351
|
Men R, Yamashiro T, Goncalvez AP, Wernly C, Schofield DJ, Emerson SU, Purcell RH, Lai CJ. Identification of chimpanzee Fab fragments by repertoire cloning and production of a full-length humanized immunoglobulin G1 antibody that is highly efficient for neutralization of dengue type 4 virus. J Virol 2004; 78:4665-74. [PMID: 15078949 PMCID: PMC387713 DOI: 10.1128/jvi.78.9.4665-4674.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A safe and effective dengue vaccine is still not available. Passive immunization with monoclonal antibodies from humans or nonhuman primates represents an attractive alternative for the prevention of dengue virus infection. Fab monoclonal antibodies to dengue type 4 virus (DENV-4) were recovered by repertoire cloning of bone marrow mRNAs from an immune chimpanzee and analyzed for antigen binding specificity, V(H) and V(L) sequences, and neutralizing activity against DENV-4 in vitro. Fabs 5A7, 3C1, 3E4, and 7G4 were isolated from a library constructed from a chimpanzee following intrahepatic transfection with infectious DENV-4 RNA. Fabs 5H2 and 5D9, which had nearly identical V(H) sequences but varied in their V(L) sequences, were recovered from a library constructed from the same chimpanzee after superinfection with a mixture of DENV-1, DENV-2, and DENV-3. In radioimmunoprecipitation, Fab 5A7 precipitated only DENV-4 prM, and Fabs 3E4, 7G4, 5D9, and 5H2 precipitated DENV-4 E but little or no prM. Fab 3E4 and Fab 7G4 competed with each other for binding to DENV-4 in an enzyme-linked immunosorbent assay, as did Fab 3C1 and Fab 5A7. Fab 5H2 recognized an epitope on DENV-4 that was separate from the epitope(s) recognized by other Fabs. Both Fab 5H2 and Fab 5D9 neutralized DENV-4 efficiently with a titer of 0.24 to 0.58 micro g/ml by plaque reduction neutralization test (PRNT), whereas DENV-4-neutralizing activity of other Fabs was low or not detected. Fab 5H2 was converted to full-length immunoglobulin G1 (IgG1) by combining it with human sequences. The humanized chimpanzee antibody IgG1 5H2 produced in CHO cells neutralized DENV-4 strains from different geographical origins at a similar 50% plaque reduction (PRNT(50)) titer of 0.03 to 0.05 micro g/ml. The DENV-4 binding affinities were 0.42 nM for Fab 5H2 and 0.24 nM for full-length IgG1 5H2. Monoclonal antibody IgG1 5H2 may prove valuable for passive immunoprophylaxis against dengue virus in humans.
Collapse
Affiliation(s)
- Ruhe Men
- Molecular Viral Biology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
352
|
Op De Beeck A, Voisset C, Bartosch B, Ciczora Y, Cocquerel L, Keck Z, Foung S, Cosset FL, Dubuisson J. Characterization of functional hepatitis C virus envelope glycoproteins. J Virol 2004; 78:2994-3002. [PMID: 14990718 PMCID: PMC353750 DOI: 10.1128/jvi.78.6.2994-3002.2004] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2, that assemble as a noncovalent heterodimer which is mainly retained in the endoplasmic reticulum. Because assembly into particles and secretion from the cell lead to structural changes in viral envelope proteins, characterization of the proteins associated with the virion is necessary in order to better understand how they mature to be functional in virus entry. There is currently no efficient and reliable cell culture system to amplify HCV, and the envelope glycoproteins associated with the virion have therefore not been characterized yet. Recently, infectious pseudotype particles that are assembled by displaying unmodified HCV envelope glycoproteins on retroviral core particles have been successfully generated. Because HCV pseudotype particles contain fully functional envelope glycoproteins, these envelope proteins, or at least a fraction of them, should be in a mature conformation similar to that on the native HCV particles. In this study, we used conformation-dependent monoclonal antibodies to characterize the envelope glycoproteins associated with HCV pseudotype particles. We showed that the functional unit is a noncovalent E1E2 heterodimer containing complex or hybrid type glycans. We did not observe any evidence of maturation by a cellular endoprotease during the transport of these envelope glycoproteins through the secretory pathway. These envelope glycoproteins were recognized by a panel of conformation-dependent monoclonal antibodies as well as by CD81, a molecule involved in HCV entry. The functional envelope glycoproteins associated with HCV pseudotype particles were also shown to be sensitive to low-pH treatment. Such conformational changes are likely necessary to initiate fusion.
Collapse
Affiliation(s)
- Anne Op De Beeck
- CNRS-UPR2511, Institut de Biologie de Lille and Institut Pasteur de Lille, Lille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
353
|
Affiliation(s)
- Franz X Heinz
- Institute of Virology, University of Vienna, A-1095 Vienna, Austria
| | | |
Collapse
|
354
|
Affiliation(s)
- Brett D Lindenbach
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
355
|
Keelapang P, Sriburi R, Supasa S, Panyadee N, Songjaeng A, Jairungsri A, Puttikhunt C, Kasinrerk W, Malasit P, Sittisombut N. Alterations of pr-M cleavage and virus export in pr-M junction chimeric dengue viruses. J Virol 2004; 78:2367-81. [PMID: 14963133 PMCID: PMC369205 DOI: 10.1128/jvi.78.5.2367-2381.2004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2003] [Accepted: 11/07/2003] [Indexed: 12/20/2022] Open
Abstract
During the export of flavivirus particles through the secretory pathway, a viral envelope glycoprotein, prM, is cleaved by the proprotein convertase furin; this cleavage is required for the subsequent rearrangement of receptor-binding E glycoprotein and for virus infectivity. Similar to many furin substrates, prM in vector-borne flaviviruses contains basic residues at positions P1, P2, and P4 proximal to the cleavage site; in addition, a number of charged residues are found at position P3 and between positions P5 and P13 that are conserved for each flavivirus antigenic complex. The influence of additional charged residues on pr-M cleavage and virus replication was investigated by replacing the 13-amino-acid, cleavage-proximal region of a dengue virus (strain 16681) with those of tick-borne encephalitis virus (TBEV), yellow fever virus (YFV), and Japanese encephalitis virus (JEV) and by comparing the resultant chimeric viruses generated from RNA-transfected mosquito cells. Among the three chimeric viruses, cleavage of prM was enhanced to a larger extent in JEVpr/16681 than in YFVpr/16681 but was slightly reduced in TBEVpr/16681. Unexpectedly, JEVpr/16681 exhibited decreased focus size, reduced peak titer, and depressed replication in C6/36, PS, and Vero cell lines. The reduction of JEVpr/16681 multiplication correlated with delayed export of infectious virions out of infected cells but not with changes in specific infectivity. Binding of JEVpr/16681 to immobilized heparin and the heparin-inhibitable infection of cells were not altered. Thus, diverse pr-M junction-proximal sequences of flaviviruses differentially influence pr-M cleavage when tested in a dengue virus prM background. More importantly, greatly enhanced prM cleavability adversely affects dengue virus export while exerting a minimal effect on infectivity. Because extensive changes of charged residues at the pr-M junction, as in JEVpr/16681, were not observed among a large number of dengue virus isolates, these results provide a possible mechanism by which the sequence conservation of the pr-M junction of dengue virus is maintained in nature.
Collapse
Affiliation(s)
- Poonsook Keelapang
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
356
|
Wu CF, Wang SH, Sun CM, Hu ST, Syu WJ. Activation of dengue protease autocleavage at the NS2B-NS3 junction by recombinant NS3 and GST-NS2B fusion proteins. J Virol Methods 2004; 114:45-54. [PMID: 14599678 DOI: 10.1016/j.jviromet.2003.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dengue virus possesses a protease complex made up of the non-structural proteins NS2B and NS3. This protease complex catalyzes autocleavage (cis) at the junction between NS2A and NS2B as well as between NS2B and NS3. It also catalyzes trans cleavage at the junctions between NS3 and NS4A as well as NS4B and NS5. The cis cleavage at the NS2B-NS3 junction has been demonstrated in Escherichia coli by linking a 40-residue hydrophilic segment of NS2B to a NS3 N-terminal protease domain carrying the NS2B-NS3 cleavage site. To explore whether the hydrophilic segment could be further shortened, residues from both N- and C-termini of the NS2B hydrophilic segment were deleted. The results indicate that the four C-terminal's consecutive Glu residues could be deleted, each one leading to a further loss of activity, whereas the N-terminal boundary needed to be absolutely preserved. To examine whether an NS2B peptide could be expressed independently and added to activate the NS3 protease domain, the hydrophilic region of NS2B was fused to the C-terminus of glutathione-S-transferase (GST). This recombinant protein was soluble in bacteria and easily purified by affinity chromatography. Without removing the GST, the fusion protein activated the NS3 protease domain allowing it to function at the adjacent NS2B-NS3 junction. Thus, the findings reported below have produced a feasible alternative for the assay of dengue viral protease and this should facilitate the development of a screening method for inhibitors of dengue protease.
Collapse
Affiliation(s)
- Chia-Fen Wu
- Institute of Biopharmaceutics, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
357
|
Damonte EB, Pujol CA, Coto CE. Prospects for the Therapy and Prevention of Dengue Virus Infections. Adv Virus Res 2004; 63:239-85. [PMID: 15530563 DOI: 10.1016/s0065-3527(04)63004-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Elsa B Damonte
- Laboratory of Virology, Department of Biological Chemistry College of Exact and Natural Sciences, Ciudad Universitaria, University of Buenos Aires, 1428 Buenos Aires, Argentina
| | | | | |
Collapse
|
358
|
Heinz FX, Stiasny K, Allison SL. The entry machinery of flaviviruses. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 2004:133-7. [PMID: 15119768 DOI: 10.1007/978-3-7091-0572-6_11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have been using the flavivirus tick-borne encephalitis virus (TBEV) as a model system for investigating the molecular mechanisms underlying the membrane fusion process mediated by a class II viral fusion protein, the flavivirus envelope protein E. In the mature virion this protein exists as a metastable dimer that dissociates at the acidic pH in endosomes and is converted into a more stable trimeric conformation. The dimer dissociation step liberates an internal fusion peptide that interacts with the target endosomal membrane, and then further conformational changes are believed to drive membrane fusion. Although flavivirus fusion appears to be a more facile and efficient process than that of alphaviruses, which also possess a class II viral fusion protein, the fusion mechanism in both viral systems involves structurally related interactions with lipids, specifically the 3beta-hydroxyl group at C3 of cholesterol. The class II viral fusion machineries are structurally different from those involving class I viral fusion proteins, such as those found in orthomyxoviruses, paramyxoviruses, retroviruses, and filoviruses, but have certain similarities in common with bacterial pore-forming proteins.
Collapse
Affiliation(s)
- F X Heinz
- Institute of Virology, University of Vienna, Austria.
| | | | | |
Collapse
|
359
|
Allison SL, Tao YJ, O'Riordain G, Mandl CW, Harrison SC, Heinz FX. Two distinct size classes of immature and mature subviral particles from tick-borne encephalitis virus. J Virol 2003; 77:11357-66. [PMID: 14557621 PMCID: PMC229348 DOI: 10.1128/jvi.77.21.11357-11366.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flaviviruses assemble in the endoplasmic reticulum by a mechanism that appears to be driven by lateral interactions between heterodimers of the envelope glycoproteins E and prM. Immature intracellular virus particles are then transported through the secretory pathway and converted to their mature form by cleavage of the prM protein by the cellular protease furin. Earlier studies showed that when the prM and E proteins of tick-borne encephalitis virus are expressed together in mammalian cells, they assemble into membrane-containing, icosahedrally symmetrical recombinant subviral particles (RSPs), which are smaller than whole virions but retain functional properties and undergo cleavage maturation, yielding a mature form in which the E proteins are arranged in a regular T = 1 icosahedral lattice. In this study, we generated immature subviral particles by mutation of the furin recognition site in prM. The mutation resulted in the secretion of two distinct size classes of particles that could be separated by sucrose gradient centrifugation. Electron microscopy showed that the smaller particles were approximately the same size as the previously described mature RSPs, whereas the larger particles were approximately the same size as the virus. Particles of the larger size class were also detected with a wild-type construct that allowed prM cleavage, although in this case the smaller size class was far more prevalent. Subtle differences in endoglycosidase sensitivity patterns suggested that, in contrast to the small particles, the E glycoproteins in the large subviral particles and whole virions might be in nonequivalent structural environments during intracellular transport, with a portion of them inaccessible to cellular glycan processing enzymes. These proteins thus appear to have the intrinsic ability to form alternative assembly products that could provide important clues about the role of lateral envelope protein interactions in flavivirus assembly.
Collapse
Affiliation(s)
- Steven L Allison
- Institute of Virology, University of Vienna, A-1095 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
360
|
Jääskeläinen A, Han X, Niedrig M, Vaheri A, Vapalahti O. Diagnosis of tick-borne encephalitis by a mu-capture immunoglobulin M-enzyme immunoassay based on secreted recombinant antigen produced in insect cells. J Clin Microbiol 2003; 41:4336-42. [PMID: 12958266 PMCID: PMC193853 DOI: 10.1128/jcm.41.9.4336-4342.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute tick-borne encephalitis is diagnosed by detection of IgM antibodies to tick-borne encephalitis virus (TBEV) (genus Flavivirus) in patient serum. TBEV membrane (M) and envelope (E) proteins have previously been shown to form virus-like particles when expressed in mammalian cells. We expressed the prM/M and E proteins in insect cells with a recombinant baculovirus system and obtained antigenic protein secreted into the cell culture medium, as evidenced by detection by a panel of five monoclonal antibodies to TBEV E protein. According to the sedimentation pattern in sucrose gradient centrifugation, the proteins were most likely secreted as virus-like particles. A mu-capture immunoglobulin M-enzyme immunoassay (IgM-EIA) test was developed and compared to a commercially available TBEV-IgM test (Progen) based on inactivated purified TBEVs. With a panel of 100 TBEV-IgM-negative, 50 TBEV-IgM-positive, and seven dengue virus-IgM-positive serum samples from our diagnostic laboratory, a sensitivity of 100% and specificity of 99% were obtained, and the correlation coefficient of EIA absorbances with the reference test was 0.93. The antigen was also suitable for IgG antibody detection in an immunofluorescent assay format. This is the first time that secreted, fully antigenic E protein has been produced in insect cells for this arthropod-borne flavivirus.
Collapse
Affiliation(s)
- Anu Jääskeläinen
- Department of Virology, Haartman Institute, Faculty of Veterinary Medicine, FIN-00014 University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
361
|
Gehrke R, Ecker M, Aberle SW, Allison SL, Heinz FX, Mandl CW. Incorporation of tick-borne encephalitis virus replicons into virus-like particles by a packaging cell line. J Virol 2003; 77:8924-33. [PMID: 12885909 PMCID: PMC167216 DOI: 10.1128/jvi.77.16.8924-8933.2003] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA replicons derived from flavivirus genomes show considerable potential as gene transfer and immunization vectors. A convenient and efficient encapsidation system is an important prerequisite for the practical application of such vectors. In this work, tick-borne encephalitis (TBE) virus replicons and an appropriate packaging cell line were constructed and characterized. A stable CHO cell line constitutively expressing the two surface proteins prM/M and E (named CHO-ME cells) was generated and shown to efficiently export mature recombinant subviral particles (RSPs). When replicon NdDeltaME lacking the prM/M and E genes was introduced into CHO-ME cells, virus-like particles (VLPs) capable of initiating a single round of infection were released, yielding titers of up to 5 x 10(7)/ml in the supernatant of these cells. Another replicon (NdDeltaCME) lacking the region encoding most of the capsid protein C in addition to proteins prM/M and E was not packaged by CHO-ME cells. As observed with other flavivirus replicons, both TBE virus replicons appeared to exert no cytopathic effect on their host cells. Sedimentation analysis revealed that the NdDeltaME-containing VLPs were physically distinct from RSPs and similar to infectious virions. VLPs could be repeatedly passaged in CHO-ME cells but maintained the property of being able to initiate only a single round of infection in other cells during these passages. CHO-ME cells can thus be used both as a source for mature TBE virus RSPs and as a safe and convenient replicon packaging cell line, providing the TBE virus surface proteins prM/M and E in trans.
Collapse
Affiliation(s)
- Rainer Gehrke
- Institute of Virology, University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
362
|
Zhang Y, Corver J, Chipman PR, Zhang W, Pletnev SV, Sedlak D, Baker TS, Strauss JH, Kuhn RJ, Rossmann MG. Structures of immature flavivirus particles. EMBO J 2003; 22:2604-13. [PMID: 12773377 PMCID: PMC156766 DOI: 10.1093/emboj/cdg270] [Citation(s) in RCA: 352] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Structures of prM-containing dengue and yellow fever virus particles were determined to 16 and 25 A resolution, respectively, by cryoelectron microscopy and image reconstruction techniques. The closely similar structures show 60 icosahedrally organized trimeric spikes on the particle surface. Each spike consists of three prM:E heterodimers, where E is an envelope glycoprotein and prM is the precursor to the membrane protein M. The pre-peptide components of the prM proteins in each spike cover the fusion peptides at the distal ends of the E glycoproteins in a manner similar to the organization of the glycoproteins in the alphavirus spikes. Each heterodimer is associated with an E and a prM transmembrane density. These transmembrane densities represent either an EE or prMprM antiparallel coiled coil by which each protein spans the membrane twice, leaving the C-terminus of each protein on the exterior of the viral membrane, consistent with the predicted membrane-spanning domains of the unprocessed polyprotein.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biological Sciences, Lilly Hall, 915 West State Street, Purdue University, West Lafayette, IN 47907-2054, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
363
|
Pugachev KV, Guirakhoo F, Trent DW, Monath TP. Traditional and novel approaches to flavivirus vaccines. Int J Parasitol 2003; 33:567-82. [PMID: 12782056 DOI: 10.1016/s0020-7519(03)00063-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Yellow fever, dengue, Japanese encephalitis and tick-borne encephalitis viruses are the medically most important members of the Flavivirus genus composed primarily of arboviruses. In this paper, we review the commercially available traditional flavivirus vaccines against yellow fever, Japanese encephalitis, and tick-borne encephalitis, as well as modern approaches to flavivirus vaccines. Formalin inactivation technology has been employed to produce killed vaccines. Flaviviruses have been attenuated by multiple passages in animal tissues and cell cultures to produce empirical live attenuated vaccines. The use of traditional methods is being pursued to develop vaccines against other flavivirus diseases, such as dengue, and to improve existing vaccines, such as for Japanese encephalitis. With the recent development of infectious clones, rational approaches to attenuated flavivirus vaccines have employed the introduction of specific mutations into wild type viruses and chimerisation between different viruses. Novel methods for delivery of live vaccines, such as inoculation of infectious DNA or RNA, have been described. Other approaches, such as the construction of protein subunit, expression vector-based and naked DNA vaccines, have been proposed to create alternate vaccine candidates.
Collapse
|
364
|
Affiliation(s)
- Franz X Heinz
- Institute of Virology, University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria.
| |
Collapse
|
365
|
Lorenz IC, Kartenbeck J, Mezzacasa A, Allison SL, Heinz FX, Helenius A. Intracellular assembly and secretion of recombinant subviral particles from tick-borne encephalitis virus. J Virol 2003; 77:4370-82. [PMID: 12634393 PMCID: PMC150630 DOI: 10.1128/jvi.77.7.4370-4382.2003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is believed that flavivirus assembly occurs by intracellular budding of the nucleocapsid into the lumen of the endoplasmic reticulum (ER). Recombinant expression of tick-borne encephalitis (TBE) virus envelope proteins prM and E in mammalian cells leads to their incorporation into enveloped recombinant subviral particles (RSPs), which have been used as a model system for studying assembly and entry processes and are also promising vaccine candidates. In this study, we analyzed the formation and secretion of TBE virus RSPs and of a membrane anchor-free E homodimer in mammalian cells. Immunofluorescence microscopy showed that E was accumulated in the lumen of the ER. RSPs were observed by electron microscopy in the rough and smooth ER and in downstream compartments of the secretory pathway. About 75% of the particles appeared to be of the size expected for RSPs (about 30 nm in diameter), but a number of larger particles and tubular structures were also observed in these compartments. Secretion of membrane anchor-free E dimers was detected 30 min after synthesis of prM and E, and secretion of RSPs was detected 1 h after synthesis of prM and E. We also found that the presence of the single N-linked oligosaccharide side chain on the E protein and its trimming by glucosidases was necessary for secretion of RSPs and truncated E dimers. Our results suggest that incorporation of prM and E into RSPs occurs at the ER membrane without other viral elements being required, followed by rapid transport along the compartments of the secretory pathway and secretion. Moreover, the carbohydrate side chain of E is involved in at least one assembly or transport step.
Collapse
Affiliation(s)
- Ivo C Lorenz
- Institute of Biochemistry, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
366
|
Abstract
Japanese encephalitis (JE), the most important cause of epidemic encephalitis worldwide, is confined to Asia, but its geographical area is spreading. West Nile virus, and other closely related flaviviruses, cause similar disease elsewhere. Recent cryoelectron microscopic studies have characterized the flavivirus envelope protein as a new class of viral fusion protein (class II), and examined its arrangement on the virion surface. Changes in the envelope protein's hinge region, or its putative receptor-binding domain, are associated with changes in neurovirulence in animal models of JE. Clinically, JE causes a wide range of presentations, including a poliolike flaccid paralysis. Seizures and raised intracranial pressure are associated with a poor outcome, and may be potentially treatable. A safe efficacious formalin-inactivated vaccine against JE has been available for many years, but is too expensive for use in most Asian countries. A newer live attenuated vaccine has been used in China, but its use elsewhere has been restricted by regulatory concerns. A chimeric vaccine in which JE structural proteins are inserted into the 17D yellow fever vaccine backbone is one of several vaccines in development. There are no established antiviral treatments against JE. Interferon alpha was the most promising drug in small open trials, but a recent double-blind placebo controlled trial showed that it did not affect the outcome in children with JE.
Collapse
Affiliation(s)
- Tom Solomon
- Departments of Neurological Science and Medical Microbiology, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
367
|
Garry RF, Dash S. Proteomics computational analyses suggest that hepatitis C virus E1 and pestivirus E2 envelope glycoproteins are truncated class II fusion proteins. Virology 2003; 307:255-65. [PMID: 12667795 DOI: 10.1016/s0042-6822(02)00065-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Class II fusion proteins encoded by tick-borne encephalitis virus (TBEV), dengue virus, and Semliki Forest virus have a fusion peptide located at the end of a rod-like molecule comprised of three antiparallel beta sheet domains. Proteomics computational analyses suggest that hepatitis C virus (HCV) envelope glycoprotein E1 and pestivirus envelope glycoprotein E2 are truncated class II fusion proteins. Similarities were also detected between the receptor-binding portion of TBEV E and HCV E2, and between TBEV small membrane protein precursor prM and pestivirus E1. The proposed models of Flaviviridae envelope proteins can facilitate drug and vaccine development.
Collapse
Affiliation(s)
- Robert F Garry
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | | |
Collapse
|
368
|
Abstract
The alphavirus Semliki Forest virus (SFV) infects cells via a low-pH-dependent membrane fusion reaction mediated by the E1 envelope protein. Fusion is regulated by the interaction of E1 with the receptor-binding protein E2. E2 is synthesized as a precursor termed "p62," which forms a stable heterodimer with E1 and is processed late in the secretory pathway by a cellular furin-like protease. Once processing to E2 occurs, the E1/E2 heterodimer is destabilized so that it is more readily dissociated by exposure to low pH, allowing fusion and infection. We have used FD11 cells, a furin-deficient CHO cell line, to characterize the processing of p62 and its role in the control of virus fusion and infection. p62 was not cleaved in FD11 cells and cleavage was restored in FD11 cell transfectants expressing human furin. Studies of unprocessed virus produced in FD11 cells (wt/p62) demonstrated that the p62 protein was efficiently cleaved by purified furin in vitro, without requiring prior exposure to low pH. wt/p62 virus particles were also processed during their endocytic uptake in furin-containing cells, resulting in more efficient virus infection. wt/p62 virus was compared with mutant L, in which p62 cleavage was blocked by mutation of the furin-recognition motif. wt/p62 and mutant L had similar fusion properties, requiring a much lower pH than control virus to trigger fusion and fusogenic E1 conformational changes. However, the in vivo infectivity of mutant L was more strongly inhibited than that of wt/p62, due to additional effects of the mutation on virus-cell binding.
Collapse
Affiliation(s)
- Xinyong Zhang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
369
|
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that primarily infects birds but occasionally also infects humans and horses. In recent years, the frequency of WNV outbreaks in humans has increased, and these outbreaks have been associated with a higher incidence of severe disease. In 1999, the geographical distribution of WNV expanded to the Western hemisphere. WNV has a positive strand RNA genome of about 11 kb that encodes a single polyprotein. WNV replicates in the cytoplasm of infected cells. Although there are still many questions to be answered, a large body of data on the molecular biology of WNV and other flaviviruses has already been obtained. Aspects of virion structure, the viral replication cycle, viral protein function, genome structure, conserved viral elements, host factors, virus-host interactions, and vaccines are discussed in this review.
Collapse
Affiliation(s)
- Margo A Brinton
- Department of Biology, Georgia State University, Atlanta 30303, USA.
| |
Collapse
|
370
|
Lai CJ, Monath TP. Chimeric Flaviviruses: Novel Vaccines against Dengue Fever, Tick-borne Encephalitis, and Japanese Encephalitis. Adv Virus Res 2003; 61:469-509. [PMID: 14714441 DOI: 10.1016/s0065-3527(03)61013-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many arthropod-borne flaviviruses are important human pathogens responsible for diverse illnesses, including YF, JE, TBE, and dengue. Live, attenuated vaccines have afforded the most effective and economical means of prevention and control, as illustrated by YF 17D and JE SA14-14-2 vaccines. Recent advances in recombinant DNA technology have made it possible to explore a novel approach for developing live attenuated flavivirus vaccines against other flaviviruses. Full-length cDNA clones allow construction of infectious virus bearing attenuating mutations or deletions incorporated in the viral genome. It is also possible to create chimeric flaviviruses in which the structural protein genes for the target antigens of a flavivirus are replaced by the corresponding genes of another flavivirus. By combining these molecular techniques, the DNA sequences of DEN4 strain 814669, DEN2 PDK-53 candidate vaccine and YF 17D vaccine have been used as the genetic backbone to construct chimeric flaviviruses with the required attenuation phenotype and expression of the target antigens. Encouraging results from preclinical and clinical studies have shown that several chimeric flavivirus vaccines have the safety profile and satisfactory immunogenicity and protective efficacy to warrant further evaluation in humans. The chimeric flavivirus strategy has led to the rapid development of novel live-attenuated vaccines against dengue, TBE, JE, and West Nile viruses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chimera/genetics
- Chimera/immunology
- DNA, Viral/genetics
- Dengue/immunology
- Dengue/prevention & control
- Dengue Virus/genetics
- Dengue Virus/immunology
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/prevention & control
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/prevention & control
- Flavivirus/genetics
- Flavivirus/immunology
- Genetic Engineering
- Humans
- Japanese Encephalitis Vaccines/genetics
- Japanese Encephalitis Vaccines/isolation & purification
- Molecular Sequence Data
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/isolation & purification
- Viral Vaccines/genetics
- Viral Vaccines/isolation & purification
Collapse
Affiliation(s)
- Ching-Juh Lai
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
371
|
Hurrelbrink RJ, McMinn PC. Molecular Determinants of Virulence: The Structural and Functional Basis for Flavivirus Attenuation. Adv Virus Res 2003; 60:1-42. [PMID: 14689690 DOI: 10.1016/s0065-3527(03)60001-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Robert J Hurrelbrink
- Department of Virology, Telethon Institute for Child Health Research, University of Western Australia, Perth, WA 6008, Australia
| | | |
Collapse
|
372
|
Elshuber S, Allison SL, Heinz FX, Mandl CW. Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus. J Gen Virol 2003; 84:183-191. [PMID: 12533715 DOI: 10.1099/vir.0.18723-0] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flavivirus particles are synthesized in an immature form containing heterodimers of the proteins prM and E. Shortly before release from the cell, prM is cleaved by the host protease furin to yield mature virions. In this study, the furin-mediated cleavage of the tick-borne encephalitis (TBE) virus protein prM was prevented by specific mutagenesis of the cleavage site. This resulted in the production of immature TBE virions, which were shown to be completely non-infectious in BHK-21 cells. This finding contrasted with previous studies in which immature flavivirus particles produced by other techniques were shown to have considerable residual infectivity. The structural integrity of the mutant virus particles was confirmed by the characterization of physical and antigenic properties. Most importantly, infectivity could be restored by the addition of trypsin, which presumably cleaved protein prM at one of the monobasic sites retained in the mutated sequence. In the presence of trypsin, the mutant could be passaged repeatedly in BHK-21 cells, but if the protease was removed, the activated particles could initiate only a single round of infection, which again generated non-infectious virus progeny. These observations provide evidence that the infectivity of flaviviruses depends on the endoproteolytic cleavage of protein prM, which probably has a regulatory function rather than a direct role in virus entry. Moreover, the results illustrate that mutation of the furin cleavage site is a convenient way to produce single-round infectious flavivirus particles, which may be useful in vaccine and vector development.
Collapse
Affiliation(s)
- Sigrid Elshuber
- Institute of Virology, University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| | - Steven L Allison
- Institute of Virology, University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| | - Franz X Heinz
- Institute of Virology, University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| | - Christian W Mandl
- Institute of Virology, University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| |
Collapse
|
373
|
Op De Beeck A, Molenkamp R, Caron M, Ben Younes A, Bredenbeek P, Dubuisson J. Role of the transmembrane domains of prM and E proteins in the formation of yellow fever virus envelope. J Virol 2003; 77:813-20. [PMID: 12502797 PMCID: PMC140810 DOI: 10.1128/jvi.77.2.813-820.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flavivirus envelope proteins have been shown to play a major role in virus assembly. These proteins are anchored into cellular and viral membranes by their C-terminal domain. These domains are composed of two hydrophobic stretches separated by a short hydrophilic segment containing at least one charged residue. We investigated the role of the transmembrane domains of prM and E in the envelope formation of the flavivirus yellow fever virus (YFV). Alanine scanning insertion mutagenesis has been used to examine the role of the transmembrane domains of prM and E in YFV subviral particle formation. Most of the insertions had a dramatic effect on the release of YFV subviral particles. Some of these mutations were introduced into the viral genome. The ability of these mutant viruses to produce infectious particles was severely reduced. The alanine insertions did not affect prM-E heterodimerization. In addition, replacement of the charged residues present in the middle of the transmembrane domains had no effect on subviral particle release. Taken together, these data indicate that the transmembrane domains of prM and E play a crucial role in the biogenesis of YFV envelope. In addition, these data indicate some differences between the transmembrane domains of the hepaciviruses and the flaviviruses.
Collapse
Affiliation(s)
- Anne Op De Beeck
- CNRS-UPR2511. INSERM-IFR17, Institut de Biologie de Lille/Institut Pasteur de Lille, 59021 Lille Cedex, France
| | | | | | | | | | | |
Collapse
|
374
|
Oliveira BCEPD, Liberto MIM, Barth OM, Cabral MC. Construction of yellow fever-influenza A chimeric virus particles. J Virol Methods 2002; 106:185-96. [PMID: 12393149 DOI: 10.1016/s0166-0934(02)00164-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In order to obtain a better understanding of the functional mechanisms involved in the fusogenesis of enveloped viruses, the influenza A (X31) and the yellow fever (17DD) virus particles were used to construct a chimeric structure based on their distinct pH requirements for fusion, and the distinct malleability of their nucleocapsids. The malleable nucleocapsid of the influenza A virus particle is characterized by a pleomorphic configuration when observed by electron microscopy. A heat inactivated preparation of X31 virus was used as a lectin to interact with the sialic acid domains present in the 17DD virus envelope. The E spikes of 17DD virus were induced to promote fusion of both envelopes, creating a double genome enveloped structure, the chimeric yellow fever-influenza A virus particle. These chimeric viral particles, originally denominated 'partículas virais quiméricas' (PVQ), were characterized by their infectious capacity for different biological systems. Cell inoculation with PVQ resulted in viral products that showed similar characteristics to those obtained after 17DD virus infections. Our findings open new opportunities towards the understanding of both virus particles and aspects of cellular physiologic quality control. The yellow fever-influenza A chimeric particles, by means of their hybrid composition, should be a valuable tool in the study of cell biology and the function of viral components.
Collapse
Affiliation(s)
- B C E P D Oliveira
- Laboratório de Estruturas de Superfície de Vírus Envelopados e Interferons, Departamento de Virologia, Instituto de Microbiologia Professor Paulo de Góes, UFRJ, Caixa Postal, 68040 Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
375
|
de Lamballerie X, Crochu S, Billoir F, Neyts J, de Micco P, Holmes EC, Gould EA. Genome sequence analysis of Tamana bat virus and its relationship with the genus Flavivirus. J Gen Virol 2002; 83:2443-2454. [PMID: 12237426 DOI: 10.1099/0022-1317-83-10-2443] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tamana bat virus (TABV, isolated from the bat Pteronotus parnellii) is currently classified as a tentative species in the genus FLAVIVIRUS: We report here the determination and analysis of its complete coding sequence. Low but significant similarity scores between TABV and member-viruses of the genus Flavivirus were identified in the amino acid sequences of the structural, NS3 and NS5 genes. A series of cysteines located in the envelope protein and the most important enzymatic domains of the virus helicase/NTPase, methyltransferase and RNA-dependent RNA polymerase were found to be highly conserved. In the serine-protease domain, the catalytic sites were conserved, but variations in sequence were found in the putative substrate-binding sites, implying possible differences in the protease specificity. In accordance with this finding, the putative cleavage sites of the TABV polyprotein by the virus protease are substantially different from those of flaviviruses. The phylogenetic position of TABV could not be determined precisely, probably due to the extremely significant genetic divergence from other member-viruses of the family FLAVIVIRIDAE: However, analysis based on both genetic distances and maximum-likelihood confirmed that TABV is more closely related to the flaviviruses than to the other genera. These findings have implications for the evolutionary history and taxonomic classification of the family as a whole: (i) the possibility that flaviviruses were derived from viruses infecting mammals rather than from mosquito viruses cannot be excluded; (ii) using the current criteria for the definition of genera in the family Flaviviridae, TABV should be assigned to a new genus.
Collapse
Affiliation(s)
- X de Lamballerie
- Unité des Virus Emergents, EA3292-IFR48, Université de la Méditerranée, Faculté de Médecine, 27 Bd J. Moulin, F13005 Marseille, France1
| | - S Crochu
- Unité des Virus Emergents, EA3292-IFR48, Université de la Méditerranée, Faculté de Médecine, 27 Bd J. Moulin, F13005 Marseille, France1
| | - F Billoir
- Unité des Virus Emergents, EA3292-IFR48, Université de la Méditerranée, Faculté de Médecine, 27 Bd J. Moulin, F13005 Marseille, France1
| | - J Neyts
- Rega Institute for Medical Research, Minderbroedersstraat 10, K. U. Leuven, B-3000 Leuven, Belgium2
| | - P de Micco
- Unité des Virus Emergents, EA3292-IFR48, Université de la Méditerranée, Faculté de Médecine, 27 Bd J. Moulin, F13005 Marseille, France1
| | - E C Holmes
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK3
| | - E A Gould
- Centre for Ecology and Hydrology, Mansfield Road, Oxford OX1 3SR, UK4
| |
Collapse
|
376
|
Arakaki TL, Fang NX, Fairlie DP, Young PR, Martin JL. Catalytically active Dengue virus NS3 protease forms aggregates that are separable by size exclusion chromatography. Protein Expr Purif 2002; 25:241-7. [PMID: 12135556 DOI: 10.1016/s1046-5928(02)00005-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An active form of the Dengue virus protease NS3 (CF40.Gly.NS3pro) was expressed in Escherichia coli. This construct consists of a critical 40 amino acid cofactor domain from NS2B fused to the N-terminal 184 amino acid protease domain of NS3 via a flexible, covalent linker (Gly(4)SerGly(4)). The recombinantly produced protein is soluble and has a hexa-histidine tag engineered at the N-terminus for ease of purification using metal affinity chromatography. However, the presence of lower molecular weight impurities after affinity chromatography indicated the need for additional purification steps. The consistent appearance of these impurities suggested that they may be the products of proteolysis and/or auto-proteolysis. The latter possibility was subsequently excluded by the observation of the same impurities in a purified, catalytically inactive form of the recombinant protease (CF40.Gly.NS3pro.SA). Further analysis indicated that these impurities may represent premature translation termination products. Regardless of their origin, they were shown to form various sized aggregates with full-length CF40.Gly.NS3pro that can be separated by size exclusion chromatography, yielding fractions of active protease of sufficient purity for crystallisation trials. The ultimate goal of these studies is to obtain a crystal structure of a catalytically active form of the Dengue virus NS3 protease for structure-based drug design.
Collapse
Affiliation(s)
- Tracy L Arakaki
- Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld. 4072, Australia
| | | | | | | | | |
Collapse
|
377
|
Lorenz IC, Allison SL, Heinz FX, Helenius A. Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J Virol 2002; 76:5480-91. [PMID: 11991976 PMCID: PMC137023 DOI: 10.1128/jvi.76.11.5480-5491.2002] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Flavivirus envelope proteins are synthesized as part of large polyproteins that are co- and posttranslationally cleaved into their individual chains. To investigate whether the interaction of neighboring proteins within the precursor protein is required to ensure proper maturation of the individual components, we have analyzed the folding of the flavivirus tick-borne encephalitis (TBE) virus envelope glycoproteins prM and E by using a recombinant plasmid expression system and virus-infected cells. When expressed in their polyprotein context, prM and E achieved their native folded structures with half-times of approximately 4 min for prM and about 15 min for E. They formed heterodimeric complexes within a few minutes after synthesis that were required for the final folding of E but not for that of prM. Heterodimers could also be formed in trans when these proteins were coexpressed from separate constructs. When expressed without prM, E could form disulfide bonds but did not express a specific conformational epitope and remained sensitive to reduction by dithiothreitol. This is consistent with a chaperone-like role for prM in the folding of E. PrM was able to achieve its native folded structure without coexpression of E, but signal sequence cleavage at the N terminus was delayed. Our results show that prM is an especially rapidly folding viral glycoprotein, that polyprotein cleavage and folding of the TBE virus envelope proteins occurs in a coordinated sequence of processing steps, and that proper and efficient maturation of prM and E can only be achieved by cosynthesis of these two proteins.
Collapse
Affiliation(s)
- Ivo C Lorenz
- Institute of Biochemistry, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
378
|
Binley JM, Sanders RW, Master A, Cayanan CS, Wiley CL, Schiffner L, Travis B, Kuhmann S, Burton DR, Hu SL, Olson WC, Moore JP. Enhancing the proteolytic maturation of human immunodeficiency virus type 1 envelope glycoproteins. J Virol 2002; 76:2606-16. [PMID: 11861826 PMCID: PMC135977 DOI: 10.1128/jvi.76.6.2606-2616.2002] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2001] [Accepted: 12/06/2001] [Indexed: 12/31/2022] Open
Abstract
In virus-infected cells, the envelope glycoprotein (Env) precursor, gp160, of human immunodeficiency virus type 1 is cleaved by cellular proteases into a fusion-competent gp120-gp41 heterodimer in which the two subunits are noncovalently associated. However, cleavage can be inefficient when recombinant Env is expressed at high levels, either as a full-length gp160 or as a soluble gp140 truncated immediately N-terminal to the transmembrane domain. We have explored several methods for obtaining fully cleaved Env for use as a vaccine antigen. We tested whether purified Env could be enzymatically digested with purified protease in vitro. Plasmin efficiently cleaved the Env precursor but also cut at a second site in gp120, most probably the V3 loop. In contrast, a soluble form of furin was specific for the gp120-gp41 cleavage site but cleaved inefficiently. Coexpression of Env with the full-length or soluble form of furin enhanced Env cleavage but also reduced Env expression. When the Env cleavage site (REKR) was mutated in order to see if its use by cellular proteases could be enhanced, several mutants were found to be processed more efficiently than the wild-type protein. The optimal cleavage site sequences were RRRRRR, RRRRKR, and RRRKKR. These mutations did not significantly alter the capacity of the Env protein to mediate fusion, so they have not radically perturbed Env structure. Furthermore, unlike that of wild-type Env, expression of the cleavage site mutants was not significantly reduced by furin coexpression. Coexpression of Env cleavage site mutants and furin is therefore a useful method for obtaining high-level expression of processed Env.
Collapse
Affiliation(s)
- James M Binley
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
379
|
Konishi E, Fujii A. Dengue type 2 virus subviral extracellular particles produced by a stably transfected mammalian cell line and their evaluation for a subunit vaccine. Vaccine 2002; 20:1058-67. [PMID: 11803066 DOI: 10.1016/s0264-410x(01)00446-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A dengue subunit vaccine candidate was developed using a mammalian cell line continuously expressing subviral extracellular particles (EPs) of the New Guinea C (NGC) strain of dengue type 2 virus. The cell line, designated D cell line, maintained envelope (E) antigen production for at least 10 passages. The EPs contained an E protein biochemically and antigenically equivalent to authentic E produced by NGC-infected Vero cells. Two immunizations of BALB/c mice with purified EPs containing 100ng or 400ng of E induced moderate levels of neutralizing antibody and anamnestic neutralizing antibody responses were produced when these animals were challenged with dengue virus. The yield of E antigen from D cells was comparable to that from NGC-infected Vero cells. When D cells were transfected with the anti-apoptotic bcl-2 gene, the E antigen release increased approximately two-fold. These results indicate that D cell EPs are a promising non-infectious vaccine antigen for dengue.
Collapse
Affiliation(s)
- Eiji Konishi
- Department of Health Sciences, Kobe University School of Medicine, 7-10-2 Tomogaoka, Suma-ku, 654-0142, Kobe, Japan.
| | | |
Collapse
|
380
|
Hingley ST, Leparc-Goffart I, Seo SH, Tsai JC, Weiss SR. The virulence of mouse hepatitis virus strain A59 is not dependent on efficient spike protein cleavage and cell-to-cell fusion. J Neurovirol 2002; 8:400-10. [PMID: 12402166 PMCID: PMC7095328 DOI: 10.1080/13550280260422703] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cleavage and fusion properties of recombinant murine hepatitis viruses (MHV) were examined to assess the role of the cleavage signal in determining the extent of S protein cleavage, and the correlation between cleavage and induction of cell-to-cell fusion. Targeted recombination was used to introduce amino acid substitutions into the cleavage signal of the fusion glycoprotein (spike or S protein) of MHV strain A59. The recombinants were then used to address the question of the importance of S protein cleavage and viral-mediated cell-to-cell fusion on pathogenicity. Our data indicate that cleavage of spike is not solely determined by the amino acid sequence at the cleavage site, but may also depend on sequences removed from the cleavage site. In addition, efficient cell-to-cell fusion is not necessary for virulence.
Collapse
Affiliation(s)
- Susan T Hingley
- Department of Pathology, Microbiology and Immunology, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania 19131, USA.
| | | | | | | | | |
Collapse
|
381
|
Leung D, Schroder K, White H, Fang NX, Stoermer MJ, Abbenante G, Martin JL, Young PR, Fairlie DP. Activity of recombinant dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors. J Biol Chem 2001; 276:45762-71. [PMID: 11581268 DOI: 10.1074/jbc.m107360200] [Citation(s) in RCA: 252] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant forms of the dengue 2 virus NS3 protease linked to a 40-residue co-factor, corresponding to part of NS2B, have been expressed in Escherichia coli and shown to be active against para-nitroanilide substrates comprising the P6-P1 residues of four substrate cleavage sequences. The enzyme is inactive alone or after the addition of a putative 13-residue co-factor peptide but is active when fused to the 40-residue co-factor, by either a cleavable or a noncleavable glycine linker. The NS4B/NS5 cleavage site was processed most readily, with optimal processing conditions being pH 9, I = 10 mm, 1 mm CHAPS, 20% glycerol. A longer 10-residue peptide corresponding to the NS2B/NS3 cleavage site (P6-P4') was a poorer substrate than the hexapeptide (P6-P1) para-nitroanilide substrate under these conditions, suggesting that the prime side substrate residues did not contribute significantly to protease binding. We also report the first inhibitors of a co-factor-complexed, catalytically active flavivirus NS3 protease. Aprotinin was the only standard serine protease inhibitor to be active, whereas a number of peptide substrate analogues were found to be competitive inhibitors at micromolar concentrations.
Collapse
Affiliation(s)
- D Leung
- Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
382
|
Deubel V, Fiette L, Gounon P, Drouet MT, Khun H, Huerre M, Banet C, Malkinson M, Desprès P. Variations in biological features of West Nile viruses. Ann N Y Acad Sci 2001; 951:195-206. [PMID: 11797777 DOI: 10.1111/j.1749-6632.2001.tb02697.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pathological findings in humans, horses, and birds with West Nile (WN) encephalitis show neuronal degeneration and necrosis in the central nervous system (CNS), with diffuse inflammation. The mechanisms of WN viral penetration of the CNS and pathophysiology of the encephalitis remain largely unknown. Since 1996, several epizootics involving hundreds of humans, horses, and thousands of wild and domestic bird cases of encephalitis and mortality have been reported in Europe, North Africa, the Middle East, Russia, and the USA (see specific chapters in this issue). However, biological and molecular markers of virus virulence should be characterized to assess whether novel strains with increased virulence are responsible for this recent proliferation of outbreaks.
Collapse
Affiliation(s)
- V Deubel
- Institut Pasteur, Unité de Biologie des Infections Virales Emergentes, Lyon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
383
|
Mackenzie JM, Westaway EG. Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J Virol 2001; 75:10787-99. [PMID: 11602720 PMCID: PMC114660 DOI: 10.1128/jvi.75.22.10787-10799.2001] [Citation(s) in RCA: 247] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular assembly site for flaviviruses in currently not known but is presumed to be located within the lumen of the rough endoplasmic reticulum (RER). Building on previous studies involving immunofluorescence (IF) and cryoimmunoelectron microscopy of Kunjin virus (KUN)-infected cells, we sought to identify the steps involved in the assembly and maturation of KUN. Thus, using antibodies directed against envelope protein E in IF analysis, we found the accumulation of E within regions coincident with the RER and endosomal compartments. Immunogold labeling of cryosections of infected cells indicated that E and minor envelope protein prM were localized to reticulum membranes continuous with KUN-induced convoluted membranes (CM) or paracrystalline arrays (PC) and that sometimes the RER contained immunogold-labeled virus particles. Both proteins were also observed to be labeled in membranes at the periphery of the induced CM or PC structures, but the latter were very seldom labeled internally. Utilizing drugs that inhibit protein and/or membrane traffic throughout the cell, we found that the secretion of KUN particles late in infection was significantly affected in the presence of brefeldin A and that the infectivity of secreted particles was severely affected in the presence of monensin and N-nonyl-deoxynojirimycin. Nocodazole did not appear to affect maturation, suggesting that microtubules play no role in assembly or maturation processes. Subsequently, we showed that the exit of intact virions from the RER involves the transport of individual virions within individual vesicles en route to the Golgi apparatus. The results suggest that the assembly of virions occurs within the lumen of the RER and that subsequent maturation occurs via the secretory pathway.
Collapse
Affiliation(s)
- J M Mackenzie
- Clinical Medical Virology Centre, University of Queensland, St. Lucia, Queensland 4072, Australia.
| | | |
Collapse
|
384
|
Lok SM, Ng ML, Aaskov J. Amino acid and phenotypic changes in dengue 2 virus associated with escape from neutralisation by IgM antibody. J Med Virol 2001; 65:315-23. [PMID: 11536239 DOI: 10.1002/jmv.2036] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Two dengue 2-specific IgM monoclonal antibodies (MAb) recognised spatially unrelated epitopes on the envelope (E) protein of dengue 2 virus, which were also recognised by serum from 20 and 50%, respectively, of patients with a primary dengue 2 infection. Dengue 2 virus populations escaping neutralisation by MAb 6B2 (representing the majority population of dengue 2-specific IgM MAbs ) had a deduced amino acid change (G-S) in the pre-Membrane (prM) protein at position 15 and a second in the E protein at E311 (E-G). The change in the E protein was adjacent to the only other epitopes on dengue 2 virus (E307, E383-385) involved in neutralisation that have been identified but that were recognised by IgG antibodies. Dengue 2 virus escaping neutralisation by IgM MAb 10F2, representing the minority population of dengue 2-specific IgM MAbs, had the same deduced amino acid change (G-S) at prM15 as the 6B2 neutralisation escape mutant dengue 2 virus population and four deduced amino acid changes in the E protein (E69, T-I, in the glycosylation motif; E71, E-D; E112, S-G; E124, I-N), which may be close enough to each other to form a single epitope and a fifth at E402 (F-L) in a region of the E protein of TBE virus essential for the low pH-induced E protein dimer-trimer transition. The 10F2 neutralisation escape mutant, but not the 6B2 one, had lost its ability to cause fusion from within Aedes albopictus mosquito cells and was inactivated more rapidly than the 6B2 neutralisation escape mutant and wild type viruses at 42 degrees C. Dengue 2 viruses passaged in BHK cells in the absence of a selecting antibody, shared a common amino acid (S) at E53, which differed from both wild type and neutralisation escape mutant virus populations at this position (P) and may have been responsible for a significant reduction in the ability of these "passage control" virus populations to be neutralised by both 6B2 and 10F2 antibodies.
Collapse
Affiliation(s)
- S M Lok
- School of Life Sciences, Queensland University of Technology, Brisbane, Australia
| | | | | |
Collapse
|
385
|
Hunt AR, Cropp CB, Chang GJ. A recombinant particulate antigen of Japanese encephalitis virus produced in stably-transformed cells is an effective noninfectious antigen and subunit immunogen. J Virol Methods 2001; 97:133-49. [PMID: 11483224 DOI: 10.1016/s0166-0934(01)00346-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A COS-1 cell line, stably transformed by a plasmid encoding the premembrane and envelope glycoproteins of Japanese encephalitis virus, produced a noninfectious recombinant antigen expressed as extracellular particles. Extracellular particles purified by equilibrium density centrifugation in sucrose gradients followed by electron microscopy were characterized as spherical particles with an average diameter of approximately 30 nm and a buoyant density of 1.15 g/cc. Purified extracellular particles were shown by western blot to contain premembrane, membrane and envelope proteins. The gradient-purified particles exhibited hemagglutination activity at the same pH optimum (6.6) as Japanese encephalitis virus. Recombinant antigen from cell culture fluid was concentrated by precipitation with polyethylene glycol and evaluated for immunogenicity in 8-10-week-old ICR mice. Groups of five mice received only one immunization of recombinant antigen with or without Freund's incomplete adjuvant. Mice immunized with recombinant antigen plus Freund's incomplete adjuvant elicited the highest anti-viral titers as determined by both enzyme-linked immunosorbent assay (ELISA) and plaque-reduction neutralization tests. The polyethylene glycol-concentrated recombinant antigen was also evaluated for use in IgM antibody-capture ELISA and indirect IgG ELISA. The IgM-capture ELISA results using recombinant antigen correlated well with the results of a similar test using Japanese encephalitis virus-infected mouse brain antigen for the analysis of serum samples from patients with symptoms of acute encephalitis. Similar IgG titers were observed in an indirect ELISA comparing recombinant antigen and purified Japanese encephalitis virus as plate-bound antigens. Based on these studies, this entirely safe, easily produced antigen that expresses authentic Japanese encephalitis virus envelope glycoprotein would provide an excellent alternative to standard viral antigens used in various ELISA formats.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/analysis
- Antibodies, Viral/immunology
- Antigens, Viral/biosynthesis
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- COS Cells
- Centrifugation, Density Gradient
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/immunology
- Encephalitis Virus, Japanese/ultrastructure
- Encephalitis, Japanese/immunology
- Enzyme-Linked Immunosorbent Assay
- Hemagglutination Inhibition Tests
- Humans
- Hydrogen-Ion Concentration
- Immunoglobulin G/analysis
- Immunoglobulin M/analysis
- Mice
- Mice, Inbred ICR
- Microscopy, Electron
- Plasmids/genetics
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/immunology
- Transfection
- Transformation, Genetic
- Vaccines, Subunit/immunology
- Viral Envelope Proteins/biosynthesis
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- A R Hunt
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, US Department of Health and Human Services, PO Box 2087, Fort Collins, CO 80522-2087, USA.
| | | | | |
Collapse
|
386
|
Blitvich BJ, Scanlon D, Shiell BJ, Mackenzie JS, Pham K, Hall RA. Determination of the intramolecular disulfide bond arrangement and biochemical identification of the glycosylation sites of the nonstructural protein NS1 of Murray Valley encephalitis virus. J Gen Virol 2001; 82:2251-2256. [PMID: 11514736 DOI: 10.1099/0022-1317-82-9-2251] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 12 cysteine residues in the flavivirus NS1 protein are strictly conserved, suggesting that they form disulfide bonds that are critical for folding the protein into a functional structure. In this study, we examined the intramolecular disulfide bond arrangement of NS1 of Murray Valley encephalitis virus and elucidated three of the six cysteine-pairing arrangements. Disulfide linkages were identified by separating tryptic-digested NS1 by reverse-phase high pressure liquid chromatography and analysing the resulting peptide peaks by protein sequencing, amino acid analysis and/or electrospray mass spectrometry. The pairing arrangements between the six amino-terminal cysteines were identified as follows: Cys(4)-Cys(15), Cys(55)-Cys(143) and Cys(179)-Cys(223). Although the pairing arrangements between the six carboxy-terminal cysteines were not determined, we were able to eliminate several cysteine-pairing combinations. Furthermore, we demonstrated that all three putative N-linked glycosylation sites of NS1 are utilized and that the Asn(207) glycosylation site contains a mannose-rich glycan.
Collapse
Affiliation(s)
- Bradley J Blitvich
- Department of Microbiology, The University of Western Australia, QE-II Medical Centre, Nedlands 6907, Australia1
| | - Denis Scanlon
- Protein Biochemistry, Australian Animal Health Laboratory, CSIRO Livestock Industries, Geelong 3220, Australia2
| | - Brian J Shiell
- Protein Biochemistry, Australian Animal Health Laboratory, CSIRO Livestock Industries, Geelong 3220, Australia2
| | - John S Mackenzie
- Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia3
- Department of Microbiology, The University of Western Australia, QE-II Medical Centre, Nedlands 6907, Australia1
| | - Kim Pham
- Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia3
| | - Roy A Hall
- Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia3
- Department of Microbiology, The University of Western Australia, QE-II Medical Centre, Nedlands 6907, Australia1
| |
Collapse
|
387
|
Holbrook MR, Ni H, Shope RE, Barrett AD. Amino acid substitution(s) in the stem-anchor region of langat virus envelope protein attenuates mouse neurovirulence. Virology 2001; 286:54-61. [PMID: 11448158 DOI: 10.1006/viro.2001.0959] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The identification of variants that are unable to bind membrane receptor preparations (MRPs) has previously been shown to select attenuated yellow fever and Japanese encephalitis viruses. In this study, this methodology has been extended to the tick-borne serocomplex of flaviviruses. Langat (LGT) virus strain TP21 was bound to mouse or human brain MRPs and viruses that escaped binding were isolated and characterized. In addition, variant viruses escaping neutralization by the monoclonal antibody (MAb) 9F9 were also isolated. All of the variant viruses were attenuated for mouse neurovirulence (> or =13-fold). Sequence analysis of the prM/E region of the variant viruses identified mutations within the stem-anchor region of the E protein in variants isolated following incubation with mouse or human brain MRPs at a pH > or = 7.0. The MAb 9F9 variants and MRP variants isolated at pH 5.0, which should induce a conformational shift in the viral E protein, had nearly identical mutations in the prM/M protein immediately N-terminal to the prM/E cleavage site. MAb 9F9 neutralized none of the variant viruses and hemagglutination inhibition assays suggest that the variant virus surface proteins have slightly different conformations compared to the parental virus. These data support previous work indicating that the stem-anchor region of the E protein is important to the surface architecture of the tick-borne flaviviruses. In addition, this study demonstrates that the M protein is at least partially solvent accessible on the virion surface and that the M protein plays a role in maintaining the conformation of the M/E surface complex.
Collapse
Affiliation(s)
- M R Holbrook
- Department of Pathology and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA
| | | | | | | |
Collapse
|
388
|
Sugrue RJ, Brown C, Brown G, Aitken J, McL Rixon HW. Furin cleavage of the respiratory syncytial virus fusion protein is not a requirement for its transport to the surface of virus-infected cells. J Gen Virol 2001; 82:1375-1386. [PMID: 11369882 DOI: 10.1099/0022-1317-82-6-1375] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intracellular cleavage of respiratory syncytial virus (RSV) fusion (F) protein by furin was examined. In RSV-infected LoVo cells, which express an inactive form of furin, and in RSV-infected Vero cells treated with the furin inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone (dec-RVKR-cmk), the F protein was expressed as a non-cleaved 73 kDa species. In both cases the F protein was initially expressed as an endoglycosidase H (Endo H)-sensitive precursor (F0(EHs)) which was modified approximately 40 min post-synthesis by the addition of complex carbohydrates to produce the Endo H-resistant form (F0(EHr)). The size and glycosylation state of F0(EHr) were identical to a transient intermediate form of non-cleaved F protein which was detected in RSV-infected Vero cells in the absence of inhibitor. Cell surface biotinylation and surface immunofluorescence staining showed that F0(EHr) was present on the surface of RSV-infected cells. RSV filaments have been shown to be the predominant form of the budding virus that is detected during virus replication. Analysis of the RSV-infected cells using scanning electron microscopy (SEM) showed that, in the presence of dec-RVKR-cmk, virus budding was impaired, producing fewer and much smaller viral filaments than in untreated cells. A comparison of immunofluorescence and SEM data showed that F0(EHr) was routed to the surface of virus-infected cells but not located in these smaller structures. Our findings suggest that activation of the F protein is required for the efficient formation of RSV filaments.
Collapse
Affiliation(s)
- Richard J Sugrue
- MRC Virology Unit, Institute of Virology, Church Street, G11 5JR, Glasgow, UK1
| | - Craig Brown
- MRC Virology Unit, Institute of Virology, Church Street, G11 5JR, Glasgow, UK1
| | - Gaie Brown
- MRC Virology Unit, Institute of Virology, Church Street, G11 5JR, Glasgow, UK1
| | - James Aitken
- Division of Virology, University of Glasgow, Institute of Virology, Church Street, G11 5JR, Glasgow, UK2
| | - Helen W McL Rixon
- MRC Virology Unit, Institute of Virology, Church Street, G11 5JR, Glasgow, UK1
| |
Collapse
|
389
|
Lescar J, Roussel A, Wien MW, Navaza J, Fuller SD, Wengler G, Wengler G, Rey FA. The Fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 2001; 105:137-48. [PMID: 11301009 DOI: 10.1016/s0092-8674(01)00303-8] [Citation(s) in RCA: 402] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Semliki Forest virus (SFV) has been extensively studied as a model for analyzing entry of enveloped viruses into target cells. Here we describe the trace of the polypeptide chain of the SFV fusion glycoprotein, E1, derived from an electron density map at 3.5 A resolution and describe its interactions at the surface of the virus. E1 is unexpectedly similar to the flavivirus envelope protein, with three structural domains disposed in the same primary sequence arrangement. These results introduce a new class of membrane fusion proteins which display lateral interactions to induce the necessary curvature and direct budding of closed particles. The resulting surface protein lattice is primed to cause membrane fusion when exposed to the acidic environment of the endosome.
Collapse
Affiliation(s)
- J Lescar
- Laboratoire de Génétique des Virus, CNRS-UPR 9053, 1, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
390
|
Abstract
Langat (LGT) virus M protein has been generated in a recombinant system. Antiserum raised against the LGT virus M protein neutralizes tick-borne encephalitis serocomplex flaviviruses but not mosquito-borne flaviviruses, indicating that the M protein is exposed on the surface of virions. The antiserum recognizes intracellular LGT virus prM/M and binds to prM and M in Western blots of whole-cell lysates and purified virus, respectively. These data suggest that the prM and M proteins are structurally similar under native conditions and support the hypothesis that the "pr" portion of prM facilitates proper folding of the M protein for expression on the virion surface.
Collapse
Affiliation(s)
- M R Holbrook
- Center for Tropical Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA
| | | | | |
Collapse
|
391
|
Ferlenghi I, Clarke M, Ruttan T, Allison SL, Schalich J, Heinz FX, Harrison SC, Rey FA, Fuller SD. Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus. Mol Cell 2001; 7:593-602. [PMID: 11463384 DOI: 10.1016/s1097-2765(01)00206-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tick-borne encephalitis (TBE) flavivirus contains two transmembrane proteins, E and M. Coexpression of E and the M precursor (prM) leads to secretion of recombinant subviral particles (RSPs). In the most common form of these RSPs, analyzed at a 19 A resolution by cryo-electron microscopy (cryo-EM), 60 copies of E pack as dimers in a T = 1 icosahedral surface lattice (outer diameter, 315 A). Fitting the high-resolution structure of a soluble E fragment into the RSP density defines interaction sites between E dimers, positions M relative to E, and allows assignment of transmembrane regions of E and M. Lateral interactions among the glycoproteins stabilize this capsidless particle; similar interactions probably contribute to assembly of virions. The structure suggests a picture for trimer association under fusion-inducing conditions.
Collapse
Affiliation(s)
- I Ferlenghi
- The Structural Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
392
|
Konishi E, Fujii A, Mason PW. Generation and characterization of a mammalian cell line continuously expressing Japanese encephalitis virus subviral particles. J Virol 2001; 75:2204-12. [PMID: 11160724 PMCID: PMC114804 DOI: 10.1128/jvi.75.5.2204-2212.2001] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have generated a cell line (F cells) producing a secreted form of Japanese encephalitis virus (JEV) subviral particle (extracellular particles [EPs]) that contains the JEV envelope glycoprotein (E) and a precursor (prM) of the virion membrane protein (M). The F cells were engineered to synthesize these JEV products from a cDNA encoding a mutated (furin proteinase resistant) form of prM, since stable cell lines expressing E and the authentic form of prM could not be obtained, due (in part) to the cell-fusing ability of EPs containing E and M. Our biochemical alteration of the prM protein was critical for the successful production of EP-producing cell lines. EPs produced by F cells share the biochemical properties of empty viral particles produced by JEV-infected cells, except that the F-cell EPs lack hemagglutinating activity and M. F-cell EPs were recognized by a panel of monoclonal antibodies to E, and EPs were shown to be useful as vaccine candidates in mice and as diagnostic reagents in evaluating human immune responses to JE vaccination. The amounts of E antigen released into the culture fluid of F cells were similar to those found in virion fractions of JEV-infected cell culture fluids or JEV-infected weanling mouse brains (the current source of antigen used to produce human vaccines for JE). Thus, the F-cell line would appear to be a useful source of antigen for JE vaccines and diagnostics.
Collapse
Affiliation(s)
- E Konishi
- Department of Health Sciences, Kobe University School of Medicine, Kobe 654-0142, Japan.
| | | | | |
Collapse
|
393
|
Jacobs MG, Robinson PJ, Bletchly C, Mackenzie JM, Young PR. Dengue virus nonstructural protein 1 is expressed in a glycosyl‐phosphatidylinositol‐linked form that is capable of signal transduction. FASEB J 2000. [DOI: 10.1096/fj.99-0829com] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michael G. Jacobs
- Department of PaediatricsImperial College School of MedicineNorfolk PlaceLondonW2 1PGU.K
| | - Peter J. Robinson
- MRC Clinical Sciences CentreImperial College School of MedicineLondonW12 0NNU.K
| | - Cheryl Bletchly
- Sir Albert Sakzewski Virus Research CentreRoyal Children's HospitalBrisbaneQueensland4029Australia
| | - Jason M. Mackenzie
- Sir Albert Sakzewski Virus Research CentreRoyal Children's HospitalBrisbaneQueensland4029Australia
| | - Paul R. Young
- Department of Microbiology and ParasitologyUniversity of QueenslandBrisbaneQueensland4072Australia
- Sir Albert Sakzewski Virus Research CentreRoyal Children's HospitalBrisbaneQueensland4029Australia
| |
Collapse
|
394
|
Billoir F, de Chesse R, Tolou H, de Micco P, Gould EA, de Lamballerie X. Phylogeny of the genus flavivirus using complete coding sequences of arthropod-borne viruses and viruses with no known vector. J Gen Virol 2000; 81:781-90. [PMID: 10675416 DOI: 10.1099/0022-1317-81-3-781] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Attempts to define the evolutionary relationships and origins of viruses in the genus Flavivirus are hampered by the lack of genetic information particularly amongst the non-vectored flaviviruses. Using a novel protocol for sequence determination, the first complete coding sequence of St Louis encephalitis virus and those of two representative non-vectored flaviviruses, Rio Bravo (isolated from bat) and Apoi (isolated from rodent), are reported. The encoded polyproteins of Rio Bravo and Apoi virus are the smallest described to date within the genus FLAVIVIRUS: The highest similarities with other flaviviruses were found in the NS3 and NS5 genes. The proteolytic cleavage sites for the viral serine protease were highly conserved among the flaviviruses completely sequenced to date. Comparative genetic amino acid alignments revealed that p-distance cut-off values of 0.330-0.470 distinguished the arthropod-borne viruses according to their recognized serogroups and Rio Bravo and Apoi virus were assigned to two distinct non-vectored virus groups. Within these serogroups, cladogenesis based on the complete ORF sequence was similar to trees based on envelope and NS5 sequences. In contrast, branching patterns at the deeper nodes of the tree were different from those reported in the previous study of NS5 sequences. The significance of these observations is discussed.
Collapse
Affiliation(s)
- F Billoir
- Laboratoire de Virologie Moléculaire, Tropicale et Transfusionnelle, Unité des Virus Emergents, Faculté de Médecine de Marseille, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13385 Marseille cedex 05, France
| | | | | | | | | | | |
Collapse
|
395
|
Abstract
This chapter focuses on the work carried out with tick-borne encephalitis (TBE) virus, the structurally best characterized of the flaviviruses. The data is related to those obtained with other flaviviruses, which are assumed to have a conserved structural organization, and compare the characteristics of flavivirus fusion to those of other enveloped viruses. Fusion proteins from several different virus families, including Orthomyxoviridae , Paramyxoviridae , Retroviridae , and Filoviridae have been shown to exhibit striking structural similarities; they all use a common mechanism for inducing membrane fusion, and the same general model applies to all of these cases. The flavivirus genome is a positive-stranded RNA molecule consisting of a single, long open reading frame of more than 10,000 nucleotides flanked by noncoding regions at the 5′ and 3′ ends. The fusion properties of flaviviruses have been investigated using several different assay systems, including virus-induced cell–cell fusion and virus–liposome fusion. All of these studies indicate that flaviviruses require an acidic pH for fusion, consistent with their proposed mode of entry.
Collapse
Affiliation(s)
- F X Heinz
- Institute of Virology, University of Vienna, Austria
| | | |
Collapse
|
396
|
Courageot MP, Frenkiel MP, Dos Santos CD, Deubel V, Desprès P. Alpha-glucosidase inhibitors reduce dengue virus production by affecting the initial steps of virion morphogenesis in the endoplasmic reticulum. J Virol 2000; 74:564-72. [PMID: 10590151 PMCID: PMC111573 DOI: 10.1128/jvi.74.1.564-572.2000] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/1999] [Accepted: 09/29/1999] [Indexed: 11/20/2022] Open
Abstract
We report that endoplasmic reticulum alpha-glucosidase inhibitors have antiviral effects on dengue (DEN) virus. We found that glucosidase inhibition strongly affects productive folding pathways of the envelope glycoproteins prM (the intracellular glycosylated precursor of M [membrane protein]) and E (envelope protein): the proper folding of prM bearing unprocessed N-linked oligosaccharide is inefficient, and this causes delayed formation of prME heterodimer. The complexes formed between incompletely folded prM and E appear to be unstable, leading to a nonproductive pathway. Inhibition of alpha-glucosidase-mediated N-linked oligosaccharide trimming may thus prevent the assembly of DEN virus by affecting the early stages of envelope glycoprotein processing.
Collapse
Affiliation(s)
- M P Courageot
- Unité des Arbovirus et Virus des Fièvres Hémorragiques, Institut Pasteur, 75724 Paris, France
| | | | | | | | | |
Collapse
|
397
|
Heinz FX. Tick-borne encephalitis virus: advances in molecular biology and vaccination strategy in the next century. ZENTRALBLATT FUR BAKTERIOLOGIE : INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY 1999; 289:506-10. [PMID: 10652717 DOI: 10.1016/s0934-8840(99)80003-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
MESH Headings
- Encephalitis Viruses, Tick-Borne/chemistry
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis, Tick-Borne/epidemiology
- Encephalitis, Tick-Borne/prevention & control
- Europe/epidemiology
- Asia, Eastern/epidemiology
- Humans
- Molecular Epidemiology
- RNA, Viral/genetics
- Siberia/epidemiology
- Vaccines, Attenuated
- Vaccines, DNA
- Vaccines, Synthetic
- Viral Vaccines
Collapse
Affiliation(s)
- F X Heinz
- Institute of Virology, University of Vienna, Austria
| |
Collapse
|
398
|
Mackenzie JM, Jones MK, Westaway EG. Markers for trans-Golgi membranes and the intermediate compartment localize to induced membranes with distinct replication functions in flavivirus-infected cells. J Virol 1999; 73:9555-67. [PMID: 10516064 PMCID: PMC112990 DOI: 10.1128/jvi.73.11.9555-9567.1999] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication of the flavivirus Kunjin virus is associated with virus-induced membrane structures within the cytoplasm of infected cells; these membranes appear as packets of vesicles associated with the sites of viral RNA synthesis and as convoluted membranes (CM) and paracrystalline arrays (PC) containing the components of the virus-specified protease (E. G. Westaway, J. M. Mackenzie, M. T. Kenney, M. K. Jones, and A. A. Khromykh, J. Virol. 71:6650-6661, 1997). To determine the cellular origins of these membrane structures, we compared the immunolabelling patterns of several cell markers in relation to these sites by immunofluorescence and immunoelectron microscopy. A marker for the trans-Golgi membranes and the trans-Golgi network, 1,4-galactosyltransferase (GalT), was redistributed to large foci in the cytoplasm of Kunjin virus-infected cells, partially coincident with immunofluorescent foci associated with the putative sites of viral RNA synthesis. As determined by immunoelectron microscopy, the induced vesicle packets contained GalT, whereas the CM and PC contained a specific protein marker for the intermediate compartment (ERGIC53). A further indicator of the role of cellular organelles in their biogenesis was the observation that the Golgi apparatus-disrupting agent brefeldin A prevented further development of immunofluorescent foci of induced membranes if added before the end of the latent period but that once formed, these membrane foci were resistant to brefeldin A dispersion. Reticulum membranes emanating from the induced CM and PC were also labelled with the rough endoplasmic reticulum marker anti-protein disulfide isomerase and were obviously redistributed during infection. This is the first report identifying trans-Golgi membranes and the intermediate compartment as the apparent sources of the flavivirus-induced membranes involved in events of replication.
Collapse
Affiliation(s)
- J M Mackenzie
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Herston, Brisbane, Australia 4029.
| | | | | |
Collapse
|
399
|
Flint M, Thomas JM, Maidens CM, Shotton C, Levy S, Barclay WS, McKeating JA. Functional analysis of cell surface-expressed hepatitis C virus E2 glycoprotein. J Virol 1999; 73:6782-90. [PMID: 10400776 PMCID: PMC112763 DOI: 10.1128/jvi.73.8.6782-6790.1999] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis C virus (HCV) glycoproteins E1 and E2, when expressed in eukaryotic cells, are retained in the endoplasmic reticulum (ER). C-terminal truncation of E2 at residue 661 or 715 (position on the polyprotein) leads to secretion, consistent with deletion of a proposed hydrophobic transmembrane anchor sequence. We demonstrate cell surface expression of a chimeric glycoprotein consisting of E2 residues 384 to 661 fused to the transmembrane and cytoplasmic domains of influenza A virus hemagglutinin (HA), termed E2661-HATMCT. The E2661-HATMCT chimeric glycoprotein was able to bind a number of conformation-dependent monoclonal antibodies and a recombinant soluble form of CD81, suggesting that it was folded in a manner comparable to "native" E2. Furthermore, cell surface-expressed E2661-HATMCT demonstrated pH-dependent changes in antigen conformation, consistent with an acid-mediated fusion mechanism. However, E2661-HATMCT was unable to induce cell fusion of CD81-positive HEK cells after neutral- or low-pH treatment. We propose that a stretch of conserved, hydrophobic amino acids within the E1 glycoprotein, displaying similarities to flavivirus and paramyxovirus fusion peptides, may constitute the HCV fusion peptide. We demonstrate that influenza virus can incorporate E2661-HATMCT into particles and discuss experiments to address the relevance of the E2-CD81 interaction for HCV attachment and entry.
Collapse
Affiliation(s)
- M Flint
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
400
|
Allison SL, Stiasny K, Stadler K, Mandl CW, Heinz FX. Mapping of functional elements in the stem-anchor region of tick-borne encephalitis virus envelope protein E. J Virol 1999; 73:5605-12. [PMID: 10364309 PMCID: PMC112618 DOI: 10.1128/jvi.73.7.5605-5612.1999] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Envelope protein E of the flavivirus tick-borne encephalitis virus mediates membrane fusion, and the structure of the N-terminal 80% of this 496-amino-acid-long protein has been shown to differ significantly from that of other viral fusion proteins. The structure of the carboxy-terminal 20%, the stem-anchor region, is not known. It contains sequences that are important for membrane anchoring, interactions with prM (the precursor of membrane protein M) during virion assembly, and low-pH-induced structural changes associated with the fusion process. To identify specific functional elements in this region, a series of C-terminal deletion mutants were constructed and the properties of the resulting truncated recombinant E proteins were examined. Full-length E proteins and proteins lacking the second of two predicted transmembrane segments were secreted in a particulate form when coexpressed with prM, whereas deletion of both segments resulted in the secretion of soluble homodimeric E proteins. Sites located within a predicted alpha-helical region of the stem (amino acids 431 to 449) and the first membrane-spanning region (amino acids 450 to 472) were found to be important for the stability of the prM-E heterodimer but not essential for prM-mediated intracellular transport and secretion of soluble E proteins. A separate site in the stem, also corresponding to a predicted alpha-helix (amino acids 401 to 413), was essential for the conversion of soluble protein E dimers to a homotrimeric form upon low-pH treatment, a process resembling the transition to the fusogenic state in whole virions. This functional mapping will aid in the understanding of the molecular mechanisms of membrane fusion and virus assembly.
Collapse
Affiliation(s)
- S L Allison
- Institute of Virology, University of Vienna, Vienna, Austria.
| | | | | | | | | |
Collapse
|