351
|
Echeagaray O, Sussman MA. Transcribing the heart: faithfully interpreting cardiac transcriptional insights. Regen Med 2019; 14:805-810. [PMID: 31464566 PMCID: PMC6770408 DOI: 10.2217/rme-2019-0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
Transcriptional profiling continues to produce phenotypical data essential for understanding of basic cardiac biology and required to improve efficiency of cardiac regenerative and therapeutic approaches after injury. Accurate interpretation of cardiac transcriptional data comes with the unique challenges of heart biology including cardiomyocyte morphology, cryopreservation of limited samples and adequate selection of transcriptional platform at a single-cell resolution. Consequently, development and implementation of novel transcriptional platforms and creative bioinformatic analysis are essential to resolve standing questions in the field of cardiac regenerative medicine. Targeted bioinformatic approaches, advancing technological access, increase technical availability and fostering communication between interdisciplinary groups is critical to improve therapeutic approaches and to overcome challenges inherent to transcriptomic cardiac research.
Collapse
Affiliation(s)
- Oscar Echeagaray
- San Diego Heart Research Institute and Integrated Regenerative Research Institute, San Diego State University, San Diego, CA 92182-4650, USA
| | - Mark A Sussman
- San Diego Heart Research Institute and Integrated Regenerative Research Institute, San Diego State University, San Diego, CA 92182-4650, USA
| |
Collapse
|
352
|
Kapellos TS, Bonaguro L, Gemünd I, Reusch N, Saglam A, Hinkley ER, Schultze JL. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front Immunol 2019; 10:2035. [PMID: 31543877 PMCID: PMC6728754 DOI: 10.3389/fimmu.2019.02035] [Citation(s) in RCA: 544] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
Abstract
Human monocytes are divided in three major populations; classical (CD14+CD16−), non-classical (CD14dimCD16+), and intermediate (CD14+CD16+). Each of these subsets is distinguished from each other by the expression of distinct surface markers and by their functions in homeostasis and disease. In this review, we discuss the most up-to-date phenotypic classification of human monocytes that has been greatly aided by the application of novel single-cell transcriptomic and mass cytometry technologies. Furthermore, we shed light on the role of these plastic immune cells in already recognized and emerging human chronic diseases, such as obesity, atherosclerosis, chronic obstructive pulmonary disease, lung fibrosis, lung cancer, and Alzheimer's disease. Our aim is to provide an insight into the contribution of human monocytes to the progression of these diseases and highlight their candidacy as potential therapeutic cell targets.
Collapse
Affiliation(s)
- Theodore S Kapellos
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Lorenzo Bonaguro
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Ioanna Gemünd
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Nico Reusch
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Adem Saglam
- Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and University of Bonn, Bonn, Germany
| | - Emily R Hinkley
- Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and University of Bonn, Bonn, Germany
| |
Collapse
|
353
|
Cole JE, Park I, Ahern DJ, Kassiteridi C, Danso Abeam D, Goddard ME, Green P, Maffia P, Monaco C. Immune cell census in murine atherosclerosis: cytometry by time of flight illuminates vascular myeloid cell diversity. Cardiovasc Res 2019; 114:1360-1371. [PMID: 29726984 PMCID: PMC6054192 DOI: 10.1093/cvr/cvy109] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Aims Atherosclerosis is characterized by the abundant infiltration of myeloid cells starting at early stages of disease. Myeloid cells are key players in vascular immunity during atherogenesis. However, the subsets of vascular myeloid cells have eluded resolution due to shared marker expression and atypical heterogeneity in vascular tissues. We applied the high-dimensionality of mass cytometry to the study of myeloid cell subsets in atherosclerosis. Methods and results Apolipoprotein E-deficient (ApoE−/−) mice were fed a chow or a high fat (western) diet for 12 weeks. Single-cell aortic preparations were probed with a panel of 35 metal-conjugated antibodies using cytometry by time of flight (CyTOF). Clustering of marker expression on live CD45+ cells from the aortas of ApoE−/− mice identified 13 broad populations of leucocytes. Monocyte, macrophage, type 1 and type 2 conventional dendritic cell (cDC1 and cDC2), plasmacytoid dendritic cell (pDC), neutrophil, eosinophil, B cell, CD4+ and CD8+ T cell, γδ T cell, natural killer (NK) cell, and innate lymphoid cell (ILC) populations accounted for approximately 95% of the live CD45+ aortic cells. Automated clustering algorithms applied to the Lin-CD11blo-hi cells revealed 20 clusters of myeloid cells. Comparison between chow and high fat fed animals revealed increases in monocytes (both Ly6C+ and Ly6C−), pDC, and a CD11c+ macrophage subset with high fat feeding. Concomitantly, the proportions of CD206+ CD169+ subsets of macrophages were significantly reduced as were cDC2. Conclusions A CyTOF-based comprehensive mapping of the immune cell subsets within atherosclerotic aortas from ApoE−/− mice offers tools for myeloid cell discrimination within the vascular compartment and it reveals that high fat feeding skews the myeloid cell repertoire toward inflammatory monocyte-macrophage populations rather than resident macrophage phenotypes and cDC2 during atherogenesis.
Collapse
Affiliation(s)
- Jennifer E Cole
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Inhye Park
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - David J Ahern
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Christina Kassiteridi
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Dina Danso Abeam
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Michael E Goddard
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Patricia Green
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.,Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| |
Collapse
|
354
|
Hajkarim MC, Won KJ. Single Cell RNA-Sequencing for the Study of Atherosclerosis. J Lipid Atheroscler 2019; 8:152-161. [PMID: 32821705 PMCID: PMC7379113 DOI: 10.12997/jla.2019.8.2.152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/28/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a major cause of coronary artery disease and stroke. A massive and new type of data has finally arrived in the field of atherosclerosis: single cell RNA sequencing (scRNAseq). Recently, scRNAseq has been successfully applied to the study of atherosclerosis to identify previously uncharacterized cell populations. scRNAseq is an effective approach to evaluate heterogeneous cell populations by measuring the transcriptomic profiles at the single cell level. Besides the studies of atherosclerosis, scRNAseq is being employed in various areas of biology, including cancer research and organ development. In order to analyze these new massive datasets, various analytic approaches have been developed. This review aims to enhance the understanding of this new technology by exploring how the single cell transcriptome has been applied to the study of atherosclerosis and further discuss potential analysis of using scRNAseq.
Collapse
Affiliation(s)
- Morteza Chalabi Hajkarim
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kyoung Jae Won
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
355
|
Abstract
Vascular smooth muscle cells (SMC) play a critical role in controlling blood pressure and blood distribution, as well as maintaining the structural integrity of the blood vessel. SMC also participate in physiological and pathological vascular remodeling due to their remarkable ability to dynamically modulate their phenotype. During the past decade, the development of in vivo fate mapping systems for unbiased identification and tracking of SMC and their progeny has led to major discoveries as well as the reevaluation of well-established concepts about the contribution of vascular SMC in major vascular diseases including atherosclerosis. Lineage tracing studies revealed that SMC undergoes multiple phenotypic transitions characterized by the expression of markers of alternative cell types (eg, macrophage-like and mesenchymal-stem cell-like) and populate injured or diseased vessels by oligoclonal expansion of a limited number of medial SMC. With the development of high-throughput transcriptomics and single-cell RNA sequencing (scRNAseq), the field is moving forward towards in-depth SMC phenotypic characterization. Herein, we review the major observations put forth by lineage and clonality tracing studies and the evidence in support for SMC phenotypic diversity in healthy and diseased vascular tissue. We will also discuss the opportunities and remaining challenges of combining lineage tracing and single-cell transcriptomics technologies, as well as studying the functional relevance of SMC phenotypic transitions and identifying the mechanisms controlling them.
Collapse
Affiliation(s)
- Mingjun Liu
- From the Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, PA (M.L., D.G.).,Division of Cardiology, University of Pittsburgh School of Medicine, PA (M.L., D.G.)
| | - Delphine Gomez
- From the Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, PA (M.L., D.G.).,Division of Cardiology, University of Pittsburgh School of Medicine, PA (M.L., D.G.)
| |
Collapse
|
356
|
Williams R. Circulation Research "In This Issue" Anthology. Circ Res 2019; 124:e123-e148. [PMID: 31170049 DOI: 10.1161/res.0000000000000275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
357
|
Xu MM, Murphy PA, Vella AT. Activated T-effector seeds: cultivating atherosclerotic plaque through alternative activation. Am J Physiol Heart Circ Physiol 2019; 316:H1354-H1365. [PMID: 30925075 PMCID: PMC6620674 DOI: 10.1152/ajpheart.00148.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a chronic inflammatory pathology that precipitates substantial morbidity and mortality. Although initiated by physiological patterns of low and disturbed flow that differentially prime endothelial cells at sites of vessel branch points and curvature, the chronic, smoldering inflammation of atherosclerosis is accelerated by comorbidities involving inappropriate activation of the adaptive immune system, such as autoimmunity. The innate contributions to atherosclerosis, especially in the transition of monocyte to lipid-laden macrophage, are well established, but the mechanisms underpinning the infiltration, persistence, and effector dynamics of CD8 T cells in particular are not well understood. Adaptive immunity is centered on a classical cascade of antigen recognition and activation, costimulation, and effector cytokine secretion upon recall of antigen. However, chronic inflammation can generate alternative cues that supplant this behavior pattern and promote the retention and activation of peripherally activated T cells. Furthermore, the atherogenic foci that activated immune cell infiltrate are unique lipid-laden environments that offer a diverse array of stimuli, including those of survival, antigen hyporesponsiveness, and inflammatory cytokine expression. This review will focus on how known cardiovascular comorbidities may be influencing CD8 T-cell activation and how, once infiltrated within atherogenic foci, these T cells face a multitude of cues that skew the classical cascade of T-cell behavior, highlighting alternative modes of activation that may help contextualize associations of autoimmunity, viral infection, and immunotherapy with cardiovascular morbidity.
Collapse
Affiliation(s)
- Maria M Xu
- Department of Immunology, School of Medicine, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Patrick A Murphy
- Center for Vascular Biology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Anthony T Vella
- Department of Immunology, School of Medicine, University of Connecticut Health School of Medicine , Farmington, Connecticut
| |
Collapse
|
358
|
Gu W, Ni Z, Tan YQ, Deng J, Zhang SJ, Lv ZC, Wang XJ, Chen T, Zhang Z, Hu Y, Jing ZC, Xu Q. Adventitial Cell Atlas of wt (Wild Type) and ApoE (Apolipoprotein E)-Deficient Mice Defined by Single-Cell RNA Sequencing. Arterioscler Thromb Vasc Biol 2019; 39:1055-1071. [PMID: 30943771 PMCID: PMC6553510 DOI: 10.1161/atvbaha.119.312399] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
Abstract
Objective- Vascular adventitia encompasses progenitors and is getting recognized as the major site of inflammation in early stage of atherosclerosis. However, the cellular atlas of the heterogeneous adventitial cells, the intercellular communication, the cellular response of adventitia to hyperlipidemia, and its contribution to atherosclerosis have been elusive. Approach and Results- Single-cell RNA sequencing was applied to wt (wild type) and ApoE (apolipoprotein E)-deficient aortic adventitia from 12-week-old C57BL/6J mice fed on normal laboratory diet with early stage of atherosclerosis. Unbiased clustering analysis revealed that the landscape of adventitial cells encompassed adventitial mesenchyme cells, immune cells (macrophages, T cells, and B cells), and some types of rare cells, for example, neuron, lymphatic endothelial cells, and innate lymphoid cells. Seurat clustering analysis singled out 6 nonimmune clusters with distinct transcriptomic profiles, in which there predominantly were stem/progenitor cell-like and proinflammatory population (Mesen II). In ApoE-deficient adventitia, resident macrophages were activated and related to increased myeloid cell infiltration in the adventitia. Cell communication analysis further elucidated enhanced interaction between a mesenchyme cluster and inflammatory macrophages in ApoE-deficient adventitia. In vitro transwell assay confirmed the proinflammatory role of SCA1+ (stem cell antigen 1 positive) Mesen II population with increased CCL2 (chemokine [C-C motif] ligand 2) secretion and thus increased capacity to attract immune cells in ApoE-deficient adventitia. Conclusions- Cell atlas defined by single-cell RNA sequencing depicted the heterogeneous cellular landscape of the adventitia and uncovered several types of cell populations. Furthermore, resident cell interaction with immune cells appears crucial at the early stage of atherosclerosis.
Collapse
Affiliation(s)
- Wenduo Gu
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
| | - Zhichao Ni
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
| | - Yuan-Qing Tan
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (Y.-Q.T., S.-J.Z., Z.-C.L., X.-J.W., Z.-C.J.)
| | - Jiacheng Deng
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
| | - Si-Jin Zhang
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (Y.-Q.T., S.-J.Z., Z.-C.L., X.-J.W., Z.-C.J.)
| | - Zi-Chao Lv
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (Y.-Q.T., S.-J.Z., Z.-C.L., X.-J.W., Z.-C.J.)
| | - Xiao-Jian Wang
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (Y.-Q.T., S.-J.Z., Z.-C.L., X.-J.W., Z.-C.J.)
| | - Ting Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University, China (T.C., Q.X.)
| | - Zhongyi Zhang
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
| | - Yanhua Hu
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
| | - Zhi-Cheng Jing
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (Y.-Q.T., S.-J.Z., Z.-C.L., X.-J.W., Z.-C.J.)
| | - Qingbo Xu
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University, China (T.C., Q.X.)
| |
Collapse
|
359
|
Kalluri AS, Vellarikkal SK, Edelman ER, Nguyen L, Subramanian A, Ellinor PT, Regev A, Kathiresan S, Gupta RM. Single-Cell Analysis of the Normal Mouse Aorta Reveals Functionally Distinct Endothelial Cell Populations. Circulation 2019; 140:147-163. [PMID: 31146585 DOI: 10.1161/circulationaha.118.038362] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND The cells that form the arterial wall contribute to multiple vascular diseases. The extent of cellular heterogeneity within these populations has not been fully characterized. Recent advances in single-cell RNA-sequencing make it possible to identify and characterize cellular subpopulations. METHODS We validate a method for generating a droplet-based single-cell atlas of gene expression in a normal blood vessel. Enzymatic dissociation of 4 whole mouse aortas was followed by single-cell sequencing of >10 000 cells. RESULTS Clustering analysis of gene expression from aortic cells identified 10 populations of cells representing each of the main arterial cell types: fibroblasts, vascular smooth muscle cells, endothelial cells (ECs), and immune cells, including monocytes, macrophages, and lymphocytes. The most significant cellular heterogeneity was seen in the 3 distinct EC populations. Gene set enrichment analysis of these EC subpopulations identified a lymphatic EC cluster and 2 other populations more specialized in lipoprotein handling, angiogenesis, and extracellular matrix production. These subpopulations persist and exhibit similar changes in gene expression in response to a Western diet. Immunofluorescence for Vcam1 and Cd36 demonstrates regional heterogeneity in EC populations throughout the aorta. CONCLUSIONS We present a comprehensive single-cell atlas of all cells in the aorta. By integrating expression from >1900 genes per cell, we are better able to characterize cellular heterogeneity compared with conventional approaches. Gene expression signatures identify cell subpopulations with vascular disease-relevant functions.
Collapse
Affiliation(s)
- Aditya S Kalluri
- Broad Institute of MIT and Harvard University, Cambridge, MA (A.S.K., S.K.V., L.N., A.S., P.T.E., A.R., S.K., R.M.G.).,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge (A.S.K., E.R.E.)
| | - Shamsudheen K Vellarikkal
- Broad Institute of MIT and Harvard University, Cambridge, MA (A.S.K., S.K.V., L.N., A.S., P.T.E., A.R., S.K., R.M.G.).,Center for Genomic Medicine (S.K.V., S.K., R.M.G.), Massachusetts General Hospital, Boston
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge (A.S.K., E.R.E.).,Division of Cardiovascular Medicine, Department of Medicine (E.R.E., R.M.G.), Brigham and Women's Hospital, Boston MA
| | - Lan Nguyen
- Broad Institute of MIT and Harvard University, Cambridge, MA (A.S.K., S.K.V., L.N., A.S., P.T.E., A.R., S.K., R.M.G.)
| | - Ayshwarya Subramanian
- Broad Institute of MIT and Harvard University, Cambridge, MA (A.S.K., S.K.V., L.N., A.S., P.T.E., A.R., S.K., R.M.G.)
| | - Patrick T Ellinor
- Broad Institute of MIT and Harvard University, Cambridge, MA (A.S.K., S.K.V., L.N., A.S., P.T.E., A.R., S.K., R.M.G.).,Cardiology Division, Department of Medicine (P.T.E., S.K.), Massachusetts General Hospital, Boston
| | - Aviv Regev
- Broad Institute of MIT and Harvard University, Cambridge, MA (A.S.K., S.K.V., L.N., A.S., P.T.E., A.R., S.K., R.M.G.)
| | - Sekar Kathiresan
- Broad Institute of MIT and Harvard University, Cambridge, MA (A.S.K., S.K.V., L.N., A.S., P.T.E., A.R., S.K., R.M.G.).,Cardiology Division, Department of Medicine (P.T.E., S.K.), Massachusetts General Hospital, Boston.,Center for Genomic Medicine (S.K.V., S.K., R.M.G.), Massachusetts General Hospital, Boston
| | - Rajat M Gupta
- Broad Institute of MIT and Harvard University, Cambridge, MA (A.S.K., S.K.V., L.N., A.S., P.T.E., A.R., S.K., R.M.G.).,Division of Cardiovascular Medicine, Department of Medicine (E.R.E., R.M.G.), Brigham and Women's Hospital, Boston MA.,Division of Genetics (R.M.G.), Brigham and Women's Hospital, Boston MA.,Center for Genomic Medicine (S.K.V., S.K., R.M.G.), Massachusetts General Hospital, Boston
| |
Collapse
|
360
|
Woodside DG. Nanoparticle Imaging of Vascular Inflammation and Remodeling in Atherosclerotic Disease. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019. [DOI: 10.1007/s12410-019-9501-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
361
|
Yin L, Zhang Z, Liu Y, Gao Y, Gu J. Recent advances in single-cell analysis by mass spectrometry. Analyst 2019; 144:824-845. [PMID: 30334031 DOI: 10.1039/c8an01190g] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells are the most basic structural units that play vital roles in the functioning of living organisms. Analysis of the chemical composition and content of a single cell plays a vital role in ensuring precise investigations of cellular metabolism, and is a crucial aspect of lipidomic and proteomic studies. In addition, structural knowledge provides a better understanding of cell behavior as well as the cellular and subcellular mechanisms. However, single-cell analysis can be very challenging due to the very small size of each cell as well as the large variety and extremely low concentrations of substances found in individual cells. On account of its high sensitivity and selectivity, mass spectrometry holds great promise as an effective technique for single-cell analysis. Numerous mass spectrometric techniques have been developed to elucidate the molecular profiles at the cellular level, including electrospray ionization mass spectrometry (ESI-MS), secondary ion mass spectrometry (SIMS), laser-based mass spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). In this review, the recent advances in single-cell analysis by mass spectrometry are summarized. The strategies of different ionization modes to achieve single-cell analysis are classified and discussed in detail.
Collapse
Affiliation(s)
- Lei Yin
- Research Institute of Translational Medicine, The First Hospital of Jilin University, Jilin University, Dongminzhu Street, Changchun 130061, PR China.
| | | | | | | | | |
Collapse
|
362
|
Karlöf E, Seime T, Dias N, Lengquist M, Witasp A, Almqvist H, Kronqvist M, Gådin JR, Odeberg J, Maegdefessel L, Stenvinkel P, Matic LP, Hedin U. Correlation of computed tomography with carotid plaque transcriptomes associates calcification with lesion-stabilization. Atherosclerosis 2019; 288:175-185. [PMID: 31109707 DOI: 10.1016/j.atherosclerosis.2019.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS Unstable carotid atherosclerosis causes stroke, but methods to identify patients and lesions at risk are lacking. We recently found enrichment of genes associated with calcification in carotid plaques from asymptomatic patients. Here, we hypothesized that calcification represents a stabilising feature of plaques and investigated how macro-calcification, as estimated by computed tomography (CT), correlates with gene expression profiles in lesions. METHODS Plaque calcification was measured in pre-operative CT angiographies. Plaques were sorted into high- and low-calcified, profiled with microarrays, followed by bioinformatic analyses. Immunohistochemistry and qPCR were performed to evaluate the findings in plaques and arteries with medial calcification from chronic kidney disease patients. RESULTS Smooth muscle cell (SMC) markers were upregulated in high-calcified plaques and calcified plaques from symptomatic patients, whereas macrophage markers were downregulated. The most enriched processes in high-calcified plaques were related to SMCs and extracellular matrix (ECM) organization, while inflammation, lipid transport and chemokine signaling were repressed. These findings were confirmed in arteries with high medial calcification. Proteoglycan 4 (PRG4) was identified as the most upregulated gene in association with plaque calcification and found in the ECM, SMA+ and CD68+/TRAP + cells. CONCLUSIONS Macro-calcification in carotid lesions correlated with a transcriptional profile typical for stable plaques, with altered SMC phenotype and ECM composition and repressed inflammation. PRG4, previously not described in atherosclerosis, was enriched in the calcified ECM and localized to activated macrophages and smooth muscle-like cells. This study strengthens the notion that assessment of calcification may aid evaluation of plaque phenotype and stroke risk.
Collapse
Affiliation(s)
- Eva Karlöf
- Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Till Seime
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Nuno Dias
- Vascular Center, Department of Vascular Surgery, Skåne University Hospital, Malmö, Sweden
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Witasp
- Division of Renal Medicine, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Almqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Malin Kronqvist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jesper R Gådin
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jacob Odeberg
- Science for Life Laboratory, Department of Proteomics, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Lars Maegdefessel
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Vascular and Endovascular Surgery, Klinikum Klinikum rechts der Isar Isar, Technical University Munich, Munich, Germany
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ljubica Perisic Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| | - Ulf Hedin
- Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
363
|
Owsiany KM, Alencar GF, Owens GK. Revealing the Origins of Foam Cells in Atherosclerotic Lesions. Arterioscler Thromb Vasc Biol 2019; 39:836-838. [PMID: 31017823 PMCID: PMC6482855 DOI: 10.1161/atvbaha.119.312557] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Katherine M Owsiany
- From the Robert M. Berne Cardiovascular Research Center (K.M.O., G.F.A., G.K.O.), University of Virginia, Charlottesville
- Department of Biochemistry and Molecular Genetics (K.M.O.), University of Virginia, Charlottesville
| | - Gabriel F Alencar
- From the Robert M. Berne Cardiovascular Research Center (K.M.O., G.F.A., G.K.O.), University of Virginia, Charlottesville
| | - Gary K Owens
- From the Robert M. Berne Cardiovascular Research Center (K.M.O., G.F.A., G.K.O.), University of Virginia, Charlottesville
- Department of Molecular Physiology and Biological Physics (G.K.O.), University of Virginia, Charlottesville
| |
Collapse
|
364
|
Park S, Lee IK. Progression of Multifaceted Immune Cells in Atherosclerotic Development. J Lipid Atheroscler 2019; 8:15-25. [PMID: 32821696 PMCID: PMC7379084 DOI: 10.12997/jla.2019.8.1.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/29/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis is a major cause of morbidity and mortality due to cardiovascular diseases, such as coronary artery disease, stroke, and peripheral vascular disease, that are associated with thrombosis-induced organ infarction. In Westernized countries, the high prevalence of obesity-induced insulin resistance is predicted to be a major factor leading to atherosclerotic vascular disease. Both genetic and environmental factors interfere with immune responses in atherosclerosis development with chronic and non-resolving states. The most known autoimmune disease therapy is cytokine-targeted therapy, which targets tumor necrosis factor-α and interleukin (IL)-17 antagonists. Recently, a clinical trial with the anti-IL-1β antibody (canakinumab) had shown that the anti-inflammatory effects in canakinumab-treated subjects play a critical role in reducing cardiovascular disease prevalence. Recent emerging data have suggested effective therapeutics involving anti-obesity and anti-diabetic agents, as well as statin and anti-platelet drugs, for atherothrombosis prevention. It is well-known that specialized immune differentiation and activation completely depends on metabolic reprogramming mediated by mitochondrial dynamics in distinct immune cells. Therefore, there is a strong mechanistic link between metabolism and immune function mediated by mitochondrial function. In this review, we describe that cellular metabolism in immune cells is strongly interconnected with systemic metabolism in terms of diverse phenotypes and activation.
Collapse
Affiliation(s)
- Sungmi Park
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea
| | - In-Kyu Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
365
|
Noonan J, Grassia G, MacRitchie N, Garside P, Guzik TJ, Bradshaw AC, Maffia P. A Novel Triple-Cell Two-Dimensional Model to Study Immune-Vascular Interplay in Atherosclerosis. Front Immunol 2019; 10:849. [PMID: 31068936 PMCID: PMC6491724 DOI: 10.3389/fimmu.2019.00849] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/01/2019] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a complex inflammatory pathology underpinning cardiovascular diseases (CVD), which are the leading cause of death worldwide. The interplay between vascular stromal cells and immune cells is fundamental to the progression and outcome of atherosclerotic disease, however, the majority of in vitro studies do not consider the implications of these interactions and predominantly use mono-culture approaches. Here we present a simple and robust methodology involving the co-culture of vascular endothelial (ECs) and smooth muscle cells (SMCs) alongside an inflammatory compartment, in our study containing THP-1 macrophages, for studying these complex interactions. Using this approach, we demonstrate that the interaction between vascular stromal and immune cells produces unique cellular phenotypes and soluble mediator profiles not observed in double-cell 2D cultures. Our results highlight the importance of cellular communication and support the growing idea that in vitro research must evolve from mono-culture systems to provide data more representative of the multi-cellular environment found in vivo. The methodology presented, in comparison with established approaches, has the advantage of being technically simple whilst enabling the isolation of pure populations of ECs, SMCs and immune cells directly from the co-culture without cell sorting. The approach described within would be applicable to those studying mechanisms of vascular inflammation, particularly in relation to understanding the impact cellular interaction has on the cumulative immune-vascular response to atherogenic or inflammatory stimuli.
Collapse
Affiliation(s)
- Jonathan Noonan
- Centre for Immunobiology, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Gianluca Grassia
- Centre for Immunobiology, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Neil MacRitchie
- Centre for Immunobiology, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Paul Garside
- Centre for Immunobiology, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Tomasz J Guzik
- College of Medical, Veterinary and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Internal and Agricultural Medicine, Jagiellonian University College of Medicine, Kraków, Poland
| | - Angela C Bradshaw
- College of Medical, Veterinary and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Pasquale Maffia
- Centre for Immunobiology, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,College of Medical, Veterinary and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
366
|
Xu MM, Ménoret A, Nicholas SAE, Günther S, Sundberg EJ, Zhou B, Rodriguez A, Murphy PA, Vella AT. Direct CD137 costimulation of CD8 T cells promotes retention and innate-like function within nascent atherogenic foci. Am J Physiol Heart Circ Physiol 2019; 316:H1480-H1494. [PMID: 30978132 DOI: 10.1152/ajpheart.00088.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Effector CD8 T cells infiltrate atherosclerotic lesions and are correlated with cardiovascular events, but the mechanisms regulating their recruitment and retention are not well understood. CD137 (4-1BB) is a costimulatory receptor induced on immune cells and expressed at sites of human atherosclerotic plaque. Genetic variants associated with decreased CD137 expression correlate with carotid-intimal thickness and its deficiency in animal models attenuates atherosclerosis. These effects have been attributed in part to endothelial responses to low and disturbed flow (LDF), but CD137 also generates robust effector CD8 T cells as a costimulatory signal. Thus, we asked whether CD8 T cell-specific CD137 stimulation contributes to their infiltration, retention, and IFNγ production in early atherogenesis. We tested this through adoptive transfer of CD8 T cells into recipient C57BL/6J mice that were then antigen primed and CD137 costimulated. We analyzed atherogenic LDF vessels in normolipidemic and PCSK9-mediated hyperlipidemic models and utilized a digestion protocol that allowed for lesional T-cell characterization via flow cytometry and in vitro stimulation. We found that CD137 activation, specifically of effector CD8 T cells, triggers their intimal infiltration into LDF vessels and promotes a persistent innate-like proinflammatory program. Residence of CD137+ effector CD8 T cells further promoted infiltration of endogenous CD8 T cells with IFNγ-producing potential, whereas CD137-deficient CD8 T cells exhibited impaired vessel infiltration, minimal IFNγ production, and reduced infiltration of endogenous CD8 T cells. Our studies thus provide novel insight into how CD137 costimulation of effector T cells, independent of plaque-antigen recognition, instigates their retention and promotes innate-like responses from immune infiltrates within atherogenic foci. NEW & NOTEWORTHY Our studies identify CD137 costimulation as a stimulus for effector CD8 T-cell infiltration and persistence within atherogenic foci, regardless of atherosclerotic-antigen recognition. These costimulated effector cells, which are generated in pathological states such as viral infection and autoimmunity, have innate-like proinflammatory programs in circulation and within the atherosclerotic microenvironment, providing mechanistic context for clinical correlations of cardiovascular morbidity with increased CD8 T-cell infiltration and markers of activation in the absence of established antigen specificity.
Collapse
Affiliation(s)
- Maria M Xu
- Department of Immunology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Antoine Ménoret
- Department of Immunology, University of Connecticut Health School of Medicine , Farmington, Connecticut.,Institute for Systems Genomics, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Sarah-Anne E Nicholas
- Center for Vascular Biology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Sebastian Günther
- Institute of Human Virology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine , Baltimore, Maryland.,Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland.,Department of Microbiology and Immunology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Beiyan Zhou
- Department of Immunology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Annabelle Rodriguez
- Center for Vascular Biology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Patrick A Murphy
- Center for Vascular Biology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Anthony T Vella
- Department of Immunology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| |
Collapse
|
367
|
Abstract
There is now overwhelming experimental and clinical evidence that arteriosclerosis is a chronic inflammatory disease. Lessons learned from genome-wide association studies, advanced in vivo imaging techniques, transgenic lineage tracing mice models and clinical interventional studies have shown that both innate and adaptive immune mechanisms can accelerate or curb arteriosclerosis. This article summarizes and discusses the pathogenesis of arteriosclerosis with a focus on the role of the adaptive immune system. Some limitations of animal models are discussed and the need for models that are tailored to better translate to human atherosclerosis and ultimately progress in prevention and treatment are emphasized.
Collapse
Affiliation(s)
- D Wolf
- Abteilung für Kardiologie und Angiologie I, Universitäts-Herzzentrum Freiburg, Freiburg, Deutschland
- Medizinische Fakultät, Universität Freiburg, Freiburg, Deutschland
| | - K Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, 92037, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
368
|
Harber KJ, Verberk SGS, Van den Bossche J. Going -omics to identify novel therapeutic targets for cardiovascular disease. EBioMedicine 2019; 41:7-8. [PMID: 30879921 PMCID: PMC6443677 DOI: 10.1016/j.ebiom.2019.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 11/15/2022] Open
Affiliation(s)
- Karl J Harber
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Sanne G S Verberk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Jan Van den Bossche
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
369
|
Kopecky C, Pandzic E, Parmar A, Szajer J, Lee V, Dupuy A, Arthur A, Fok S, Whan R, Ryder WJ, Rye KA, Cochran BJ. Translocator protein localises to CD11b + macrophages in atherosclerosis. Atherosclerosis 2019; 284:153-159. [PMID: 30913515 DOI: 10.1016/j.atherosclerosis.2019.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is characterized by lipid deposition, monocyte infiltration and foam cell formation in the artery wall. Translocator protein (TSPO) is abundantly expressed in lipid rich tissues. Recently, TSPO has been identified as a potential diagnostic tool in cardiovascular disease. The purpose of this study was to determine if the TSPO ligand, 18F-PBR111, can identify early atherosclerotic lesions and if TSPO expression can be used to identify distinct macrophage populations during lesion progression. METHODS ApoE-/- mice were maintained on a high-fat diet for 3 or 12 weeks. C57BL/6J mice maintained on chow diet served as controls. Mice were administered 18F-PBR111 intravenously and PET/CT imaged. After euthanasia, aortas were isolated, fixed and optically cleared. Cleared aortas were immunostained with DAPI, and fluorescently labelled with antibodies to TSPO, the tissue resident macrophage marker F4/80 and the monocyte-derived macrophage marker CD11b. TSPO expression and the macrophage markers were visualised in fatty streaks and established plaques by light sheet microscopy. RESULTS While tissue resident F4/80 + macrophages were evident in the arteries of animals without atherosclerosis, no CD11b + macrophages were observed in these animals. In contrast, established plaques had high CD11b and low F4/80 expression. A ∼3-fold increase in the uptake of 18F-PBR111 was observed in the aortas of atherosclerotic mice relative to controls. CONCLUSIONS Imaging of TSPO expression is a new approach for studying atherosclerotic lesion progression and inflammatory cell infiltration. The TSPO ligand, 18F-PBR111, is a potential clinical diagnostic tool for the detection and quantification of atherosclerotic lesion progression in humans.
Collapse
Affiliation(s)
- Chantal Kopecky
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Elvis Pandzic
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, Australia
| | - Arvind Parmar
- Australian Nuclear Science and Technology Organisation, Sydney, Australia
| | - Jeremy Szajer
- Department of Nuclear Medicine, Concord Repatriation General Hospital, Sydney, Australia
| | - Victoria Lee
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Alexander Dupuy
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Andrew Arthur
- Australian Nuclear Science and Technology Organisation, Sydney, Australia
| | - Sandra Fok
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, Australia
| | - Renee Whan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, Australia
| | - William J Ryder
- Department of Nuclear Medicine, Concord Repatriation General Hospital, Sydney, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Blake J Cochran
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
370
|
Lee JG, Ha CH, Yoon B, Cheong SA, Kim G, Lee DJ, Woo DC, Kim YH, Nam SY, Lee SW, Sung YH, Baek IJ. Knockout rat models mimicking human atherosclerosis created by Cpf1-mediated gene targeting. Sci Rep 2019; 9:2628. [PMID: 30796231 PMCID: PMC6385241 DOI: 10.1038/s41598-019-38732-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/08/2019] [Indexed: 12/19/2022] Open
Abstract
The rat is a time-honored traditional experimental model animal, but its use is limited due to the difficulty of genetic modification. Although engineered endonucleases enable us to manipulate the rat genome, it is not known whether the newly identified endonuclease Cpf1 system is applicable to rats. Here we report the first application of CRISPR-Cpf1 in rats and investigate whether Apoe knockout rat can be used as an atherosclerosis model. We generated Apoe- and/or Ldlr-deficient rats via CRISPR-Cpf1 system, characterized by high efficiency, successful germline transmission, multiple gene targeting capacity, and minimal off-target effect. The resulting Apoe knockout rats displayed hyperlipidemia and aortic lesions. In partially ligated carotid arteries of rats and mice fed with high-fat diet, in contrast to Apoe knockout mice showing atherosclerotic lesions, Apoe knockout rats showed only adventitial immune infiltrates comprising T lymphocytes and mainly macrophages with no plaque. In addition, adventitial macrophage progenitor cells (AMPCs) were more abundant in Apoe knockout rats than in mice. Our data suggest that the Cpf1 system can target single or multiple genes efficiently and specifically in rats with genetic heritability and that Apoe knockout rats may help understand initial-stage atherosclerosis.
Collapse
Affiliation(s)
- Jong Geol Lee
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Chang Hoon Ha
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Bohyun Yoon
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Seung-A Cheong
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Globinna Kim
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Doo Jae Lee
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Dong-Cheol Woo
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Hak Kim
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sang-Yoon Nam
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Sang-Wook Lee
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| | - Young Hoon Sung
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| | - In-Jeoung Baek
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
371
|
Revolutionizing immunology with single-cell RNA sequencing. Cell Mol Immunol 2019; 16:242-249. [PMID: 30796351 DOI: 10.1038/s41423-019-0214-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/30/2019] [Indexed: 12/30/2022] Open
Abstract
The immune system is composed of a complex hierarchy of cell types that protect the organism against disease and maintain homeostasis. Identifying heterogeneity of immune cells is the key to understanding the immune system. Advanced single-cell RNA sequencing (scRNA-seq) technologies are revolutionizing our ability to study immunology. By measuring transcriptomes at the single-cell level, scRNA-seq enables identification of cellular heterogeneity in far greater detail than conventional methods. In this review, we introduce the existing scRNA-seq technologies and present their strengths and weaknesses. We also discuss potential applications and future innovations of scRNA-seq in immunology.
Collapse
|
372
|
Lin JD, Nishi H, Poles J, Niu X, Mccauley C, Rahman K, Brown EJ, Yeung ST, Vozhilla N, Weinstock A, Ramsey SA, Fisher EA, Loke P. Single-cell analysis of fate-mapped macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression and regression. JCI Insight 2019; 4:124574. [PMID: 30830865 PMCID: PMC6478411 DOI: 10.1172/jci.insight.124574] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis is a leading cause of death worldwide in industrialized countries. Disease progression and regression are associated with different activation states of macrophages derived from inflammatory monocytes entering the plaques. The features of monocyte-to-macrophage transition and the full spectrum of macrophage activation states during either plaque progression or regression, however, are incompletely established. Here, we use a combination of single-cell RNA sequencing and genetic fate mapping to profile, for the first time to our knowledge, plaque cells derived from CX3CR1+ precursors in mice during both progression and regression of atherosclerosis. The analyses revealed a spectrum of macrophage activation states with greater complexity than the traditional M1 and M2 polarization states, with progression associated with differentiation of CXC3R1+ monocytes into more distinct states than during regression. We also identified an unexpected cluster of proliferating monocytes with a stem cell-like signature, suggesting that monocytes may persist in a proliferating self-renewal state in inflamed tissue, rather than differentiating immediately into macrophages after entering the tissue.
Collapse
Affiliation(s)
| | - Hitoo Nishi
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | | | - Xiang Niu
- Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, New York, USA
| | | | - Karishma Rahman
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Emily J. Brown
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | | | | | - Ada Weinstock
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Stephen A. Ramsey
- Department of Biomedical Sciences, School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon, USA
| | - Edward A. Fisher
- Department of Microbiology and
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | | |
Collapse
|
373
|
Lee LH, Halu A, Morgan S, Iwata H, Aikawa M, Singh SA. XINA: A Workflow for the Integration of Multiplexed Proteomics Kinetics Data with Network Analysis. J Proteome Res 2019; 18:775-781. [PMID: 30370770 DOI: 10.1021/acs.jproteome.8b00615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Quantitative proteomics experiments, using for instance isobaric tandem mass tagging approaches, are conducive to measuring changes in protein abundance over multiple time points in response to one or more conditions or stimulations. The aim is often to determine which proteins exhibit similar patterns within and across experimental conditions, since proteins with coabundance patterns may have common molecular functions related to a given stimulation. In order to facilitate the identification and analyses of coabundance patterns within and across conditions, we previously developed a software inspired by the isobaric mass tagging method itself. Specifically, multiple data sets are tagged in silico and combined for subsequent subgrouping into multiple clusters within a single output depicting the variation across all conditions, converting a typical inter-data-set comparison into an intra-data-set comparison. An updated version of our software, XINA, not only extracts coabundance profiles within and across experiments but also incorporates protein-protein interaction databases and integrative resources such as KEGG to infer interactors and molecular functions, respectively, and produces intuitive graphical outputs. In this report, we compare the kinetics profiles of >5600 unique proteins derived from three macrophage cell culture experiments and demonstrate through intuitive visualizations that XINA identifies key regulators of macrophage activation via their coabundance patterns.
Collapse
Affiliation(s)
- Lang Ho Lee
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division , Brigham and Women's Hospital , Harvard Medical School, Boston , Massachusetts 02115 , United States
| | - Arda Halu
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division , Brigham and Women's Hospital , Harvard Medical School, Boston , Massachusetts 02115 , United States
- Channing Division of Network Medicine , Brigham and Women's Hospital , Harvard Medical School, Boston , Massachusetts 02115 , United States
| | - Stephanie Morgan
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division , Brigham and Women's Hospital , Harvard Medical School, Boston , Massachusetts 02115 , United States
| | - Hiroshi Iwata
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division , Brigham and Women's Hospital , Harvard Medical School, Boston , Massachusetts 02115 , United States
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division , Brigham and Women's Hospital , Harvard Medical School, Boston , Massachusetts 02115 , United States
- Channing Division of Network Medicine , Brigham and Women's Hospital , Harvard Medical School, Boston , Massachusetts 02115 , United States
- Center for Excellence in Vascular Biology , Brigham and Women's Hospital , Harvard Medical School, Boston , Massachusetts 02115 , United States
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division , Brigham and Women's Hospital , Harvard Medical School, Boston , Massachusetts 02115 , United States
| |
Collapse
|
374
|
Affiliation(s)
- Daniel Engelbertsen
- Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | | |
Collapse
|
375
|
Yuan HQ, Hao YM, Ren Z, Gu HF, Liu FT, Yan BJ, Qu SL, Tang ZH, Liu LS, Chen DX, Jiang ZS. Tissue factor pathway inhibitor in atherosclerosis. Clin Chim Acta 2019; 491:97-102. [PMID: 30695687 DOI: 10.1016/j.cca.2019.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022]
Abstract
Tissue factor pathway inhibitor (TFPI) reduces the development of atherosclerosis by regulating tissue factor (TF) mediated coagulation pathway. In this review, we focus on recent findings on the inhibitory effects of TFPI on endothelial cell activation, vascular smooth muscle cell (VSMC) proliferation and migration, inflammatory cell recruitment and extracellular matrix which are associated with the development of atherosclerosis. Meanwhile, we are also concerned about the impact of TFPI levels and genetic polymorphisms on clinical atherogenesis. This article aims to explain the mechanism in inhibiting the development of atherosclerosis and clinical effects of TFPI, and provide new ideas for the clinical researches and mechanism studies of atherothrombosis.
Collapse
Affiliation(s)
- Hou-Qin Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Ya-Meng Hao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Hong-Feng Gu
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Feng-Tao Liu
- Center of Functional Laboratory, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 42100, PR China
| | - Bin-Jie Yan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Da-Xing Chen
- Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
376
|
Bassler K, Schulte-Schrepping J, Warnat-Herresthal S, Aschenbrenner AC, Schultze JL. The Myeloid Cell Compartment-Cell by Cell. Annu Rev Immunol 2019; 37:269-293. [PMID: 30649988 DOI: 10.1146/annurev-immunol-042718-041728] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myeloid cells are a major cellular compartment of the immune system comprising monocytes, dendritic cells, tissue macrophages, and granulocytes. Models of cellular ontogeny, activation, differentiation, and tissue-specific functions of myeloid cells have been revisited during the last years with surprising results; for example, most tissue macrophages are yolk sac derived, monocytes and macrophages follow a multidimensional model of activation, and tissue signals have a significant impact on the functionality of all these cells. While these exciting results have brought these cells back to center stage, their enormous plasticity and heterogeneity, during both homeostasis and disease, are far from understood. At the same time, the ongoing revolution in single-cell genomics, with single-cell RNA sequencing (scRNA-seq) leading the way, promises to change this. Prevailing models of hematopoiesis with distinct intermediates are challenged by scRNA-seq data suggesting more continuous developmental trajectories in the myeloid cell compartment. Cell subset structures previously defined by protein marker expression need to be revised based on unbiased analyses of scRNA-seq data. Particularly in inflammatory conditions, myeloid cells exhibit substantially vaster heterogeneity than previously anticipated, and work performed within large international projects, such as the Human Cell Atlas, has already revealed novel tissue macrophage subsets. Based on these exciting developments, we propose the next steps to a full understanding of the myeloid cell compartment in health and diseases.
Collapse
Affiliation(s)
- Kevin Bassler
- Department for Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; , , , ,
| | - Jonas Schulte-Schrepping
- Department for Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; , , , ,
| | - Stefanie Warnat-Herresthal
- Department for Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; , , , ,
| | - Anna C Aschenbrenner
- Department for Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; , , , , .,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, The Netherlands
| | - Joachim L Schultze
- Department for Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; , , , , .,PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and the University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
377
|
Abstract
Research during the last decade has generated numerous insights on the presence, phenotype, and function of myeloid cells in cardiovascular organs. Newer tools with improved detection sensitivities revealed sizable populations of tissue-resident macrophages in all major healthy tissues. The heart and blood vessels contain robust numbers of these cells; for instance, 8% of noncardiomyocytes in the heart are macrophages. This number and the cell's phenotype change dramatically in disease conditions. While steady-state macrophages are mostly monocyte independent, macrophages residing in the inflamed vascular wall and the diseased heart derive from hematopoietic organs. In this review, we will highlight signals that regulate macrophage supply and function, imaging applications that can detect changes in cell numbers and phenotype, and opportunities to modulate cardiovascular inflammation by targeting macrophage biology. We strive to provide a systems-wide picture, i.e., to focus not only on cardiovascular organs but also on tissues involved in regulating cell supply and phenotype, as well as comorbidities that promote cardiovascular disease. We will summarize current developments at the intersection of immunology, detection technology, and cardiovascular health.
Collapse
Affiliation(s)
- Vanessa Frodermann
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
378
|
McCracken IR, Taylor RS, Henderson NC, Sluimer JC, Baker AH. Unravelling atherosclerotic heterogeneity by single cell RNA sequencing. Curr Opin Lipidol 2018; 29:488-489. [PMID: 30379738 DOI: 10.1097/mol.0000000000000559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
| | - Richard S Taylor
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Neil C Henderson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Judith C Sluimer
- Centre for Cardiovascular Science
- Department of Pathology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Andrew H Baker
- Centre for Cardiovascular Science
- Department of Pathology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
379
|
|
380
|
Williams JW, Giannarelli C, Rahman A, Randolph GJ, Kovacic JC. Macrophage Biology, Classification, and Phenotype in Cardiovascular Disease: JACC Macrophage in CVD Series (Part 1). J Am Coll Cardiol 2018; 72:2166-2180. [PMID: 30360826 PMCID: PMC6209330 DOI: 10.1016/j.jacc.2018.08.2148] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/12/2018] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
Abstract
Macrophages represent one of the most numerous and diverse leukocyte types in the body. Furthermore, they are important regulators and promoters of many cardiovascular disease programs. Their functions range from sensing pathogens to digesting cell debris, modulating inflammation, and producing key cytokines and other regulatory factors throughout the body. Macrophage research has undergone a renaissance in recent years, which has propelled a newfound interest in their heterogeneity as well as a new understanding of ontological differences in their development. In addition, recent technological advances such as single-cell mass-cytometry by time-of-flight have enabled phenotype and functional analyses of individual immune myeloid cells, including macrophages, at unprecedented resolution. In this Part 1 of a 4-part review series covering the macrophage in cardiovascular disease, we focus on the basic principles of macrophage development, heterogeneity, phenotype, tissue-specific differentiation, and functionality as a basis to understand their role in cardiovascular disease.
Collapse
Affiliation(s)
- Jesse W Williams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Chiara Giannarelli
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Adeeb Rahman
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
381
|
Libby P, Loscalzo J, Ridker PM, Farkouh ME, Hsue PY, Fuster V, Hasan AA, Amar S. Inflammation, Immunity, and Infection in Atherothrombosis: JACC Review Topic of the Week. J Am Coll Cardiol 2018; 72:2071-2081. [PMID: 30336831 PMCID: PMC6196735 DOI: 10.1016/j.jacc.2018.08.1043] [Citation(s) in RCA: 387] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022]
Abstract
Observations on human and experimental atherosclerosis, biomarker studies, and now a large-scale clinical trial support the operation of immune and inflammatory pathways in this disease. The factors that incite innate and adaptive immune responses implicated in atherogenesis and in lesion complication include traditional risk factors such as protein and lipid components of native and modified low-density lipoprotein, angiotensin II, smoking, visceral adipose tissue, and dysmetabolism. Infectious processes and products of the endogenous microbiome might also modulate atherosclerosis and its complications either directly, or indirectly by eliciting local and systemic responses that potentiate disease expression. Trials with antibiotics have not reduced recurrent cardiovascular events, nor have vaccination strategies yet achieved clinical translation. However, anti-inflammatory interventions such as anticytokine therapy and colchicine have begun to show efficacy in this regard. Thus, inflammatory and immune mechanisms can link traditional and emerging risk factors to atherosclerosis, and offer novel avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Joseph Loscalzo
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paul M Ridker
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael E Farkouh
- Peter Munk Cardiac Centre and the Heart and Stroke Richard Lewar Centre, University of Toronto, Toronto, Ontario, Canada
| | - Priscilla Y Hsue
- University of California, San Francisco General Hospital, San Francisco, California
| | | | - Ahmed A Hasan
- The National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Salomon Amar
- Departments of Pharmacology, Immunology and Microbiology, New York Medical College, Valhalla, New York
| |
Collapse
|
382
|
Abstract
PURPOSE OF REVIEW The immune system plays a critical role in the development and modulation of atherosclerosis. New high-parameter technologies, including mass cytometry (CyTOF) and single-cell RNA sequencing (scRNAseq), allow for an encompassing analysis of immune cells. Unexplored marker combinations and transcriptomes can define new immune cell subsets and suggest their functions. Here, we review recent advances describing the immune cells in the artery wall of mice with and without atherosclerosis. We compare technologies and discuss limitations and advantages. RECENT FINDINGS Both CyTOF and scRNAseq on leukocytes from digested aortae show 10-30 immune cell subsets. Myeloid, T, B and natural killer cells were confirmed. Although cellular functions can be inferred from RNA-Seq data, some subsets cannot be identified based on current knowledge, suggesting they may be new cell types. CyTOF and scRNAseq each identified four B-cell subsets and three macrophage subsets in the atherosclerotic aorta. Limitations include cell death caused by enzymatic digestion and the limited depth of the scRNAseq transcriptomes. SUMMARY High-parameter methods are powerful tools for uncovering leukocyte diversity. CyTOF is currently more powerful at discerning leukocyte subsets in the atherosclerotic aorta, whereas scRNAseq provides more insight into their likely functions.
Collapse
Affiliation(s)
- Holger Winkels
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Erik Ehinger
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Yanal Ghosheh
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Dennis Wolf
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- Department of Cardiology and Angiology I, University Heart Center Freiburg
- Faculty of Medicine, University of Freiburg, Freiburg, Germany and
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
383
|
Abstract
PURPOSE OF REVIEW Atherosclerosis is a chronic inflammatory disease in which subendothelial infiltration of lipoproteins leads to inflamed lesions in arteries. Despite improvements in secondary prevention, most cardiovascular events cannot be avoided with current therapies. This review focuses on novel mechanistic insights on lipid-driven immune activation, which could pave the way for new anti-inflammatory treatments for atherosclerosis. RECENT FINDINGS Immunometabolic interactions can shape the immune response. Within atherosclerotic plaques, macrophages and T cells are the dominant immune cell populations. Using multiple mechanisms, lipoprotein-derived components activate both the innate and adaptive immune systems. Cholesterol crystals and apolipoprotein B-peptides have been shown to activate macrophages and T cells, respectively. Lipoproteins are also important modulators of regulatory T cells that can hamper vascular inflammation. In the liver, T cells can influence hepatic inflammation and lipoprotein metabolism. Hence, there is an intricate crosstalk between the immune system and lipoprotein metabolism. SUMMARY Novel treatments are needed to prevent clinical manifestations of atherosclerosis. Improved understanding of lipid-driven immunometabolic responses is likely to reveal new therapeutic targets.
Collapse
Affiliation(s)
- Anton Gisterå
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
384
|
Abstract
Innate and adaptive immune effector mechanisms, in conjunction with hyperlipidemia, are important drivers of atherosclerosis. The interaction between the different immune cells and the secretion of cytokines and chemokines determine the progression of atherosclerosis. The activation or dampening of the immune response is tightly controlled by immune checkpoints. Costimulatory and coinhibitory immune checkpoints represent potential targets for immune modulatory therapies for atherosclerosis. This review will discuss the current knowledge on immune checkpoints in atherosclerosis and the clinical potential of immune checkpoint targeted therapy for atherosclerosis.
Collapse
Affiliation(s)
- Ellen Rouwet
- From the Department of Surgery and Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands (E.R.)
| | - Esther Lutgens
- Department of Medical Biochemistry, Experimental Vascular Biology Laboratory, Academic Medical Center, Amsterdam, The Netherlands (E.L.)
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian's University (LMU), Munich, Germany (E.L.)
| |
Collapse
|
385
|
Affiliation(s)
- Hanrui Zhang
- From the Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York (H.Z., M.P.R.)
| | - Nancy R Zhang
- Department of Statistics, University of Pennsylvania Wharton School, Philadelphia (N.R.Z.)
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia (M.L.)
| | - Muredach P Reilly
- From the Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York (H.Z., M.P.R.)
- Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York (M.P.R.)
| |
Collapse
|
386
|
Nahrendorf M. Myeloid cell contributions to cardiovascular health and disease. Nat Med 2018; 24:711-720. [PMID: 29867229 DOI: 10.1038/s41591-018-0064-0] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022]
Abstract
Recent advances in cell tracing and sequencing technologies have expanded our knowledge on leukocyte behavior. As a consequence, inflammatory cells, such as monocyte-derived macrophages, and their actions and products are increasingly being considered as potential drug targets for treatment of atherosclerosis, myocardial infarction and heart failure. Particularly promising developments are the identification of harmful arterial and cardiac macrophage subsets, the cells' altered, sometimes even clonal production in hematopoietic organs, and epigenetically entrained memories of myeloid progenitors and macrophages in the setting of cardiovascular disease. Given the roles of monocytes and macrophages in host defense, intricately understanding the involved cellular subsets, sources and functions is essential for the design of precision therapeutics that preserve protective innate immunity. Here I review how new clinical and preclinical data, often linking the cardiovascular, immune and other organ systems, propel conceptual advances to a point where cardiovascular immunotherapy appears within reach.
Collapse
Affiliation(s)
- Matthias Nahrendorf
- Center for Systems Biology and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
387
|
|