351
|
Role of Protein Kinase C and Nox2-Derived Reactive Oxygen Species Formation in the Activation and Maturation of Dendritic Cells by Phorbol Ester and Lipopolysaccharide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4157213. [PMID: 28458776 PMCID: PMC5387830 DOI: 10.1155/2017/4157213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/25/2022]
Abstract
Aims. Activation/maturation of dendritic cells (DCs) plays a central role in adaptive immune responses by antigen processing and (cross-) activation of T cells. There is ongoing discussion on the role of reactive oxygen species (ROS) in these processes and with the present study we investigated this enigmatic pathway. Methods and Results. DCs were cultured from precursors in the bone marrow of mice (BM-DCs) and analyzed for ROS formation, maturation, and T cell stimulatory capacity upon stimulation with phorbol ester (PDBu) and lipopolysaccharide (LPS). LPS stimulation of BM-DCs caused maturation with moderate intracellular ROS formation, whereas PDBu treatment resulted in maturation with significant ROS formation. The NADPH oxidase inhibitors apocynin/VAS2870 and genetic gp91phox deletion both decreased the ROS signal in PDBu-stimulated BM-DCs without affecting maturation and T cell stimulatory capacity of BM-DCs. In contrast, the protein kinase C inhibitors chelerythrine/Gö6983 decreased PDBu-stimulated ROS formation in BM-DCs as well as maturation. Conclusion. Obviously Nox2-dependent ROS formation in BM-DCs is not always required for their maturation or T cell stimulatory potential. PDBu/LPS-triggered BM-DC maturation rather relies on phosphorylation cascades. Our results question the role of oxidative stress as an essential “danger signal” for BM-DC activation, although we cannot exclude contribution by other ROS sources.
Collapse
|
352
|
Abais-Battad JM, Dasinger JH, Fehrenbach DJ, Mattson DL. Novel adaptive and innate immunity targets in hypertension. Pharmacol Res 2017; 120:109-115. [PMID: 28336371 DOI: 10.1016/j.phrs.2017.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/03/2017] [Accepted: 03/17/2017] [Indexed: 01/11/2023]
Abstract
Hypertension is a worldwide epidemic and global health concern as it is a major risk factor for the development of cardiovascular diseases. A relationship between the immune system and its contributing role to the pathogenesis of hypertension has been long established, but substantial advancements within the last few years have dissected specific causal molecular mechanisms. This review will briefly examine these recent studies exploring the involvement of either innate or adaptive immunity pathways. Such pathways to be discussed include innate immunity factors such as antigen presenting cells and pattern recognition receptors, adaptive immune elements including T and B lymphocytes, and more specifically, the emerging role of T regulatory cells, as well as the potential of cytokines and chemokines to serve as signaling messengers connecting innate and adaptive immunity. Together, we summarize these studies to provide new perspective for what will hopefully lead to more targeted approaches to manipulate the immune system as hypertensive therapy.
Collapse
Affiliation(s)
| | | | | | - David L Mattson
- Department of Physiology, Medical College of Wisconsin, United States
| |
Collapse
|
353
|
Watanabe R, Zhang H, Berry G, Goronzy JJ, Weyand CM. Immune checkpoint dysfunction in large and medium vessel vasculitis. Am J Physiol Heart Circ Physiol 2017; 312:H1052-H1059. [PMID: 28314758 DOI: 10.1152/ajpheart.00024.2017] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/02/2017] [Accepted: 03/11/2017] [Indexed: 12/31/2022]
Abstract
Giant cell arteritis (GCA) is a granulomatous vasculitis of the aorta and its medium-sized branch vessels. CD4 T cells, macrophages, and dendritic cells (DCs) build granulomatous infiltrates that injure the vessel wall and elicit a maladaptive response to injury. Pathological consequences include fragmentation of elastic membranes, destruction of the medial layer, microvascular neoangiogenesis, massive outgrowth of myofibroblasts, and lumen-occlusive intimal hyperplasia. Antigens have been suspected to drive the local activation of vasculitogenic CD4 T cells, but recent data have suggested a more generalized defect in the threshold setting of such T cells, rendering them hyperreactive. Under physiological conditions, immune checkpoints provide negative signals to curb T cell activation and prevent inflammation-associated tissue destruction. This protective mechanism is disrupted in GCA. Vessel wall DCs fail to express the immunoinhibitory ligand programmed cell death ligand-1, leaving lesional T cells unchecked. Consequently, programmed cell death protein-1-positive CD4 T cells can enter the immunoprivileged vessel wall, where they produce a broad spectrum of inflammatory cytokines (interferon-γ, IL-17, and IL-21) and have a direct role in driving intimal hyperplasia and intramural neoangiogenesis. The deficiency of the programmed cell death protein-1 immune checkpoint in GCA, promoting unopposed T cell immunity, contrasts with checkpoint hyperactivity in cancer patients in whom excessive programmed cell death ligand-1 expression paralyzes the function of antitumor T cells. Excessive checkpoint activity is the principle underlying cancer-immune evasion and is therapeutically targeted by immunotherapy with checkpoint inhibitors. Such checkpoint inhibitors, which unleash anticancer T cells and induce immune-related toxicity, may lead to drug-induced vasculitis.
Collapse
Affiliation(s)
- Ryu Watanabe
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California; and
| | - Hui Zhang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California; and
| | - Gerald Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California; and
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California; and
| |
Collapse
|
354
|
Nosalski R, McGinnigle E, Siedlinski M, Guzik TJ. Novel Immune Mechanisms in Hypertension and Cardiovascular Risk. CURRENT CARDIOVASCULAR RISK REPORTS 2017; 11:12. [PMID: 28360962 PMCID: PMC5339316 DOI: 10.1007/s12170-017-0537-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Hypertension is a common disorder with substantial impact on public health due to highly elevated cardiovascular risk. The mechanisms still remain unclear and treatments are not sufficient to reduce risk in majority of patients. Inflammatory mechanisms may provide an important mechanism linking hypertension and cardiovascular risk. We aim to review newly identified immune and inflammatory mechanisms of hypertension with focus on their potential therapeutic impact. RECENT FINDINGS In addition to the established role of the vasculature, kidneys and central nervous system in pathogenesis of hypertension, low-grade inflammation contributes to this disorder as indicated by experimental models and GWAS studies pointing to SH2B3 immune gene as top key driver of hypertension. Immune responses in hypertension are greatly driven by neoantigens generated by oxidative stress and modulated by chemokines such as RANTES, IP-10 and microRNAs including miR-21 and miR-155 with other molecules under investigation. Cells of both innate and adoptive immune system infiltrate vasculature and kidneys, affecting their function by releasing pro-inflammatory mediators and reactive oxygen species. SUMMARY Immune and inflammatory mechanisms of hypertension provide a link between high blood pressure and increased cardiovascular risk, and reduction of blood pressure without attention to these underlying mechanisms is not sufficient to reduce risk.
Collapse
Affiliation(s)
- Ryszard Nosalski
- BHF Centre for Excellence Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland UK
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Eilidh McGinnigle
- BHF Centre for Excellence Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland UK
| | - Mateusz Siedlinski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz J. Guzik
- BHF Centre for Excellence Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland UK
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
355
|
The role of chemokines in hypertension and consequent target organ damage. Pharmacol Res 2017; 119:404-411. [PMID: 28279813 DOI: 10.1016/j.phrs.2017.02.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/25/2017] [Accepted: 02/06/2017] [Indexed: 12/22/2022]
Abstract
Immune cells infiltrate the kidney, vasculature, and central nervous system during hypertension, consequently amplifying tissue damage and/or blood pressure elevation. Mononuclear cell motility depends partly on chemokines, which are small cytokines that guide cells through an increasing concentration gradient via ligation of their receptors. Tissue expression of several chemokines is elevated in clinical and experimental hypertension. Likewise, immune cells have enhanced chemokine receptor expression during hypertension, driving immune cell infiltration and inappropriate inflammation in cardiovascular control centers. T lymphocytes and monocytes/macrophages are pivotal mediators of hypertensive inflammation, and these cells migrate in response to several chemokines. As powerful drivers of diapedesis, the chemokines CCL2 and CCL5 have long been implicated in hypertension, but experimental data highlight divergent, context-specific effects of these chemokines on blood pressure and tissue injury. Several other chemokines, particularly those of the CXC family, contribute to blood pressure elevation and target organ damage. Given the significant interplay and chemotactic redundancy among chemokines during disease, future work must not only describe the actions of individual chemokines in hypertension, but also characterize how manipulating a single chemokine modulates the expression and/or function of other chemokines and their cognate receptors. This information will facilitate the design of precise chemotactic immunotherapies to limit cardiovascular and renal morbidity in hypertensive patients.
Collapse
|
356
|
Choline ameliorates cardiovascular damage by improving vagal activity and inhibiting the inflammatory response in spontaneously hypertensive rats. Sci Rep 2017; 7:42553. [PMID: 28225018 PMCID: PMC5320519 DOI: 10.1038/srep42553] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/10/2017] [Indexed: 11/17/2022] Open
Abstract
Autonomic dysfunction and abnormal immunity lead to systemic inflammatory responses, which result in cardiovascular damage in hypertension. The aim of this report was to investigate the effects of choline on cardiovascular damage in hypertension. Eight-week-old male spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats were intraperitoneally injected with choline or vehicle (8 mg/kg/day). After 8 weeks, choline restored the cardiac function of the SHRs, as evidenced by decreased heart rate, systolic blood pressure, left ventricle systolic pressure, and ±dp/dtmax and increased ejection fraction and fractional shortening. Choline also ameliorated the cardiac hypertrophy of the SHRs, as indicated by reduced left ventricle internal dimensions and decreased cardiomyocyte cross-sectional area. Moreover, choline improved mesenteric arterial function and preserved endothelial ultrastructure in the SHRs. Notably, the protective effect of choline may be due to its anti-inflammatory effect. Choline downregulated expression of interleukin (IL)-6 and tumour necrosis factor-α and upregulated IL-10 in the mesenteric arteries of SHRs, possibly because of the inhibition of Toll-like receptor 4. Furthermore, choline restored baroreflex sensitivity and serum acetylcholine level in SHRs, thus indicating that choline improved vagal activity. This study suggests that choline elicits cardiovascular protective effects and may be useful as a potential adjunct therapeutic approach for hypertension.
Collapse
|
357
|
Förstermann U, Xia N, Li H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ Res 2017; 120:713-735. [DOI: 10.1161/circresaha.116.309326] [Citation(s) in RCA: 692] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/19/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022]
Abstract
Major reactive oxygen species (ROS)–producing systems in vascular wall include NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase, xanthine oxidase, the mitochondrial electron transport chain, and uncoupled endothelial nitric oxide (NO) synthase. ROS at moderate concentrations have important signaling roles under physiological conditions. Excessive or sustained ROS production, however, when exceeding the available antioxidant defense systems, leads to oxidative stress. Animal studies have provided compelling evidence demonstrating the roles of vascular oxidative stress and NO in atherosclerosis. All established cardiovascular risk factors such as hypercholesterolemia, hypertension, diabetes mellitus, and smoking enhance ROS generation and decrease endothelial NO production. Key molecular events in atherogenesis such as oxidative modification of lipoproteins and phospholipids, endothelial cell activation, and macrophage infiltration/activation are facilitated by vascular oxidative stress and inhibited by endothelial NO. Atherosclerosis develops preferentially in vascular regions with disturbed blood flow (arches, branches, and bifurcations). The fact that these sites are associated with enhanced oxidative stress and reduced endothelial NO production is a further indication for the roles of ROS and NO in atherosclerosis. Therefore, prevention of vascular oxidative stress and improvement of endothelial NO production represent reasonable therapeutic strategies in addition to the treatment of established risk factors (hypercholesterolemia, hypertension, and diabetes mellitus).
Collapse
Affiliation(s)
- Ulrich Förstermann
- From the Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany (U.F., N.X., H.L.); Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University Medical Center, Mainz, Germany (H.L.); and German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany (H.L.)
| | - Ning Xia
- From the Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany (U.F., N.X., H.L.); Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University Medical Center, Mainz, Germany (H.L.); and German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany (H.L.)
| | - Huige Li
- From the Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany (U.F., N.X., H.L.); Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University Medical Center, Mainz, Germany (H.L.); and German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany (H.L.)
| |
Collapse
|
358
|
Davies SS, Zhang LS. Reactive Carbonyl Species Scavengers-Novel Therapeutic Approaches for Chronic Diseases. ACTA ACUST UNITED AC 2017; 3:51-67. [PMID: 28993795 DOI: 10.1007/s40495-017-0081-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF THE REVIEW To summarize recent evidence supporting the use of reactive carbonyl species scavengers in the prevention and treatment of disease. RECENT FINDINGS The newly developed 2-aminomethylphenol class of scavengers shows great promise in preclinical trials for a number of diverse conditions including neurodegenerative diseases and cardiovascular disease. In addition, new studies with the thiol-based and imidazole-based scavengers have found new applications outside of adjunctive therapy for chemotherapeutics. SUMMARY Reactive oxygen species (ROS) generated by cells and tissues act as signaling molecules and as cytotoxic agents to defend against pathogens, but ROS also cause collateral damage to vital cellular components. The polyunsaturated fatty acyl chains of phospholipids in the cell membranes are particularly vulnerable to damaging peroxidation by ROS. Evidence suggests that the breakdown of these peroxidized lipids to reactive carbonyls species plays a critical role in many chronic diseases. Antioxidants that abrogate ROS-induced formation of reactive carbonyl species also abrogate normal ROS signaling and thus exert both beneficial and adverse functional effects. The use of scavengers of reactive dicarbonyl species represent an alternative therapeutic strategy to potentially mitigate the adverse effects of ROS without abrogating normal signaling by ROS. In this review, we focus on three classes of reactive carbonyl species scavengers: thiol-based scavengers (2-mercaptoethanesulfonate and amifostine), imidazole-based scavengers (carnosine and its analogs), and 2-aminomethylphenols-based scavengers (pyridoxamine, 2-hydroxybenzylamine, and 5'-O-pentyl-pyridoxamine) that are either undergoing pre-clinical studies, advancing to clinical trials, or are already in clinical use.
Collapse
Affiliation(s)
- Sean S Davies
- Department of Pharmacology and Division of Clinical Pharmacology, Vanderbilt University, 556 Robinson Research Building, 2220 Pierce Avenue, Nashville, TN 37232-6602
| | - Linda S Zhang
- Department of Pharmacology and Division of Clinical Pharmacology, Vanderbilt University, 556 Robinson Research Building, 2220 Pierce Avenue, Nashville, TN 37232-6602
| |
Collapse
|
359
|
Skiba DS, Nosalski R, Mikolajczyk TP, Siedlinski M, Rios FJ, Montezano AC, Jawien J, Olszanecki R, Korbut R, Czesnikiewicz-Guzik M, Touyz RM, Guzik TJ. Anti-atherosclerotic effect of the angiotensin 1-7 mimetic AVE0991 is mediated by inhibition of perivascular and plaque inflammation in early atherosclerosis. Br J Pharmacol 2017; 174:4055-4069. [PMID: 27935022 PMCID: PMC5659999 DOI: 10.1111/bph.13685] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Inflammation plays a key role in atherosclerosis. The protective role of angiotensin 1-7 (Ang-(1-7)) in vascular pathologies suggested the therapeutic use of low MW, non-peptide Ang-(1-7) mimetics, such as AVE0991. The mechanisms underlying the vaso-protective effects of AVE0991, a Mas receptor agonist, remain to be explored. EXPERIMENTAL APPROACH We investigated the effects of AVE0991 on the spontaneous atherosclerosis in apolipoprotein E (ApoE)-/- mice, in the context of vascular inflammation and plaque stability. KEY RESULTS AVE0991 has significant anti-atherosclerotic properties in ApoE-/- mice and increases plaque stability, by reducing plaque macrophage content, without effects on collagen. Using the descending aorta of chow-fed ApoE-/- mice, before significant atherosclerotic plaque develops, we gained insight to early events in atherosclerosis. Interestingly, perivascular adipose tissue (PVAT) and adventitial infiltration with macrophages and T-cells precedes atherosclerotic plaque or the impairment of endothelium-dependent NO bioavailability (a measure of endothelial function). AVE0991 inhibited perivascular inflammation, by reducing chemokine expression in PVAT and through direct actions on monocytes/macrophages inhibiting their activation, characterized by production of IL-1β, TNF-α, CCL2 and CXCL10, and differentiation to M1 phenotype. Pretreatment with AVE0991 inhibited migration of THP-1 monocytes towards supernatants of activated adipocytes (SW872). Mas receptors were expressed in PVAT and in THP-1 cells in vitro, and the anti-inflammatory effects of AVE0991 were partly Mas dependent. CONCLUSIONS AND IMPLICATIONS The selective Mas receptor agonist AVE0991 exhibited anti-atherosclerotic and anti-inflammatory actions, affecting monocyte/macrophage differentiation and recruitment to the perivascular space during early stages of atherosclerosis in ApoE-/- mice. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- D S Skiba
- Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - R Nosalski
- Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - T P Mikolajczyk
- Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - M Siedlinski
- Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland
| | - F J Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - A C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - J Jawien
- Department of Pharmacology, Jagiellonian University School of Medicine, Krakow, Poland
| | - R Olszanecki
- Department of Pharmacology, Jagiellonian University School of Medicine, Krakow, Poland
| | - R Korbut
- Department of Pharmacology, Jagiellonian University School of Medicine, Krakow, Poland
| | - M Czesnikiewicz-Guzik
- Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland
| | - R M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - T J Guzik
- Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| |
Collapse
|
360
|
Egnatchik RA, Brittain EL, Shah AT, Fares WH, Ford HJ, Monahan K, Kang CJ, Kocurek EG, Zhu S, Luong T, Nguyen TT, Hysinger E, Austin ED, Skala MC, Young JD, Roberts LJ, Hemnes AR, West J, Fessel JP. Dysfunctional BMPR2 signaling drives an abnormal endothelial requirement for glutamine in pulmonary arterial hypertension. Pulm Circ 2017; 7:186-199. [PMID: 28680578 PMCID: PMC5448547 DOI: 10.1086/690236] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/16/2016] [Indexed: 12/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is increasingly recognized as a systemic disease driven by alteration in the normal functioning of multiple metabolic pathways affecting all of the major carbon substrates, including amino acids. We found that human pulmonary hypertension patients (WHO Group I, PAH) exhibit systemic and pulmonary-specific alterations in glutamine metabolism, with the diseased pulmonary vasculature taking up significantly more glutamine than that of controls. Using cell culture models and transgenic mice expressing PAH-causing BMPR2 mutations, we found that the pulmonary endothelium in PAH shunts significantly more glutamine carbon into the tricarboxylic acid (TCA) cycle than wild-type endothelium. Increased glutamine metabolism through the TCA cycle is required by the endothelium in PAH to survive, to sustain normal energetics, and to manifest the hyperproliferative phenotype characteristic of disease. The strict requirement for glutamine is driven by loss of sirtuin-3 (SIRT3) activity through covalent modification by reactive products of lipid peroxidation. Using 2-hydroxybenzylamine, a scavenger of reactive lipid peroxidation products, we were able to preserve SIRT3 function, to normalize glutamine metabolism, and to prevent the development of PAH in BMPR2 mutant mice. In PAH, targeting glutamine metabolism and the mechanisms that underlie glutamine-driven metabolic reprogramming represent a viable novel avenue for the development of potentially disease-modifying therapeutics that could be rapidly translated to human studies.
Collapse
Affiliation(s)
- Robert A Egnatchik
- Children's Medical Center Research Institute, University of Texas Southwestern, Dallas, TX, USA.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Evan L Brittain
- Division of Cardiovascular Medicine and the Vanderbilt Translational and Clinical Cardiovascular Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amy T Shah
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Wassim H Fares
- Section of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Yale University, New Haven, CT, USA
| | - H James Ford
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Ken Monahan
- Division of Cardiovascular Medicine and the Vanderbilt Translational and Clinical Cardiovascular Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christie J Kang
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily G Kocurek
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shijun Zhu
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thong Luong
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thuy T Nguyen
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Erik Hysinger
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric D Austin
- Division of Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melissa C Skala
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - L Jackson Roberts
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James West
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua P Fessel
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
361
|
Singh MV. Toll-Like Receptors, Hypertension, and an Antimalarial Drug. Am J Hypertens 2017; 30:118-119. [PMID: 27702749 DOI: 10.1093/ajh/hpw128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/27/2022] Open
Affiliation(s)
- Madhu V Singh
- Department of Internal Medicine and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
362
|
Furman D, Chang J, Lartigue L, Bolen CR, Haddad F, Gaudilliere B, Ganio EA, Fragiadakis GK, Spitzer MH, Douchet I, Daburon S, Moreau JF, Nolan GP, Blanco P, Déchanet-Merville J, Dekker CL, Jojic V, Kuo CJ, Davis MM, Faustin B. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat Med 2017; 23:174-184. [PMID: 28092664 DOI: 10.1038/nm.4267] [Citation(s) in RCA: 300] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022]
Abstract
Low-grade, chronic inflammation has been associated with many diseases of aging, but the mechanisms responsible for producing this inflammation remain unclear. Inflammasomes can drive chronic inflammation in the context of an infectious disease or cellular stress, and they trigger the maturation of interleukin-1β (IL-1β). Here we find that the expression of specific inflammasome gene modules stratifies older individuals into two extremes: those with constitutive expression of IL-1β, nucleotide metabolism dysfunction, elevated oxidative stress, high rates of hypertension and arterial stiffness; and those without constitutive expression of IL-1β, who lack these characteristics. Adenine and N4-acetylcytidine, nucleotide-derived metabolites that are detectable in the blood of the former group, prime and activate the NLRC4 inflammasome, induce the production of IL-1β, activate platelets and neutrophils and elevate blood pressure in mice. In individuals over 85 years of age, the elevated expression of inflammasome gene modules was associated with all-cause mortality. Thus, targeting inflammasome components may ameliorate chronic inflammation and various other age-associated conditions.
Collapse
Affiliation(s)
- David Furman
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA.,Department of Systems Biology, Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Junlei Chang
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
| | - Lydia Lartigue
- INSERM U916 VINCO, Institut Bergonié, Bordeaux Cedex, France
| | - Christopher R Bolen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - François Haddad
- Institute of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Brice Gaudilliere
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Edward A Ganio
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Gabriela K Fragiadakis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew H Spitzer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Isabelle Douchet
- CIRID, UMR CNRS 5164, Université Bordeaux 2, Bordeaux Cedex, France
| | - Sophie Daburon
- CIRID, UMR CNRS 5164, Université Bordeaux 2, Bordeaux Cedex, France
| | | | - Garry P Nolan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Patrick Blanco
- CIRID, UMR CNRS 5164, Université Bordeaux 2, Bordeaux Cedex, France
| | | | - Cornelia L Dekker
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, California, USA
| | - Vladimir Jojic
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin Faustin
- CIRID, UMR CNRS 5164, Université Bordeaux 2, Bordeaux Cedex, France
| |
Collapse
|
363
|
Bomfim GF, Rodrigues FL, Carneiro FS. Are the innate and adaptive immune systems setting hypertension on fire? Pharmacol Res 2017; 117:377-393. [PMID: 28093357 DOI: 10.1016/j.phrs.2017.01.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/06/2016] [Accepted: 01/09/2017] [Indexed: 02/08/2023]
Abstract
Hypertension is the most common chronic cardiovascular disease and is associated with several pathological states, being an important cause of morbidity and mortality around the world. Low-grade inflammation plays a key role in hypertension and the innate and adaptive immune systems seem to contribute to hypertension development and maintenance. Hypertension is associated with vascular inflammation, increased vascular cytokines levels and infiltration of immune cells in the vasculature, kidneys and heart. However, the mechanisms that trigger inflammation and immune system activation in hypertension are completely unknown. Cells from the innate immune system express pattern recognition receptors (PRR), which detect conserved pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) that induce innate effector mechanisms to produce endogenous signals, such as inflammatory cytokines and chemokines, to alert the host about danger. Additionally, antigen-presenting cells (APC) act as sentinels that are activated by PAMPs and DAMPs to sense the presence of the antigen/neoantigen, which ensues the adaptive immune system activation. In this context, different lymphocyte types are activated and contribute to inflammation and end-organ damage in hypertension. This review will focus on experimental and clinical evidence demonstrating the contribution of the innate and adaptive immune systems to the development of hypertension.
Collapse
Affiliation(s)
- Gisele F Bomfim
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop, MT, Brazil
| | - Fernanda Luciano Rodrigues
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
364
|
Meissner A, Miro F, Jiménez-Altayó F, Jurado A, Vila E, Planas AM. Sphingosine-1-phosphate signalling—a key player in the pathogenesis of Angiotensin II-induced hypertension. Cardiovasc Res 2017; 113:123-133. [DOI: 10.1093/cvr/cvw256] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/30/2016] [Accepted: 12/17/2016] [Indexed: 12/19/2022] Open
|
365
|
Thatcher SE. A Brief Introduction into the Renin-Angiotensin-Aldosterone System: New and Old Techniques. Methods Mol Biol 2017; 1614:1-19. [PMID: 28500591 DOI: 10.1007/978-1-4939-7030-8_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is a complex system of enzymes, receptors, and peptides that help to control blood pressure and fluid homeostasis. Techniques in studying the RAAS can be difficult due to such factors as peptide/enzyme stability and receptor localization. This paper gives a brief account of the different components of the RAAS and current methods in measuring each component. There is also a discussion of different methods in measuring stem and immune cells by flow cytometry, hypertension, atherosclerosis, oxidative stress, energy balance, and other RAAS-activated phenotypes. While studies on the RAAS have been performed for over 100 years, new techniques have allowed scientists to come up with new insights into this system. These techniques are detailed in this Methods in Molecular Biology Series and give students new to studying the RAAS the proper controls and technical details needed to perform each procedure.
Collapse
Affiliation(s)
- Sean E Thatcher
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Charles T. Wethington Bldg, 593, 900 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|
366
|
Longato L, Andreola F, Davies SS, Roberts JL, Fusai G, Pinzani M, Moore K, Rombouts K. Reactive gamma-ketoaldehydes as novel activators of hepatic stellate cells in vitro. Free Radic Biol Med 2017; 102:162-173. [PMID: 27890721 DOI: 10.1016/j.freeradbiomed.2016.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 11/28/2022]
Abstract
AIMS Products of lipid oxidation, such as 4-hydroxynonenal (4-HNE), are key activators of hepatic stellate cells (HSC) to a pro-fibrogenic phenotype. Isolevuglandins (IsoLG) are a family of acyclic γ-ketoaldehydes formed through oxidation of arachidonic acid or as by-products of the cyclooxygenase pathway. IsoLGs are highly reactive aldehydes which are efficient at forming protein adducts and cross-links at concentrations 100-fold lower than 4-hydroxynonenal. Since the contribution of IsoLGs to liver injury has not been studied, we synthesized 15-E2-IsoLG and used it to investigate whether IsoLG could induce activation of HSC. RESULTS Primary human HSC were exposed to 15-E2-IsoLG for up to 48h. Exposure to 5μM 15-E2-IsoLG in HSCs promoted cytotoxicity and apoptosis. At non-cytotoxic doses (50 pM-500nM) 15-E2-IsoLG promoted HSC activation, indicated by increased expression of α-SMA, sustained activation of ERK and JNK signaling pathways, and increased mRNA and/or protein expression of cytokines and chemokines, which was blocked by inhibitors of JNK and NF-kB. In addition, IsoLG promoted formation of reactive oxygen species, and induced an early activation of ER stress, followed by autophagy. Inhibition of autophagy partially reduced the pro-inflammatory effects of IsoLG, suggesting that it might serve as a cytoprotective response. INNOVATION This study is the first to describe the biological effects of IsoLG in primary HSC, the main drivers of hepatic fibrosis. CONCLUSIONS IsoLGs represent a newly identified class of activators of HSC in vitro, which are biologically active at concentrations as low as 500 pM, and are particularly effective at promoting a pro-inflammatory response and autophagy.
Collapse
Affiliation(s)
- Lisa Longato
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver & Digestive Health, University College of London, Royal Free, London, UK
| | - Sean S Davies
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jackson L Roberts
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Giuseppe Fusai
- Division of Surgery, University College London, Royal Free, London, UK
| | - Massimo Pinzani
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK
| | - Kevin Moore
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK
| | - Krista Rombouts
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK.
| |
Collapse
|
367
|
Abstract
It has become clear that reactive oxygen species (ROS) contribute to the development of hypertension via myriad effects. ROS are essential for normal cell function; however, they mediate pathologic changes in the brain, the kidney, and blood vessels that contribute to the genesis of chronic hypertension. There is also emerging evidence that ROS contribute to immune activation in hypertension. This article discusses these events and how they coordinate to contribute to hypertension and its consequent end-organ damage.
Collapse
Affiliation(s)
- Roxana Loperena
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2220 Pierce Drive, Room 536 Robinson Research Building, Nashville, TN 37232, USA
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, 2220 Pierce Drive, Room 536 Robinson Research Building, Nashville, TN 37232, USA.
| |
Collapse
|
368
|
Dixon KB, Davies SS, Kirabo A. Dendritic cells and isolevuglandins in immunity, inflammation, and hypertension. Am J Physiol Heart Circ Physiol 2016; 312:H368-H374. [PMID: 27986660 DOI: 10.1152/ajpheart.00603.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023]
Abstract
Hypertension is the major risk factor for morbidity and mortality from myocardial infarction, stroke, heart failure, and chronic kidney disease. Despite its importance, the pathogenesis of essential hypertension is poorly understood. During the past several years, it has become evident that T cells contribute to hypertension. Activated T cells accumulate in the perivascular space and the kidney and release cytokines that promote vascular dysfunction and end-organ damage. Although dendritic cells play a pivotal role in initiating adaptive immune responses, T cells have taken center stage in studies implicating the immune system in the genesis of hypertension. The mechanisms by which T cells are activated and the antigens involved are poorly understood. We recently showed that hypertension is associated with increased dendritic cell production of the TH17 polarizing cytokines, IL-6, IL-1β, and IL-23. This occurs in part by increased superoxide production via NADPH oxidase and protein modification by highly reactive isolevuglandins (IsoLGs). IsoLGs are produced via the isoprostane pathway of free radical-mediated lipid peroxidation and, when adducted to proteins, have the potential to act as neoantigens. In this review, we discuss recent advances in our understanding of the role of antigen-presenting dendritic cells in the pathophysiology of hypertension and highlight potential neoantigens that may contribute to this disease.
Collapse
Affiliation(s)
- Kala B Dixon
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sean S Davies
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; and
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; .,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville Tennessee
| |
Collapse
|
369
|
Abstract
PURPOSE OF REVIEW Hypertension is a leading cause of cardiovascular and renal morbidity, and mortality. Genome-wide association studies identified a single-nucleotide polymorphism in the gene SH2B3 encoding the lymphocyte adaptor protein, LNK, but, until recently, little was known about how LNK contributes to hypertension. This review summarizes recent work highlighting a central role for LNK in inflammation and hypertension. RECENT FINDINGS Using a systems biology approach that integrates genomic data with whole blood transcriptomic data and network modeling, LNK/SH2B3 was identified as a key driver gene for hypertension in humans. LNK is an intracellular adaptor protein expressed predominantly in hematopoietic and endothelial cells that negatively regulates cell proliferation and cytokine signaling. Genetic animal models with deletion or mutation of LNK revealed an important role for LNK in renal and vascular inflammation, glomerular injury, oxidative stress, interferon-γ production, and hypertension. Bone marrow transplantation experiments revealed that LNK in hematopoietic cells is primarily responsible for blood pressure regulation. SUMMARY LNK/SH2B3 is a key driver gene for human hypertension, and alteration of LNK in animal models has a profound effect on inflammation and hypertension. Thus, LNK is a potential therapeutic target for this disease and its devastating consequences.
Collapse
|
370
|
Stephenson E, Savvatis K, Mohiddin SA, Marelli-Berg FM. T-cell immunity in myocardial inflammation: pathogenic role and therapeutic manipulation. Br J Pharmacol 2016; 174:3914-3925. [PMID: 27590129 DOI: 10.1111/bph.13613] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 12/13/2022] Open
Abstract
T-cell-mediated immunity has been linked not only to a variety of heart diseases, including classic inflammatory diseases such as myocarditis and post-myocardial infarction (Dressler's) syndrome, but also to conditions without an obvious inflammatory component such as idiopathic dilated cardiomyopathy and hypertensive cardiomyopathy. It has been recently proposed that in all these conditions, the heart becomes the focus of T-cell-mediated autoimmune inflammation following ischaemic or infectious injury. For example, in acute myocarditis, an inflammatory disease of heart muscle, T-cell responses are thought to arise as a consequence of a viral infection. In a number of patients, persistent T-cell-mediated responses in acute viral myocarditis can lead to autoimmunity and chronic cardiac inflammation resulting in dilated cardiomyopathy. In spite of the major progress made in understanding the mechanisms of pathogenic T-cell responses, effective and safe therapeutic targeting of the immune system in chronic inflammatory diseases of the heart has not yet been developed due to the lack of specific diagnostic and prognostic biomarkers at an early stage. This has also prevented the identification of targets for patient-tailored immunomodulatory therapies that are both disease- and organ-selective. In this review, we discuss current knowledge of the development and functional characteristics of pathogenic T-cell-mediated immune responses in the heart, and, in particular, in myocarditis, as well as recent advances in experimental models which have the potential to translate into heart-selective immunomodulation. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- E Stephenson
- William Harvey Research Institute, London, UK.,Barts and The London School of Medicine, London, UK
| | - K Savvatis
- William Harvey Research Institute, London, UK.,Barts and The London School of Medicine, London, UK.,Department of Cardiology, Barts Heart Centre, St. Bartholomew NHS Trust, London, UK
| | - S A Mohiddin
- William Harvey Research Institute, London, UK.,Barts and The London School of Medicine, London, UK.,Department of Cardiology, Barts Heart Centre, St. Bartholomew NHS Trust, London, UK
| | - F M Marelli-Berg
- William Harvey Research Institute, London, UK.,Barts and The London School of Medicine, London, UK
| |
Collapse
|
371
|
Affiliation(s)
- Kim Ramil C Montaniel
- From Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN (K.R.C.M.); and Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN (D.G.H.)
| | - David G Harrison
- From Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN (K.R.C.M.); and Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN (D.G.H.).
| |
Collapse
|
372
|
Abstract
PURPOSE OF REVIEW Immune mechanisms exacerbate the severity of hypertension in humans and animal models of disease. This review summarizes recent mechanistic studies exploring the pathways whereby immunity influences salt-sensitive hypertension and renal disease. RECENT FINDINGS Emphasis is placed on the role of T cell subtypes, the mechanisms of T-cell activation, and the identification of potential antigens or neoantigens. SUMMARY Significant advancements have occurred in the search for pathways which activate the adaptive immune response. An enhanced understanding of the factors contributing to hypertension can lead to better therapies.
Collapse
|
373
|
Crowley SD, Jeffs AD. Targeting cytokine signaling in salt-sensitive hypertension. Am J Physiol Renal Physiol 2016; 311:F1153-F1158. [PMID: 27558557 DOI: 10.1152/ajprenal.00273.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/17/2016] [Indexed: 12/22/2022] Open
Abstract
Activated immune cell populations contribute to hypertension in part through inciting damage to the kidney and by provoking inappropriate sodium reabsorption in the nephron. Inflammatory mediators called cytokines produced by T lymphocytes and macrophages act on specific sodium transporters in the kidney, augmenting their activity or expression, with consequent expansion of intravascular fluid volume and cardiac output. The overlapping functions of these cytokines, each of which may activate multiple receptors, present challenges in precisely targeting inflammatory signaling cascades in hypertension. Moreover, broad immune suppression could expose the hypertensive patient to disproportional risks of infection or malignancy. Nevertheless, the possibility that incisive immunomodulatory therapies could provide cardiovascular and renal protection through both blood pressure-dependent and -independent mechanisms justifies comprehensive investigation into the relevant signaling pathways and tissue sites in which inflammatory cytokines function to exaggerate blood pressure elevation and target organ damage in hypertension.
Collapse
Affiliation(s)
- Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| | - Alexander D Jeffs
- Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| |
Collapse
|
374
|
Griendling KK, Touyz RM, Zweier JL, Dikalov S, Chilian W, Chen YR, Harrison DG, Bhatnagar A. Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association. Circ Res 2016; 119:e39-75. [PMID: 27418630 PMCID: PMC5446086 DOI: 10.1161/res.0000000000000110] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species and reactive nitrogen species are biological molecules that play important roles in cardiovascular physiology and contribute to disease initiation, progression, and severity. Because of their ephemeral nature and rapid reactivity, these species are difficult to measure directly with high accuracy and precision. In this statement, we review current methods for measuring these species and the secondary products they generate and suggest approaches for measuring redox status, oxidative stress, and the production of individual reactive oxygen and nitrogen species. We discuss the strengths and limitations of different methods and the relative specificity and suitability of these methods for measuring the concentrations of reactive oxygen and reactive nitrogen species in cells, tissues, and biological fluids. We provide specific guidelines, through expert opinion, for choosing reliable and reproducible assays for different experimental and clinical situations. These guidelines are intended to help investigators and clinical researchers avoid experimental error and ensure high-quality measurements of these important biological species.
Collapse
|
375
|
Rudemiller NP, Crowley SD. Interactions Between the Immune and the Renin-Angiotensin Systems in Hypertension. Hypertension 2016; 68:289-96. [PMID: 27354427 PMCID: PMC4945449 DOI: 10.1161/hypertensionaha.116.06591] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nathan P Rudemiller
- From the Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, NC
| | - Steven D Crowley
- From the Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, NC.
| |
Collapse
|
376
|
Caillon A, Schiffrin EL. Role of Inflammation and Immunity in Hypertension: Recent Epidemiological, Laboratory, and Clinical Evidence. Curr Hypertens Rep 2016; 18:21. [PMID: 26846785 DOI: 10.1007/s11906-016-0628-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Inflammation has been shown to play an important role in the mechanisms involved in the pathogenesis of hypertension. Accordingly, innate and adaptive immune responses participate in blood pressure elevation. Here, we describe recent immunity studies focusing on novel inflammatory mechanisms during the hypertensive process. Different subpopulations of cells involved in innate and adaptive immune responses, such as monocyte/macrophages and dendritic cells on the one hand and B and T lymphocytes on the other hand, play roles leading to vascular injury in hypertension. Innate lymphoid cells, including natural killer cells and γ/δ T cells, have recently been demonstrated to participate in hypertensive mechanisms triggering vascular inflammation. In summary, we discuss the evidence of interaction of these different inflammatory and immune components in both experimental models and in humans during the development of hypertension.
Collapse
Affiliation(s)
- Antoine Caillon
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Rd., Montreal, QC, Canada, H3T 1E2.
| | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Rd., Montreal, QC, Canada, H3T 1E2. .,Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, #B-127, 3755 Côte-Ste-Catherine Rd., Montreal, QC, Canada, H3T 1E2.
| |
Collapse
|
377
|
Wang H, Kwak D, Fassett J, Hou L, Xu X, Burbach BJ, Thenappan T, Xu Y, Ge JB, Shimizu Y, Bache RJ, Chen Y. CD28/B7 Deficiency Attenuates Systolic Overload-Induced Congestive Heart Failure, Myocardial and Pulmonary Inflammation, and Activated T Cell Accumulation in the Heart and Lungs. Hypertension 2016; 68:688-96. [PMID: 27432861 DOI: 10.1161/hypertensionaha.116.07579] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/09/2016] [Indexed: 11/16/2022]
Abstract
The inflammatory response regulates congestive heart failure (CHF) development. T cell activation plays an important role in tissue inflammation. We postulate that CD28 or B7 deficiency inhibits T cell activation and attenuates CHF development by reducing systemic, cardiac, and pulmonary inflammation. We demonstrated that chronic pressure overload-induced end-stage CHF in mice is characterized by profound accumulation of activated effector T cells (CD3(+)CD44(high) cells) in the lungs and a mild but significant increase of these cells in the heart. In knockout mice lacking either CD28 or B7, there was a dramatic reduction in the accumulation of activated effector T cells in both hearts and lungs of mice under control conditions and after transverse aortic constriction. CD28 or B7 knockout significantly attenuated transverse aortic constriction-induced CHF development, as indicated by less increase of heart and lung weight and less reduction of left ventricle contractility. CD28 or B7 knockout also significantly reduced transverse aortic constriction-induced CD45(+) leukocyte, T cell, and macrophage infiltration in hearts and lungs, lowered proinflammatory cytokine expression (such as tumor necrosis factor-α and interleukin-1β) in lungs. Furthermore, CD28/B7 blockade by CTLA4-Ig treatment (250 μg/mouse every 3 days) attenuated transverse aortic constriction-induced T cell activation, left ventricle hypertrophy, and left ventricle dysfunction. Our data indicate that CD28/B7 deficiency inhibits activated effector T cell accumulation, reduces myocardial and pulmonary inflammation, and attenuates the development of CHF. Our findings suggest that strategies targeting T cell activation may be useful in treating CHF.
Collapse
Affiliation(s)
- Huan Wang
- From the Cardiovascular Division and Lillehei Heart Institute (H.W., D.K., X.X., T.T., R.J.B., Y.C.) and Department of Laboratory Medicine and Pathology, Center for Immunology, Department of Medicine, Masonic Cancer Center (B.J.B., Y.S.), University of Minnesota Medical School, Minneapolis; Department of Pharmacology and Toxicology, University of Graz, Austria (J.F.); and Department of Cardiology, Shanghai Tenth People's Hospital of Tongji University, China (L.H., Y.X., J.-b.G.)
| | - Dongmin Kwak
- From the Cardiovascular Division and Lillehei Heart Institute (H.W., D.K., X.X., T.T., R.J.B., Y.C.) and Department of Laboratory Medicine and Pathology, Center for Immunology, Department of Medicine, Masonic Cancer Center (B.J.B., Y.S.), University of Minnesota Medical School, Minneapolis; Department of Pharmacology and Toxicology, University of Graz, Austria (J.F.); and Department of Cardiology, Shanghai Tenth People's Hospital of Tongji University, China (L.H., Y.X., J.-b.G.)
| | - John Fassett
- From the Cardiovascular Division and Lillehei Heart Institute (H.W., D.K., X.X., T.T., R.J.B., Y.C.) and Department of Laboratory Medicine and Pathology, Center for Immunology, Department of Medicine, Masonic Cancer Center (B.J.B., Y.S.), University of Minnesota Medical School, Minneapolis; Department of Pharmacology and Toxicology, University of Graz, Austria (J.F.); and Department of Cardiology, Shanghai Tenth People's Hospital of Tongji University, China (L.H., Y.X., J.-b.G.)
| | - Lei Hou
- From the Cardiovascular Division and Lillehei Heart Institute (H.W., D.K., X.X., T.T., R.J.B., Y.C.) and Department of Laboratory Medicine and Pathology, Center for Immunology, Department of Medicine, Masonic Cancer Center (B.J.B., Y.S.), University of Minnesota Medical School, Minneapolis; Department of Pharmacology and Toxicology, University of Graz, Austria (J.F.); and Department of Cardiology, Shanghai Tenth People's Hospital of Tongji University, China (L.H., Y.X., J.-b.G.)
| | - Xin Xu
- From the Cardiovascular Division and Lillehei Heart Institute (H.W., D.K., X.X., T.T., R.J.B., Y.C.) and Department of Laboratory Medicine and Pathology, Center for Immunology, Department of Medicine, Masonic Cancer Center (B.J.B., Y.S.), University of Minnesota Medical School, Minneapolis; Department of Pharmacology and Toxicology, University of Graz, Austria (J.F.); and Department of Cardiology, Shanghai Tenth People's Hospital of Tongji University, China (L.H., Y.X., J.-b.G.)
| | - Brandon J Burbach
- From the Cardiovascular Division and Lillehei Heart Institute (H.W., D.K., X.X., T.T., R.J.B., Y.C.) and Department of Laboratory Medicine and Pathology, Center for Immunology, Department of Medicine, Masonic Cancer Center (B.J.B., Y.S.), University of Minnesota Medical School, Minneapolis; Department of Pharmacology and Toxicology, University of Graz, Austria (J.F.); and Department of Cardiology, Shanghai Tenth People's Hospital of Tongji University, China (L.H., Y.X., J.-b.G.)
| | - Thenappan Thenappan
- From the Cardiovascular Division and Lillehei Heart Institute (H.W., D.K., X.X., T.T., R.J.B., Y.C.) and Department of Laboratory Medicine and Pathology, Center for Immunology, Department of Medicine, Masonic Cancer Center (B.J.B., Y.S.), University of Minnesota Medical School, Minneapolis; Department of Pharmacology and Toxicology, University of Graz, Austria (J.F.); and Department of Cardiology, Shanghai Tenth People's Hospital of Tongji University, China (L.H., Y.X., J.-b.G.)
| | - Yawei Xu
- From the Cardiovascular Division and Lillehei Heart Institute (H.W., D.K., X.X., T.T., R.J.B., Y.C.) and Department of Laboratory Medicine and Pathology, Center for Immunology, Department of Medicine, Masonic Cancer Center (B.J.B., Y.S.), University of Minnesota Medical School, Minneapolis; Department of Pharmacology and Toxicology, University of Graz, Austria (J.F.); and Department of Cardiology, Shanghai Tenth People's Hospital of Tongji University, China (L.H., Y.X., J.-b.G.)
| | - Jun-Bo Ge
- From the Cardiovascular Division and Lillehei Heart Institute (H.W., D.K., X.X., T.T., R.J.B., Y.C.) and Department of Laboratory Medicine and Pathology, Center for Immunology, Department of Medicine, Masonic Cancer Center (B.J.B., Y.S.), University of Minnesota Medical School, Minneapolis; Department of Pharmacology and Toxicology, University of Graz, Austria (J.F.); and Department of Cardiology, Shanghai Tenth People's Hospital of Tongji University, China (L.H., Y.X., J.-b.G.)
| | - Yoji Shimizu
- From the Cardiovascular Division and Lillehei Heart Institute (H.W., D.K., X.X., T.T., R.J.B., Y.C.) and Department of Laboratory Medicine and Pathology, Center for Immunology, Department of Medicine, Masonic Cancer Center (B.J.B., Y.S.), University of Minnesota Medical School, Minneapolis; Department of Pharmacology and Toxicology, University of Graz, Austria (J.F.); and Department of Cardiology, Shanghai Tenth People's Hospital of Tongji University, China (L.H., Y.X., J.-b.G.)
| | - Robert J Bache
- From the Cardiovascular Division and Lillehei Heart Institute (H.W., D.K., X.X., T.T., R.J.B., Y.C.) and Department of Laboratory Medicine and Pathology, Center for Immunology, Department of Medicine, Masonic Cancer Center (B.J.B., Y.S.), University of Minnesota Medical School, Minneapolis; Department of Pharmacology and Toxicology, University of Graz, Austria (J.F.); and Department of Cardiology, Shanghai Tenth People's Hospital of Tongji University, China (L.H., Y.X., J.-b.G.)
| | - Yingjie Chen
- From the Cardiovascular Division and Lillehei Heart Institute (H.W., D.K., X.X., T.T., R.J.B., Y.C.) and Department of Laboratory Medicine and Pathology, Center for Immunology, Department of Medicine, Masonic Cancer Center (B.J.B., Y.S.), University of Minnesota Medical School, Minneapolis; Department of Pharmacology and Toxicology, University of Graz, Austria (J.F.); and Department of Cardiology, Shanghai Tenth People's Hospital of Tongji University, China (L.H., Y.X., J.-b.G.).
| |
Collapse
|
378
|
Marvar PJ, Hendy EB, Cruise TD, Walas D, DeCicco D, Vadigepalli R, Schwaber JS, Waki H, Murphy D, Paton JFR. Systemic leukotriene B 4 receptor antagonism lowers arterial blood pressure and improves autonomic function in the spontaneously hypertensive rat. J Physiol 2016; 594:5975-5989. [PMID: 27230966 DOI: 10.1113/jp272065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/09/2016] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Evidence indicates an association between hypertension and chronic systemic inflammation in both human hypertension and experimental animal models. Previous studies in the spontaneously hypertensive rat (SHR) support a role for leukotriene B4 (LTB4 ), a potent chemoattractant involved in the inflammatory response, but its mode of action is poorly understood. In the SHR, we observed an increase in T cells and macrophages in the brainstem; in addition, gene expression profiling data showed that LTB4 production, degradation and downstream signalling in the brainstem of the SHR are dynamically regulated during hypertension. When LTB4 receptor 1 (BLT1) receptors were blocked with CP-105,696, arterial pressure was reduced in the SHR compared to the normotensive control and this reduction was associated with a significant decrease in systolic blood pressure (BP) indicators. These data provide new evidence for the role of LTB4 as an important neuro-immune pathway in the development of hypertension and therefore may serve as a novel therapeutic target for the treatment of neurogenic hypertension. ABSTRACT Accumulating evidence indicates an association between hypertension and chronic systemic inflammation in both human hypertension and experimental animal models. Previous studies in the spontaneously hypertensive rat (SHR) support a role for leukotriene B4 (LTB4 ), a potent chemoattractant involved in the inflammatory response. However, the mechanism for LTB4 -mediated inflammation in hypertension is poorly understood. Here we report in the SHR, increased brainstem infiltration of T cells and macrophages plus gene expression profiling data showing that LTB4 production, degradation and downstream signalling in the brainstem of the SHR are dynamically regulated during hypertension. Chronic blockade of the LTB4 receptor 1 (BLT1) receptor with CP-105,696, reduced arterial pressure in the SHR compared to the normotensive control and this reduction was associated with a significant decrease in low and high frequency spectra of systolic blood pressure, and an increase in spontaneous baroreceptor reflex gain (sBRG). These data provide new evidence for the role of LTB4 as an important neuro-immune pathway in the development of hypertension and therefore may serve as a novel therapeutic target for the treatment of neurogenic hypertension.
Collapse
Affiliation(s)
- Paul J Marvar
- Department of Pharmacology and Physiology Washington, The George Washington University School of Medical and Health Sciences, Washington, DC, USA
| | - Emma B Hendy
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Thomas D Cruise
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Dawid Walas
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Danielle DeCicco
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hidefumi Waki
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - David Murphy
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Dorothy Hodgkin Building, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Julian F R Paton
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
379
|
Laffer CL, Scott RC, Titze JM, Luft FC, Elijovich F. Hemodynamics and Salt-and-Water Balance Link Sodium Storage and Vascular Dysfunction in Salt-Sensitive Subjects. Hypertension 2016; 68:195-203. [PMID: 27160204 PMCID: PMC4900938 DOI: 10.1161/hypertensionaha.116.07289] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/05/2016] [Indexed: 01/13/2023]
Abstract
We investigated 24-hour hemodynamic changes produced by salt loading and depletion in 8 salt-sensitive (SS) and 13 salt-resistant (SR) normotensive volunteers. After salt loading, mean arterial pressure was higher in SS (96.5±2.8) than in SR (84.2±2.7 mm Hg), P<0.01, owing to higher total peripheral resistance in SS (1791±148) than in SR (1549±66 dyn*cm(-5)*s), P=0.05, whereas cardiac output was not different between groups (SS 4.5±0.3 versus SR 4.4±0.2 L/min, not significant). Following salt depletion, cardiac output was equally reduced in both groups. Total peripheral resistance increased 24±6% (P<0.001) in SR, whose mean arterial pressure remained unchanged. In contrast, total peripheral resistance did not change in SS (1±6%, not significant). Thus, their mean arterial pressure was reduced, abolishing the mean arterial pressure difference between groups. SS had higher E/e' ratios than SR in both phases of the protocol. In these 21 subjects and in 32 hypertensive patients, Na(+) balance was similar in SR and SS during salt loading or depletion. However, SR did not gain weight during salt retention (-158±250 g), whereas SS did (819±204), commensurate to iso-osmolar water retention. During salt depletion, SR lost the expected amount of weight for iso-osmolar Na(+) excretion, whereas SS lost a greater amount that failed to fully correct the fluid retention from the previous day. We conclude that SS are unable to modulate total peripheral resistance in response to salt depletion, mirroring their inability to vasodilate in response to salt loading. We suggest that differences in water balance between SS and SR indicate differences in salt-and-water storage in the interstitial compartment that may relate to vascular dysfunction in SS.
Collapse
Affiliation(s)
- Cheryl L Laffer
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (C.L.L., J.M.T., F.C.L., F.E.); Division of Cardiology, Scott and White Health Care, Texas A&M University, Temple (R.C.S.); and Experimental and Clinical Research Center, Max-Delbrück Center, and Charité Medical Faculty, Berlin, Germany (F.C.L.)
| | - Robert C Scott
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (C.L.L., J.M.T., F.C.L., F.E.); Division of Cardiology, Scott and White Health Care, Texas A&M University, Temple (R.C.S.); and Experimental and Clinical Research Center, Max-Delbrück Center, and Charité Medical Faculty, Berlin, Germany (F.C.L.)
| | - Jens M Titze
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (C.L.L., J.M.T., F.C.L., F.E.); Division of Cardiology, Scott and White Health Care, Texas A&M University, Temple (R.C.S.); and Experimental and Clinical Research Center, Max-Delbrück Center, and Charité Medical Faculty, Berlin, Germany (F.C.L.)
| | - Friedrich C Luft
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (C.L.L., J.M.T., F.C.L., F.E.); Division of Cardiology, Scott and White Health Care, Texas A&M University, Temple (R.C.S.); and Experimental and Clinical Research Center, Max-Delbrück Center, and Charité Medical Faculty, Berlin, Germany (F.C.L.)
| | - Fernando Elijovich
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (C.L.L., J.M.T., F.C.L., F.E.); Division of Cardiology, Scott and White Health Care, Texas A&M University, Temple (R.C.S.); and Experimental and Clinical Research Center, Max-Delbrück Center, and Charité Medical Faculty, Berlin, Germany (F.C.L.).
| |
Collapse
|
380
|
Batchu N, Hughson A, Wadosky KM, Morrell CN, Fowell DJ, Korshunov VA. Role of Axl in T-Lymphocyte Survival in Salt-Dependent Hypertension. Arterioscler Thromb Vasc Biol 2016; 36:1638-1646. [PMID: 27365404 PMCID: PMC5096552 DOI: 10.1161/atvbaha.116.307848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/20/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Survival of immune and nonimmune cells relies on Axl, a receptor tyrosine kinase, which is implicated in hypertension. Activated T lymphocytes are involved in regulation of high blood pressure. The goal of the study was to investigate the role of Axl in T-lymphocyte functions and its contribution to salt-dependent hypertension. APPROACH AND RESULTS We report increased apoptosis in peripheral blood from Axl(-/-) mice because of lower numbers of white blood cells mostly lymphocytes. In vitro studies showed modest reduction in interferon gamma production in Axl(-/-) type 1 T helper cells. Axl did not affect basic proliferation capacity or production of interleukin 4 in Axl(-/-) type 2 T helper cells. However, competitive repopulation of Axl(-/-) bone marrow or adoptive transfer of Axl(-/-) CD4(+) T cells to Rag1(-/-) mice showed robust effect of Axl on T lymphocyte expansion in vivo. Adoptive transfer of Axl(-/-) CD4(+) T cells was protective in a later phase of deoxycorticosterone-acetate and salt hypertension. Reduced numbers of CD4(+) T cells in circulation and in perivascular adventitia decreased vascular remodeling and increased vascular apoptosis in the late phase of hypertension. CONCLUSIONS These findings suggest that Axl is critical for survival of T lymphocytes, especially during vascular remodeling in hypertension.
Collapse
Affiliation(s)
- N Batchu
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Angie Hughson
- Department of Microbiology and Immunology and David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Kristine M Wadosky
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Craig N Morrell
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Deborah J Fowell
- Department of Microbiology and Immunology and David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Vyacheslav A Korshunov
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY USA.,Biomedical Genetics, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| |
Collapse
|
381
|
Oh YS, Appel LJ, Galis ZS, Hafler DA, He J, Hernandez AL, Joe B, Karumanchi SA, Maric-Bilkan C, Mattson D, Mehta NN, Randolph G, Ryan M, Sandberg K, Titze J, Tolunay E, Toney GM, Harrison DG. National Heart, Lung, and Blood Institute Working Group Report on Salt in Human Health and Sickness: Building on the Current Scientific Evidence. Hypertension 2016; 68:281-8. [PMID: 27324228 DOI: 10.1161/hypertensionaha.116.07415] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/27/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Young S Oh
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.).
| | - Lawrence J Appel
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Zorina S Galis
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - David A Hafler
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Jiang He
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Amanda L Hernandez
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Bina Joe
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - S Ananth Karumanchi
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Christine Maric-Bilkan
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - David Mattson
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Nehal N Mehta
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Gwendolyn Randolph
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Michael Ryan
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Kathryn Sandberg
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Jens Titze
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Eser Tolunay
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Glenn M Toney
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - David G Harrison
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| |
Collapse
|
382
|
Cytochrome P450 1B1 Contributes to the Development of Angiotensin II-Induced Aortic Aneurysm in Male Apoe(-/-) Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2204-2219. [PMID: 27301358 DOI: 10.1016/j.ajpath.2016.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 02/07/2023]
Abstract
Cytochrome P450 (CYP) 1B1 is implicated in vascular smooth muscle cell migration, proliferation, and hypertension. We assessed the contribution of CYP1B1 to angiotensin (Ang) II-induced abdominal aortic aneurysm (AAA). Male Apoe(-/-)/Cyp1b1(+/+) and Apoe(-/-)/Cyp1b1(-/-) mice were infused with Ang II or its vehicle for 4 weeks; another group of Apoe(-/-)/Cyp1b1(+/+) mice was coadministered the CYP1B1 inhibitor 2,3',4,5'-tetramethoxystilbene (TMS) every third day for 4 weeks. On day 28 of Ang II infusion, AAAs were analyzed by ultrasound and ex vivo by Vernier calipers, mice were euthanized, and tissues were harvested. Ang II produced AAAs in Apoe(-/-)/Cyp1b1(+/+) mice; mice treated with TMS or Apoe(-/-)/Cyp1b1(-/-) mice had reduced AAAs. Ang II enhanced infiltration of macrophages, T cells, and platelets and increased platelet-derived growth factor D, Pdgfrb, Itga2, and matrix metalloproteinases 2 and 9 expression in aortic lesions; these changes were inhibited in mice treated with TMS and in Apoe(-/-)/Cyp1b1(-/-) mice. Oxidative stress resulted in cyclooxygenase-2 expression in aortic lesions. These effects were minimized in Apoe(-/-)/Cyp1b1(+/+) mice treated with TMS and in Apoe(-/-)/Cyp1b1(-/-) mice and by concurrent treatment with the superoxide scavenger 4-hydroxyl-2,2,6,6-tetramethylpiperidine-1-oxyl. CYP1B1 contributed to the development of Ang II-induced AAA and associated pathogenic events in mice, likely by enhancing oxidative stress and associated signaling events. Thus, CYP1B1 may serve as a target for therapeutic agents for AAA in males.
Collapse
|
383
|
Itani HA, Dikalova AE, McMaster WG, Nazarewicz RR, Bikineyeva AT, Harrison DG, Dikalov SI. Mitochondrial Cyclophilin D in Vascular Oxidative Stress and Hypertension. Hypertension 2016; 67:1218-27. [PMID: 27067720 PMCID: PMC4865418 DOI: 10.1161/hypertensionaha.115.07085] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/08/2016] [Indexed: 12/20/2022]
Abstract
Vascular superoxide (O˙2 (-)) and inflammation contribute to hypertension. The mitochondria are an important source of O˙2 (-); however, the regulation of mitochondrial O˙2 (-) and the antihypertensive potential of targeting the mitochondria remain poorly defined. Angiotensin II and inflammatory cytokines, such as interleukin 17A and tumor necrosis factor-α (TNFα) significantly contribute to hypertension. We hypothesized that angiotensin II and cytokines co-operatively induce cyclophilin D (CypD)-dependent mitochondrial O˙2 (-) production in hypertension. We tested whether CypD inhibition attenuates endothelial oxidative stress and reduces hypertension. CypD depletion in CypD(-/-) mice prevents overproduction of mitochondrial O˙2 (-) in angiotensin II-infused mice, attenuates hypertension by 20 mm Hg, and improves vascular relaxation compared with wild-type C57Bl/6J mice. Treatment of hypertensive mice with the specific CypD inhibitor Sanglifehrin A reduces blood pressure by 28 mm Hg, inhibits production of mitochondrial O˙2 (-) by 40%, and improves vascular relaxation. Angiotensin II-induced hypertension was associated with CypD redox activation by S-glutathionylation, and expression of the mitochondria-targeted H2O2 scavenger, catalase, abolished CypD S-glutathionylation, prevented stimulation mitochondrial O˙2 (-), and attenuated hypertension. The functional role of cytokine-angiotensin II interplay was confirmed by co-operative stimulation of mitochondrial O˙2 (-) by 3-fold in cultured endothelial cells and impairment of aortic relaxation incubated with combination of angiotensin II, interleukin 17A, and tumor necrosis factor-α which was prevented by CypD depletion or expression of mitochondria-targeted SOD2 and catalase. These data support a novel role of CypD in hypertension and demonstrate that targeting CypD decreases mitochondrial O˙2 (-), improves vascular relaxation, and reduces hypertension.
Collapse
Affiliation(s)
- Hana A Itani
- From the Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Anna E Dikalova
- From the Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - William G McMaster
- From the Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Rafal R Nazarewicz
- From the Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Alfiya T Bikineyeva
- From the Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - David G Harrison
- From the Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Sergey I Dikalov
- From the Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
384
|
Itani HA, McMaster WG, Saleh MA, Nazarewicz RR, Mikolajczyk TP, Kaszuba AM, Konior A, Prejbisz A, Januszewicz A, Norlander AE, Chen W, Bonami RH, Marshall AF, Poffenberger G, Weyand CM, Madhur MS, Moore DJ, Harrison DG, Guzik TJ. Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans. Hypertension 2016; 68:123-32. [PMID: 27217403 DOI: 10.1161/hypertensionaha.116.07237] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/29/2016] [Indexed: 01/11/2023]
Abstract
Emerging evidence supports an important role for T cells in the genesis of hypertension. Because this work has predominantly been performed in experimental animals, we sought to determine whether human T cells are activated in hypertension. We used a humanized mouse model in which the murine immune system is replaced by the human immune system. Angiotensin II increased systolic pressure to 162 versus 116 mm Hg for sham-treated animals. Flow cytometry of thoracic lymph nodes, thoracic aorta, and kidney revealed increased infiltration of human leukocytes (CD45(+)) and T lymphocytes (CD3(+) and CD4(+)) in response to angiotensin II infusion. Interestingly, there was also an increase in the memory T cells (CD3(+)/CD45RO(+)) in the aortas and lymph nodes. Prevention of hypertension using hydralazine and hydrochlorothiazide prevented the accumulation of T cells in these tissues. Studies of isolated human T cells and monocytes indicated that angiotensin II had no direct effect on cytokine production by T cells or the ability of dendritic cells to drive T-cell proliferation. We also observed an increase in circulating interleukin-17A producing CD4(+) T cells and both CD4(+) and CD8(+) T cells that produce interferon-γ in hypertensive compared with normotensive humans. Thus, human T cells become activated and invade critical end-organ tissues in response to hypertension in a humanized mouse model. This response likely reflects the hypertensive milieu encountered in vivo and is not a direct effect of the hormone angiotensin II.
Collapse
Affiliation(s)
- Hana A Itani
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., W.G.M., M.A.S., A.E.N., W.C., M.S.M., D.G.H.), General Surgery (W.G.M.), Division of Rheumatology, Department of Medicine (R.H.B.), Division of Endocrinology and Diabetes, Department of Pediatrics (A.F.M., D.J.M.), Division of Endocrinology, Department of Medicine (G.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Divison of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, CA (R.R.N., C.M.W.); Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland (T.P.M., A.M.K., A.K., T.J.G.); Department of Hypertension, Institute of Cardiology, Warsaw, Poland (A.M.K., A.P., A.J.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (T.J.G.)
| | - William G McMaster
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., W.G.M., M.A.S., A.E.N., W.C., M.S.M., D.G.H.), General Surgery (W.G.M.), Division of Rheumatology, Department of Medicine (R.H.B.), Division of Endocrinology and Diabetes, Department of Pediatrics (A.F.M., D.J.M.), Division of Endocrinology, Department of Medicine (G.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Divison of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, CA (R.R.N., C.M.W.); Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland (T.P.M., A.M.K., A.K., T.J.G.); Department of Hypertension, Institute of Cardiology, Warsaw, Poland (A.M.K., A.P., A.J.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (T.J.G.)
| | - Mohamed A Saleh
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., W.G.M., M.A.S., A.E.N., W.C., M.S.M., D.G.H.), General Surgery (W.G.M.), Division of Rheumatology, Department of Medicine (R.H.B.), Division of Endocrinology and Diabetes, Department of Pediatrics (A.F.M., D.J.M.), Division of Endocrinology, Department of Medicine (G.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Divison of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, CA (R.R.N., C.M.W.); Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland (T.P.M., A.M.K., A.K., T.J.G.); Department of Hypertension, Institute of Cardiology, Warsaw, Poland (A.M.K., A.P., A.J.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (T.J.G.)
| | - Rafal R Nazarewicz
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., W.G.M., M.A.S., A.E.N., W.C., M.S.M., D.G.H.), General Surgery (W.G.M.), Division of Rheumatology, Department of Medicine (R.H.B.), Division of Endocrinology and Diabetes, Department of Pediatrics (A.F.M., D.J.M.), Division of Endocrinology, Department of Medicine (G.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Divison of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, CA (R.R.N., C.M.W.); Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland (T.P.M., A.M.K., A.K., T.J.G.); Department of Hypertension, Institute of Cardiology, Warsaw, Poland (A.M.K., A.P., A.J.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (T.J.G.)
| | - Tomasz P Mikolajczyk
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., W.G.M., M.A.S., A.E.N., W.C., M.S.M., D.G.H.), General Surgery (W.G.M.), Division of Rheumatology, Department of Medicine (R.H.B.), Division of Endocrinology and Diabetes, Department of Pediatrics (A.F.M., D.J.M.), Division of Endocrinology, Department of Medicine (G.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Divison of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, CA (R.R.N., C.M.W.); Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland (T.P.M., A.M.K., A.K., T.J.G.); Department of Hypertension, Institute of Cardiology, Warsaw, Poland (A.M.K., A.P., A.J.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (T.J.G.)
| | - Anna M Kaszuba
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., W.G.M., M.A.S., A.E.N., W.C., M.S.M., D.G.H.), General Surgery (W.G.M.), Division of Rheumatology, Department of Medicine (R.H.B.), Division of Endocrinology and Diabetes, Department of Pediatrics (A.F.M., D.J.M.), Division of Endocrinology, Department of Medicine (G.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Divison of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, CA (R.R.N., C.M.W.); Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland (T.P.M., A.M.K., A.K., T.J.G.); Department of Hypertension, Institute of Cardiology, Warsaw, Poland (A.M.K., A.P., A.J.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (T.J.G.)
| | - Anna Konior
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., W.G.M., M.A.S., A.E.N., W.C., M.S.M., D.G.H.), General Surgery (W.G.M.), Division of Rheumatology, Department of Medicine (R.H.B.), Division of Endocrinology and Diabetes, Department of Pediatrics (A.F.M., D.J.M.), Division of Endocrinology, Department of Medicine (G.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Divison of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, CA (R.R.N., C.M.W.); Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland (T.P.M., A.M.K., A.K., T.J.G.); Department of Hypertension, Institute of Cardiology, Warsaw, Poland (A.M.K., A.P., A.J.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (T.J.G.)
| | - Aleksander Prejbisz
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., W.G.M., M.A.S., A.E.N., W.C., M.S.M., D.G.H.), General Surgery (W.G.M.), Division of Rheumatology, Department of Medicine (R.H.B.), Division of Endocrinology and Diabetes, Department of Pediatrics (A.F.M., D.J.M.), Division of Endocrinology, Department of Medicine (G.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Divison of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, CA (R.R.N., C.M.W.); Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland (T.P.M., A.M.K., A.K., T.J.G.); Department of Hypertension, Institute of Cardiology, Warsaw, Poland (A.M.K., A.P., A.J.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (T.J.G.)
| | - Andrzej Januszewicz
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., W.G.M., M.A.S., A.E.N., W.C., M.S.M., D.G.H.), General Surgery (W.G.M.), Division of Rheumatology, Department of Medicine (R.H.B.), Division of Endocrinology and Diabetes, Department of Pediatrics (A.F.M., D.J.M.), Division of Endocrinology, Department of Medicine (G.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Divison of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, CA (R.R.N., C.M.W.); Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland (T.P.M., A.M.K., A.K., T.J.G.); Department of Hypertension, Institute of Cardiology, Warsaw, Poland (A.M.K., A.P., A.J.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (T.J.G.)
| | - Allison E Norlander
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., W.G.M., M.A.S., A.E.N., W.C., M.S.M., D.G.H.), General Surgery (W.G.M.), Division of Rheumatology, Department of Medicine (R.H.B.), Division of Endocrinology and Diabetes, Department of Pediatrics (A.F.M., D.J.M.), Division of Endocrinology, Department of Medicine (G.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Divison of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, CA (R.R.N., C.M.W.); Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland (T.P.M., A.M.K., A.K., T.J.G.); Department of Hypertension, Institute of Cardiology, Warsaw, Poland (A.M.K., A.P., A.J.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (T.J.G.)
| | - Wei Chen
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., W.G.M., M.A.S., A.E.N., W.C., M.S.M., D.G.H.), General Surgery (W.G.M.), Division of Rheumatology, Department of Medicine (R.H.B.), Division of Endocrinology and Diabetes, Department of Pediatrics (A.F.M., D.J.M.), Division of Endocrinology, Department of Medicine (G.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Divison of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, CA (R.R.N., C.M.W.); Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland (T.P.M., A.M.K., A.K., T.J.G.); Department of Hypertension, Institute of Cardiology, Warsaw, Poland (A.M.K., A.P., A.J.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (T.J.G.)
| | - Rachel H Bonami
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., W.G.M., M.A.S., A.E.N., W.C., M.S.M., D.G.H.), General Surgery (W.G.M.), Division of Rheumatology, Department of Medicine (R.H.B.), Division of Endocrinology and Diabetes, Department of Pediatrics (A.F.M., D.J.M.), Division of Endocrinology, Department of Medicine (G.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Divison of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, CA (R.R.N., C.M.W.); Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland (T.P.M., A.M.K., A.K., T.J.G.); Department of Hypertension, Institute of Cardiology, Warsaw, Poland (A.M.K., A.P., A.J.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (T.J.G.)
| | - Andrew F Marshall
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., W.G.M., M.A.S., A.E.N., W.C., M.S.M., D.G.H.), General Surgery (W.G.M.), Division of Rheumatology, Department of Medicine (R.H.B.), Division of Endocrinology and Diabetes, Department of Pediatrics (A.F.M., D.J.M.), Division of Endocrinology, Department of Medicine (G.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Divison of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, CA (R.R.N., C.M.W.); Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland (T.P.M., A.M.K., A.K., T.J.G.); Department of Hypertension, Institute of Cardiology, Warsaw, Poland (A.M.K., A.P., A.J.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (T.J.G.)
| | - Greg Poffenberger
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., W.G.M., M.A.S., A.E.N., W.C., M.S.M., D.G.H.), General Surgery (W.G.M.), Division of Rheumatology, Department of Medicine (R.H.B.), Division of Endocrinology and Diabetes, Department of Pediatrics (A.F.M., D.J.M.), Division of Endocrinology, Department of Medicine (G.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Divison of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, CA (R.R.N., C.M.W.); Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland (T.P.M., A.M.K., A.K., T.J.G.); Department of Hypertension, Institute of Cardiology, Warsaw, Poland (A.M.K., A.P., A.J.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (T.J.G.)
| | - Cornelia M Weyand
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., W.G.M., M.A.S., A.E.N., W.C., M.S.M., D.G.H.), General Surgery (W.G.M.), Division of Rheumatology, Department of Medicine (R.H.B.), Division of Endocrinology and Diabetes, Department of Pediatrics (A.F.M., D.J.M.), Division of Endocrinology, Department of Medicine (G.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Divison of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, CA (R.R.N., C.M.W.); Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland (T.P.M., A.M.K., A.K., T.J.G.); Department of Hypertension, Institute of Cardiology, Warsaw, Poland (A.M.K., A.P., A.J.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (T.J.G.)
| | - Meena S Madhur
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., W.G.M., M.A.S., A.E.N., W.C., M.S.M., D.G.H.), General Surgery (W.G.M.), Division of Rheumatology, Department of Medicine (R.H.B.), Division of Endocrinology and Diabetes, Department of Pediatrics (A.F.M., D.J.M.), Division of Endocrinology, Department of Medicine (G.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Divison of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, CA (R.R.N., C.M.W.); Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland (T.P.M., A.M.K., A.K., T.J.G.); Department of Hypertension, Institute of Cardiology, Warsaw, Poland (A.M.K., A.P., A.J.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (T.J.G.)
| | - Daniel J Moore
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., W.G.M., M.A.S., A.E.N., W.C., M.S.M., D.G.H.), General Surgery (W.G.M.), Division of Rheumatology, Department of Medicine (R.H.B.), Division of Endocrinology and Diabetes, Department of Pediatrics (A.F.M., D.J.M.), Division of Endocrinology, Department of Medicine (G.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Divison of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, CA (R.R.N., C.M.W.); Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland (T.P.M., A.M.K., A.K., T.J.G.); Department of Hypertension, Institute of Cardiology, Warsaw, Poland (A.M.K., A.P., A.J.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (T.J.G.)
| | - David G Harrison
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., W.G.M., M.A.S., A.E.N., W.C., M.S.M., D.G.H.), General Surgery (W.G.M.), Division of Rheumatology, Department of Medicine (R.H.B.), Division of Endocrinology and Diabetes, Department of Pediatrics (A.F.M., D.J.M.), Division of Endocrinology, Department of Medicine (G.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Divison of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, CA (R.R.N., C.M.W.); Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland (T.P.M., A.M.K., A.K., T.J.G.); Department of Hypertension, Institute of Cardiology, Warsaw, Poland (A.M.K., A.P., A.J.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (T.J.G.).
| | - Tomasz J Guzik
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., W.G.M., M.A.S., A.E.N., W.C., M.S.M., D.G.H.), General Surgery (W.G.M.), Division of Rheumatology, Department of Medicine (R.H.B.), Division of Endocrinology and Diabetes, Department of Pediatrics (A.F.M., D.J.M.), Division of Endocrinology, Department of Medicine (G.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Divison of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, CA (R.R.N., C.M.W.); Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland (T.P.M., A.M.K., A.K., T.J.G.); Department of Hypertension, Institute of Cardiology, Warsaw, Poland (A.M.K., A.P., A.J.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (T.J.G.)
| |
Collapse
|
385
|
Hypertension and immunity: mechanisms of T cell activation and pathways of hypertension. Curr Opin Nephrol Hypertens 2016; 24:470-4. [PMID: 26125645 DOI: 10.1097/mnh.0000000000000146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The role of immune mechanisms to amplify hypertension in patients and animal models has been appreciated for decades. This review briefly summarizes recent studies exploring the mechanistic pathways, whereby the immune system participates in hypertension and renal disease. RECENT FINDINGS Emphasis in this review is placed upon recent studies exploring the role of T cell subtypes, newly described mechanisms of T cell activation, the identification of potential neoantigens, and environmental influences on immune cell activation. SUMMARY Significant advancements have been made in the search for antigens and pathways responsible for activation of the adaptive immune response, furthering our understanding of the factors contributing to hypertension and potentially leading to the development of new and more effective therapies.
Collapse
|
386
|
Pingili AK, Thirunavukkarasu S, Kara M, Brand DD, Katsurada A, Majid DSA, Navar LG, Gonzalez FJ, Malik KU. 6β-Hydroxytestosterone, a Cytochrome P450 1B1-Testosterone-Metabolite, Mediates Angiotensin II-Induced Renal Dysfunction in Male Mice. Hypertension 2016; 67:916-26. [PMID: 26928804 PMCID: PMC4833582 DOI: 10.1161/hypertensionaha.115.06936] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/06/2016] [Indexed: 01/11/2023]
Abstract
6β-Hydroxytestosterone, a cytochrome P450 1B1-derived metabolite of testosterone, contributes to the development of angiotensin II-induced hypertension and associated cardiovascular pathophysiology. In view of the critical role of angiotensin II in the maintenance of renal homeostasis, development of hypertension, and end-organ damage, this study was conducted to determine the contribution of 6β-hydroxytestosterone to angiotensin II actions on water consumption and renal function in male Cyp1b1(+/+) and Cyp1b1(-/-) mice. Castration of Cyp1b1(+/+) mice or Cyp1b1(-/-) gene disruption minimized the angiotensin II-induced increase in water consumption, urine output, proteinuria, and sodium excretion and decreases in urine osmolality. 6β-Hydroxytestosterone did not alter angiotensin II-induced increases in water intake, urine output, proteinuria, and sodium excretion or decreases in osmolality in Cyp1b1(+/+) mice, but restored these effects of angiotensin II in Cyp1b1(-/-) or castrated Cyp1b1(+/+) mice. Cyp1b1 gene disruption or castration prevented angiotensin II-induced renal fibrosis, oxidative stress, inflammation, urinary excretion of angiotensinogen, expression of angiotensin II type 1 receptor, and angiotensin-converting enzyme. 6β-Hydroxytestosterone did not alter angiotensin II-induced renal fibrosis, inflammation, oxidative stress, urinary excretion of angiotensinogen, expression of angiotensin II type 1 receptor, or angiotensin-converting enzyme in Cyp1b1(+/+)mice. However, in Cyp1b1(-/-) or castrated Cyp1b1(+/+) mice, it restored these effects of angiotensin II. These data indicate that 6β-hydroxytestosterone contributes to increased thirst, impairment of renal function, and end-organ injury associated with angiotensin II-induced hypertension in male mice and that cytochrome P450 1B1 could serve as a novel target for treating renal disease and hypertension in male mice.
Collapse
Affiliation(s)
- Ajeeth K Pingili
- From the Department of Pharmacology (A.K.P., S.T., M.K., K.U.M.) and Department of Medicine and Microbiology, Immunology and Biochemistry (D.D.B.), College of Medicine, University of Tennessee Health Science Center, Memphis; Veterans Affairs Medical Center, Memphis, TN (D.D.B.); Tulane Hypertension and Renal Center of Excellence, Department of Physiology, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Shyamala Thirunavukkarasu
- From the Department of Pharmacology (A.K.P., S.T., M.K., K.U.M.) and Department of Medicine and Microbiology, Immunology and Biochemistry (D.D.B.), College of Medicine, University of Tennessee Health Science Center, Memphis; Veterans Affairs Medical Center, Memphis, TN (D.D.B.); Tulane Hypertension and Renal Center of Excellence, Department of Physiology, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Mehmet Kara
- From the Department of Pharmacology (A.K.P., S.T., M.K., K.U.M.) and Department of Medicine and Microbiology, Immunology and Biochemistry (D.D.B.), College of Medicine, University of Tennessee Health Science Center, Memphis; Veterans Affairs Medical Center, Memphis, TN (D.D.B.); Tulane Hypertension and Renal Center of Excellence, Department of Physiology, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - David D Brand
- From the Department of Pharmacology (A.K.P., S.T., M.K., K.U.M.) and Department of Medicine and Microbiology, Immunology and Biochemistry (D.D.B.), College of Medicine, University of Tennessee Health Science Center, Memphis; Veterans Affairs Medical Center, Memphis, TN (D.D.B.); Tulane Hypertension and Renal Center of Excellence, Department of Physiology, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Akemi Katsurada
- From the Department of Pharmacology (A.K.P., S.T., M.K., K.U.M.) and Department of Medicine and Microbiology, Immunology and Biochemistry (D.D.B.), College of Medicine, University of Tennessee Health Science Center, Memphis; Veterans Affairs Medical Center, Memphis, TN (D.D.B.); Tulane Hypertension and Renal Center of Excellence, Department of Physiology, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Dewan S A Majid
- From the Department of Pharmacology (A.K.P., S.T., M.K., K.U.M.) and Department of Medicine and Microbiology, Immunology and Biochemistry (D.D.B.), College of Medicine, University of Tennessee Health Science Center, Memphis; Veterans Affairs Medical Center, Memphis, TN (D.D.B.); Tulane Hypertension and Renal Center of Excellence, Department of Physiology, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - L Gabriel Navar
- From the Department of Pharmacology (A.K.P., S.T., M.K., K.U.M.) and Department of Medicine and Microbiology, Immunology and Biochemistry (D.D.B.), College of Medicine, University of Tennessee Health Science Center, Memphis; Veterans Affairs Medical Center, Memphis, TN (D.D.B.); Tulane Hypertension and Renal Center of Excellence, Department of Physiology, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Frank J Gonzalez
- From the Department of Pharmacology (A.K.P., S.T., M.K., K.U.M.) and Department of Medicine and Microbiology, Immunology and Biochemistry (D.D.B.), College of Medicine, University of Tennessee Health Science Center, Memphis; Veterans Affairs Medical Center, Memphis, TN (D.D.B.); Tulane Hypertension and Renal Center of Excellence, Department of Physiology, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Kafait U Malik
- From the Department of Pharmacology (A.K.P., S.T., M.K., K.U.M.) and Department of Medicine and Microbiology, Immunology and Biochemistry (D.D.B.), College of Medicine, University of Tennessee Health Science Center, Memphis; Veterans Affairs Medical Center, Memphis, TN (D.D.B.); Tulane Hypertension and Renal Center of Excellence, Department of Physiology, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD (F.J.G.).
| |
Collapse
|
387
|
Veeranki S, Gandhapudi SK, Tyagi SC. Interactions of hyperhomocysteinemia and T cell immunity in causation of hypertension. Can J Physiol Pharmacol 2016; 95:239-246. [PMID: 27398734 DOI: 10.1139/cjpp-2015-0568] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular diseases (CVD), there is a debate on whether HHcy is a risk factor or just a biomarker. Interestingly, homocysteine lowering strategies in humans had very little effect on reducing the cardiovascular risk, as compared with animals; this may suggest heterogeneity in human population and epigenetic alterations. Moreover, there are only few studies that suggest the idea that HHcy contributes to CVD in the presence of other risk factors such as inflammation, a known risk factor for CVD. Elevated levels of homocysteine have been shown to contribute to inflammation. Here, we highlight possible relationships between homocysteine, T cell immunity, and hypertension, and summarize the evidence that suggested these factors act together in increasing the risk for CVD. In light of this new evidence, we further propose that there is a need for evaluation of the causes of HHcy, defective remethylation or defective transsulfuration, which may differentially modulate hypertension progression, not just the homocysteine levels.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Physiology and Biophysics, Health Sciences Centre, A-1216, School of Medicine, University of Louisville, 500 South Pres Street, Louisville, KY, 40202, USA.,Department of Physiology and Biophysics, Health Sciences Centre, A-1216, School of Medicine, University of Louisville, 500 South Pres Street, Louisville, KY, 40202, USA
| | - Siva K Gandhapudi
- Department of Physiology and Biophysics, Health Sciences Centre, A-1216, School of Medicine, University of Louisville, 500 South Pres Street, Louisville, KY, 40202, USA.,Department of Physiology and Biophysics, Health Sciences Centre, A-1216, School of Medicine, University of Louisville, 500 South Pres Street, Louisville, KY, 40202, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, Health Sciences Centre, A-1216, School of Medicine, University of Louisville, 500 South Pres Street, Louisville, KY, 40202, USA.,Department of Physiology and Biophysics, Health Sciences Centre, A-1216, School of Medicine, University of Louisville, 500 South Pres Street, Louisville, KY, 40202, USA
| |
Collapse
|
388
|
Mont S, Davies SS, Roberts second LJ, Mernaugh RL, McDonald WH, Segal BH, Zackert W, Kropski JA, Blackwell TS, Sekhar KR, Galligan JJ, Massion PP, Marnett LJ, Travis EL, Freeman ML. Accumulation of isolevuglandin-modified protein in normal and fibrotic lung. Sci Rep 2016; 6:24919. [PMID: 27118599 PMCID: PMC4847119 DOI: 10.1038/srep24919] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/07/2016] [Indexed: 12/27/2022] Open
Abstract
Protein lysine modification by γ-ketoaldehyde isomers derived from arachidonic acid, termed isolevuglandins (IsoLGs), is emerging as a mechanistic link between pathogenic reactive oxygen species and disease progression. However, the questions of whether covalent modification of proteins by IsoLGs are subject to genetic regulation and the identity of IsoLG-modified proteins remain unclear. Herein we show that Nrf2 and Nox2 are key regulators of IsoLG modification in pulmonary tissue and report on the identity of proteins analyzed by LC-MS following immunoaffinity purification of IsoLG-modified proteins. Gene ontology analysis revealed that proteins in numerous cellular pathways are susceptible to IsoLG modification. Although cells tolerate basal levels of modification, exceeding them induces apoptosis. We found prominent modification in a murine model of radiation-induced pulmonary fibrosis and in idiopathic pulmonary fibrosis, two diseases considered to be promoted by gene-regulated oxidant stress. Based on these results we hypothesize that IsoLG modification is a hitherto unrecognized sequelae that contributes to radiation-induced pulmonary injury and IPF.
Collapse
Affiliation(s)
- Stacey Mont
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Sean S. Davies
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - L. Jackson Roberts second
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Raymond L. Mernaugh
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - W. Hayes McDonald
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37240, USA
- Proteomics Laboratory and Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Brahm H. Segal
- Department of Medicine, Department of Immunology, Roswell Park Cancer Institute, and University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, 14263, USA
| | - William Zackert
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Jonathan A. Kropski
- Division of Pulmonary & Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Timothy S. Blackwell
- Division of Pulmonary & Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Konjeti R. Sekhar
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - James J. Galligan
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Pierre P. Massion
- Division of Pulmonary & Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Lawrence J. Marnett
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37240, USA
- A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Elizabeth L. Travis
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Michael L. Freeman
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| |
Collapse
|
389
|
Weiss S, Rosendahl A, Czesla D, Meyer-Schwesinger C, Stahl RAK, Ehmke H, Kurts C, Zipfel PF, Köhl J, Wenzel UO. The complement receptor C5aR1 contributes to renal damage but protects the heart in angiotensin II-induced hypertension. Am J Physiol Renal Physiol 2016; 310:F1356-65. [PMID: 27053686 DOI: 10.1152/ajprenal.00040.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/03/2016] [Indexed: 01/04/2023] Open
Abstract
Adaptive and innate immune responses contribute to hypertension and hypertensive end-organ damage. Here, we determined the role of anaphylatoxin C5a, a major inflammatory effector of the innate immune system that is generated in response to complement activation, in hypertensive end-organ damage. For this purpose, we assessed the phenotype of C5a receptor 1 (C5aR1)-deficient mice in ANG II-induced renal and cardiac injury. Expression of C5aR1 on infiltrating and resident renal as well as cardiac cells was determined using a green fluorescent protein (GFP)-C5aR1 reporter knockin mouse. Flow cytometric analysis of leukocytes isolated from the kidney of GFP-C5aR1 reporter mice showed that 28% of CD45-positive cells expressed C5aR1. Dendritic cells were identified as the major C5aR1-expressing population (88.5%) followed by macrophages and neutrophils. Using confocal microscopy, we detected C5aR1 in the kidney mainly on infiltrating cells. In the heart, only infiltrating cells stained C5aR1 positive. To evaluate the role of C5aR1 deficiency in hypertensive injury, an aggravated model of hypertension was used. Unilateral nephrectomy was performed followed by infusion of ANG II (1.5 ng·g(-1)·min(-1)) and salt in wild-type (n = 34) and C5aR1-deficient mice (n = 32). C5aR1-deficient mice exhibited less renal injury, as evidenced by significantly reduced albuminuria. In contrast, cardiac injury was accelerated with significantly increased cardiac fibrosis and heart weight in C5aR1-deficient mice after ANG II infusion. No effect was found on blood pressure. In summary, the C5a:C5aR1 axis drives end-organ damage in the kidney but protects from the development of cardiac fibrosis and hypertrophy in experimental ANG II-induced hypertension.
Collapse
Affiliation(s)
- Sebastian Weiss
- Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Alva Rosendahl
- Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Czesla
- Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Rolf A K Stahl
- Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Heimo Ehmke
- Department of Cellular and Integrative Physiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Kurts
- Institutes of Molecular Medicine and Experimental Immunology, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Peter F Zipfel
- Leibniz Institute for Infection Biology, Hans-Knöll-Institute and Friedrich Schiller University, Jena, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, Lübeck, Germany, and Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ulrich O Wenzel
- Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany;
| |
Collapse
|
390
|
Dendritic Cells and Their Role in Cardiovascular Diseases: A View on Human Studies. J Immunol Res 2016; 2016:5946807. [PMID: 27088098 PMCID: PMC4818818 DOI: 10.1155/2016/5946807] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/22/2016] [Accepted: 02/22/2016] [Indexed: 02/07/2023] Open
Abstract
The antigen-presenting dendritic cells (DCs) are key to the immunological response, with different functions ascribed ranging from cellular immune activation to induction of tolerance. Such immunological responses are involved in the pathophysiological mechanisms of cardiovascular diseases, with DCs shown to play a role in atherosclerosis, hypertension, and heart failure and most notably following heart transplantation. A better understanding of the interplay between the immune system and cardiovascular diseases will therefore be critical for developing novel therapeutic treatments as well as innovative monitoring tools for disease progression. As such, the present review will provide an overview of DCs involvement in the pathophysiology of cardiovascular diseases and how targeting these cells may have beneficial effects for the prognosis of patients.
Collapse
|
391
|
Itani HA, Xiao L, Saleh MA, Wu J, Pilkinton MA, Dale BL, Barbaro NR, Foss JD, Kirabo A, Montaniel KR, Norlander AE, Chen W, Sato R, Navar LG, Mallal SA, Madhur MS, Bernstein KE, Harrison DG. CD70 Exacerbates Blood Pressure Elevation and Renal Damage in Response to Repeated Hypertensive Stimuli. Circ Res 2016; 118:1233-43. [PMID: 26988069 DOI: 10.1161/circresaha.115.308111] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/17/2016] [Indexed: 01/11/2023]
Abstract
RATIONALE Accumulating evidence supports a role of adaptive immunity and particularly T cells in the pathogenesis of hypertension. Formation of memory T cells, which requires the costimulatory molecule CD70 on antigen-presenting cells, is a cardinal feature of adaptive immunity. OBJECTIVE To test the hypothesis that CD70 and immunologic memory contribute to the blood pressure elevation and renal dysfunction mediated by repeated hypertensive challenges. METHODS AND RESULTS We imposed repeated hypertensive challenges using either N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME)/high salt or repeated angiotensin II stimulation in mice. During these challenges effector memory T cells (T(EM)) accumulated in the kidney and bone marrow. In the L-NAME/high-salt model, memory T cells of the kidney were predominant sources of interferon-γ and interleukin-17A, known to contribute to hypertension. L-NAME/high salt increased macrophage and dendritic cell surface expression of CD70 by 3- to 5-fold. Mice lacking CD70 did not accumulate T(EM) cells and did not develop hypertension to either high salt or the second angiotensin II challenge and were protected against renal damage. Bone marrow-residing T(EM) cells proliferated and redistributed to the kidney in response to repeated salt feeding. Adoptively transferred T(EM) cells from hypertensive mice homed to the bone marrow and spleen and expanded on salt feeding of the recipient mice. CONCLUSIONS Our findings illustrate a previously undefined role of CD70 and long-lived T(EM) cells in the development of blood pressure elevation and end-organ damage that occur on delayed exposure to mild hypertensive stimuli. Interventions to prevent repeated hypertensive surges could attenuate formation of hypertension-specific T(EM) cells.
Collapse
Affiliation(s)
- Hana A Itani
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Liang Xiao
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Mohamed A Saleh
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jing Wu
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Mark A Pilkinton
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Bethany L Dale
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Natalia R Barbaro
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jason D Foss
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Annet Kirabo
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Kim R Montaniel
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Allison E Norlander
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Wei Chen
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Ryosuke Sato
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - L Gabriel Navar
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Simon A Mallal
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Meena S Madhur
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Kenneth E Bernstein
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - David G Harrison
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA.
| |
Collapse
|
392
|
Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, Tian L, Harrison DG, Giacomini JC, Assimes TL, Goronzy JJ, Weyand CM. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med 2016; 213:337-54. [PMID: 26926996 PMCID: PMC4813677 DOI: 10.1084/jem.20150900] [Citation(s) in RCA: 403] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 02/01/2016] [Indexed: 12/25/2022] Open
Abstract
Abnormal glucose metabolism and enhanced oxidative stress accelerate cardiovascular disease, a chronic inflammatory condition causing high morbidity and mortality. Here, we report that in monocytes and macrophages of patients with atherosclerotic coronary artery disease (CAD), overutilization of glucose promotes excessive and prolonged production of the cytokines IL-6 and IL-1β, driving systemic and tissue inflammation. In patient-derived monocytes and macrophages, increased glucose uptake and glycolytic flux fuel the generation of mitochondrial reactive oxygen species, which in turn promote dimerization of the glycolytic enzyme pyruvate kinase M2 (PKM2) and enable its nuclear translocation. Nuclear PKM2 functions as a protein kinase that phosphorylates the transcription factor STAT3, thus boosting IL-6 and IL-1β production. Reducing glycolysis, scavenging superoxide and enforcing PKM2 tetramerization correct the proinflammatory phenotype of CAD macrophages. In essence, PKM2 serves a previously unidentified role as a molecular integrator of metabolic dysfunction, oxidative stress and tissue inflammation and represents a novel therapeutic target in cardiovascular disease.
Collapse
Affiliation(s)
- Tsuyoshi Shirai
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Rafal R Nazarewicz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305 Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Barbara B Wallis
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Rolando E Yanes
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Ryu Watanabe
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Marc Hilhorst
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Lu Tian
- Division of Biostatistics, Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - John C Giacomini
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Themistocles L Assimes
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
393
|
Mikolajczyk TP, Nosalski R, Szczepaniak P, Budzyn K, Osmenda G, Skiba D, Sagan A, Wu J, Vinh A, Marvar PJ, Guzik B, Podolec J, Drummond G, Lob HE, Harrison DG, Guzik TJ. Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension. FASEB J 2016; 30:1987-99. [PMID: 26873938 PMCID: PMC4836375 DOI: 10.1096/fj.201500088r] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 01/27/2016] [Indexed: 12/21/2022]
Abstract
Recent studies have emphasized the role of perivascular inflammation in cardiovascular disease. We studied mechanisms of perivascular leukocyte infiltration in angiotensin II (Ang II)-induced hypertension and their links to vascular dysfunction. Chronic Ang II infusion in mice increased immune cell content of T cells (255 ± 130 to 1664 ± 349 cells/mg; P < 0.01), M1 and M2 macrophages, and dendritic cells in perivascular adipose tissue. In particular, the content of T lymphocytes bearing CC chemokine receptor (CCR) 1, CCR3, and CCR5 receptors for RANTES chemokine was increased by Ang II (CCR1, 15.6 ± 1.5% vs. 31 ± 5%; P < 0.01). Hypertension was associated with an increase in perivascular adipose tissue expression of the chemokine RANTES (relative quantification, 1.2 ± 0.2 vs. 3.5 ± 1.1; P < 0.05), which induced T-cell chemotaxis and vascular accumulation of T cells expressing the chemokine receptors CCR1, CCR3, and CCR5. Mechanistically, RANTES−/− knockout protected against vascular leukocyte, and in particular T lymphocyte infiltration (26 ± 5% in wild type Ang II vs. 15 ± 4% in RANTES−/−), which was associated with protection from endothelial dysfunction induced by Ang II. This effect was linked with diminished infiltration of IFN-γ-producing CD8+ and double-negative CD3+CD4−CD8− T cells in perivascular space and reduced vascular oxidative stress while FoxP3+ T-regulatory cells were unaltered. IFN-γ ex vivo caused significant endothelial dysfunction, which was reduced by superoxide anion scavenging. In a human cohort, a significant inverse correlation was observed between circulating RANTES levels as a biomarker and vascular function measured as flow-mediated dilatation (R = −0.3, P < 0.01) or endothelial injury marker von Willebrand factor (R = +0.3; P < 0.01). Thus, chemokine RANTES is important in the regulation of vascular dysfunction through modulation of perivascular inflammation.—Mikolajczyk, T. P., Nosalski, R., Szczepaniak, P., Budzyn, K., Osmenda, G., Skiba, D., Sagan, A., Wu, J., Vinh, A., Marvar, P. J., Guzik, B., Podolec, J., Drummond, G., Lob, H. E., Harrison, D. G., Guzik, T. J. Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension.
Collapse
Affiliation(s)
- Tomasz P Mikolajczyk
- Department of Internal Medicine, Jagiellonian University, Cracow, Poland British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ryszard Nosalski
- Department of Internal Medicine, Jagiellonian University, Cracow, Poland British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Piotr Szczepaniak
- Department of Internal Medicine, Jagiellonian University, Cracow, Poland British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Klaudia Budzyn
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Grzegorz Osmenda
- Department of Internal Medicine, Jagiellonian University, Cracow, Poland
| | - Dominik Skiba
- Department of Internal Medicine, Jagiellonian University, Cracow, Poland British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Agnieszka Sagan
- Department of Internal Medicine, Jagiellonian University, Cracow, Poland British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jing Wu
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Antony Vinh
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Paul J Marvar
- Department of Pharmacology and Physiology, George Washington University, Washington, D.C., USA
| | - Bartlomiej Guzik
- Department of Internal Medicine, Jagiellonian University, Cracow, Poland
| | - Jakub Podolec
- Department of Internal Medicine, Jagiellonian University, Cracow, Poland
| | - Grant Drummond
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Heinrich E Lob
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tomasz J Guzik
- Department of Internal Medicine, Jagiellonian University, Cracow, Poland British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
394
|
Zhang J, Rudemiller NP, Patel MB, Karlovich NS, Wu M, McDonough AA, Griffiths R, Sparks MA, Jeffs AD, Crowley SD. Interleukin-1 Receptor Activation Potentiates Salt Reabsorption in Angiotensin II-Induced Hypertension via the NKCC2 Co-transporter in the Nephron. Cell Metab 2016; 23:360-8. [PMID: 26712462 PMCID: PMC4749461 DOI: 10.1016/j.cmet.2015.11.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/26/2015] [Accepted: 11/17/2015] [Indexed: 01/13/2023]
Abstract
Hypertension is among the most prevalent and catastrophic chronic diseases worldwide. While the efficacy of renin angiotensin system (RAS) blockade in lowering blood pressure illustrates that the RAS is broadly activated in human hypertension, the frequent failure of RAS inhibition to prevent or reverse hypertensive organ damage highlights the need for novel therapies to combat RAS-dependent hypertension. We previously discovered elevated levels of the macrophage cytokine IL-1 in the kidney in a murine model of RAS-mediated hypertension. Here we report that IL-1 receptor (IL-1R1) deficiency or blockade limits blood pressure elevation in this model by mitigating sodium reabsorption via the NKCC2 co-transporter in the nephron. In this setting, IL-1R1 activation prevents intra-renal myeloid cells from maturing into Ly6C(+)Ly6G(-) macrophages that elaborate nitric oxide, a natriuretic hormone that suppresses NKCC2 activity. By revealing how the innate immune system regulates tubular sodium transport, these experiments should lead to new immunomodulatory anti-hypertensive therapies.
Collapse
Affiliation(s)
- Jiandong Zhang
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | - Nathan P Rudemiller
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | - Mehul B Patel
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | - Norah S Karlovich
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | - Min Wu
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | - Alicia A McDonough
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Robert Griffiths
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | - Alexander D Jeffs
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA.
| |
Collapse
|
395
|
de Faria AP, Ritter AMV, Sabbatini AR, Corrêa NB, Brunelli V, Modolo R, Moreno H. Deregulation of Soluble Adhesion Molecules in Resistant Hypertension and Its Role in Cardiovascular Remodeling. Circ J 2016; 80:1196-201. [DOI: 10.1253/circj.cj-16-0058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ana Paula de Faria
- Laboratory of Cardiovascular Pharmacology, Faculty of Medical Sciences, University of Campinas
| | | | | | - Nathália Batista Corrêa
- Laboratory of Cardiovascular Pharmacology, Faculty of Medical Sciences, University of Campinas
| | - Veridiana Brunelli
- Laboratory of Cardiovascular Pharmacology, Faculty of Medical Sciences, University of Campinas
| | - Rodrigo Modolo
- Laboratory of Cardiovascular Pharmacology, Faculty of Medical Sciences, University of Campinas
| | - Heitor Moreno
- Laboratory of Cardiovascular Pharmacology, Faculty of Medical Sciences, University of Campinas
| |
Collapse
|
396
|
Samson R, Lee A, Lawless S, Hsu R, Sander G. Novel Pathophysiological Mechanisms in Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 956:21-35. [PMID: 27981434 DOI: 10.1007/5584_2016_96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hypertension is the most common disease affecting humans and imparts a significant cardiovascular and renal risk to patients. Extensive research over the past few decades has enhanced our understanding of the underlying mechanisms in hypertension. However, in most instances, the cause of hypertension in a given patient continues to remain elusive. Nevertheless, achieving aggressive blood pressure goals significantly reduces cardiovascular morbidity and mortality, as demonstrated in the recently concluded SPRINT trial. Since a large proportion of patients still fail to achieve blood pressure goals, knowledge of novel pathophysiologic mechanisms and mechanism based treatment strategies is crucial. The following chapter will review the novel pathophysiological mechanisms in hypertension, with a focus on role of immunity, inflammation and vascular endothelial homeostasis. The therapeutic implications of these mechanisms will be discussed where applicable.
Collapse
Affiliation(s)
- Rohan Samson
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA.
| | - Andrew Lee
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Sean Lawless
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Robert Hsu
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Gary Sander
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| |
Collapse
|
397
|
Case AJ, Zimmerman MC. Sympathetic-mediated activation versus suppression of the immune system: consequences for hypertension. J Physiol 2015; 594:527-36. [PMID: 26830047 DOI: 10.1113/jp271516] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023] Open
Abstract
It is generally well-accepted that the immune system is a significant contributor in the pathogenesis of hypertension. Specifically, activated and pro-inflammatory T-lymphocytes located primarily in the vasculature and kidneys appear to have a causal role in exacerbating elevated blood pressure. It has been proposed that increased sympathetic nerve activity and noradrenaline outflow associated with hypertension may be primary contributors to the initial activation of the immune system early in the disease progression. However, it has been repeatedly demonstrated in many different human and experimental diseases that sympathoexcitation is immunosuppressive in nature. Moreover, human hypertensive patients have demonstrated increased susceptibility to secondary immune insults like infections. Thus, it is plausible, and perhaps even likely, that in diseases like hypertension, specific immune cells are activated by increased noradrenaline, while others are in fact suppressed. We propose a model in which this differential regulation is based upon activation status of the immune cell as well as the resident organ. With this, the concept of global immunosuppression is obfuscated as a viable target for hypertension treatment, and we put forth the concept of focused organ-specific immunotherapy as an alternative option.
Collapse
Affiliation(s)
- Adam J Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Centre, Omaha, NE, USA
| |
Collapse
|
398
|
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- From the Department of Nephrology, Hospital Universitario and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela.
| |
Collapse
|
399
|
Wu J, Saleh MA, Kirabo A, Itani HA, Montaniel KRC, Xiao L, Chen W, Mernaugh RL, Cai H, Bernstein KE, Goronzy JJ, Weyand CM, Curci JA, Barbaro NR, Moreno H, Davies SS, Roberts LJ, Madhur MS, Harrison DG. Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest 2015; 126:50-67. [PMID: 26595812 DOI: 10.1172/jci80761] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 10/09/2015] [Indexed: 12/31/2022] Open
Abstract
Vascular oxidative injury accompanies many common conditions associated with hypertension. In the present study, we employed mouse models with excessive vascular production of ROS (tg(sm/p22phox) mice, which overexpress the NADPH oxidase subunit p22(phox) in smooth muscle, and mice with vascular-specific deletion of extracellular SOD) and have shown that these animals develop vascular collagen deposition, aortic stiffening, renal dysfunction, and hypertension with age. T cells from tg(sm/p22phox) mice produced high levels of IL-17A and IFN-γ. Crossing tg(sm/p22phox) mice with lymphocyte-deficient Rag1(-/-) mice eliminated vascular inflammation, aortic stiffening, renal dysfunction, and hypertension; however, adoptive transfer of T cells restored these processes. Isoketal-protein adducts, which are immunogenic, were increased in aortas, DCs, and macrophages of tg(sm/p22phox) mice. Autologous pulsing with tg(sm/p22phox) aortic homogenates promoted DCs of tg(sm/p22phox) mice to stimulate T cell proliferation and production of IFN-γ, IL-17A, and TNF-α. Treatment with the superoxide scavenger tempol or the isoketal scavenger 2-hydroxybenzylamine (2-HOBA) normalized blood pressure; prevented vascular inflammation, aortic stiffening, and hypertension; and prevented DC and T cell activation. Moreover, in human aortas, the aortic content of isoketal adducts correlated with fibrosis and inflammation severity. Together, these results define a pathway linking vascular oxidant stress to immune activation and aortic stiffening and provide insight into the systemic inflammation encountered in common vascular diseases.
Collapse
|
400
|
Affiliation(s)
- Rhian M Touyz
- From the Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|