harnessing evolutionary biology to combat infectious disease. Nat Med 2012; 18:217-20. [PMID: 22310693 PMCID: PMC3712261 DOI: 10.1038/nm.2572] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pathogens exhibit remarkable abilities to flout therapeutic intervention. This outcome is driven by evolution, either as a direct response to intervention (e.g. the evolution of antibiotic resistance), or through long-term coevolution generating host or parasite traits that interact with therapy in undesirable or unpredicted ways. To make progress, the concepts and techniques of evolutionary biology must be deeply integrated with traditional approaches to immunology and pathogen biology. An interdisciplinary approach can inform control strategies, or even patient treatment, positioning us to meet the current and future challenges of controlling infectious diseases.
Collapse
Affiliation(s)
- Tom J Little
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
387
|
Seasonal and biogeographical patterns of gastrointestinal parasites in large carnivores: wolves in a coastal archipelago. Parasitology 2012; 139:781-90. [DOI: 10.1017/s0031182011002319] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYParasites are increasingly recognized for their profound influences on individual, population and ecosystem health. We provide the first report of gastrointestinal parasites in gray wolves from the central and north coasts of British Columbia, Canada. Across 60 000 km2, wolf feces were collected from 34 packs in 2005–2008. At a smaller spatial scale (3300 km2), 8 packs were sampled in spring and autumn. Parasite eggs, larvae, and cysts were identified using standard flotation techniques and morphology. A subset of samples was analysed by PCR and sequencing to identify tapeworm eggs (n=9) andGiardiacysts (n=14). We detected ⩾14 parasite taxa in 1558 fecal samples.Sarcocystissporocysts occurred most frequently in feces (43·7%), followed by taeniid eggs (23·9%),Diphyllobothriumeggs (9·1%),Giardiacysts (6·8%),Toxocara caniseggs (2·1%), andCryptosporidiumoocysts (1·7%). Other parasites occurred in ⩽1% of feces. Genetic analyses revealedEchinococcus canadensisstrains G8 and G10,Taenia ovis krabbei, Diphyllobothrium nehonkaiense,andGiardia duodenalisassemblages A and B. Parasite prevalence differed between seasons and island/mainland sites. Patterns in parasite prevalence reflect seasonal and spatial resource use by wolves and wolf-salmon associations. These data provide a unique, extensive and solid baseline for monitoring parasite community structure in relation to environmental change.
Collapse
|
388
|
ALLEN LJS, BROWN VL, JONSSON CB, KLEIN SL, LAVERTY SM, MAGWEDERE K, OWEN JC, VAN DEN DRIESSCHE P. Mathematical Modeling of Viral Zoonoses in Wildlife. NATURAL RESOURCE MODELING 2012; 25:5-51. [PMID: 22639490 PMCID: PMC3358807 DOI: 10.1111/j.1939-7445.2011.00104.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Zoonoses are a worldwide public health concern, accounting for approximately 75% of human infectious diseases. In addition, zoonoses adversely affect agricultural production and wildlife. We review some mathematical models developed for the study of viral zoonoses in wildlife and identify areas where further modeling efforts are needed.
Collapse
Affiliation(s)
- L. J. S. ALLEN
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, E‐mail:
| | - V. L. BROWN
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
| | - C. B. JONSSON
- Center for Predictive Medicine for Biodefense and Emerging Infectious Disease, University of Louisville, Louisville, KY 40202
| | - S. L. KLEIN
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - S. M. LAVERTY
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112
| | - K. MAGWEDERE
- Division of Veterinary Public Health, Directorate of Veterinary Services, Mariental, Namibia, Africa
| | - J. C. OWEN
- Departments of Fisheries and Wildlife and Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824
| | - P. VAN DEN DRIESSCHE
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada V8W 3R4
| |
Collapse
|
389
|
Plantard O, Bouju-Albert A, Malard MA, Hermouet A, Capron G, Verheyden H. Detection of Wolbachia in the tick Ixodes ricinus is due to the presence of the hymenoptera endoparasitoid Ixodiphagus hookeri. PLoS One 2012; 7:e30692. [PMID: 22292021 PMCID: PMC3266912 DOI: 10.1371/journal.pone.0030692] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 12/22/2011] [Indexed: 11/19/2022] Open
Abstract
The identification of micro-organisms carried by ticks is an important issue for human and animal health. In addition to their role as pathogen vectors, ticks are also the hosts for symbiotic bacteria whose impact on tick biology is poorly known. Among these, the bacterium Wolbachia pipientis has already been reported associated with Ixodes ricinus and other tick species. However, the origins of Wolbachia in ticks and their consequences on tick biology (known to be very diverse in invertebrates, ranging from nutritional symbionts in nematodes to reproductive manipulators in insects) are unknown. Here we report that the endoparasitoid wasp Ixodiphagus hookeri (Hymenoptera, Chalcidoidea, Encyrtidae) – strictly associated with ticks for their development - is infested at almost 100% prevalence by a W. pipientis strain belonging to a Wolbachia supergroup that has already been reported as associated with other hymenopteran parasitoids. In a natural population of I. ricinus that suffers high parasitism rates due to I. hookeri, we used specific PCR primers for both hymenopteran and W. pipientis gene fragments to show that all unfed tick nymphs parasitized by I. hookeri also harbored Wolbachia, while unparasitized ticks were Wolbachia-free. We demonstrated experimentally that unfed nymphs obtained from larvae exposed to I. hookeri while gorging on their vertebrate host also harbor Wolbachia. We hypothesize that previous studies that have reported W. pipientis in ticks are due to the cryptic presence of the endoparasitoid wasp I. hookeri. This association has remained hidden until now because parasitoids within ticks cannot be detected until engorgement of the nymphs brings the wasp eggs out of diapause. Finally, we discuss the consequences of this finding for our understanding of the tick microbiome, and their possible role in horizontal gene transfer among pathogenic and symbiotic bacteria.
Collapse
Affiliation(s)
- Olivier Plantard
- Biology, Epidemiology and Risk Analysis in Animal Health, (BioEpAR), INRA, UMR 1300, Nantes, France.
| | | | | | | | | | | |
Collapse
|
390
|
Brooker SJ, Pullan RL, Gitonga CW, Ashton RA, Kolaczinski JH, Kabatereine NB, Snow RW. Plasmodium-helminth coinfection and its sources of heterogeneity across East Africa. J Infect Dis 2012; 205:841-52. [PMID: 22262792 PMCID: PMC3274378 DOI: 10.1093/infdis/jir844] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background. Plasmodium–helminth coinfection can have a number of consequences for infected hosts, yet our knowledge of the epidemiology of coinfection across multiple settings is limited. This study investigates the distribution and heterogeneity of coinfection with Plasmodium falciparum and 3 major helminth species across East Africa. Methods. Cross-sectional parasite surveys were conducted among 28 050 children in 299 schools across a range of environmental settings in Kenya, Uganda, and Ethiopia. Data on individual, household, and environmental risk factors were collected and a spatially explicit Bayesian modeling framework was used to investigate heterogeneities of species infection and coinfection and their risk factors as well as school- and individual-level associations between species. Results. Broad-scale geographical patterns of Plasmodium–helminth coinfection are strongly influenced by the least common infection and by species-specific environmental factors. At the individual level, there is an enduring positive association between P. falciparum and hookworm but no association between P. falciparum and Schistosoma species. However, the relative importance of such within-individual associations is less than the role of spatial factors in influencing coinfection risks. Conclusions. Patterns of coinfection seem to be influenced more by the distribution of the least common species and its environmental risk factors, rather than any enduring within-individual associations.
Collapse
Affiliation(s)
- Simon J Brooker
- Malaria Public Health and Epidemiology Group, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya.
| | | | | | | | | | | | | |
Collapse
|
391
|
Hellard E, Pontier D, Sauvage F, Poulet H, Fouchet D. True versus false parasite interactions: a robust method to take risk factors into account and its application to feline viruses. PLoS One 2012; 7:e29618. [PMID: 22235312 PMCID: PMC3250451 DOI: 10.1371/journal.pone.0029618] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 12/01/2011] [Indexed: 01/25/2023] Open
Abstract
Background Multiple infections are common in natural host populations and interspecific parasite interactions are therefore likely within a host individual. As they may seriously impact the circulation of certain parasites and the emergence and management of infectious diseases, their study is essential. In the field, detecting parasite interactions is rendered difficult by the fact that a large number of co-infected individuals may also be observed when two parasites share common risk factors. To correct for these “false interactions”, methods accounting for parasite risk factors must be used. Methodology/Principal Findings In the present paper we propose such a method for presence-absence data (i.e., serology). Our method enables the calculation of the expected frequencies of single and double infected individuals under the independence hypothesis, before comparing them to the observed ones using the chi-square statistic. The method is termed “the corrected chi-square.” Its robustness was compared to a pre-existing method based on logistic regression and the corrected chi-square proved to be much more robust for small sample sizes. Since the logistic regression approach is easier to implement, we propose as a rule of thumb to use the latter when the ratio between the sample size and the number of parameters is above ten. Applied to serological data for four viruses infecting cats, the approach revealed pairwise interactions between the Feline Herpesvirus, Parvovirus and Calicivirus, whereas the infection by FIV, the feline equivalent of HIV, did not modify the risk of infection by any of these viruses. Conclusions/Significance This work therefore points out possible interactions that can be further investigated in experimental conditions and, by providing a user-friendly R program and a tutorial example, offers new opportunities for animal and human epidemiologists to detect interactions of interest in the field, a crucial step in the challenge of multiple infections.
Collapse
|
392
|
Abstract
Trypanosomes are protozoan parasites of medical and veterinary importance. It is well established that different species, subspecies and strains of trypanosome can cause very different disease in the mammalian host, exemplified by the two human-infective subspecies of Trypanosoma brucei that cause either acute or chronic disease. We are beginning to understand how the host response shapes the course of the disease and how genetic variation in the host can be a factor in disease severity, particularly in the mouse model, but until recently the role of parasite genetic variation that determines differential disease outcome has been a neglected area. This review will discuss the recent advances in this field, covering both our current knowledge of the T. brucei genes involved and the approaches that are leading towards the identification of T. brucei virulence genes. Finally, the potential for using parasite genotype variation to examine the evolutionary context of virulence will be discussed.
Collapse
Affiliation(s)
- L J Morrison
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
393
|
Abstract
Little is known about the viruses infecting most species. Even in groups as well-studied as Drosophila, only a handful of viruses have been well-characterized. A viral metagenomic approach was used to explore viral diversity in 83 wild-caught Drosophila innubila, a mushroom feeding member of the quinaria group. A single fly that was injected with, and died from, Drosophila C Virus (DCV) was added to the sample as a control. Two-thirds of reads in the infected sample had DCV as the best BLAST hit, suggesting that the protocol developed is highly sensitive. In addition to the DCV hits, several sequences had Oryctes rhinoceros Nudivirus, a double-stranded DNA virus, as a best BLAST hit. The virus associated with these sequences was termed Drosophila innubila Nudivirus (DiNV). PCR screens of natural populations showed that DiNV was both common and widespread taxonomically and geographically. Electron microscopy confirms the presence of virions in fly fecal material similar in structure to other described Nudiviruses. In 2 species, D. innubila and D. falleni, the virus is associated with a severe (∼80-90%) loss of fecundity and significantly decreased lifespan.
Collapse
Affiliation(s)
- Robert L Unckless
- Department of Biology, University of Rochester, Rochester, New York, United States of America.
| |
Collapse
|
394
|
Turner AK, Begon M, Jackson JA, Bradley JE, Paterson S. Genetic diversity in cytokines associated with immune variation and resistance to multiple pathogens in a natural rodent population. PLoS Genet 2011; 7:e1002343. [PMID: 22039363 PMCID: PMC3197692 DOI: 10.1371/journal.pgen.1002343] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 08/26/2011] [Indexed: 12/31/2022] Open
Abstract
Pathogens are believed to drive genetic diversity at host loci involved in immunity to infectious disease. To date, studies exploring the genetic basis of pathogen resistance in the wild have focussed almost exclusively on genes of the Major Histocompatibility Complex (MHC); the role of genetic variation elsewhere in the genome as a basis for variation in pathogen resistance has rarely been explored in natural populations. Cytokines are signalling molecules with a role in many immunological and physiological processes. Here we use a natural population of field voles (Microtus agrestis) to examine how genetic diversity at a suite of cytokine and other immune loci impacts the immune response phenotype and resistance to several endemic pathogen species. By using linear models to first control for a range of non-genetic factors, we demonstrate strong effects of genetic variation at cytokine loci both on host immunological parameters and on resistance to multiple pathogens. These effects were primarily localized to three cytokine genes (Interleukin 1 beta (Il1b), Il2, and Il12b), rather than to other cytokines tested, or to membrane-bound, non-cytokine immune loci. The observed genetic effects were as great as for other intrinsic factors such as sex and body weight. Our results demonstrate that genetic diversity at cytokine loci is a novel and important source of individual variation in immune function and pathogen resistance in natural populations. The products of these loci are therefore likely to affect interactions between pathogens and help determine survival and reproductive success in natural populations. Our study also highlights the utility of wild rodents as a model of ecological immunology, to better understand the causes and consequences of variation in immune function in natural populations including humans.
Collapse
Affiliation(s)
- Andrew K Turner
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | |
Collapse
|
395
|
Longitudinal field study on bovine Babesia spp. and Anaplasma phagocytophilum infections during a grazing season in Belgium. Parasitol Res 2011; 110:1525-30. [PMID: 21947341 DOI: 10.1007/s00436-011-2657-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
Abstract
Anaplasmosis and babesiosis are major tick-borne diseases with a high economic impact but are also a public health concern. Blood samples collected in the spring, summer, and autumn of 2010 from 65 cows in seven different farms in Belgium were monitored with an indirect immunofluorescence antibody test to assess seroprevalence against these pathogens. Seroprevalences to Babesia spp. were measured as 10.7%, 20%, and 12.3% in spring, summer, and autumn, respectively, whereas seroprevalences to Anaplasma phagocytophilum were 30.8%, 77%, and 56.9%, respectively. A total of 805 Ixodes ricinus ticks were collected at the same time from both cattle (feeding ticks) and grazed pastures (questing ticks). The infection level of ticks, assessed by PCR assay, for Babesia spp. DNA was 14.6% and 7.9% in feeding and questing ticks, respectively, whereas 21.7% and 3% of feeding and questing ticks were found be positive for A. phagocytophilum cDNA. Fifty-five PCR-positive samples were identified by sequencing as Babesia sp. EU1, of which five from feeding ticks were positive for both A. phagocytophilum and Babesia sp. EU1. The high density of wild cervids in the study area could explain these observations, as deer are considered to be the main hosts for adults of I. ricinus. However, the absence of Babesia divergens both in feeding and questing ticks is surprising, as the study area is known to be endemic for cattle babesiosis. Increasing cervid populations and comorbidity could play an import role in the epidemiology of these tick-borne diseases.
Collapse
|
396
|
Bordes F, Morand S. The impact of multiple infections on wild animal hosts: a review. Infect Ecol Epidemiol 2011; 1:IEE-1-7346. [PMID: 22957114 PMCID: PMC3426331 DOI: 10.3402/iee.v1i0.7346] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/11/2011] [Accepted: 08/25/2011] [Indexed: 12/23/2022] Open
Abstract
Field parasitological studies consistently demonstrate the reality of polyparasitism in natural systems. However, only recently, studies from ecological and evolutionary fields have emphasised a broad spectrum of potential multiple infections-related impacts. The main goal of our review is to reunify the different approaches on the impacts of polyparasitism, not only from laboratory or human medical studies but also from field or theoretical studies. We put forward that ecological and epidemiological determinants to explain the level of polyparasitism, which regularly affects not only host body condition, survival or reproduction but also host metabolism, genetics or immune investment. Despite inherent limitations of all these studies, multiple infections should be considered more systematically in wildlife to better appreciate the importance of parasite diversity in wildlife, cumulative effects of parasitism on the ecology and evolution of their hosts.
Collapse
Affiliation(s)
- Frédéric Bordes
- Institut des Sciences de l'Evolution, CNRS-UM2, CC65, Université de Montpellier, Montpellier, France
| | - Serge Morand
- Institut des Sciences de l'Evolution, CNRS-UM2, CC65, Université de Montpellier, Montpellier, France
- UR22 AGIRs, CIRAD, Campus International de Baillarguet, 34398, Montpellier, France
| |
Collapse
|
397
|
Shrestha S, King AA, Rohani P. Statistical inference for multi-pathogen systems. PLoS Comput Biol 2011; 7:e1002135. [PMID: 21876665 PMCID: PMC3158042 DOI: 10.1371/journal.pcbi.1002135] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 06/10/2011] [Indexed: 11/19/2022] Open
Abstract
There is growing interest in understanding the nature and consequences of interactions among infectious agents. Pathogen interactions can be operational at different scales, either within a co-infected host or in host populations where they co-circulate, and can be either cooperative or competitive. The detection of interactions among pathogens has typically involved the study of synchrony in the oscillations of the protagonists, but as we show here, phase association provides an unreliable dynamical fingerprint for this task. We assess the capacity of a likelihood-based inference framework to accurately detect and quantify the presence and nature of pathogen interactions on the basis of realistic amounts and kinds of simulated data. We show that when epidemiological and demographic processes are well understood, noisy time series data can contain sufficient information to allow correct inference of interactions in multi-pathogen systems. The inference power is dependent on the strength and time-course of the underlying mechanism: stronger and longer-lasting interactions are more easily and more precisely quantified. We examine the limitations of our approach to stochastic temporal variation, under-reporting, and over-aggregation of data. We propose that likelihood shows promise as a basis for detection and quantification of the effects of pathogen interactions and the determination of their (competitive or cooperative) nature on the basis of population-level time-series data. It is becoming increasingly evident that pathogens associated with infectious diseases interact amongst themselves. Pathogen interactions can occur in a co-infected host, or in host populations where they co-circulate, and they can be cooperative or competitive. Four serotypes of dengue virus, for example, can exhibit both forms of interactions – cross protection for a temporary period and followed by long-lasting enhancement. This bears important consequences for understanding the ecology and developing control and prevention measures. Detecting such interactions in a natural host population, though, can be tricky. We show that studying the phase relation of epidemic cycles, as it has been typically done, is unreliable. We assess the ability of a likelihood based method in detecting such interactions, and find that they are accurate and robust. We propose that this framework shows promise of serving as a basis for detecting and quantifying pathogen interactions.
Collapse
Affiliation(s)
- Sourya Shrestha
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America.
| | | | | |
Collapse
|
398
|
Kaewmongkol G, Kaewmongkol S, McInnes LM, Burmej H, Bennett MD, Adams PJ, Ryan U, Irwin PJ, Fenwick SG. Genetic characterization of flea-derived Bartonella species from native animals in Australia suggests host-parasite co-evolution. INFECTION GENETICS AND EVOLUTION 2011; 11:1868-72. [PMID: 21856444 DOI: 10.1016/j.meegid.2011.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/26/2011] [Accepted: 07/28/2011] [Indexed: 11/28/2022]
Abstract
Fleas are important arthropod vectors for a variety of diseases in veterinary and human medicine, and bacteria belonging to the genus Bartonella are among the organisms most commonly transmitted by these ectoparasites. Recently, a number of novel Bartonella species and novel species candidates have been reported in marsupial fleas in Australia. In the present study the genetic diversity of marsupial fleas was investigated; 10 species of fleas were collected from seven different marsupial and placental mammal hosts in Western Australia including woylies (Bettongia penicillata), western barred bandicoots (Perameles bougainville), mardos (Antechinus flavipes), bush rats (Rattus fuscipes), red foxes (Vulpes vulpes), feral cats (Felis catus) and rabbits (Oryctolagus cuniculus). PCR and sequence analysis of the cytochrome oxidase subunit I (COI) and the 18S rRNA genes from these fleas was performed. Concatenated phylogenetic analysis of the COI and 18S rRNA genes revealed a close genetic relationship between marsupial fleas, with Pygiopsylla hilli from woylies, Pygiopsylla tunneyi from western barred bandicoots and Acanthopsylla jordani from mardos, forming a separate cluster from fleas collected from the placental mammals in the same geographical area. The clustering of Bartonella species with their marsupial flea hosts suggests co-evolution of marsupial hosts, marsupial fleas and Bartonella species in Australia.
Collapse
Affiliation(s)
- Gunn Kaewmongkol
- School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch 6150, Western Australia, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
399
|
Al Moussawi K, Malou N, Mege JL, Raoult D, Desnues B. An experimental mouse model to establish Tropheryma whipplei as a diarrheal agent. J Infect Dis 2011; 204:44-50. [PMID: 21628657 DOI: 10.1093/infdis/jir219] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tropheryma whipplei has long been considered as a rare bacterium causing a rare disease, Whipple's disease. However, recent advances now suggest that T. whipplei is a ubiquitous environmental bacterium that may cause gastroenteritis, commonly associated with viral pathogens. We developed an animal model to support this hypothesis. We found that orally given T. whipplei induced diarrhea in mice, without spreading into the intestines. Aggravating factors, such as damage to the intestinal mucosa, favored bacterial spreading. Indeed, bacterial presence was prolonged in stools of dextran sulfate-treated mice, and bacteria were detected in the colon. This resulted in an immune response, with T. whipplei-specific serum IgM and IgG and fecal IgA, as measured by newly introduced immuno-polymerase chain reaction technique. Our results confirm that T. whipplei is an agent causing gastroenteritis and suggest that existing mucosal damage may favor bacterial invasion of tissues.
Collapse
Affiliation(s)
- Khatoun Al Moussawi
- Centre National de Recherche Scientifique, Université de la Méditerranée, Marseille, France
| | | | | | | | | |
Collapse
|
400
|
Knowles SC. The effect of helminth co-infection on malaria in mice: A meta-analysis. Int J Parasitol 2011; 41:1041-51. [DOI: 10.1016/j.ijpara.2011.05.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/08/2011] [Accepted: 05/16/2011] [Indexed: 11/25/2022]
|