351
|
Pothlichet J, Burtey A, Kubarenko AV, Caignard G, Solhonne B, Tangy F, Ben-Ali M, Quintana-Murci L, Heinzmann A, Chiche JD, Vidalain PO, Weber ANR, Chignard M, Si-Tahar M. Study of human RIG-I polymorphisms identifies two variants with an opposite impact on the antiviral immune response. PLoS One 2009; 4:e7582. [PMID: 19859543 PMCID: PMC2762520 DOI: 10.1371/journal.pone.0007582] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 10/01/2009] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND RIG-I is a pivotal receptor that detects numerous RNA and DNA viruses. Thus, its defectiveness may strongly impair the host antiviral immunity. Remarkably, very little information is available on RIG-I single-nucleotide polymorphisms (SNPs) presenting a functional impact on the host response. METHODOLOGY/PRINCIPAL FINDINGS Here, we studied all non-synonymous SNPs of RIG-I using biochemical and structural modeling approaches. We identified two important variants: (i) a frameshift mutation (P(229)fs) that generates a truncated, constitutively active receptor and (ii) a serine to isoleucine mutation (S(183)I), which drastically inhibits antiviral signaling and exerts a down-regulatory effect, due to unintended stable complexes of RIG-I with itself and with MAVS, a key downstream adapter protein. CONCLUSIONS/SIGNIFICANCE Hence, this study characterized P(229)fs and S(183)I SNPs as major functional RIG-I variants and potential genetic determinants of viral susceptibility. This work also demonstrated that serine 183 is a residue that critically regulates RIG-I-induced antiviral signaling.
Collapse
Affiliation(s)
- Julien Pothlichet
- Institut Pasteur, Unité de Défense Innée et Inflammation, Paris, France
- Inserm, U874, Paris, France
| | - Anne Burtey
- Institut Pasteur, Unité de Défense Innée et Inflammation, Paris, France
- Inserm, U874, Paris, France
| | - Andriy V. Kubarenko
- Deutsches Krebsforschungszentrum, Toll-Like Receptors and Cancer, Heidelberg, Germany
| | - Gregory Caignard
- Institut Pasteur, Laboratoire de Génomique Virale et Vaccination, Paris, France
| | - Brigitte Solhonne
- Institut Pasteur, Unité de Défense Innée et Inflammation, Paris, France
- Inserm, U874, Paris, France
| | - Frédéric Tangy
- Institut Pasteur, Laboratoire de Génomique Virale et Vaccination, Paris, France
| | - Meriem Ben-Ali
- Institut Pasteur, Unité postulante de Génétique Evolutive Humaine, Paris, France
- CNRS, URA3012, Paris, France
| | - Lluis Quintana-Murci
- Institut Pasteur, Unité postulante de Génétique Evolutive Humaine, Paris, France
- CNRS, URA3012, Paris, France
| | - Andrea Heinzmann
- Centre for Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Jean-Daniel Chiche
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Unité de Réanimation Médicale, Paris, France
| | | | - Alexander N. R. Weber
- Deutsches Krebsforschungszentrum, Toll-Like Receptors and Cancer, Heidelberg, Germany
| | - Michel Chignard
- Institut Pasteur, Unité de Défense Innée et Inflammation, Paris, France
- Inserm, U874, Paris, France
| | - Mustapha Si-Tahar
- Institut Pasteur, Unité de Défense Innée et Inflammation, Paris, France
- Inserm, U874, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Unité de Réanimation Médicale, Paris, France
| |
Collapse
|
352
|
Rahman MM, Mohamed MR, Kim M, Smallwood S, McFadden G. Co-regulation of NF-kappaB and inflammasome-mediated inflammatory responses by myxoma virus pyrin domain-containing protein M013. PLoS Pathog 2009; 5:e1000635. [PMID: 19851467 PMCID: PMC2762494 DOI: 10.1371/journal.ppat.1000635] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 09/25/2009] [Indexed: 02/07/2023] Open
Abstract
NF-kappaB and inflammasomes both play central roles in orchestrating anti-pathogen responses by rapidly inducing a variety of early-response cytokines and chemokines following infection. Myxoma virus (MYXV), a pathogenic poxvirus of rabbits, encodes a member of the cellular pyrin domain (PYD) superfamily, called M013. The viral M013 protein was previously shown to bind host ASC-1 protein and inhibit the cellular inflammasome complex that regulates the activation and secretion of caspase 1-regulated cytokines such as IL-1beta and IL-18. Here, we report that human THP-1 monocytic cells infected with a MYXV construct deleted for the M013L gene (vMyxM013-KO), in stark contrast to the parental MYXV, rapidly induce high levels of secreted pro-inflammatory cytokines like TNF, IL-6, and MCP-1, all of which are regulated by NF-kappaB. The induction of these NF-kappaB regulated cytokines following infection with vMyxM013-KO was also confirmed in vivo using THP-1 derived xenografts in NOD-SCID mice. vMyxM013-KO virus infection specifically induced the rapid phosphorylation of IKK and degradation of IkappaBalpha, which was followed by nuclear translocation of NF-kappaB/p65. Even in the absence of virus infection, transiently expressed M013 protein alone inhibited cellular NF-kappaB-mediated reporter gene expression and nuclear translocation of NF-kappaB/p65. Using protein/protein interaction analysis, we show that M013 protein also binds directly with cellular NF-kappaB1, suggesting a direct physical and functional linkage between NF-kappaB1 and ASC-1. We further demonstrate that inhibition of the inflammasome with a caspase-1 inhibitor did not prevent the induction of NF-kappaB regulated cytokines following infection with vMyxM013-KO virus, but did block the activation of IL-1beta. Thus, the poxviral M013 inhibitor exerts a dual immuno-subversive role in the simultaneous co-regulation of both the cellular inflammasome complex and NF-kappaB-mediated pro-inflammatory responses.
Collapse
Affiliation(s)
- Masmudur M. Rahman
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mohamed R. Mohamed
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Manbok Kim
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Sherin Smallwood
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
353
|
Ito M, Mizoroki F, Takai K, Yamaguchi K, Mizuochi T. Functional phenotypes and gene expression profiles of peripheral blood mononuclear cells in chronic hepatitis C patients who developed non-Hodgkin's B-cell lymphoma. Biochem Biophys Res Commun 2009; 390:269-72. [PMID: 19799865 DOI: 10.1016/j.bbrc.2009.09.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 09/24/2009] [Indexed: 12/09/2022]
Abstract
Epidemiological data have indicated a close relationship between chronic HCV infection and non-Hodgkin's B-cell lymphoma (B-NHL). In this study, functional phenotypes and gene expression profiles of PBMCs were analyzed in chronic hepatitis C (CHC) patients who developed B-NHL. The frequencies of effector CD8(+) T cells and cytotoxic natural killer cells increased in CHC patients with B-NHL compared to those in CHC patients without B-NHL. These phenotypic changes may reflect the host's immune response to neoplasia. The mRNA expression levels of several oncogenes increased in CHC patients without B-NHL, but were much higher in CHC patients with B-NHL, while mRNA levels of type I IFNs were decreased in CHC patients without B-NHL and were nearly negligible in CHC patients with B-NHL. Interestingly, the mRNA expression levels of activation-induced cytidine deaminase and caspase recruitment domain-containing proteins markedly increased in CHC patients without B-NHL but decreased in CHC patients with B-NHL. These results are discussed in view of the possible involvement of HCV infection in B-cell lymphomagenesis.
Collapse
Affiliation(s)
- Masahiko Ito
- Department of Research on Blood and Biological Products, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | | | | | | | | |
Collapse
|
354
|
Salvesen GS, Riedl SJ. Structure of the Fas/FADD complex: a conditional death domain complex mediating signaling by receptor clustering. Cell Cycle 2009; 8:2723-7. [PMID: 19652545 DOI: 10.4161/cc.8.17.9399] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Death domain complexes are key protein arrangements in the regulation of various cellular signaling events. One of the most prominent death domain complexes first described in the initiation of apoptosis is formed by the transmembrane receptor Fas, the cytosolic adaptor protein FADD, and caspase-8 and is referred to as the Fas/FADD/caspase-8 death inducing signaling complex (DISC). The recent structure of the Fas/FADD death domain complex reveals how formation of this signaling platform can be stringently regulated utilizing only Fas receptor clustering to form a death domain network. This work reveals that an opening mechanism of Fas is needed to expose binding sites for the FADD death domain and sets the stage for a conditional interaction, which is characterized by weak interactions adapted for a regulatory function. The overall crystal structure reveals a tetrameric arrangement of four primary Fas/FADD complexes. Intriguingly all contacts mediating the tetramer are solely provided through Fas/Fas interactions and are entirely dependent on the open form. These findings are instrumental in depicting a mechanism for DISC regulation where Fas receptor clustering leads to the stabilization of the open Fas death domains which are then capable of binding FADD in a weak interaction. At the same time this mechanism ensures that in the absence of a sufficient stimulus no interaction between Fas and FADD is possible. Therefore the conformation dependent, conditional Fas/FADD death domain interaction represents the regulatory element per se. This interaction contrasts the classic constitutive interactions of adaptor domains, which cannot provide regulatory function themselves. This model portrays how sole death domains are able to mediate signaling upon receptor clustering in the complete absence of enzyme activity.
Collapse
Affiliation(s)
- Guy S Salvesen
- The Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | | |
Collapse
|
355
|
de Alba E. Structure and interdomain dynamics of apoptosis-associated speck-like protein containing a CARD (ASC). J Biol Chem 2009; 284:32932-41. [PMID: 19759015 DOI: 10.1074/jbc.m109.024273] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The human protein ASC is a key mediator in apoptosis and inflammation. Through its two death domains (pyrin and CARD) ASC interacts with cell death executioners, acts as an essential adapter for inflammasome integrity, and oligomerizes into functional supramolecular assemblies. However, these functions are not understood at the structural-dynamic level. This study reports the solution structure and interdomain dynamics of full-length ASC. The pyrin and CARD domains are structurally independent six-helix bundle motifs connected by a 23-residue linker. The CARD structure reveals two distinctive characteristics; helix 1 is not fragmented as in all other known CARDs, and its electrostatic surface shows a uniform distribution of positive and negative charges, whereas these are commonly separated into two areas in other death domains. The linker adopts residual structure resulting in a back-to-back orientation of the domains, which avoids steric interference of each domain with the binding site of the other. NMR relaxation experiments show that the linker is flexible despite the residual structure. This flexibility could help expand the relative volume occupied by each domain, thus increasing the capture radius for effectors. Based on the ASC structure, a tentative model is proposed to illustrate how ASC oligomerizes via CARD and pyrin homophilic interactions. Moreover, ASC oligomers have been analyzed by atomic force microscopy, showing a predominant species of disk-like particles of approximately 12-nm diameter and approximately 1-nm height. Taken together, these results provide structural insight into the behavior of ASC as an adapter molecule.
Collapse
Affiliation(s)
- Eva de Alba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain.
| |
Collapse
|
356
|
Generation and functional characterization of a BCL10-inhibitory peptide that represses NF-κB activation. Biochem J 2009; 422:553-61. [DOI: 10.1042/bj20090055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The molecular complex containing BCL10 and CARMA [CARD (caspase recruitment domain)-containing MAGUK (membrane-associated guanylate kinase)] proteins has recently been identified as a key component in the signal transduction pathways that regulate activation of the transcription factor NF-κB (nuclear factor κB) in lymphoid and non-lymphoid cells. Assembly of complexes containing BCL10 and CARMA proteins relies on homophilic interactions established between the CARDs of these proteins. In order to identify BCL10-inhibitory peptides, we have established a method of assaying peptides derived from the CARD of BCL10 in binding competition assays of CARD–CARD self-association. By this procedure, a short peptide corresponding to amino acid residues 91–98 of BCL10 has been selected as an effective inhibitor of protein self-association. When tested in cell assays for its capacity to block NF-κB activation, this peptide represses activation of NF-κB mediated by BCL10, CARMA3 and PMA/ionomycin stimulation. Collectively, these results indicate that residues 91–98 of BCL10 are involved in BCL10 self-association and also participate in the interaction with external partners. We also show that blocking of the CARD of BCL10 may potentially be used for the treatment of pathological conditions associated with inappropriate NF-κB activation.
Collapse
|
357
|
Loiarro M, Gallo G, Fantò N, De Santis R, Carminati P, Ruggiero V, Sette C. Identification of critical residues of the MyD88 death domain involved in the recruitment of downstream kinases. J Biol Chem 2009; 284:28093-28103. [PMID: 19679662 DOI: 10.1074/jbc.m109.004465] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MyD88 couples the activation of the Toll-like receptors and interleukin-1 receptor superfamily with intracellular signaling pathways. Upon ligand binding, activated receptors recruit MyD88 via its Toll-interleukin-1 receptor domain. MyD88 then allows the recruitment of the interleukin-1 receptor-associated kinases (IRAKs). We performed a site-directed mutagenesis of MyD88 residues, conserved in death domains of the homologous FADD and Pelle proteins, and analyzed the effect of the mutations on MyD88 signaling. Our studies revealed that mutation of residues 52 (MyD88(E52A)) and 58 (MyD88(Y58A)) impaired recruitment of both IRAK1 and IRAK4, whereas mutation of residue 95 (MyD88(K95A)) only affected IRAK4 recruitment. Since all MyD88 mutants were defective in signaling, recruitment of both IRAKs appeared necessary for activation of the pathway. Moreover, overexpression of a green fluorescent protein (GFP)-tagged mini-MyD88 protein (GFP-MyD88-(27-72)), comprising the Glu(52) and Tyr(58) residues, interfered with recruitment of both IRAK1 and IRAK4 by MyD88 and suppressed NF-kappaB activation by the interleukin-1 receptor but not by the MyD88-independent TLR3. GFP-MyD88-(27-72) exerted its effect by titrating IRAK1 and suppressing IRAK1-dependent NF-kappaB activation. These experiments identify novel residues of MyD88 that are crucially involved in the recruitment of IRAK1 and IRAK4 and in downstream propagation of MyD88 signaling.
Collapse
Affiliation(s)
- Maria Loiarro
- Department of Public Health and Cell Biology, University of Rome "Tor Vergata," 00133 Rome, Italy; Fondazione Santa Lucia di Roma è Uno Degli Istituti di Ricovero e Cura a Carattere Scientifico, Laboratory of Neuroembryology, 00143 Rome, Italy
| | - Grazia Gallo
- Department of Immunology (Building LABIO), Sigma-tau Industrie Farmaceutiche Riunite S.p.A, Via Pontina km 30.400, 00040 Pomezia (RM), Italy
| | - Nicola Fantò
- Department of Immunology (Building LABIO), Sigma-tau Industrie Farmaceutiche Riunite S.p.A, Via Pontina km 30.400, 00040 Pomezia (RM), Italy
| | - Rita De Santis
- Department of Immunology (Building LABIO), Sigma-tau Industrie Farmaceutiche Riunite S.p.A, Via Pontina km 30.400, 00040 Pomezia (RM), Italy
| | - Paolo Carminati
- Department of Immunology (Building LABIO), Sigma-tau Industrie Farmaceutiche Riunite S.p.A, Via Pontina km 30.400, 00040 Pomezia (RM), Italy
| | - Vito Ruggiero
- Department of Immunology (Building LABIO), Sigma-tau Industrie Farmaceutiche Riunite S.p.A, Via Pontina km 30.400, 00040 Pomezia (RM), Italy.
| | - Claudio Sette
- Department of Public Health and Cell Biology, University of Rome "Tor Vergata," 00133 Rome, Italy; Fondazione Santa Lucia di Roma è Uno Degli Istituti di Ricovero e Cura a Carattere Scientifico, Laboratory of Neuroembryology, 00143 Rome, Italy.
| |
Collapse
|
358
|
Monie TP, Moncrieffe MC, Gay NJ. Structure and regulation of cytoplasmic adapter proteins involved in innate immune signaling. Immunol Rev 2009; 227:161-75. [PMID: 19120483 DOI: 10.1111/j.1600-065x.2008.00735.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Initiation of the innate immune response requires agonist recognition by a pathogen recognition receptor. Following ligand binding, conformational rearrangement of the receptor creates a molecular scaffold from which signal transduction is propagated via complex cellular signaling pathways. This in turn leads to the induction of a pro-inflammatory immune response. A critical component of these signaling pathways is the homotypic interaction of receptor and adapter proteins via specific protein interaction domains. Within the innate immune signaling cascade, homotypic interactions between members of the death domain family and the Toll/interleukin-1 receptor domain are particularly important. Here we discuss the current understanding of the molecular basis of these homotypic receptor:adapter interactions and their role in innate immune signal transduction.
Collapse
Affiliation(s)
- Tom P Monie
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
359
|
Purification, crystallization and preliminary x-ray crystallographic studies of RAIDD Death-Domain (DD). Int J Mol Sci 2009; 10:2501-2509. [PMID: 19582216 PMCID: PMC2705503 DOI: 10.3390/ijms10062501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/26/2009] [Accepted: 06/01/2009] [Indexed: 11/16/2022] Open
Abstract
Caspase-2 activation by formation of PIDDosome is critical for genotoxic stress induced apoptosis. PIDDosome is composed of three proteins, RAIDD, PIDD, and Caspase-2. RAIDD is an adaptor protein containing an N-terminal Caspase-Recruiting-Domain (CARD) and a C-terminal Death-Domain (DD). Its interactions with Caspase-2 and PIDD through CARD and DD respectively and formation of PIDDosome are important for the activation of Caspase-2. RAIDD DD cloned into pET26b vector was expressed in E. coli cells and purified by nickel affinity chromatography and gel filtration. Although it has been known that the most DDs are not soluble in physiological condition, RAIDD DD was soluble and interacts tightly with PIDD DD in physiological condition. The purified RAIDD DD alone has been crystallized. Crystals are trigonal and belong to space group P3(1)21 (or its enantiomorph P3(2)21) with unit-cell parameters a = 56.3, b = 56.3, c = 64.9 A and gamma = 120 degrees . The crystals were obtained at room temperature and diffracted to 2.0 A resolution.
Collapse
|
360
|
Pober JS, Min W, Bradley JR. Mechanisms of endothelial dysfunction, injury, and death. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2009; 4:71-95. [PMID: 18754744 DOI: 10.1146/annurev.pathol.4.110807.092155] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vascular endothelial cells normally perform several key homeostatic functions such as keeping blood fluid, regulating blood flow, regulating macromolecule and fluid exchange with the tissues, preventing leukocyte activation, and aiding in immune surveillance for pathogens. Injury or cell death impairs or prevents conduct of these activities, resulting in dysfunction. Most endothelial cell death is apoptotic, involving activation of caspases, but nonapoptotic death responses also have been described. Stimuli that can cause endothelial injury or death include environmental stresses such as oxidative stress, endoplasmic reticulum stress, metabolic stress, and genotoxic stress, as well as pathways of injury mediated by the innate and adaptive immune systems. Pathways of immune-mediated death include those activated by death receptors as well as those activated by cytolytic granules and reactive oxygen species. The biochemical pathways activated by these injurious stimuli are described herein and will serve as a basis for future development of endothelial protective therapies.
Collapse
Affiliation(s)
- Jordan S Pober
- Departments of Immunobiology and Dermatology, Yale University School of Medicine, New Haven, CT 06520-8089, USA.
| | | | | |
Collapse
|
361
|
Abstract
The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1beta and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
Collapse
Affiliation(s)
- Fabio Martinon
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
362
|
Kowluru RA, Chan PS. Metabolic memory in diabetes - from in vitro oddity to in vivo problem: role of apoptosis. Brain Res Bull 2009; 81:297-302. [PMID: 19463916 DOI: 10.1016/j.brainresbull.2009.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/07/2009] [Accepted: 05/07/2009] [Indexed: 11/26/2022]
Abstract
Retinal capillary cells undergo apoptosis before pathology characteristic of retinopathy can be observed, and the appearance of apoptotic capillary cell can predict the development of pathology. The purpose of this study is to investigate the effect of reversal of hyperglycemia on retinal capillary cell apoptosis, and identify the apoptosis encoding genes. Streptozotocin-diabetic rats were maintained either in poor glycemic control (PC, glycated hemoglobin, GHb >11%) or in good glycemic control (GC, GHb <6%) for 12 months, or allowed to be in PC for 6 months followed by GC for 6 additional months (PC-GC). Capillary cell apoptosis was determined in the trypsin-digested retinal microvasculature by TUNEL staining, and the genes encoding apoptosis were identified by Oligo GEArray rat apoptosis microarray that profiles 113 genes. Six months of good glycemic control that followed 6 months of poor control failed to attenuate the number of TUNEL-positive capillary cells in the retinal microvasculature. Twenty-three retinal genes, mainly from TNF ligand and receptor, caspase, Bcl-2 and death domain subfamilies that were upregulated by least a two-fold in PC rats remain upregulated after reversal of hyperglycemia. Thus, the continued activation of apoptosis plays a major role in the resistance of retinopathy to halt after re-institution of good glycemic control, and the regulation apoptosis machinery could help retard the progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Renu A Kowluru
- Kresge Eye Institute, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA.
| | | |
Collapse
|
363
|
An immune deficiency homolog from the white shrimp, Litopenaeus vannamei, activates antimicrobial peptide genes. Mol Immunol 2009; 46:1897-904. [DOI: 10.1016/j.molimm.2009.01.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 01/09/2009] [Accepted: 01/10/2009] [Indexed: 10/21/2022]
|
364
|
Mace PD, Shirley S, Day CL. Assembling the building blocks: structure and function of inhibitor of apoptosis proteins. Cell Death Differ 2009; 17:46-53. [DOI: 10.1038/cdd.2009.45] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
365
|
Abstract
The tumor suppressor p53 protein supports growth arrest and is able to induce apoptosis, a signaling cascade regulated by sequential activation of caspases. Mechanisms that lead from p53 to activation of individual initiator caspases are still unclear. The present model for caspase-2 activation includes PIDDosome complex formation. However, in certain experimental models, elimination of complex constituents PIDD or RAIDD did not significantly influence caspase-2 activation, suggesting the existence of an alternative activation platform for caspase-2. Here we have investigated the link between p53 and caspase-2 in further detail and report that the latter is able to utilize the CD95 DISC as an activation platform. The recruitment of caspase-8 to this complex is required for activation of caspase-2. In the experimental system used, the DISC is formed through a distinct, p53-dependent upregulation of CD95. Moreover, we show that caspase-2 and -8 cleave Bid, and that both act simultaneously upstream of mitochondrial cytochrome c release. Finally, a direct interaction between the two caspases and the ability of caspase-8 to cleave caspase-2 are demonstrated. Thus, the observed functional link between caspase-8 and -2 within the DISC represents an alternative mechanism to the PIDDosome for caspase-2 activation in response to DNA damage.
Collapse
|
366
|
Affiliation(s)
- Peter W Kalivas
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
367
|
Martinon F, Mayor A, Tschopp J. The Inflammasomes: Guardians of the Body. Annu Rev Immunol 2009. [DOI: 10.1146/annurev.immunol.021908.132715 and 1=2#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1β and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
Collapse
Affiliation(s)
- Fabio Martinon
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Annick Mayor
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Jürg Tschopp
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
368
|
Effect of cocaine on Fas-associated protein with death domain in the rat brain: individual differences in a model of differential vulnerability to drug abuse. Neuropsychopharmacology 2009; 34:1123-34. [PMID: 18580876 PMCID: PMC2656579 DOI: 10.1038/npp.2008.88] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study was designed to (1) assess the effects of cocaine on Fas-associated protein with death domain (FADD) system and its role in the activation of apoptotic vs nonapoptotic events and (2) ascertain whether animals selectively bred for their differential propensity to drug-seeking show differences in FADD levels or response to cocaine. Acute cocaine, through D(2) dopamine receptors, induced a dose-response increase in FADD protein in the cortex, with opposite effects over pFADD (Ser191/194), and no induction of apoptotic cell death (poly-(ADP-ribose) polymerase cleavage). FADD was increased by cocaine in cytosol (approximately 142%), membranes (approximately 23%) and nucleus (approximately 54%). The modulation of the FADD system showed tolerance of the acute effect over time, as well as a compensatory response on withdrawal that mirrored the acute effect--ie a transient FADD decrease on day 3 of withdrawal, both at mRNA and protein levels. In a second experiment, possible FADD differences were investigated in rats selectively bred for differential responsiveness to novelty, propensity for drug-seeking and cocaine sensitization. High-responders (HR), who were more prone to drug abuse, exhibited higher FADD and lower pFADD levels than low-responder (LR) rats. However, HR and LR rats showed similar rates of cocaine-induced apoptosis, and exhibited a parallel impact of cocaine over FADD within each phenotype. Thus, FADD is a signaling protein modulated by cocaine, regulating apoptosis/proliferative mechanisms in relation to its FADD/pFADD content. Interestingly, animals selectively bred for differential propensity to substance abuse show basal differences in the expression of this protein, suggesting FADD may also be a molecular correlate for the HR/LR phenotype.
Collapse
|
369
|
Wagner RN, Proell M, Kufer TA, Schwarzenbacher R. Evaluation of Nod-like receptor (NLR) effector domain interactions. PLoS One 2009; 4:e4931. [PMID: 19337385 PMCID: PMC2660581 DOI: 10.1371/journal.pone.0004931] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 01/29/2009] [Indexed: 11/19/2022] Open
Abstract
Members of the Nod-like receptor (NLR) family recognize intracellular pathogens and recruit a variety of effector molecules, including pro-caspases and kinases, which in turn are implicated in cytokine processing and NF-κB activation. In order to elucidate the intricate network of NLR signaling, which is still fragmentary in molecular terms, we applied comprehensive yeast two-hybrid analysis for unbiased evaluation of physical interactions between NLRs and their adaptors (ASC, CARD8) as well as kinase RIPK2 and inflammatory caspases (C1, C2, C4, C5) under identical conditions. Our results confirmed the interaction of NOD1 and NOD2 with RIPK2, and between NLRP3 and ASC, but most importantly, our studies revealed hitherto unrecognized interactions of NOD2 with members of the NLRP subfamily. We found that NOD2 specifically and directly interacts with NLRP1, NLRP3 and NLRP12. Furthermore, we observed homodimerization of the RIPK2 CARD domains and identified residues in NOD2 critical for interaction with RIPK2. In conclusion, our work provides further evidence for the complex network of protein-protein interactions underlying NLR function.
Collapse
Affiliation(s)
- Roland N. Wagner
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Martina Proell
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Thomas A. Kufer
- Institute of Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | | |
Collapse
|
370
|
Li H, Wojtaszek JL, Greene LH. Analysis of conservation in the Fas-associated death domain protein and the importance of conserved tryptophans in structure, stability and folding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:583-93. [DOI: 10.1016/j.bbapap.2009.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 01/10/2009] [Accepted: 01/20/2009] [Indexed: 11/24/2022]
|
371
|
Martinon F, Mayor A, Tschopp J. The Inflammasomes: Guardians of the Body. Annu Rev Immunol 2009. [DOI: 10.1146/annurev.immunol.021908.132715 or(1=2)-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1β and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
Collapse
Affiliation(s)
- Fabio Martinon
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Annick Mayor
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Jürg Tschopp
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
372
|
Martinon F, Mayor A, Tschopp J. The Inflammasomes: Guardians of the Body. Annu Rev Immunol 2009. [DOI: 10.1146/annurev.immunol.021908.132715 and 1=2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1β and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
Collapse
Affiliation(s)
- Fabio Martinon
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Annick Mayor
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Jürg Tschopp
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
373
|
Martinon F, Mayor A, Tschopp J. The Inflammasomes: Guardians of the Body. Annu Rev Immunol 2009. [DOI: 10.1146/annurev.immunol.021908.132715 and 1=2-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1β and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
Collapse
Affiliation(s)
- Fabio Martinon
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Annick Mayor
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Jürg Tschopp
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
374
|
Sakamaki K, Satou Y. Caspases: evolutionary aspects of their functions in vertebrates. JOURNAL OF FISH BIOLOGY 2009; 74:727-53. [PMID: 20735596 PMCID: PMC2779465 DOI: 10.1111/j.1095-8649.2009.02184.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Caspases (cysteine-dependent aspartyl-specific protease) belong to a family of cysteine proteases that mediate proteolytic events indispensable for biological phenomena such as cell death and inflammation. The first caspase was identified as an executioner of apoptotic cell death in the worm Caenorhabditis elegans. Additionally, a large number of caspases have been identified in various animals from sponges to vertebrates. Caspases are thought to play a pivotal role in apoptosis as an evolutionarily conserved function; however, the number of caspases that can be identified is distinct for each species. This indicates that species-specific functions or diversification of physiological roles has been cultivated through caspase evolution. Furthermore, recent studies suggest that caspases are also involved in inflammation and cellular differentiation in mammals. This review highlights vertebrate caspases in their universal and divergent functions and provides insight into the physiological roles of these molecules in animals.
Collapse
Affiliation(s)
- K Sakamaki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
375
|
Autoinhibition of UNC5b Revealed by the Cytoplasmic Domain Structure of the Receptor. Mol Cell 2009; 33:692-703. [DOI: 10.1016/j.molcel.2009.02.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 01/26/2009] [Accepted: 02/17/2009] [Indexed: 11/20/2022]
|
376
|
Peng S, Geng J, Sun R, Tian Z, Wei H. Polyinosinic-polycytidylic acid liposome induces human hepatoma cells apoptosis which correlates to the up-regulation of RIG-I like receptors. Cancer Sci 2009; 100:529-36. [PMID: 19154402 PMCID: PMC11158103 DOI: 10.1111/j.1349-7006.2008.01062.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Toll-like receptor 3 and RIG-I like receptors (RLRs; MDA5, RIG-I) are involved in cell growth inhibition and apoptosis. However, the toll-like receptor 3-related apoptotic pathway is insensitive to direct polyinosinic-polycytidylic acid (dsRNA analog) stimulation in hepatoma cells. To determine whether the strategy of transferring polyinosinic-polycytidylic acid into cells (polyinosinic-polycytidylic acid-liposome) could induce apoptosis in hepatoma cells through cytoplasm receptors, we examined the responses of innate immune receptors RLRs and toll-like receptor 3 in response to different stimulation. We found that the apoptosis could exclusively be detected under polyinosinic-polycytidylic acid-liposome stimulation, which involved the activation of the caspase pathway. Besides, the expression of RIG-I, MDA5, IFNbeta and interferon-stimulated gene 15 was increased significantly at an early stage. Moreover, the growth inhibition of polyinosinic-polycytidylic acid-liposome was confirmed in a mouse model. Taken together, these results suggest polyinosinic-polycytidylic acid-liposome could be used as a potential apoptotic agent in hepatocellular carcinoma cells and imply a potential therapeutic strategy.
Collapse
Affiliation(s)
- Shuo Peng
- Institute of Immunology, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | | | | | | | | |
Collapse
|
377
|
Contribution of globular death domains and unstructured linkers to MyD88·IRAK-4 heterodimer formation: An explanation for the antagonistic activity of MyD88s. Biochem Biophys Res Commun 2009; 380:183-7. [DOI: 10.1016/j.bbrc.2009.01.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 01/12/2009] [Indexed: 11/19/2022]
|
378
|
Lachmann HJ, Hawkins PN. Developments in the scientific and clinical understanding of autoinflammatory disorders. Arthritis Res Ther 2009; 11:212. [PMID: 19232070 PMCID: PMC2688228 DOI: 10.1186/ar2579] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The autoinflammatory diseases, also known as periodic fever syndromes, are disorders of innate immunity which can be inherited or acquired and which cause recurrent, self-limiting, seemingly spontaneous episodes of systemic inflammation and fever in the absence of autoantibody production or infection. There has been much recent progress in elucidating their aetiologies and treatment. With the exception of familial Mediterranean fever, which is common in certain populations, autoinflammatory diseases are mostly rare but should not be overlooked in the differential diagnosis of recurrent fevers since DNA diagnosis and effective therapies are available for many of them.
Collapse
Affiliation(s)
- Helen J Lachmann
- National Amyloidosis Centre and Centre for Acute Phase Proteins, Department of Medicine, University College London Medical School, Hampstead Campus, Rowland Hill Street, London NW32PF, UK.
| | | |
Collapse
|
379
|
Roset R, Gil-Gómez G. Measurement of changes in Cdk2 and cyclin o-associated kinase activity in apoptosis. Methods Mol Biol 2009; 559:161-172. [PMID: 19609756 DOI: 10.1007/978-1-60327-017-5_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Many cell cycle regulatory proteins have been shown to be able to regulate cell death. Activation of Cdk2 has been shown to be necessary for apoptosis of quiescent cells such as thymocytes, neurons, and endothelial cells. This activation is stimulus-specific because it occurs in glucocorticoid and DNA damage but not in CD95-induced apoptosis in thymocytes. Apoptotic Cdk2 activation in lymphoid cells is controlled by a recently identified protein, cyclin O, and its activity is modulated by p53 and members of the Bcl-2 protein family. In this chapter, we describe methods for measuring changes in Cdk2 activity during apoptosis. In addition, we also show the details of the generation of an antibody able to immunoprecipitate the cyclin O complexes from apoptotic cells in native conditions and its use to measure the kinase activity associated with this proapoptotic cyclin.
Collapse
Affiliation(s)
- Ramon Roset
- Institut Municipal d'Investigació Mèdica, Barcelona, Spain
| | | |
Collapse
|
380
|
Self-association regions in the CARD of Bcl-10. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 611:569-70. [DOI: 10.1007/978-0-387-73657-0_250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
381
|
Scott FL, Stec B, Pop C, Dobaczewska MK, Lee JJ, Monosov E, Robinson H, Salvesen GS, Schwarzenbacher R, Riedl SJ. The Fas-FADD death domain complex structure unravels signalling by receptor clustering. Nature 2008; 457:1019-22. [PMID: 19118384 PMCID: PMC2661029 DOI: 10.1038/nature07606] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 10/30/2008] [Indexed: 12/24/2022]
Abstract
The Death Inducing Signaling Complex (DISC) formed by Fas receptor, FADD and caspase-8 is a pivotal trigger of apoptosis1-3. The Fas/FADD DISC represents a receptor platform, which once assembled initiates the induction of programmed cell death. A highly oligomeric network of homotypic protein interactions comprised of the death domains (DD) of Fas and FADD is at the center of DISC formation4, 5. Thus characterising the mechanistic basis for the Fas/FADD interaction is paramount for understanding DISC signaling but has remained enigmatic largely due to a lack of structural data. We have successfully formed and isolated the Fas/FADD DD complex and here we report the 2.7 Å crystal structure. The complex shows a tetrameric arrangement of four FADD DDs bound to four Fas DDs. We show that an opening of the Fas DD exposes the FADD binding site and simultaneously generates a Fas/Fas bridge. The result is a regulatory Fas/FADD complex bridge governed by weak protein:protein interactions revealing a model where the complex functions as a mechanistic switch. This switch prevents accidental DISC assembly, yet allows for highly processive DISC formation and clustering upon a sufficient stimulus. Thus besides depicting a previously unknown mode of death domain interactions, these results further uncover a mechanism for receptor signaling solely by oligomerization and clustering events.
Collapse
Affiliation(s)
- Fiona L Scott
- Program in Apoptosis and Cell Death Research, The Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
382
|
Crystal structure of TIPE2 provides insights into immune homeostasis. Nat Struct Mol Biol 2008; 16:89-90. [DOI: 10.1038/nsmb.1522] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 10/30/2008] [Indexed: 12/22/2022]
|
383
|
Peterson P, Org T, Rebane A. Transcriptional regulation by AIRE: molecular mechanisms of central tolerance. Nat Rev Immunol 2008; 8:948-57. [PMID: 19008896 PMCID: PMC2785478 DOI: 10.1038/nri2450] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The negative selection of T cells in the thymus is necessary for the maintenance of self tolerance. Medullary thymic epithelial cells have a key function in this process as they express a large number of tissue-specific self antigens that are presented to developing T cells. Mutations in the autoimmune regulator (AIRE) protein cause a breakdown of central tolerance that is associated with decreased expression of self antigens in the thymus. In this Review, we discuss the role of AIRE in the thymus and recent advances in our understanding of how AIRE might function at the molecular level to regulate gene expression.
Collapse
Affiliation(s)
- Pärt Peterson
- Institute of General and Molecular Pathology, University of Tartu, Tartu 5O411, Estonia.
| | | | | |
Collapse
|
384
|
Ferguson BJ, Cooke A, Peterson P, Rich T. Death in the AIRE. Trends Immunol 2008; 29:306-12. [PMID: 18515183 DOI: 10.1016/j.it.2008.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 12/17/2022]
Abstract
When thymic epithelia begin to synthesize peripheral tissue antigens such as insulin, we are seeing the result of autoimmune regulator (AIRE) activity and the workings of central tolerance. AIRE is an extraordinary protein that repatterns the transcriptome of medullary thymic epithelia (mTECs) to produce a stroma decorated with peripheral self-peptides. These peptidic arrays are used to purge self-reactive T cells, thereby averting autoimmunity. We now propose that an inherently cytotoxic event such as global chromatin modification paves the way for AIRE action. This injury stimulus might impose temporal restrictions for the T-cell education process and is endured, at least transiently, by the unique cellular environment provided by the medullary thymic epithelia.
Collapse
Affiliation(s)
- Brian J Ferguson
- Department of Pathology, Divisions of Immunology and Cellular Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | | | | | | |
Collapse
|
385
|
Surprising complexity of the ancestral apoptosis network. Genome Biol 2008; 8:R226. [PMID: 17958905 PMCID: PMC2246300 DOI: 10.1186/gb-2007-8-10-r226] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/24/2007] [Accepted: 10/24/2007] [Indexed: 11/24/2022] Open
Abstract
A comparative genomics approach revealed that the genes for several components of the apoptosis network with single copies in vertebrates have multiple paralogs in cnidarian-bilaterian ancestors, suggesting a complex evolutionary history for this network. Background Apoptosis, one of the main types of programmed cell death, is regulated and performed by a complex protein network. Studies in model organisms, mostly in the nematode Caenorhabditis elegans, identified a relatively simple apoptotic network consisting of only a few proteins. However, analysis of several recently sequenced invertebrate genomes, ranging from the cnidarian sea anemone Nematostella vectensis, representing one of the morphologically simplest metazoans, to the deuterostomes sea urchin and amphioxus, contradicts the current paradigm of a simple ancestral network that expanded in vertebrates. Results Here we show that the apoptosome-forming CED-4/Apaf-1 protein, present in single copy in vertebrate, nematode, and insect genomes, had multiple paralogs in the cnidarian-bilaterian ancestor. Different members of this ancestral Apaf-1 family led to the extant proteins in nematodes/insects and in deuterostomes, explaining significant functional differences between proteins that until now were believed to be orthologous. Similarly, the evolution of the Bcl-2 and caspase protein families appears surprisingly complex and apparently included significant gene loss in nematodes and insects and expansions in deuterostomes. Conclusion The emerging picture of the evolution of the apoptosis network is one of a succession of lineage-specific expansions and losses, which combined with the limited number of 'apoptotic' protein families, resulted in apparent similarities between networks in different organisms that mask an underlying complex evolutionary history. Similar results are beginning to surface for other regulatory networks, contradicting the intuitive notion that regulatory networks evolved in a linear way, from simple to complex.
Collapse
|
386
|
Acute neurodegeneration and the inflammasome: central processor for danger signals and the inflammatory response? J Cereb Blood Flow Metab 2008; 28:867-81. [PMID: 18212795 DOI: 10.1038/sj.jcbfm.9600609] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of the inflammatory response is a crucial event in the adverse outcome of cerebral ischemia, which is promoted by proinflammatory cytokines such as interleukin (IL)-1beta. Although caspase-1 is necessary for IL-1beta processing, the 'upstream' signaling pathways were, until recently, essentially unknown. Fortunately, the inflammasome, a multiprotein complex responsible for activating caspase-1 and caspase-5, has recently been characterized. The activation of the inflammasome can result in one of several consequences such as cytokine secretion, cell death, or the development of a stress-resistant state. The significance of the inflammasome for the initiation of the inflammatory response during systemic diseases has already been shown and members of the inflammasome complex were recently found to be induced in acute brain injury. However, the specific pathophysiologic role of the inflammasome in neurodegenerative disorders still remains to be clarified. The underlying theories (e.g., danger signal theory) along with the signaling pathways that link the inflammasome to acute neurodegeneration will be discussed here. Furthermore, the stimuli that potentially activate the inflammasome in cerebral ischemia will be specified, as well as their relation to well-known pathways activating the innate immune response (e.g., Toll-like receptor signaling) and the consequences that result from their activation (beneficial versus deleterious).
Collapse
|
387
|
Abstract
Stress proteins or heat shock proteins (HSPs) are ubiquitous cellular components that have long been known to act as molecular chaperones. By assisting proper folding and transport of proteins, and by assisting in the degradation of aberrant proteins, they play key roles in cellular metabolism. The frequent accumulation of insoluble protein aggregates during chronic neurodegenerative disorders suggests failure of HSP functions to be a common denominator among such diseases. Recent developments have clarified that functions of HSPs extend well beyond their role in protein folding and degradation alone. Stress-inducible HSPs also regulate apoptosis, antigen presentation, inflammatory signalling pathways and, intriguingly, also serve as extracellular mediators of inflammation. Several receptors have been identified for extracellular HSPs, which control inflammatory pathways similar to those activated by cytokines and chemokines. In this review, both the traditional and the exciting novel functions of HSPs are discussed, with a focus on their relevance for neurodegeneration and neuroinflammation. Recent advances in this field suggest that HSPs represent attractive novel targets as well as therapeutic entities for CNS disorders.
Collapse
Affiliation(s)
- J M van Noort
- Department of Biosciences, TNO Quality of Life, PO Box 2215, 2301 CE Leiden, The Netherlands.
| |
Collapse
|
388
|
Abstract
Four families of PRRs (pattern-recognition receptors) have been identified as important components of innate immunity, participating in the sensory system for host defence against the invasion of infectious agents. The TLRs (Toll-like receptors) recognize a variety of conserved microbial PAMPs (pathogen-associated molecular patterns) derived from bacteria, viruses, protozoa and fungi. They work in synergy with the cytosolic NLRs [NOD (nucleotide binding and oligomerization domain)-like receptors] (which sense bacteria), RLRs [RIG-I (retinoic acid-inducible gene 1)-like receptors] (which sense viruses) and CLRs (C-type lectin receptors) (which sense fungi). All of these receptor families signal an increase in the expression of a range of immune and inflammatory genes. The structural architecture of these receptors is conserved, involving seven distinct domains: the LRR (leucine-rich repeat) domain, the TIR [Toll/IL (interleukin)-1 receptor] domain, the NBS (nucleotide-binding site), the CARD (caspase recruitment domain), the PYD (pyrin domain), the helicase domain and the CTLD (C-type lectin domain). Two other domains, the Ig domain and the ITAM (immunoreceptor tyrosine-based activation motif) domain also participate and are also found in antibodies and TCRs (T-cell receptors), key proteins in adaptive immunity. This total of nine domains can therefore be used to construct immune systems which are common to many, if not all, species, allowing us to speculate on the minimum requirement for a complex immune system in structural terms. These insights are important for our overall understanding of the regulation of immunity in health and disease.
Collapse
|
389
|
Potter JA, Randall RE, Taylor GL. Crystal structure of human IPS-1/MAVS/VISA/Cardif caspase activation recruitment domain. BMC STRUCTURAL BIOLOGY 2008; 8:11. [PMID: 18307765 PMCID: PMC2291057 DOI: 10.1186/1472-6807-8-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 02/28/2008] [Indexed: 12/24/2022]
Abstract
BACKGROUND IPS-1/MAVS/VISA/Cardif is an adaptor protein that plays a crucial role in the induction of interferons in response to viral infection. In the initial stage of the intracellular antiviral response two RNA helicases, retinoic acid inducible gene-I (RIG-I) and melanoma differentiation-association gene 5 (MDA5), are independently able to bind viral RNA in the cytoplasm. The 62 kDa protein IPS-1/MAVS/VISA/Cardif contains an N-terminal caspase activation and recruitment (CARD) domain that associates with the CARD regions of RIG-I and MDA5, ultimately leading to the induction of type I interferons. As a first step towards understanding the molecular basis of this important adaptor protein we have undertaken structural studies of the IPS-1 MAVS/VISA/Cardif CARD region. RESULTS The crystal structure of human IPS-1/MAVS/VISA/Cardif CARD has been determined to 2.1A resolution. The protein was expressed and crystallized as a maltose-binding protein (MBP) fusion protein. The MBP and IPS-1 components each form a distinct domain within the structure. IPS-1/MAVS/VISA/Cardif CARD adopts a characteristic six-helix bundle with a Greek-key topology and, in common with a number of other known CARD structures, contains two major polar surfaces on opposite sides of the molecule. One face has a surface-exposed, disordered tryptophan residue that may explain the poor solubility of untagged expression constructs. CONCLUSION The IPS-1/MAVS/VISA/Cardif CARD domain adopts the classic CARD fold with an asymmetric surface charge distribution that is typical of CARD domains involved in homotypic protein-protein interactions. The location of the two polar areas on IPS-1/MAVS/VISA/Cardif CARD suggest possible types of associations that this domain makes with the two CARD domains of MDA5 or RIG-I. The N-terminal CARD domains of RIG-I and MDA5 share greatest sequence similarity with IPS-1/MAVS/VISA/Cardif CARD and this has allowed modelling of their structures. These models show a very different charge profile for the equivalent surfaces compared to IPS-1/MAVS/VISA/Cardif CARD.
Collapse
Affiliation(s)
- Jane A Potter
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Richard E Randall
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Garry L Taylor
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
390
|
Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 2008; 21:134-56. [PMID: 18202440 DOI: 10.1128/cmr.00032-07] [Citation(s) in RCA: 403] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Shigella spp. are gram-negative pathogenic bacteria that evolved from harmless enterobacterial relatives and may cause devastating diarrhea upon ingestion. Research performed over the last 25 years revealed that a type III secretion system (T3SS) encoded on a large plasmid is a key virulence factor of Shigella flexneri. The T3SS determines the interactions of S. flexneri with intestinal cells by consecutively translocating two sets of effector proteins into the target cells. Thus, S. flexneri controls invasion into EC, intra- and intercellular spread, macrophage cell death, as well as host inflammatory responses. Some of the translocated effector proteins show novel biochemical activities by which they intercept host cell signal transduction pathways. An understanding of the molecular mechanisms underlying Shigella pathogenesis will foster the development of a safe and efficient vaccine, which, in parallel with improved hygiene, should curb infections by this widespread pathogen.
Collapse
|
391
|
Ueffing N, Keil E, Freund C, Kühne R, Schulze-Osthoff K, Schmitz I. Mutational analyses of c-FLIPR, the only murine short FLIP isoform, reveal requirements for DISC recruitment. Cell Death Differ 2008; 15:773-82. [PMID: 18219316 DOI: 10.1038/sj.cdd.4402314] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cellular FLICE-inhibitory protein (c-FLIP) proteins are known as potent inhibitors of death receptor-mediated apoptosis by interfering with caspase-8 activation at the death-inducing signaling complex (DISC). Among the three human isoforms, c-FLIP(long), c-FLIP(short) and c-FLIP(R), the latter isoform is poorly characterized. We report here the characterization of murine c-FLIP(R) and show that it is the only short c-FLIP isoform expressed in mice. By generating several mutants, we demonstrate that both death effector domains (DEDs) are required for DISC binding and the antiapoptotic function of c-FLIP(R). Surprisingly, the C-terminal tail is important for both protein stability and DISC recruitment. Three-dimensional modeling of c-FLIP(R) revealed a substantial similarity of the overall structures and potential interaction motifs with the viral FLIP MC159. We found, however, that c-FLIP(R) uses different structural motifs for its DISC recruitment. Whereas MC159 interferes with interaction and self-oligomerization of the DISC component FADD by its extensive hydrophilic surface, a narrow hydrophobic patch of c-FLIP(R) on the surface of DED2 is crucial for DISC association. Thus, despite the presence of similar tandem DEDs, viral and cellular FLIPs inhibit apoptosis by remarkably divergent mechanisms.
Collapse
Affiliation(s)
- N Ueffing
- Institute of Molecular Medicine, University of Düsseldorf, Universitätsstrasse 1, Düsseldorf D-40225, Germany
| | | | | | | | | | | |
Collapse
|
392
|
Roy CR, Mocarski ES. Pathogen subversion of cell-intrinsic innate immunity. Nat Immunol 2008; 8:1179-87. [PMID: 17952043 DOI: 10.1038/ni1528] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mammalian immune system has evolved under continuous selective pressure from a wide range of microorganisms that colonize and replicate in animal hosts. A complex set of signaling networks initiate both innate and adaptive immunity in response to the diverse pathogens that mammalian hosts encounter. In response, viral and microbial pathogens have developed or acquired sophisticated mechanisms to avoid, counteract and subvert sensors, signaling networks and a range of effector functions that constitute the host immune response. This balance of host response and pathogen countermeasures contributes to chronic infection in highly adapted pathogens that have coevolved with their host. In this review we outline some of the themes that are beginning to emerge in the mechanisms by which pathogens subvert the early innate immune response.
Collapse
Affiliation(s)
- Craig R Roy
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut 06535, USA
| | | |
Collapse
|
393
|
Ferguson BJ, Alexander C, Rossi SW, Liiv I, Rebane A, Worth CL, Wong J, Laan M, Peterson P, Jenkinson EJ, Anderson G, Scott HS, Cooke A, Rich T. AIRE's CARD revealed, a new structure for central tolerance provokes transcriptional plasticity. J Biol Chem 2008; 283:1723-1731. [PMID: 17974569 DOI: 10.1074/jbc.m707211200] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Developing T cells encounter peripheral self-antigens in the thymus in order to delete autoreactive clones. It is now known that the autoimmune regulator protein (AIRE), which is expressed in thymic medullary epithelial cells, plays a key role in regulating the thymic transcription of these peripheral tissue-specific antigens. Mutations in the AIRE gene are associated with a severe multiorgan autoimmune syndrome (APECED), and autoimmune reactivities are manifest in AIRE-deficient mice. Functional AIRE protein is expressed as distinct nuclear puncta, although no structural basis existed to explain their relevance to disease. In addressing the cell biologic basis for APECED, we made the unexpected discovery that an AIRE mutation hot spot lies in a caspase recruitment domain. Combined homology modeling and in vitro data now show how APECED mutations influence the activity of this transcriptional regulator. We also provide novel in vivo evidence for AIRE's association with a global transcription cofactor, which may underlie AIRE's focal, genome-wide, alteration of the transcriptome.
Collapse
Affiliation(s)
- Brian J Ferguson
- Department of Pathology, Divisions of Immunology and Cellular Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Clare Alexander
- Department of Pathology, Divisions of Immunology and Cellular Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Simona W Rossi
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ingrid Liiv
- Molecular Pathology, University of Tartu, Biomedicum, 50411 Tartu, Estonia
| | - Ana Rebane
- Molecular Pathology, University of Tartu, Biomedicum, 50411 Tartu, Estonia
| | - Catherine L Worth
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom
| | - Joyce Wong
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom
| | - Martti Laan
- Molecular Pathology, University of Tartu, Biomedicum, 50411 Tartu, Estonia
| | - Pärt Peterson
- Molecular Pathology, University of Tartu, Biomedicum, 50411 Tartu, Estonia
| | - Eric J Jenkinson
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Graham Anderson
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Hamish S Scott
- Walter and Eliza Hall Institute of Medical Research, 3050 Melbourne, Australia
| | - Anne Cooke
- Department of Pathology, Divisions of Immunology and Cellular Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Tina Rich
- Department of Pathology, Divisions of Immunology and Cellular Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
| |
Collapse
|
394
|
|
395
|
Sun Y, Wang J, Lao H, Yin Z, He W, Weng S, Yu X, Chan S, He J. Molecular cloning and expression analysis of the ASC gene from mandarin fish and its regulation of NF-kappaB activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:391-9. [PMID: 17850868 DOI: 10.1016/j.dci.2007.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 07/24/2007] [Accepted: 07/30/2007] [Indexed: 05/17/2023]
Abstract
Apoptosis-associated speck-like protein containing a CARD (ASC) is an adaptor protein that has a bipartite domain structure, an N-terminal PYRIN domain and a C-terminal caspase-recruitment domain (CARD). In this study, we cloned the mandarin fish ASC cDNA (mfASC), which consisted of 899bp with a 115bp 5'-UTR and a 181bp 3'-UTR. The open reading frame encoded 201 amino acids. The mfASC shows 37% identity to an ASC orthologue from zebrafish. The mfASC has two protein-protein interaction domains, an N-terminal PYRIN domain and a C-terminal CARD domain. The mfASC gene structure was determined and had a length of 3954bp with four exons separated by three introns. Northern blot analysis showed that mfASC mRNA is constitutively expressed in the head kidney, gill, hind kidney, spleen and intestine. In vitro studies, mfASC fused with green fluorescent protein appeared as a speck in the transfected 293T cells. When transiently overexpressed in 293T cells, mfASC inhibited NF-kappaB activity with or without tumor necrosis factor (TNFalpha) or lipopolysacharide (LPS) stimulation.
Collapse
Affiliation(s)
- Yanan Sun
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
396
|
Tsao DHH, Hum WT, Hsu S, Malakian K, Lin LL. The NMR structure of the TRADD death domain, a key protein in the TNF signaling pathway. JOURNAL OF BIOMOLECULAR NMR 2007; 39:337-342. [PMID: 17922260 DOI: 10.1007/s10858-007-9198-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/17/2007] [Accepted: 09/18/2007] [Indexed: 05/25/2023]
Affiliation(s)
- Désirée H H Tsao
- Structural Biology and Computational Chemistry, Chemical and Screening Sciences, Wyeth Research, 200 CambridgePark Drive, Cambridge, MA 02140, USA.
| | | | | | | | | |
Collapse
|
397
|
A phylogenetic and functional overview of inflammatory caspases and caspase-1-related CARD-only proteins. Biochem Soc Trans 2007; 35:1508-11. [DOI: 10.1042/bst0351508] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Caspase 1 is a cysteinyl aspartate-specific proteinase involved in the maturation of inflammatory cytokines such as pro-IL-1β (interleukin-1β) and pro-IL-18. Caspase 1 clusters phylogenetically together with human caspases 4, 5 and 12 and murine caspases 11 and 12, and forms the group of the so-called inflammatory caspases. Caspase 1 consists of an N-terminal CARD (caspase recruitment domain) and a proteolytic domain containing the catalytic residues. The CARD-containing prodomain is involved in the formation of the protease-activating inflammasome complex. We have also found that the prodomain is necessary and sufficient for the activation of NF-κB (nuclear factor κB). The human genome also contains three caspase-1-related CARD-only decoy proteins [COP (CARD-only protein), INCA (inhibitory CARD) and ICEBERG], which are located near the caspase 1 locus. In this mini-review, we focus on the evolutionary aspects of the inflammatory caspase locus in the human, chimpanzee, Rhesus monkey, mouse and rat. Furthermore, we discuss the functional characteristics of the caspase-1-related CARD-only proteins in relation to caspase-1-mediated IL-1β maturation and NF-κB activation.
Collapse
|
398
|
Yang D, Ud Din N, Browning DD, Abrams SI, Liu K. Targeting lymphotoxin beta receptor with tumor-specific T lymphocytes for tumor regression. Clin Cancer Res 2007; 13:5202-10. [PMID: 17785576 DOI: 10.1158/1078-0432.ccr-07-1161] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE One of the impediments of immunotherapy against cancer is the suppression of tumor-specific CTLs in the tumor microenvironment, partly due to the selective inhibition of the perforin pathway and the emergence of Fas-resistant tumors. Therefore, we sought to identify perforin- and Fas-independent cytotoxic pathways and explored the potential of targeting LTbetaR with tumor-specific CTLs to induce tumor rejection in vivo. EXPERIMENTAL DESIGN Fas-resistant tumors were examined for their susceptibility to perforin-deficient (pfp) CTLs via CTL adoptive transfer in mouse models of experimental lung metastasis. The specificity of LTbetaR, a cell surface death receptor, in causing tumor rejection by CTLs was analyzed by LTbetaR-specific neutralizing monoclonal antibody in vitro. The specificity and efficacy of LTbetaR in the suppression of established tumors was further investigated by silencing LTbetaR in tumor cells in vivo. RESULTS pfp CTLs exhibited significant cytotoxicity against Fas-resistant tumors in vivo. The perforin- and Fas-independent cytotoxicity was directly mediated, at least in part, by the adoptively transferred CTLs. It was observed that LTbetaR was expressed on the tumor cell surface, and LTalpha, LTbeta, and LIGHT, all of which are ligands for LTbetaR, were either constitutively expressed or activated in the tumor-specific CTLs and primary CD8(+) T cells. Blocking LTbetaR with LTbetaR-specific neutralizing monoclonal antibody decreased CTL cytotoxicity in vitro. Silencing LTbetaR using LTbetaR-specific short hairpin RNA reduced the ability of pfp CTLs to induce tumor rejection in vivo. CONCLUSION LTbetaR directly mediates CTL-directed tumor rejection in vivo. Targeting LTbetaR with tumor-specific CTLs is a potential therapeutic approach.
Collapse
Affiliation(s)
- Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
399
|
Martinon F, Gaide O, Pétrilli V, Mayor A, Tschopp J. NALP inflammasomes: a central role in innate immunity. Semin Immunopathol 2007; 29:213-29. [PMID: 17703304 DOI: 10.1007/s00281-007-0079-y] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 07/05/2007] [Indexed: 02/07/2023]
Abstract
Inflammasomes are cytoplasmic multiprotein complexes that mediate the maturation of the proinflammatory cytokines interleukin-1beta (IL-1beta), IL-18, and possibly IL-33 by controlling the activation of the inflammatory caspases-1 and -5. Assembly of inflammasomes depends on NOD-like receptor (NLR) family members such as NALPs, NAIP, and IPAF. Various microbial and endogenous stimuli activate different types of inflammasomes. This article focuses on the Pyrin domain containing NLRs, known as NALP proteins. Recent findings provide exciting insights into how these proteins might be activated and also provide evidence of the critical role of the NALP inflammasomes in innate immunity and inflammatory diseases.
Collapse
Affiliation(s)
- Fabio Martinon
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
400
|
Perl M, Chung CS, Perl U, Lomas-Neira J, de Paepe M, Cioffi WG, Ayala A. Fas-induced pulmonary apoptosis and inflammation during indirect acute lung injury. Am J Respir Crit Care Med 2007; 176:591-601. [PMID: 17600273 PMCID: PMC1994224 DOI: 10.1164/rccm.200611-1743oc] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
RATIONALE Indirect acute lung injury (ALI) is associated with high morbidity and mortality. No specific therapies have been developed, because the underlying pathophysiological processes remain elusive. OBJECTIVES To investigate the contribution of Fas-induced apoptotic and nonapoptotic/inflammatory signaling to the pathology of indirect ALI. METHODS A mouse model of indirect ALI, induced by successive exposure to hemorrhagic shock and cecal ligation and puncture, was used. Quantification of active caspase-3 and the short splice variant of FLICE-inhibitory protein, (FLIP)short, was performed by Western blotting and immunohistochemistry, and cytokines/chemokines were assessed by cytometric bead array or ELISA. M30 immunostaining was done to evaluate epithelial cell apoptosis. Lung injury was assessed on the basis of myeloperoxidase activity, bronchoalveolar lavage protein, and lung histology. MEASUREMENTS AND MAIN RESULTS Twelve hours after insult, lung monocyte chemoattractant protein-1, keratinocyte-derived chemokine, macrophage inflammatory protein-2, IL-6, tumor necrosis factor-alpha, and caspase-3 were increased and FLIP(short) was decreased. Fas- and Fas ligand-deficient mice showed marked protection from lung inflammation and apoptosis and decreased ALI. This was associated with a 10-day survival benefit. Similarly, 4 hours after pulmonary instillation of Fas-activating antibody in vivo, lung chemokines were markedly elevated in background mice and, interestingly, to a similar degree in macrophage-deficient animals. Fas activation on lung epithelial cells in vitro led to chemokine production that was dependent on extracellular signal-regulated kinase. CONCLUSIONS Activation of apoptotic and nonapoptotic/inflammatory Fas signaling is an early important pathophysiological event in the development of indirect ALI after hemorrhagic shock and sepsis, in which lung epithelial cells appear to play a central role.
Collapse
Affiliation(s)
- Mario Perl
- Shock-Trauma Research Laboratory, Division of Surgical Research, Department of Surgery, Rhode Island Hospital and Brown University, 593 Eddy Street, Aldrich 239, Providence, RI 02903, USA
| | | | | | | | | | | | | |
Collapse
|