351
|
Abstract
Disturbances in cardiac metabolism underlie most cardiovascular diseases. Metabolomics, one of the newer omics technologies, has emerged as a powerful tool for defining changes in both global and cardiac-specific metabolism that occur across a spectrum of cardiovascular disease states. Findings from metabolomics studies have contributed to better understanding of the metabolic changes that occur in heart failure and ischemic heart disease and have identified new cardiovascular disease biomarkers. As technologies advance, the metabolomics field continues to evolve rapidly. In this review, we will discuss the current state of metabolomics technologies, including consideration of various metabolomics platforms and elements of study design; the emerging utility of stable isotopes for metabolic flux studies; and the use of metabolomics to better understand specific cardiovascular diseases, with an emphasis on recent advances in the field.
Collapse
Affiliation(s)
- Robert W McGarrah
- From the Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute (R.W.M., S.B.C., G.F.Z., S.H.S., C.B.N.)
- Division of Cardiology (R.W.M., S.H.S.)
- Department of Medicine (R.W.M., G.F.Z., S.H.S., C.B.N.)
| | - Scott B Crown
- From the Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute (R.W.M., S.B.C., G.F.Z., S.H.S., C.B.N.)
| | - Guo-Fang Zhang
- From the Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute (R.W.M., S.B.C., G.F.Z., S.H.S., C.B.N.)
- Division of Endocrinology (G.F.Z., C.B.N.)
- Department of Medicine (R.W.M., G.F.Z., S.H.S., C.B.N.)
| | - Svati H Shah
- From the Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute (R.W.M., S.B.C., G.F.Z., S.H.S., C.B.N.)
- Division of Cardiology (R.W.M., S.H.S.)
- Department of Medicine (R.W.M., G.F.Z., S.H.S., C.B.N.)
| | - Christopher B Newgard
- From the Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute (R.W.M., S.B.C., G.F.Z., S.H.S., C.B.N.)
- Division of Endocrinology (G.F.Z., C.B.N.)
- Department of Medicine (R.W.M., G.F.Z., S.H.S., C.B.N.)
- Departments of Pharmacology and Cancer Biology (C.B.N.), Duke University Medical Center, Durham, NC
| |
Collapse
|
352
|
|
353
|
Affiliation(s)
- Claudia Grajeda-Iglesias
- Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel, Institute of Technology, Haifa, Israel
| | - Oren Rom
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Michael Aviram
- Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel, Institute of Technology, Haifa, Israel
| |
Collapse
|
354
|
Krüppel-like factor 15: Regulator of BCAA metabolism and circadian protein rhythmicity. Pharmacol Res 2018; 130:123-126. [DOI: 10.1016/j.phrs.2017.12.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/19/2017] [Indexed: 11/19/2022]
|
355
|
Nie C, He T, Zhang W, Zhang G, Ma X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int J Mol Sci 2018; 19:E954. [PMID: 29570613 PMCID: PMC5979320 DOI: 10.3390/ijms19040954] [Citation(s) in RCA: 429] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/01/2018] [Accepted: 03/14/2018] [Indexed: 12/14/2022] Open
Abstract
Branched chain amino acids (BCAAs), including leucine (Leu), isoleucine (Ile), and valine (Val), play critical roles in the regulation of energy homeostasis, nutrition metabolism, gut health, immunity and disease in humans and animals. As the most abundant of essential amino acids (EAAs), BCAAs are not only the substrates for synthesis of nitrogenous compounds, they also serve as signaling molecules regulating metabolism of glucose, lipid, and protein synthesis, intestinal health, and immunity via special signaling network, especially phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signal pathway. Current evidence supports BCAAs and their derivatives as the potential biomarkers of diseases such as insulin resistance (IR), type 2 diabetes mellitus (T2DM), cancer, and cardiovascular diseases (CVDs). These diseases are closely associated with catabolism and balance of BCAAs. Hence, optimizing dietary BCAA levels should have a positive effect on the parameters associated with health and diseases. This review focuses on recent findings of BCAAs in metabolic pathways and regulation, and underlying the relationship of BCAAs to related disease processes.
Collapse
Affiliation(s)
- Cunxi Nie
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing 100193, China.
- College of Animal Science and Technology, Shihezi University, No. 221. Beisi Road, Shihezi, Xinjiang 832003, China.
| | - Ting He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing 100193, China.
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, No. 221. Beisi Road, Shihezi, Xinjiang 832003, China.
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing 100193, China.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
356
|
Pollak NM, Hoffman M, Goldberg IJ, Drosatos K. Krüppel-like factors: Crippling and un-crippling metabolic pathways. JACC Basic Transl Sci 2018; 3:132-156. [PMID: 29876529 PMCID: PMC5985828 DOI: 10.1016/j.jacbts.2017.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022]
Abstract
Krüppel-like factors (KLFs) are DNA-binding transcriptional factors that regulate various pathways that control metabolism and other cellular mechanisms. Various KLF isoforms have been associated with cellular, organ or systemic metabolism. Altered expression or activation of KLFs has been linked to metabolic abnormalities, such as obesity and diabetes, as well as with heart failure. In this review article we summarize the metabolic functions of KLFs, as well as the networks of different KLF isoforms that jointly regulate metabolism in health and disease.
Collapse
Affiliation(s)
- Nina M. Pollak
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew Hoffman
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
357
|
Nair NU, Das A, Amit U, Robinson W, Park SG, Basu M, Lugo A, Leor J, Ruppin E, Hannenhalli S. Putative functional genes in idiopathic dilated cardiomyopathy. Sci Rep 2018; 8:66. [PMID: 29311597 PMCID: PMC5758757 DOI: 10.1038/s41598-017-18524-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022] Open
Abstract
Idiopathic dilated cardiomyopathy (DCM) is a complex disorder with a genetic and an environmental component involving multiple genes, many of which are yet to be discovered. We integrate genetic, epigenetic, transcriptomic, phenotypic, and evolutionary features into a method - Hridaya, to infer putative functional genes underlying DCM in a genome-wide fashion, using 213 human heart genomes and transcriptomes. Many genes identified by Hridaya are experimentally shown to cause cardiac complications. We validate the top predicted genes, via five different genome-wide analyses: First, the predicted genes are associated with cardiovascular functions. Second, their knockdowns in mice induce cardiac abnormalities. Third, their inhibition by drugs cause cardiac side effects in human. Fourth, they tend to have differential exon usage between DCM and normal samples. Fifth, analyzing 213 individual genotypes, we show that regulatory polymorphisms of the predicted genes are associated with elevated risk of cardiomyopathy. The stratification of DCM patients based on cardiac expression of the functional genes reveals two subgroups differing in key cardiac phenotypes. Integrating predicted functional genes with cardiomyocyte drug treatment experiments reveals novel potential drug targets. We provide a list of investigational drugs that target the newly identified functional genes that may lead to cardiac side effects.
Collapse
Affiliation(s)
- Nishanth Ulhas Nair
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, 20742, USA.
| | - Avinash Das
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, 20742, USA
| | - Uri Amit
- The Neufeld Cardiac Research Institute, Tel Aviv University, Tel Aviv-Yafo, Israel
- Tamman Cardiovascular Research Institute, Sheba Medical Center, Ramat Gan, Israel
- The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Radiation Oncology, Sheba Medical Center, Tel-Hashomer, Israel
| | - Welles Robinson
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, 20742, USA
| | - Seung Gu Park
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, 20742, USA
| | - Mahashweta Basu
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, 20742, USA
| | - Alex Lugo
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, 20742, USA
| | - Jonathan Leor
- The Neufeld Cardiac Research Institute, Tel Aviv University, Tel Aviv-Yafo, Israel
- Tamman Cardiovascular Research Institute, Sheba Medical Center, Ramat Gan, Israel
| | - Eytan Ruppin
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, 20742, USA
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Sridhar Hannenhalli
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, 20742, USA.
| |
Collapse
|
358
|
Goetzman ES, Gong Z, Schiff M, Wang Y, Muzumdar RH. Metabolic pathways at the crossroads of diabetes and inborn errors. J Inherit Metab Dis 2018; 41:5-17. [PMID: 28952033 PMCID: PMC6757345 DOI: 10.1007/s10545-017-0091-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/30/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
Abstract
Research over the past two decades has led to advances in our understanding of the genetic and metabolic factors that underlie the pathogenesis of type 2 diabetes mellitus (T2DM). While T2DM is defined by its hallmark metabolic symptoms, the genetic risk factors for T2DM are more immune-related than metabolism-related, and the observed metabolic disease may be secondary to chronic inflammation. Regardless, these metabolic changes are not benign, as the accumulation of some metabolic intermediates serves to further drive the inflammation and cell stress, eventually leading to insulin resistance and ultimately to T2DM. Because many of the biochemical changes observed in the pre-diabetic state (i.e., ectopic lipid storage, increased acylcarnitines, increased branched-chain amino acids) are also observed in patients with rare inborn errors of fatty acid and amino acid metabolism, an interesting question is raised regarding whether isolated metabolic gene defects can confer an increased risk for T2DM. In this review, we attempt to address this question by summarizing the literature regarding the metabolic pathways at the crossroads of diabetes and inborn errors of metabolism. Studies using cell culture and animal models have revealed that, within a given pathway, disrupting some genes can lead to insulin resistance while for others there may be no effect or even improved insulin sensitivity. This differential response to ablating a single metabolic gene appears to be dependent upon the specific metabolic intermediates that accumulate and whether these intermediates subsequently activate inflammatory pathways. This highlights the need for future studies to determine whether certain inborn errors may confer increased risk for diabetes as the patients age.
Collapse
Affiliation(s)
- Eric S Goetzman
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
- Children's Hospital of Pittsburgh, Rangos 5117, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| | - Zhenwei Gong
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Manuel Schiff
- UMR1141, PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Reference Center for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, Paris, France
| | - Yan Wang
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Radhika H Muzumdar
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| |
Collapse
|
359
|
Cardiovascular Risk Factors and Markers. BIOMATHEMATICAL AND BIOMECHANICAL MODELING OF THE CIRCULATORY AND VENTILATORY SYSTEMS 2018. [PMCID: PMC7123062 DOI: 10.1007/978-3-319-89315-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cardiovascular risk is assessed for the prediction and appropriate management of patients using collections of identified risk markers obtained from clinical questionnaire information, concentrations of certain blood molecules (e.g., N-terminal proB-type natriuretic peptide fragment and soluble receptors of tumor-necrosis factor-α and interleukin-2), imaging data using various modalities, and electrocardiographic variables, in addition to traditional risk factors.
Collapse
|
360
|
Smith JG. Molecular Epidemiology of Heart Failure: Translational Challenges and Opportunities. JACC Basic Transl Sci 2017; 2:757-769. [PMID: 30062185 PMCID: PMC6058947 DOI: 10.1016/j.jacbts.2017.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022]
Abstract
Heart failure (HF) is the end-stage of all heart disease and arguably constitutes the greatest unmet therapeutic need in cardiovascular medicine today. Classic epidemiological studies have established clinical risk factors for HF, but the cause remains poorly understood in many cases. Biochemical analyses of small case-control series and animal models have described a plethora of molecular characteristics of HF, but a single unifying pathogenic theory is lacking. Heart failure appears to result not only from cardiac overload or injury but also from a complex interplay among genetic, neurohormonal, metabolic, inflammatory, and other biochemical factors acting on the heart. Recent development of robust, high-throughput tools in molecular biology provides opportunity for deep molecular characterization of population-representative cohorts and HF cases (molecular epidemiology), including genome sequencing, profiling of myocardial gene expression and chromatin modifications, plasma composition of proteins and metabolites, and microbiomes. The integration of such detailed information holds promise for improving understanding of HF pathophysiology in humans, identification of therapeutic targets, and definition of disease subgroups beyond the current classification based on ejection fraction which may benefit from improved individual tailoring of therapy. Challenges include: 1) the need for large cohorts with deep, uniform phenotyping; 2) access to the relevant tissues, ideally with repeated sampling to capture dynamic processes; and 3) analytical issues related to integration and analysis of complex datasets. International research consortia have formed to address these challenges and combine datasets, and cohorts with up to 1 million participants are being collected. This paper describes the molecular epidemiology of HF and provides an overview of methods and tissue types and examples of published and ongoing efforts to systematically evaluate molecular determinants of HF in human populations.
Collapse
Affiliation(s)
- J Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden.,Department of Heart Failure and Valvular Disease, Skåne University Hospital, Lund, Sweden.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
361
|
Abstract
It is thought that at least 6,500 low-molecular-weight metabolites exist in humans, and these metabolites have various important roles in biological systems in addition to proteins and genes. Comprehensive assessment of endogenous metabolites is called metabolomics, and recent advances in this field have enabled us to understand the critical role of previously unknown metabolites or metabolic pathways in the cardiovascular system. In this review, we will focus on heart failure and how metabolomic analysis has contributed to improving our understanding of the pathogenesis of this critical condition.
Collapse
Affiliation(s)
- Ryutaro Ikegami
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences.,Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences.,Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences
| |
Collapse
|
362
|
Liu Y, Dong W, Shao J, Wang Y, Zhou M, Sun H. Branched-Chain Amino Acid Negatively Regulates KLF15 Expression via PI3K-AKT Pathway. Front Physiol 2017; 8:853. [PMID: 29118722 PMCID: PMC5661165 DOI: 10.3389/fphys.2017.00853] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 10/12/2017] [Indexed: 12/16/2022] Open
Abstract
Recent studies have linked branched-chain amino acid (BCAA) with numerous metabolic diseases. However, the molecular basis of BCAA's roles in metabolic regulation remains to be established. KLF15 (Krüppel-like factor 15) is a transcription factor and master regulator of glycemic, lipid, and amino acids metabolism. In the present study, we found high concentrations of BCAA suppressed KLF15 expression while BCAA starvation induced KLF15 expression, suggesting KLF15 expression is negatively controlled by BCAA.Interestingly, BCAA starvation induced PI3K-AKT signaling. KLF15 induction by BCAA starvation was blocked by PI3K and AKT inhibitors, indicating the activation of PI3K-AKT signaling pathway mediated the KLF15 induction. BCAA regulated KLF15 expression at transcriptional level but not post-transcriptional level. However, BCAA starvation failed to increase the KLF15-promoter-driven luciferase expression, suggesting KLF15 promoter activity was not directly controlled by BCAA. Finally, fasting reduced BCAA abundance in mice and KLF15 expression was dramatically induced in muscle and white adipose tissue, but not in liver. Together, these data demonstrated BCAA negatively regulated KLF15 expression, suggesting a novel molecular mechanism underlying BCAA's multiple functions in metabolic regulation.
Collapse
Affiliation(s)
- Yunxia Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weibing Dong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Shao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yibin Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiyi Zhou
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haipeng Sun
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
363
|
Ritterhoff J, Tian R. Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res 2017; 113:411-421. [PMID: 28395011 DOI: 10.1093/cvr/cvx017] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/01/2017] [Indexed: 12/12/2022] Open
Abstract
Cardiac metabolism is highly adaptive to changes in fuel availability and the energy demand of the heart. This metabolic flexibility is key for the heart to maintain its output during the development and in response to stress. Alterations in substrate preference have been observed in multiple disease states; a clear understanding of their impact on cardiac function in the long term is critical for the development of metabolic therapies. In addition, the contribution of cellular metabolism to growth, survival, and other signalling pathways through the generation of metabolic intermediates has been increasingly noted, adding another layer of complexity to the impact of metabolism on cardiac function. In a quest to understand the complexity of the cardiac metabolic network, genetic tools have been engaged to manipulate cardiac metabolism in a variety of mouse models. The ability to engineer cardiac metabolism in vivo has provided tremendous insights and brought about conceptual innovations. In this review, we will provide an overview of the cardiac metabolic network and highlight alterations observed during cardiac development and pathological hypertrophy. We will focus on consequences of altered substrate preference on cardiac response to chronic stresses through energy providing and non-energy providing pathways.
Collapse
|
364
|
Olkowicz M, Debski J, Jablonska P, Dadlez M, Smolenski RT. Application of a new procedure for liquid chromatography/mass spectrometry profiling of plasma amino acid-related metabolites and untargeted shotgun proteomics to identify mechanisms and biomarkers of calcific aortic stenosis. J Chromatogr A 2017; 1517:66-78. [DOI: 10.1016/j.chroma.2017.08.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/26/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
|
365
|
Tang X, Chen XF, Chen HZ, Liu DP. Mitochondrial Sirtuins in cardiometabolic diseases. Clin Sci (Lond) 2017; 131:2063-2078. [DOI: 10.1042/cs20160685] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Mitochondria are heterogeneous and essentially contribute to cellular functions and tissue homeostasis. Mitochondrial dysfunction compromises overall cell functioning, tissue damage, and diseases. The advances in mitochondrion biology increase our understanding of mitochondrial dynamics, bioenergetics, and redox homeostasis, and subsequently, their functions in tissue homeostasis and diseases, including cardiometabolic diseases (CMDs). The functions of mitochondria mainly rely on the enzymes in their matrix. Sirtuins are a family of NAD+-dependent deacylases and ADP-ribosyltransferases. Three members of the Sirtuin family (SIRT3, SIRT4, and SIRT5) are located in the mitochondrion. These mitochondrial Sirtuins regulate energy and redox metabolism as well as mitochondrial dynamics in the mitochondrial matrix and are involved in cardiovascular homeostasis and CMDs. In this review, we discuss the advances in our understanding of mitochondrial Sirtuins in mitochondrion biology and CMDs, including cardiac remodeling, pulmonary artery hypertension, and vascular dysfunction. The potential therapeutic strategies by targetting mitochondrial Sirtuins to improve mitochondrial function in CMDs are also addressed.
Collapse
Affiliation(s)
- Xiaoqiang Tang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, P.R. China
| | - Xiao-Feng Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, P.R. China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, P.R. China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, P.R. China
| |
Collapse
|
366
|
Rom O, Grajeda-Iglesias C, Najjar M, Abu-Saleh N, Volkova N, Dar DE, Hayek T, Aviram M. Atherogenicity of amino acids in the lipid-laden macrophage model system in vitro and in atherosclerotic mice: a key role for triglyceride metabolism. J Nutr Biochem 2017; 45:24-38. [DOI: 10.1016/j.jnutbio.2017.02.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/27/2017] [Accepted: 02/25/2017] [Indexed: 12/27/2022]
|
367
|
The Emerging Role of Metabolomics in the Diagnosis and Prognosis of Cardiovascular Disease. J Am Coll Cardiol 2017; 68:2850-2870. [PMID: 28007146 DOI: 10.1016/j.jacc.2016.09.972] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022]
Abstract
Perturbations in cardiac energy metabolism are major contributors to a number of cardiovascular pathologies. In addition, comorbidities associated with cardiovascular disease (CVD) can alter systemic and myocardial metabolism, often contributing to the worsening of cardiac function and health outcomes. State-of-the-art metabolomic technologies give us the ability to measure thousands of metabolites in biological fluids or biopsies, providing us with a metabolic fingerprint of individual patients. These metabolic profiles may serve as diagnostic and/or prognostic tools that have the potential to significantly alter the management of CVD. Herein, the authors review how metabolomics can assist in the interpretation of perturbed metabolic processes, and how this has improved our ability to understand the pathology of ischemic heart disease, atherosclerosis, and heart failure. Taken together, the integration of metabolomics with other "omics" platforms will allow us to gain insight into pathophysiological interactions of metabolites, proteins, genes, and disease states, while advancing personalized medicine.
Collapse
|
368
|
Bifari F, Nisoli E. Branched-chain amino acids differently modulate catabolic and anabolic states in mammals: a pharmacological point of view. Br J Pharmacol 2017; 174:1366-1377. [PMID: 27638647 PMCID: PMC5429325 DOI: 10.1111/bph.13624] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/28/2016] [Accepted: 08/03/2016] [Indexed: 12/21/2022] Open
Abstract
Substantial evidence has been accumulated suggesting that branched-chain amino acid (BCAA) supplementation or BCAA-rich diets have a positive effect on the regulation of body weight, muscle protein synthesis, glucose homeostasis, the ageing process and extend healthspan. Despite these beneficial effects, epidemiological studies have shown that BCAA plasma concentrations and BCAA metabolism are altered in several metabolic disorders, including type 2 diabetes mellitus and cardiovascular diseases. In this review article, we present an overview of the current literature on the different effects of BCAAs in health and disease. We also highlight the results showing the most promising therapeutic effects of dietary BCAA supplementation and discuss how BCAAs can trigger different and even opposite effects, depending on the catabolic and anabolic states of the organisms. Moreover, we consider the effects of BCAAs when metabolism is abnormal, in the presence of a mixture of different anabolic and catabolic signals. These unique pharmacodynamic properties may partially explain some of the markedly different effects found in BCAA supplementation studies. To predict accurately these effects, the overall catabolic/anabolic status of patients should be carefully considered. In wider terms, a correct modulation of metabolic disorders would make nutraceutical interventions with BCAAs more effective. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| |
Collapse
|
369
|
Abstract
For more than half a century, metabolic perturbations have been explored in the failing myocardium, highlighting a reversion to a more fetal-like metabolic profile (characterized by depressed fatty acid oxidation and concomitant increased reliance on use of glucose). More recently, alterations in ketone body and amino acid/protein metabolism have been described during heart failure, as well as mitochondrial dysfunction and perturbed metabolic signaling (e.g., acetylation, O-GlcNAcylation). Although numerous mechanisms are likely involved, the current review provides recent advances regarding the metabolic origins of heart failure, and their potential contribution toward contractile dysfunction of the heart.
Collapse
|
370
|
Shellhammer JP, Morin-Kensicki E, Matson JP, Yin G, Isom DG, Campbell SL, Mohney RP, Dohlman HG. Amino acid metabolites that regulate G protein signaling during osmotic stress. PLoS Genet 2017; 13:e1006829. [PMID: 28558063 PMCID: PMC5469498 DOI: 10.1371/journal.pgen.1006829] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/13/2017] [Accepted: 05/17/2017] [Indexed: 12/29/2022] Open
Abstract
All cells respond to osmotic stress by implementing molecular signaling events to protect the organism. Failure to properly adapt can lead to pathologies such as hypertension and ischemia-reperfusion injury. Mitogen-activated protein kinases (MAPKs) are activated in response to osmotic stress, as well as by signals acting through G protein-coupled receptors (GPCRs). For proper adaptation, the action of these kinases must be coordinated. To identify second messengers of stress adaptation, we conducted a mass spectrometry-based global metabolomics profiling analysis, quantifying nearly 300 metabolites in the yeast S. cerevisiae. We show that three branched-chain amino acid (BCAA) metabolites increase in response to osmotic stress and require the MAPK Hog1. Ectopic addition of these BCAA derivatives promotes phosphorylation of the G protein α subunit and dampens G protein-dependent transcription, similar to that seen in response to osmotic stress. Conversely, genetic ablation of Hog1 activity or the BCAA-regulatory enzymes leads to diminished phosphorylation of Gα and increased transcription. Taken together, our results define a new class of candidate second messengers that mediate cross talk between osmotic stress and GPCR signaling pathways.
Collapse
Affiliation(s)
- James P. Shellhammer
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | | | - Jacob P. Matson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Guowei Yin
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel G. Isom
- The University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert P. Mohney
- Metabolon, Inc., Research Triangle Park, North Carolina, United States of America
| | - Henrik G. Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
371
|
Cesselli D, Aleksova A, Sponga S, Cervellin C, Di Loreto C, Tell G, Beltrami AP. Cardiac Cell Senescence and Redox Signaling. Front Cardiovasc Med 2017; 4:38. [PMID: 28612009 PMCID: PMC5447053 DOI: 10.3389/fcvm.2017.00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022] Open
Abstract
Aging is characterized by a progressive loss of the ability of the organism to cope with stressors and to repair tissue damage. As a result, chronic diseases, including cardiovascular disease, increase their prevalence with aging, underlining the existence of common mechanisms that lead to frailty and age-related diseases. In this frame, the progressive decline of the homeostatic and reparative function of primitive cells has been hypothesized to play a major role in the evolution of cardiac pathology to heart failure. Although initially it was believed that reactive oxygen species (ROS) were produced in an unregulated manner as a byproduct of cellular metabolism, causing macromolecular damage and aging, accumulating evidence indicate the major role played by redox signaling in physiology. Aim of this review is to critically revise evidence linking ROS to cell senescence and aging and to provide evidence of the primary role played by redox signaling, with a particular emphasis on the multifunctional protein APE1/Ref in stem cell biology. Finally, we will discuss evidence supporting the role of redox signaling in cardiovascular cells.
Collapse
Affiliation(s)
| | - Aneta Aleksova
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata di Trieste, University of Trieste, Trieste, Italy
| | - Sandro Sponga
- Cardiothoracic Surgery, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | | | | | - Gianluca Tell
- Department of Medicine, University of Udine, Udine, Italy
| | | |
Collapse
|
372
|
Shah MS, Brownlee M. Molecular and Cellular Mechanisms of Cardiovascular Disorders in Diabetes. Circ Res 2017; 118:1808-29. [PMID: 27230643 DOI: 10.1161/circresaha.116.306923] [Citation(s) in RCA: 389] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/26/2016] [Indexed: 12/13/2022]
Abstract
The clinical correlations linking diabetes mellitus with accelerated atherosclerosis, cardiomyopathy, and increased post-myocardial infarction fatality rates are increasingly understood in mechanistic terms. The multiple mechanisms discussed in this review seem to share a common element: prolonged increases in reactive oxygen species (ROS) production in diabetic cardiovascular cells. Intracellular hyperglycemia causes excessive ROS production. This activates nuclear poly(ADP-ribose) polymerase, which inhibits GAPDH, shunting early glycolytic intermediates into pathogenic signaling pathways. ROS and poly(ADP-ribose) polymerase also reduce sirtuin, PGC-1α, and AMP-activated protein kinase activity. These changes cause decreased mitochondrial biogenesis, increased ROS production, and disturbed circadian clock synchronization of glucose and lipid metabolism. Excessive ROS production also facilitates nuclear transport of proatherogenic transcription factors, increases transcription of the neutrophil enzyme initiating NETosis, peptidylarginine deiminase 4, and activates the NOD-like receptor family, pyrin domain-containing 3 inflammasome. Insulin resistance causes excessive cardiomyocyte ROS production by increasing fatty acid flux and oxidation. This stimulates overexpression of the nuclear receptor PPARα and nuclear translocation of forkhead box O 1, which cause cardiomyopathy. ROS also shift the balance between mitochondrial fusion and fission in favor of increased fission, reducing the metabolic capacity and efficiency of the mitochondrial electron transport chain and ATP synthesis. Mitochondrial oxidative stress also plays a central role in angiotensin II-induced gap junction remodeling and arrhythmogenesis. ROS contribute to sudden death in diabetics after myocardial infarction by increasing post-translational protein modifications, which cause increased ryanodine receptor phosphorylation and downregulation of sarco-endoplasmic reticulum Ca(++)-ATPase transcription. Increased ROS also depress autonomic ganglion synaptic transmission by oxidizing the nAch receptor α3 subunit, potentially contributing to the increased risk of fatal cardiac arrhythmias associated with diabetic cardiac autonomic neuropathy.
Collapse
Affiliation(s)
- Manasi S Shah
- From the Diabetes Research Center (M.S.S., M.B.), Departments of Medicine (M.S.S., M.B.), and Pathology (M.B.), Albert Einstein College of Medicine, Bronx, New York, NY
| | - Michael Brownlee
- From the Diabetes Research Center (M.S.S., M.B.), Departments of Medicine (M.S.S., M.B.), and Pathology (M.B.), Albert Einstein College of Medicine, Bronx, New York, NY.
| |
Collapse
|
373
|
De Jong KA, Lopaschuk GD. Complex Energy Metabolic Changes in Heart Failure With Preserved Ejection Fraction and Heart Failure With Reduced Ejection Fraction. Can J Cardiol 2017; 33:860-871. [PMID: 28579160 DOI: 10.1016/j.cjca.2017.03.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022] Open
Abstract
Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex, and are dependent not only on the severity and type of heart failure present, but also on the coexistence of common comorbidities such as obesity and type 2 diabetes. In this article we review the cardiac energy metabolic changes that occur in heart failure. An emphasis is made on distinguishing the differences in cardiac energy metabolism between heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF) and in clarifying the common misconceptions surrounding the fate of fatty acids and glucose in the failing heart. The major key points from this article are: (1) mitochondrial oxidative capacity is reduced in HFpEF and HFrEF; (2) fatty acid oxidation is increased in HFpEF and reduced in HFrEF (however, oxidative metabolism of fatty acids in HFrEF still exceeds that of glucose); (3) glucose oxidation is decreased in HFpEF and HFrEF; (4) there is an uncoupling between glucose uptake and oxidation in HFpEF and HFrEF, resulting in an increased rate of glycolysis; (5) ketone body oxidation is increased in HFrEF, which might further reduce fatty acid and glucose oxidation; and finally, (6) branched chain amino acid oxidation is impaired in HFrEF. The understanding of these changes in cardiac energy metabolism in heart failure are essential to allow the development of metabolic modulators in the treatment of heart failure.
Collapse
Affiliation(s)
- Kirstie A De Jong
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
374
|
Zhang L, Han J. Branched-chain amino acid transaminase 1 (BCAT1) promotes the growth of breast cancer cells through improving mTOR-mediated mitochondrial biogenesis and function. Biochem Biophys Res Commun 2017; 486:224-231. [PMID: 28235484 DOI: 10.1016/j.bbrc.2017.02.101] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 02/20/2017] [Indexed: 01/22/2023]
Abstract
Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. BCAA catabolism is a conserved regulator of physiological aging and participates in diverse physiological and pathological processes, including carcinoma development. The roles of BCAA catabolism in human breast cancer remains unknown. Here we provide evidence that BCAA catabolism is involved in human breast cancer. The plasma and tissue levels of BCAAs are increased in breast cancer, which is accompanied by the elevated expression of the catabolic enzymes, including branched-chain amino acid transaminase 1 (BCAT1). Knockdown of BCAT1 represses the growth rate and colony formation capacity of breast cancer cells, opposing results are observed when BCAT1 is overexpressed. BCAT1 can promote mitochondrial biogenesis, ATP production and repress mitochondrial ROS in breast cancer cells by regulating the expression of related genes. Mechanism study reveals that BCAT1 activates the mTOR, but not AMPK or SIRT1, signaling to promote mitochondrial biogenesis and function, and subsequently facilitates growth and colony formation of breast cancer cells. Taken together, we demonstrate that BCAA catabolism is activated in human breast cancer, and abolishment of BCAA catabolism by knocking down BCAT1 inhibits breast cancer cell growth by repressing mTOR-mediated mitochondrial biogenesis and function.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province 250000, China; Department of Clinical Oncology, Taian City Central Hospital, Taian, Shandong Province 271000, China
| | - Junqing Han
- Department of Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province 250000, China.
| |
Collapse
|
375
|
Li T, Zhang Z, Kolwicz SC, Abell L, Roe ND, Kim M, Zhou B, Cao Y, Ritterhoff J, Gu H, Raftery D, Sun H, Tian R. Defective Branched-Chain Amino Acid Catabolism Disrupts Glucose Metabolism and Sensitizes the Heart to Ischemia-Reperfusion Injury. Cell Metab 2017; 25:374-385. [PMID: 28178567 PMCID: PMC5301464 DOI: 10.1016/j.cmet.2016.11.005] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/26/2016] [Accepted: 11/09/2016] [Indexed: 02/05/2023]
Abstract
Elevated levels of branched-chain amino acids (BCAAs) have recently been implicated in the development of cardiovascular and metabolic diseases, but the molecular mechanisms are unknown. In a mouse model of impaired BCAA catabolism (knockout [KO]), we found that chronic accumulation of BCAAs suppressed glucose metabolism and sensitized the heart to ischemic injury. High levels of BCAAs selectively disrupted mitochondrial pyruvate utilization through inhibition of pyruvate dehydrogenase complex (PDH) activity. Furthermore, downregulation of the hexosamine biosynthetic pathway in KO hearts decreased protein O-linked N-acetylglucosamine (O-GlcNAc) modification and inactivated PDH, resulting in significant decreases in glucose oxidation. Although the metabolic remodeling in KO did not affect baseline cardiac energetics or function, it rendered the heart vulnerable to ischemia-reperfusion injury. Promoting BCAA catabolism or normalizing glucose utilization by overexpressing GLUT1 in the KO heart rescued the metabolic and functional outcome. These observations revealed a novel role of BCAA catabolism in regulating cardiac metabolism and stress response.
Collapse
Affiliation(s)
- Tao Li
- West China-Washington Mitochondria and Metabolism Center and Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PRC; Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Zhen Zhang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Stephen C Kolwicz
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Lauren Abell
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Nathan D Roe
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Maengjo Kim
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Bo Zhou
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Yang Cao
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Julia Ritterhoff
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Haiwei Gu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Daniel Raftery
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Haipeng Sun
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
376
|
Rom O, Aviram M. It is not just lipids: proatherogenic vs. antiatherogenic roles for amino acids in macrophage foam cell formation. Curr Opin Lipidol 2017; 28:85-87. [PMID: 28030455 DOI: 10.1097/mol.0000000000000377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Oren Rom
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
377
|
Liu P, Li R, Antonov AA, Wang L, Li W, Hua Y, Guo H, Wang L, Liu P, Chen L, Tian Y, Xu F, Zhang Z, Zhu Y, Huang Y. Discovery of Metabolite Biomarkers for Acute Ischemic Stroke Progression. J Proteome Res 2017; 16:773-779. [PMID: 28092160 DOI: 10.1021/acs.jproteome.6b00779] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stroke remains a major public health problem worldwide; it causes severe disability and is associated with high mortality rates. However, early diagnosis of stroke is difficult, and no reliable biomarkers are currently established. In this study, mass-spectrometry-based metabolomics was utilized to characterize the metabolic features of the serum of patients with acute ischemic stroke (AIS) to identify novel sensitive biomarkers for diagnosis and progression. First, global metabolic profiling was performed on a training set of 80 human serum samples (40 cases and 40 controls). The metabolic profiling identified significant alterations in a series of 26 metabolites with related metabolic pathways involving amino acid, fatty acid, phospholipid, and choline metabolism. Subsequently, multiple algorithms were run on a test set consisting of 49 serum samples (26 cases and 23 controls) to develop different classifiers for verifying and evaluating potential biomarkers. Finally, a panel of five differential metabolites, including serine, isoleucine, betaine, PC(5:0/5:0), and LysoPE(18:2), exhibited potential to differentiate AIS samples from healthy control samples, with area under the receiver operating characteristic curve values of 0.988 and 0.971 in the training and test sets, respectively. These findings provided insights for the development of new diagnostic tests and therapeutic approaches for AIS.
Collapse
Affiliation(s)
- Peifang Liu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University , Xuefu Road No. 246, Harbin 150001, China.,Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education , Xuefu Road No. 246, Harbin 150001, China
| | - Ruiting Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education , Tongjia Lane No. 24, Nanjing 210009, China
| | - Anton A Antonov
- Accendo Data LLC , Coral Springs, Florida 33067, United States
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University , Xuefu Road No. 246, Harbin 150001, China
| | - Wei Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education , Tongjia Lane No. 24, Nanjing 210009, China
| | - Yunfei Hua
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education , Tongjia Lane No. 24, Nanjing 210009, China
| | - Huimin Guo
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education , Tongjia Lane No. 24, Nanjing 210009, China
| | - Lijuan Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education , Tongjia Lane No. 24, Nanjing 210009, China
| | - Peijia Liu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University , Xuefu Road No. 246, Harbin 150001, China
| | - Lixia Chen
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University , Xuefu Road No. 246, Harbin 150001, China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education , Tongjia Lane No. 24, Nanjing 210009, China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education , Tongjia Lane No. 24, Nanjing 210009, China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education , Tongjia Lane No. 24, Nanjing 210009, China
| | - Yulan Zhu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University , Xuefu Road No. 246, Harbin 150001, China
| | - Yin Huang
- Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education , Xuefu Road No. 246, Harbin 150001, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education , Tongjia Lane No. 24, Nanjing 210009, China
| |
Collapse
|
378
|
Metabolic Modulators in Heart Disease: Past, Present, and Future. Can J Cardiol 2016; 33:838-849. [PMID: 28279520 DOI: 10.1016/j.cjca.2016.12.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 12/29/2022] Open
Abstract
Ischemic heart disease and heart failure are leading causes of mortality and morbidity worldwide. They continue to be major burden on health care systems throughout the world, despite major advances made over the past 40 years in developing new therapeutic approaches to treat these debilitating diseases. A potential therapeutic approach that has been underutilized in treating ischemic heart disease and heart failure is "metabolic modulation." Major alterations in myocardial energy substrate metabolism occur in ischemic heart disease and heart failure, and are associated with an energy deficit in the heart. A metabolic shift from mitochondrial oxidative metabolism to glycolysis, as well as an uncoupling between glycolysis and glucose oxidation, plays a crucial role in the development of cardiac inefficiency (oxygen consumed per work performed) and functional impairment in ischemic heart disease as well as in heart failure. This has led to the concept that optimizing energy substrate use with metabolic modulators can be a potentially promising approach to decrease the severity of ischemic heart disease and heart failure, primarily by improving cardiac efficiency. Two approaches for metabolic modulator therapy are to stimulate myocardial glucose oxidation and/or inhibit fatty acid oxidation. In this review, the past, present, and future of metabolic modulators as an approach to optimizing myocardial energy substrate metabolism and treating ischemic heart disease and heart failure are discussed. This includes a discussion of pharmacological interventions that target enzymes involved in fatty acid uptake, fatty acid oxidation, and glucose oxidation in the heart, as well as enzymes involved in ketone and branched chain amino acid catabolism in the heart.
Collapse
|
379
|
Lopaschuk GD, Ussher JR. Evolving Concepts of Myocardial Energy Metabolism. Circ Res 2016; 119:1173-1176. [DOI: 10.1161/circresaha.116.310078] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Gary D. Lopaschuk
- From the Cardiovascular Translational Science Institute (G.D.L., J.R.U.), Alberta Diabetes Institute (G.D.L., J.R.U.), Faculty of Pharmacy and Pharmaceutical Sciences (J.R.U.), and Department of Pediatrics (G.D.L.), University of Alberta, Edmonton, Canada
| | - John R. Ussher
- From the Cardiovascular Translational Science Institute (G.D.L., J.R.U.), Alberta Diabetes Institute (G.D.L., J.R.U.), Faculty of Pharmacy and Pharmaceutical Sciences (J.R.U.), and Department of Pediatrics (G.D.L.), University of Alberta, Edmonton, Canada
| |
Collapse
|
380
|
Dong W, Zhou M, Dong M, Pan B, Liu Y, Shao J, Gu X, Huang Y, Li G, Wang Y, Sun H. Keto acid metabolites of branched-chain amino acids inhibit oxidative stress-induced necrosis and attenuate myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 2016; 101:90-98. [PMID: 27832938 DOI: 10.1016/j.yjmcc.2016.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 01/06/2023]
Abstract
Branched chain α-keto acids (BCKAs) are endogenous metabolites of branched-chain amino acids (BCAAs). BCAA and BCKA are significantly elevated in pathologically stressed heart and contribute to chronic pathological remodeling and dysfunction. However, their direct impact on acute cardiac injury is unknown. Here, we demonstrated that elevated BCKAs significantly attenuated ischemia-reperfusion (I/R) injury and preserved post I/R function in isolated mouse hearts. BCKAs protected cardiomyocytes from oxidative stress-induced cell death in vitro. Mechanistically, BCKA protected oxidative stress induced cell death by inhibiting necrosis without affecting apoptosis or autophagy. Furthermore, BCKAs, but not BCAAs, protected mitochondria and energy production from oxidative injury. Finally, administration of BCKAs during reperfusion was sufficient to significantly attenuate cardiac I/R injury. These findings uncover an unexpected role of BCAA metabolites in cardioprotection against acute ischemia/reperfusion injury, and demonstrate the potential use of BCKA treatment to preserve ischemic tissue during reperfusion.
Collapse
Affiliation(s)
- Weibing Dong
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Meiyi Zhou
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mei Dong
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Bangfen Pan
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunxia Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Shao
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoping Gu
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Huang
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yibin Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Division of Molecular Medicine, Departments of Anesthesiology, Medicine and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Haipeng Sun
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Division of Molecular Medicine, Departments of Anesthesiology, Medicine and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
381
|
Lerin C, Goldfine AB, Boes T, Liu M, Kasif S, Dreyfuss JM, De Sousa-Coelho AL, Daher G, Manoli I, Sysol JR, Isganaitis E, Jessen N, Goodyear LJ, Beebe K, Gall W, Venditti CP, Patti ME. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism. Mol Metab 2016; 5:926-936. [PMID: 27689005 PMCID: PMC5034611 DOI: 10.1016/j.molmet.2016.08.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. METHODS To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (SI, 0.49 to 14.28). We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. RESULTS Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. CONCLUSIONS Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.
Collapse
Affiliation(s)
- Carles Lerin
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA; Endocrinology Department, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona 08950, Spain.
| | - Allison B Goldfine
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Tanner Boes
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Manway Liu
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Simon Kasif
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jonathan M Dreyfuss
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Ana Luisa De Sousa-Coelho
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Grace Daher
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Irini Manoli
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Justin R Sysol
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Elvira Isganaitis
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Niels Jessen
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | | | | | - Walt Gall
- Metabolon, Inc., Durham, NC 27723, USA
| | - Charles P Venditti
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mary-Elizabeth Patti
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
382
|
Guo X, Huang C, Lian K, Wang S, Zhao H, Yan F, Zhang X, Zhang J, Xie H, An R, Tao L. BCKA down-regulates mTORC2-Akt signal and enhances apoptosis susceptibility in cardiomyocytes. Biochem Biophys Res Commun 2016; 480:106-113. [PMID: 27697526 DOI: 10.1016/j.bbrc.2016.09.162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
Abstract
Diabetic mellitus (DM) portends poor prognosis concerning pressure overloaded heart disease. Branched-chain amino acids (BCAAs), elements of essential amino acids, have been found altered in its catabolism in diabetes decades ago. However, the relationship between BCAAs and DM induced deterioration of pressure overloaded heart disease remains controversial. This study is aimed to investigate the particular effect of BCKA, a metabolite of BCAA, on myocardial injury induced by pressure overloaded. Primary cardiomyocytes were incubated with or without BCKA and followed by treatment with isoproterenol (ISO); then cell viability was detected by CCK8 and apoptosis was examined by TUNNEL stain and caspase-3 activity analysis. Compared to non-BCKA incubated group, BCKA incubation decreased cell survival and increased apoptosis concentration dependently. Furthermore, Western blot assay showed that mTORC2-Akt pathway was significantly inactivated by BCKA incubation. Moreover, overexpression of rictor, a vital component of mTORC2, significantly abolished the adverse effects of BCKA on apoptosis susceptibility of cardiomyocytes. These results indicate that BCKA contribute to vulnerability of cardiomyocytes in stimulated stress via inactivation of mTORC2-Akt pathway.
Collapse
Affiliation(s)
- Xiong Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chong Huang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Kun Lian
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shan Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Feng Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaomeng Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jinglong Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Huaning Xie
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui An
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
383
|
Sun H, Wang Y. Branched chain amino acid metabolic reprogramming in heart failure. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2270-2275. [PMID: 27639835 DOI: 10.1016/j.bbadis.2016.09.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 01/12/2023]
Abstract
Metabolic remodeling is a hall-mark of cardiac maturation and pathology. The switch of substrate utilization from glucose to fatty acid is observed during post-natal maturation period in developing heart, but the process is reversed from fatty acids to glucose in the failing hearts across different clinic and experimental models. Majority of the current investigations have been focusing on the regulatory mechanism and functional impact of this metabolic reprogramming involving fatty acids and carbohydrates. Recent progress in metabolomics and transcriptomic analysis, however, revealed another significant remodeled metabolic branch associated with cardiac development and disease, i.e. Branched-Chain Amino Acid (BCAA) catabolism. These findings have established BCAA catabolic deficiency as a novel metabolic feature in failing hearts with potentially significant impact on the progression of pathological remodeling and dysfunction. In this review, we will evaluate the current evidence and potential implication of these discoveries in the context of heart diseases and novel therapies. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Haipeng Sun
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Departments of Anesthesiology, Physiology and Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Yibin Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Departments of Anesthesiology, Physiology and Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States.
| |
Collapse
|
384
|
Wang W, Zhang F, Xia Y, Zhao S, Yan W, Wang H, Lee Y, Li C, Zhang L, Lian K, Gao E, Cheng H, Tao L. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol 2016; 311:H1160-H1169. [PMID: 27542406 DOI: 10.1152/ajpheart.00114.2016] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/17/2016] [Indexed: 12/28/2022]
Abstract
Cardiac metabolic remodeling is a central event during heart failure (HF) development following myocardial infarction (MI). It is well known that myocardial glucose and fatty acid dysmetabolism contribute to post-MI cardiac dysfunction and remodeling. However, the role of amino acid metabolism in post-MI HF remains elusive. Branched chain amino acids (BCAAs) are an important group of essential amino acids and function as crucial nutrient signaling in mammalian animals. The present study aimed to determine the role of cardiac BCAA metabolism in post-MI HF progression. Utilizing coronary artery ligation-induced murine MI models, we found that myocardial BCAA catabolism was significantly impaired in response to permanent MI, therefore leading to an obvious elevation of myocardial BCAA abundance. In MI-operated mice, oral BCAA administration further increased cardiac BCAA levels, activated the mammalian target of rapamycin (mTOR) signaling, and exacerbated cardiac dysfunction and remodeling. These data demonstrate that BCAAs act as a direct contributor to post-MI cardiac pathologies. Furthermore, these BCAA-mediated deleterious effects were improved by rapamycin cotreatment, revealing an indispensable role of mTOR in BCAA-mediated adverse effects on cardiac function/structure post-MI. Of note, pharmacological inhibition of branched chain ketoacid dehydrogenase kinase (BDK), a negative regulator of myocardial BCAA catabolism, significantly improved cardiac BCAA catabolic disorders, reduced myocardial BCAA levels, and ameliorated post-MI cardiac dysfunction and remodeling. In conclusion, our data provide the evidence that impaired cardiac BCAA catabolism directly contributes to post-MI cardiac dysfunction and remodeling. Moreover, improving cardiac BCAA catabolic defects may be a promising therapeutic strategy against post-MI HF.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; and
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; and
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; and
| | - Shihao Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; and
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; and
| | - Helin Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; and
| | - Yan Lee
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; and
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; and
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; and
| | - Kun Lian
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; and
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania
| | - Hexiang Cheng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; and
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; and
| |
Collapse
|