351
|
Huang W, Liang Y, Ma X. Alpha-mangostin induces endoplasmic reticulum stress and autophagy which count against fatty acid synthase inhibition mediated apoptosis in human breast cancer cells. Cancer Cell Int 2019; 19:151. [PMID: 31164796 PMCID: PMC6544980 DOI: 10.1186/s12935-019-0869-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background/aims One of the most important metabolic hallmarks of breast cancer cells is enhanced lipogenesis. Increasing evidences suggest that fatty acid synthase (FAS) plays an important role in human breast cancer. Previously we discovered that alpha-mangostin showed apoptotic effect on human breast cancer cells via inhibiting FAS activity. The endoplasmic reticulum (ER) stress and autophagy are involved in cell apoptosis. However, the role of ER stress and autophagy in FAS inhibition induced apoptosis still remains unclear. Methods We evaluated the effects of alpha-mangostin on ER stress and autophagy in human breast cancer cells. Intracellular FAS activity was measured by a spectrophotometer at 340 nm of NADPH absorption. Cell Counting Kit assay was used to test the cell viability. Immunoblot analysis was performed to detect protein expression levels. Apoptotic effects were detected by flow cytometry. Results Alpha-mangostin induced endoplasmic reticulum stress and autophagy, both of which reduced the apoptotic effect of alpha-mangostin in MDA-MB-231 cells. Palmitic acid, the end product of FAS catalyzed reaction, rescued the ER stress and autophagy induced by alpha-mangostin. Cell apoptosis was markedly promoted by inhibiting ER stress and autophagy while treating cells with alpha-mangostin. Conclusion We propose a hypothesis that a combination of FAS inhibition and ER stress and autophagy inhibition has an application potential in the chemoprevention and treatment of breast cancer. Electronic supplementary material The online version of this article (10.1186/s12935-019-0869-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenyuan Huang
- 1College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049 China
| | - Yan Liang
- 2School of Kinesiology and Health, Capital University of Physical Education and Sports, No. 11 Beisanhuanxi Road, Beijing, 100191 China
| | - Xiaofeng Ma
- 1College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049 China
| |
Collapse
|
352
|
Tumanovska LV, Swanson RJ, Serebrovska ZO, Portnichenko GV, Goncharov SV, Kysilov BA, Moibenko OO, Dosenko VE. Cholesterol enriched diet suppresses ATF6 and PERK and upregulates the IRE1 pathways of the unfolded protein response in spontaneously hypertensive rats: Relevance to pathophysiology of atherosclerosis in the setting of hypertension. ACTA ACUST UNITED AC 2019; 26:219-226. [PMID: 31202527 DOI: 10.1016/j.pathophys.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022]
Abstract
Many studies have been dedicated to hypertension and hypercholesterolemia, as they are the primary conditions that influence the unfolded protein response (UPR). However, the concurrent effects of these two factors are unknown. Our research used spontaneously hypertensive rats (SHR) fed a cholesterol enriched diet (CED) as model of atherosclerosis formation to discover what effect the simultaneous actions of hypertension and hypercholesterolemia have on the UPR. The combination of hypertension and consumption of a CED (not the CED alone) caused the formation of early atherosclerotic features. Both increased expression of the CCAAT-enhancer-binding protein (CHOP) and the insulin induced gene 1 (INSIG1), which is the target gene of the sterol regulatory element-binding protein 1-c (SREBP1-c), and decreased expression of the spliced x-box binding protein1 (sXBP1) mRNA were observed in the SHR fed a CED. Cholesterol overload strongly suppressed glucose regulated protein 78 (GRP78), glucose regulated protein 94 (GRP 94), and the expression of CHOP and INSIG1 mRNA in both normotensive and hypertensive rats. Unlike other UPR factors, the sXBP1 mRNA expression was strongly downregulated in SHR fed a normal diet but upregulated in those fed a CED. The changes to UPR in the SHR fed a CED were associated with improvement of the initially impaired heart function of the rats.
Collapse
Affiliation(s)
- Lesya V Tumanovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - R James Swanson
- Liberty University College of Osteopathic Medicine, 306 Liberty View Lane, Lynchburg, VA 24502, USA
| | - Zoya O Serebrovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv, Ukraine.
| | - Georgii V Portnichenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Sergii V Goncharov
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Bohdan A Kysilov
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Olexandr O Moibenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Victor E Dosenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| |
Collapse
|
353
|
Rimessi A, Pedriali G, Vezzani B, Tarocco A, Marchi S, Wieckowski MR, Giorgi C, Pinton P. Interorganellar calcium signaling in the regulation of cell metabolism: A cancer perspective. Semin Cell Dev Biol 2019; 98:167-180. [PMID: 31108186 DOI: 10.1016/j.semcdb.2019.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023]
Abstract
Organelles were originally considered to be individual cellular compartments with a defined organization and function. However, recent studies revealed that organelles deeply communicate within each other via Ca2+ exchange. This communication, mediated by specialized membrane regions in close apposition between two organelles, regulate cellular functions, including metabolism and cell fate decisions. Advances in microscopy techniques, molecular biology and biochemistry have increased our understanding of these interorganelle platforms. Research findings suggest that interorganellar Ca2+ signaling, which is altered in cancer, influences tumorigenesis and tumor progression by controlling cell death programs and metabolism. Here, we summarize the available data on the existence and composition of interorganelle platforms connecting the endoplasmic reticulum with mitochondria, the plasma membrane, or endolysosomes. Finally, we provide a timely overview of the potential function of interorganellar Ca2+ signaling in maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| | - Gaia Pedriali
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Bianca Vezzani
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Anna Tarocco
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; Neonatal Intensive Care Unit, University Hospital S. Anna Ferrara, 44124 Ferrara, Italy
| | - Saverio Marchi
- Dept. of Clinical and Molecular Sciences, Polytechnical University of Marche, 60126 Ancona, Italy
| | | | - Carlotta Giorgi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy.
| |
Collapse
|
354
|
Lang AL, Beier JI. Interaction of volatile organic compounds and underlying liver disease: a new paradigm for risk. Biol Chem 2019; 399:1237-1248. [PMID: 29924722 DOI: 10.1515/hsz-2017-0324] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/14/2018] [Indexed: 01/07/2023]
Abstract
Occupational and environmental exposures to industrial chemicals are known to cause hepatotoxicity and liver injury, in humans and in animal models. Historically, research has focused on severe acute liver injury (e.g. fulminant liver failure) or endstage diseases (e.g. cirrhosis and HCC). However, it has become recently recognized that toxicants can cause more subtle changes to the liver. For example, toxicant-associated steatohepatitis, characterized by hepatic steatosis, and inflammation, was recently recognized in an occupational cohort exposed to vinyl chloride. At high occupational levels, toxicants are sufficient to cause liver damage and disease even in healthy subjects with no comorbidities for liver injury. However, it is still largely unknown how exposure to toxicants initiate and possibly more importantly exacerbate liver disease, when combined with other factors, such as underlying non-alcoholic fatty liver disease caused by poor diet and/or obesity. With better understanding of the mechanism(s) and risk factors that mediate the initiation and progression of toxicant-induced liver disease, rational targeted therapy can be developed to better predict risk, as well as to treat or prevent this disease. The purpose of this review is to summarize established and proposed mechanisms of volatile organic compound-induced liver injury and to highlight key signaling events known or hypothesized to mediate these effects.
Collapse
Affiliation(s)
- Anna L Lang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.,Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 40292, USA.,University of Louisville Alcohol Research Center, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| | - Juliane I Beier
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.,Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 40292, USA.,University of Louisville Alcohol Research Center, University of Louisville Health Sciences Center, Louisville, KY 40292, USA.,Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
355
|
Montgomery MK, De Nardo W, Watt MJ. Impact of Lipotoxicity on Tissue "Cross Talk" and Metabolic Regulation. Physiology (Bethesda) 2019; 34:134-149. [PMID: 30724128 DOI: 10.1152/physiol.00037.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Obesity-associated comorbidities include non-alcoholic fatty liver disease, Type 2 diabetes, and cardiovascular disease. These diseases are associated with accumulation of lipids in non-adipose tissues, which can impact many intracellular cellular signaling pathways and functions that have been broadly defined as "lipotoxic." This review moves beyond understanding intracellular lipotoxic outcomes and outlines the consequences of lipotoxicity on protein secretion and inter-tissue "cross talk," and the impact this exerts on systemic metabolism.
Collapse
Affiliation(s)
| | - William De Nardo
- Department of Physiology, The University of Melbourne , Melbourne, Victoria , Australia
| | - Matthew J Watt
- Department of Physiology, The University of Melbourne , Melbourne, Victoria , Australia
| |
Collapse
|
356
|
Gerst F, Wagner R, Oquendo MB, Siegel-Axel D, Fritsche A, Heni M, Staiger H, Häring HU, Ullrich S. What role do fat cells play in pancreatic tissue? Mol Metab 2019; 25:1-10. [PMID: 31113756 PMCID: PMC6600604 DOI: 10.1016/j.molmet.2019.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/10/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023] Open
Abstract
Background It is now generally accepted that obesity is a major risk factor for type 2 diabetes mellitus (T2DM). Hepatic steatosis in particular, as well as visceral and ectopic fat accumulation within tissues, is associated with the development of the disease. We recently presented the first study on isolated human pancreatic adipocytes and their interaction with islets [Gerst, F., Wagner, R., Kaiser, G., Panse, M., Heni, M., Machann, J., et al., 2017. Metabolic crosstalk between fatty pancreas and fatty liver: effects on local inflammation and insulin secretion. Diabetologia 60(11):2240–2251.]. The results indicate that the function of adipocytes depends on the overall metabolic status in humans which, in turn, differentially affects islet hormone release. Scope of Review This review summarizes former and recent studies on factors derived from adipocytes and their effects on insulin-secreting β-cells, with particular emphasis on the human pancreas. The adipocyte secretome is discussed with a special focus on its influence on insulin secretion, β-cell survival and apoptotic β-cell death. Major Conclusions Human pancreatic adipocytes store lipids and release adipokines, metabolites, and pro-inflammatory molecules in response to the overall metabolic, humoral, and neuronal status. The differentially regulated adipocyte secretome impacts on endocrine function, i.e., insulin secretion, β-cell survival and death which interferes with glycemic control. This review attempts to explain why the extent of pancreatic steatosis is associated with reduced insulin secretion in some studies but not in others.
Collapse
Affiliation(s)
- Felicia Gerst
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Robert Wagner
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Morgana Barroso Oquendo
- German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Dorothea Siegel-Axel
- German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Martin Heni
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Harald Staiger
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Susanne Ullrich
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany.
| |
Collapse
|
357
|
Yamaoka Y, Shin S, Choi BY, Kim H, Jang S, Kajikawa M, Yamano T, Kong F, Légeret B, Fukuzawa H, Li-Beisson Y, Lee Y. The bZIP1 Transcription Factor Regulates Lipid Remodeling and Contributes to ER Stress Management in Chlamydomonas reinhardtii. THE PLANT CELL 2019; 31:1127-1140. [PMID: 30894460 PMCID: PMC6533020 DOI: 10.1105/tpc.18.00723] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/29/2019] [Accepted: 03/18/2019] [Indexed: 05/24/2023]
Abstract
Endoplasmic reticulum (ER) stress is caused by the stress-induced accumulation of unfolded proteins in the ER. Here, we identified proteins and lipids that function downstream of the ER stress sensor INOSITOL-REQUIRING ENZYME1 (CrIRE1) that contributes to ER stress tolerance in Chlamydomonas (Chlamydomonas reinhardtii). Treatment with the ER stress inducer tunicamycin resulted in the splicing of a 32-nucleotide fragment of a basic leucine zipper 1 (bZIP1) transcription factor (CrbZIP1) mRNA by CrIRE1 that, in turn, resulted in the loss of the transmembrane domain in CrbZIP1, and the translocation of CrbZIP1 from the ER to the nucleus. Mutants deficient in CrbZIP1 failed to induce the expression of the unfolded protein response genes and grew poorly under ER stress. Levels of diacylglyceryltrimethylhomoserine (DGTS) and pinolenic acid (18:3Δ5,9,12) increased in the parental strains but decreased in the crbzip1 mutants under ER stress. A yeast one-hybrid assay revealed that CrbZIP1 activated the expression of enzymes catalyzing the biosynthesis of DGTS and pinolenic acid. Moreover, two lines harboring independent mutant alleles of Chlamydomonas desaturase (CrDES) failed to synthesize pinolenic acid and were more sensitive to ER stress than were their parental lines. Together, these results indicate that CrbZIP1 is a critical component of the ER stress response mediated by CrIRE1 in Chlamydomonas that acts via lipid remodeling.
Collapse
Affiliation(s)
- Yasuyo Yamaoka
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Seungjun Shin
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Bae Young Choi
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Hanul Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sunghoon Jang
- Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Masataka Kajikawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Fantao Kong
- Aix Marseille Université, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Biosciences and Biotechnologies Institute of Aix-Marseille, 13108 Saint Paul-Lez-Durance, France
| | - Bertrand Légeret
- Aix Marseille Université, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Biosciences and Biotechnologies Institute of Aix-Marseille, 13108 Saint Paul-Lez-Durance, France
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Yonghua Li-Beisson
- Aix Marseille Université, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Biosciences and Biotechnologies Institute of Aix-Marseille, 13108 Saint Paul-Lez-Durance, France
| | - Youngsook Lee
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
- Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
358
|
Murotomi K, Arai S, Suyama A, Harashima A, Nakajima Y. Trehalose attenuates development of nonalcoholic steatohepatitis associated with type 2 diabetes in TSOD mouse. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
359
|
Takasugi N, Hiraoka H, Nakahara K, Akiyama S, Fujikawa K, Nomura R, Furuichi M, Uehara T. The Emerging Role of Electrophiles as a Key Regulator for Endoplasmic Reticulum (ER) Stress. Int J Mol Sci 2019; 20:E1783. [PMID: 30974903 PMCID: PMC6480251 DOI: 10.3390/ijms20071783] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/28/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
The unfolded protein response (UPR) is activated by the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which is called ER stress. ER stress sensors PERK, IRE1, and ATF6 play a central role in the initiation and regulation of the UPR; they inhibit novel protein synthesis and upregulate ER chaperones, such as protein disulfide isomerase, to remove unfolded proteins. However, when recovery from ER stress is difficult, the UPR pathway is activated to eliminate unhealthy cells. This signaling transition is the key event of many human diseases. However, the precise mechanisms are largely unknown. Intriguingly, reactive electrophilic species (RES), which exist in the environment or are produced through cellular metabolism, have been identified as a key player of this transition. In this review, we focused on the function of representative RES: nitric oxide (NO) as a gaseous RES, 4-hydroxynonenal (HNE) as a lipid RES, and methylmercury (MeHg) as an environmental organic compound RES, to outline the relationship between ER stress and RES. Modulation by RES might be a target for the development of next-generation therapy for ER stress-associated diseases.
Collapse
Affiliation(s)
- Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Hideki Hiraoka
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Kengo Nakahara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Shiori Akiyama
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Kana Fujikawa
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Ryosuke Nomura
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Moeka Furuichi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
360
|
Evaluation of MEDAG gene expression in papillary thyroid microcarcinoma: associations with histological features, regional lymph node metastasis and prognosis. Sci Rep 2019; 9:5800. [PMID: 30967566 PMCID: PMC6456583 DOI: 10.1038/s41598-019-41701-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 03/14/2019] [Indexed: 12/17/2022] Open
Abstract
Papillary thyroid microcarcinoma accounts for a large proportion of papillary thyroid carcinoma, especially among new cases. Many PTMC patients have regional lymph node metastasis, with some experiencing recurrence and even death. However, the risk factors and mechanism by which PTMC relates to these factors are unknown. In this study, differentially expressed genes were identified with microarray from The Cancer Genome Atlas, followed by analysis using the Kyoto Encyclopedia of Genes and Genomes. Immunohistochemistry, immunofluorescence, western blot and Oil Red O staining were carried out to evaluate expression levels and functional alterations. Mesenteric Estrogen Dependent Adipogenesis expression was observed in almost all cases of papillary thyroid microcarcinomas, and the location of expression was associated with histological subtype. High expression was correlated with metastasis and poor disease-free survival. Furthermore, the enrichment analysis indicated that Mesenteric Estrogen Dependent Adipogenesis expression may be associated with metabolic reprogramming to influence metastasis and prognosis. These findings contribute to a better understanding of how Mesenteric Estrogen Dependent Adipogenesis affects metastasis and the prognosis of papillary thyroid microcarcinoma patients and suggest that Mesenteric Estrogen Dependent Adipogenesis expression may be a novel prognostic marker in these patients.
Collapse
|
361
|
Chi Y, Wang H, Lin Y, Lu Y, Huang Q, Ye G, Dong S. Gut microbiota characterization and lipid metabolism disorder found in PCB77-treated female mice. Toxicology 2019; 420:11-20. [PMID: 30935970 DOI: 10.1016/j.tox.2019.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 01/06/2023]
Abstract
Although the production of polychlorinated biphenyl 77 (PCB77) has already been banned globally, PCB77 is still used for a wide range of commercial purposes. Previous evidence has demonstrated that the PCB77 administration should be responsible for the gut microbiota variations and the host health risk. However, the host disorders and bacterial functions involved in PCB77 exposure remain largely unknown. Few studies have been performed to illuminate the correlation between the bacterial functions and disorders. Furthermore, it is urgently needed to find specific strains as potential biomarkers to monitor PCB77 pollution and associated disorders. This study was designed to investigate the effects of PCB77 on gut microbiota and induced disorders in female mice. Obtained results indicated that PCB77 exposure induced gut microbiota dysbiosis, obesity, hyperlipidemia, hepatic lipid accumulation, and liver injury in mice. Functional prediction based on the phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) algorithm showed that exposure to PCB77 weakened the bacterial functions relating to lipid and energy metabolism, and immune system disease. Experimental findings were consistent with the result of the PICRUSt functional prediction. Importantly, three PCB77-associated bacterial taxa were screened out as potential biomarkers for the assessment of PCB77 pollution. This study provides previously unknown knowledge linking PCB77 administration, gut microbiota functional profile and lipid abnormalities, which is of important clinical significance for therapies treating PCB77-associated diseases.
Collapse
Affiliation(s)
- Yulang Chi
- KeyLab of Urban Environmentand Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Centerfor Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongou Wang
- KeyLab of Urban Environmentand Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Centerfor Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Yanyang Lu
- KeyLab of Urban Environmentand Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Qiansheng Huang
- KeyLab of Urban Environmentand Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Centerfor Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Guozhu Ye
- KeyLab of Urban Environmentand Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Centerfor Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Sijun Dong
- KeyLab of Urban Environmentand Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Centerfor Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
362
|
Innate immune regulatory networks in hepatic lipid metabolism. J Mol Med (Berl) 2019; 97:593-604. [PMID: 30891617 DOI: 10.1007/s00109-019-01765-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/06/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
Abstract
Hepatic lipid metabolism is closely associated with certain diseases, such as obesity, diabetes, fatty liver, and hepatic fibrosis. Hepatic steatosis results from systemic metabolic dysfunction that occurs via multiple processes. The initial process has been characterized as hepatic lipid accumulation that may be caused by increased liver lipid uptake and de novo lipogenesis or decreased lipid oxidation and lipid export; subsequently, multiple additional factors that trigger inflammation and insulin resistance (IR) aggravate the progression of hepatic steatosis. Emerging evidence indicates that inflammation stands at the crossroads of innate immunity and lipid metabolism and links the initial metabolic stress and subsequent metabolic events in lipid metabolism. Therefore, in this review, we summarize the regulatory role of innate immune signaling molecules in maintaining lipid metabolic homeostasis; these revelations can guide the development of potential therapies for nonalcoholic fatty liver disease (NAFLD).
Collapse
|
363
|
Covino R, Hummer G, Ernst R. Integrated Functions of Membrane Property Sensors and a Hidden Side of the Unfolded Protein Response. Mol Cell 2019; 71:458-467. [PMID: 30075144 DOI: 10.1016/j.molcel.2018.07.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 12/26/2022]
Abstract
Eukaryotic cells face the challenge of maintaining the complex composition of several coexisting organelles. The molecular mechanisms underlying the homeostasis of subcellular membranes and their adaptation during stress are only now starting to emerge. Here, we discuss three membrane property sensors of the endoplasmic reticulum (ER), namely OPI1, MGA2, and IRE1, each controlling a large cellular program impacting the lipid metabolic network. OPI1 coordinates the production of membrane and storage lipids, MGA2 regulates the production of unsaturated fatty acids required for membrane biogenesis, and IRE1 controls the unfolded protein response (UPR) to adjust ER size, protein folding, and the secretory capacity of the cell. Although these proteins use remarkably distinct sensing mechanisms, they are functionally connected via the ER membrane and cooperate to maintain membrane homeostasis. As a rationalization of the recently described mechanism of UPR activation by lipid bilayer stress, we propose that IRE1 can sense the protein-to-lipid ratio in the ER membrane to ensure a balanced production of membrane proteins and lipids.
Collapse
Affiliation(s)
- Roberto Covino
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany; Institute of Biophysics, Goethe University, 60438 Frankfurt am Main, Germany
| | - Robert Ernst
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Kirrberger Str. 100, Gebäude 61.4, 66421 Homburg, Germany.
| |
Collapse
|
364
|
Séité S, Pioche T, Ory N, Plagnes-Juan E, Panserat S, Seiliez I. The Autophagic Flux Inhibitor Bafilomycine A1 Affects the Expression of Intermediary Metabolism-Related Genes in Trout Hepatocytes. Front Physiol 2019; 10:263. [PMID: 30936838 PMCID: PMC6431650 DOI: 10.3389/fphys.2019.00263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/28/2019] [Indexed: 12/28/2022] Open
Abstract
Autophagy is an evolutionarily conserved process of cellular self-eating which emerged these last years as a major adaptive metabolic response to various stresses such as fasting, hypoxia, or environmental pollutants. However, surprisingly very few data is currently available on its role in fish species which are directly exposed to frequent environmental perturbations. Here, we report that the treatment of fasted trout hepatocytes with the autophagy inhibitor Bafilomycine A1 lowered the mRNA levels of many of the gluconeogenesis-related genes and increased those of genes involved in intracellular lipid stores. Concurrently, intracellular free amino acid levels dropped and the expression of the main genes involved in the endoplasmic reticulum (ER) stress exhibited a sharp increase in autophagy inhibited cells. Together these results highlight the strong complexity of the crosstalk between ER, autophagy and metabolism and support the importance of considering this function in future studies on metabolic adaptation of fish to environmental stresses.
Collapse
Affiliation(s)
- Sarah Séité
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
- Evonik Rexim, Ham, France
- Evonik Nutrition and Care GmbH, Hanau, Germany
| | - Tracy Pioche
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
| | - Nicolas Ory
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
| | - Elisabeth Plagnes-Juan
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
| | - Stéphane Panserat
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
| | - Iban Seiliez
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
365
|
Altered gut-liver axis in liver diseases. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
366
|
Havighorst A, Zhang Y, Farmaki E, Kaza V, Chatzistamou I, Kiaris H. Differential regulation of the unfolded protein response in outbred deer mice and susceptibility to metabolic disease. Dis Model Mech 2019; 12:dmm.037242. [PMID: 30733237 PMCID: PMC6398494 DOI: 10.1242/dmm.037242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/28/2019] [Indexed: 01/10/2023] Open
Abstract
Endoplasmic reticulum (ER) stress has been causatively linked to the onset of various pathologies. However, whether and how inherent variations in the resulting unfolded protein response (UPR) affect predisposition to ER-stress-associated metabolic conditions remains to be established. By using genetically diverse deer mice (Peromyscus maniculatus) as a model, we show that the profile of tunicamycin-induced UPR in fibroblasts isolated at puberty varies between individuals and predicts deregulation of lipid metabolism and diet-induced hepatic steatosis later in life. Among the different UPR targets tested, CHOP (also known as Ddit3) more consistently predicted elevated plasma cholesterol and hepatic steatosis. Compared with baseline levels or inducibility, the maximal intensity of the UPR following stimulation best predicts the onset of pathology. Differences in the expression profile of the UPR recorded in cells from different populations of deer mice correlate with the varying response to ER stress in altitude adaptation. Our data suggest that the response to ER stress in cultured cells varies among individuals, and its profile early in life might predict the onset of ER-stress-associated disease in the elderly. This article has an associated First Person interview with the first author of the paper. Summary: By using genetically diverse deer mice, we show that the expression of different chaperones is highly coordinated in individual animals and its profile predicts the onset of metabolic pathology.
Collapse
Affiliation(s)
- Amanda Havighorst
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208-3402, USA
| | - Youwen Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208-3402, USA
| | - Elena Farmaki
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208-3402, USA
| | - Vimala Kaza
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC 29208-3402, USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208-3402, USA
| | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208-3402, USA .,Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC 29208-3402, USA
| |
Collapse
|
367
|
Ji J, Petropavlovskaia M, Khatchadourian A, Patapas J, Makhlin J, Rosenberg L, Maysinger D. Type 2 diabetes is associated with suppression of autophagy and lipid accumulation in β-cells. J Cell Mol Med 2019; 23:2890-2900. [PMID: 30710421 PMCID: PMC6433726 DOI: 10.1111/jcmm.14172] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/14/2018] [Accepted: 12/29/2018] [Indexed: 01/05/2023] Open
Abstract
Both type 2 diabetes (T2D) and obesity are characterized by excessive hyperlipidaemia and subsequent lipid droplet (LD) accumulation in adipose tissue. To investigate whether LDs also accumulate in β-cells of T2D patients, we assessed the expression of PLIN2, a LD-associated protein, in non-diabetic (ND) and T2D pancreata. We observed an up-regulation of PLIN2 mRNA and protein in β-cells of T2D patients, along with significant changes in the expression of lipid metabolism, apoptosis and oxidative stress genes. The increased LD buildup in T2D β-cells was accompanied by inhibition of nuclear translocation of TFEB, a master regulator of autophagy and by down-regulation of lysosomal biomarker LAMP2. To investigate whether LD accumulation and autophagy were influenced by diabetic conditions, we used rat INS-1 cells to model the effects of hyperglycaemia and hyperlipidaemia on autophagy and metabolic gene expression. Consistent with human tissue, both LD formation and PLIN2 expression were enhanced in INS-1 cells under hyperglycaemia, whereas TFEB activation and autophagy gene expression were significantly reduced. Collectively, these results suggest that lipid clearance and overall homeostasis is markedly disrupted in β-cells under hyperglycaemic conditions and interventions ameliorating lipid clearance could be beneficial in reducing functional impairments in islets caused by glucolipotoxicity.
Collapse
Affiliation(s)
- Jeff Ji
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Armen Khatchadourian
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Jason Patapas
- Department of Surgery, McGill University, Montreal, QC, Canada
| | - Julia Makhlin
- Department of Surgery, McGill University, Montreal, QC, Canada
| | | | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
368
|
Gjorgjieva M, Mithieux G, Rajas F. Hepatic stress associated with pathologies characterized by disturbed glucose production. Cell Stress 2019; 3:86-99. [PMID: 31225503 PMCID: PMC6551742 DOI: 10.15698/cst2019.03.179] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The liver is an organ with many facets, including a role in energy production and metabolic balance, detoxification and extraordinary capacity of regeneration. Hepatic glucose production plays a crucial role in the maintenance of normal glucose levels in the organism i.e. between 0.7 to 1.1 g/l. The loss of this function leads to a rare genetic metabolic disease named glycogen storage disease type I (GSDI), characterized by severe hypoglycemia during short fasts. On the contrary, type 2 diabetes is characterized by chronic hyperglycemia, partly due to an overproduction of glucose by the liver. Indeed, diabetes is characterized by increased uptake/production of glucose by hepatocytes, leading to the activation of de novo lipogenesis and the development of a non-alcoholic fatty liver disease. In GSDI, the accumulation of glucose-6 phosphate, which cannot be hydrolyzed into glucose, leads to an increase of glycogen stores and the development of hepatic steatosis. Thus, in these pathologies, hepatocytes are subjected to cellular stress mainly induced by glucotoxicity and lipotoxicity. In this review, we have compared hepatic cellular stress induced in type 2 diabetes and GSDI, especially oxidative stress, autophagy deregulation, and ER-stress. In addition, both GSDI and diabetic patients are prone to the development of hepatocellular adenomas (HCA) that occur on a fatty liver in the absence of cirrhosis. These HCA can further acquire malignant traits and transform into hepatocellular carcinoma. This process of tumorigenesis highlights the importance of an optimal metabolic control in both GSDI and diabetic patients in order to prevent, or at least to restrain, tumorigenic activity during disturbed glucose metabolism pathologies.
Collapse
Affiliation(s)
- Monika Gjorgjieva
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France.,Université de Lyon, Lyon, F-69008 France.,Université Lyon I, Villeurbanne, F-69622 France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France.,Université de Lyon, Lyon, F-69008 France.,Université Lyon I, Villeurbanne, F-69622 France
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France.,Université de Lyon, Lyon, F-69008 France.,Université Lyon I, Villeurbanne, F-69622 France
| |
Collapse
|
369
|
Yuliana A, Daijo A, Jheng HF, Kwon J, Nomura W, Takahashi H, Ara T, Kawada T, Goto T. Endoplasmic Reticulum Stress Impaired Uncoupling Protein 1 Expression via the Suppression of Peroxisome Proliferator-Activated Receptor γ Binding Activity in Mice Beige Adipocytes. Int J Mol Sci 2019; 20:ijms20020274. [PMID: 30641938 PMCID: PMC6359291 DOI: 10.3390/ijms20020274] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 12/29/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022] Open
Abstract
Endoplasmic reticulum (ER) homeostasis is critical in maintaining metabolic regulation. Once it is disrupted due to accumulated unfolded proteins, ER homeostasis is restored via activation of the unfolded protein response (UPR); hence, the UPR affects diverse physiological processes. However, how ER stress influences adipocyte functions is not well known. In this study, we investigated the effect of ER stress in thermogenic capacity of mice beige adipocytes. Here, we show that the expression of uncoupling protein 1 (Ucp1) involved in thermoregulation is severely suppressed under ER stress conditions (afflicted by tunicamycin) in inguinal white adipose tissue (IWAT) both in vitro and in vivo. Further investigation showed that extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) were both activated after ER stress stimulation and regulated the mRNA levels of Ucp1 and peroxisome proliferator-activated receptor γ (Pparγ), which is known as a Ucp1 transcriptional activator, in vitro and ex vivo. We also found that Pparγ protein was significantly degraded, reducing its recruitment to the Ucp1 enhancer, thereby downregulating Ucp1 expression. Additionally, only JNK inhibition, but not ERK, rescued the Pparγ protein. These findings provide novel insights into the regulatory effect of ER stress on Ucp1 expression via Pparγ suppression in beige adipocytes.
Collapse
Affiliation(s)
- Ana Yuliana
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Asumi Daijo
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Huei-Fen Jheng
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Jungin Kwon
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Wataru Nomura
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
- Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan.
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Takeshi Ara
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
- Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan.
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
- Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
370
|
Jao TM, Nangaku M, Wu CH, Sugahara M, Saito H, Maekawa H, Ishimoto Y, Aoe M, Inoue T, Tanaka T, Staels B, Mori K, Inagi R. ATF6α downregulation of PPARα promotes lipotoxicity-induced tubulointerstitial fibrosis. Kidney Int 2019; 95:577-589. [PMID: 30639234 DOI: 10.1016/j.kint.2018.09.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/28/2018] [Accepted: 09/20/2018] [Indexed: 01/09/2023]
Abstract
Tubulointerstitial fibrosis is a strong predictor of progression in patients with chronic kidney disease, and is often accompanied by lipid accumulation in renal tubules. However, the molecular mechanisms modulating the relationship between lipotoxicity and tubulointerstitial fibrosis remain obscure. ATF6α, a transcription factor of the unfolded protein response, is reported to be an upstream regulator of fatty acid metabolism. Owing to their high energy demand, proximal tubular cells (PTCs) use fatty acids as their main energy source. We therefore hypothesized that ATF6α regulates PTC fatty acid metabolism, contributing to lipotoxicity-induced tubulointerstitial fibrosis. Overexpression of activated ATF6α transcriptionally downregulated peroxisome proliferator-activated receptor-α (PPARα), the master regulator of lipid metabolism, leading to reduced activity of fatty acid β-oxidation and cytosolic accumulation of lipid droplets in a human PTC line (HK-2). ATF6α-induced lipid accumulation caused mitochondrial dysfunction, enhanced apoptosis, and increased expression of connective tissue growth factor (CTGF), as well as reduced cell viability. Atf6α-/- mice had sustained expression of PPARα and less tubular lipid accumulation following unilateral ischemia-reperfusion injury (uIRI), resulting in the amelioration of apoptosis; reduced expression of CTGF, α-smooth muscle actin, and collagen I; and less tubulointerstitial fibrosis. Administration of fenofibrate, a PPARα agonist, reduced lipid accumulation and tubulointerstitial fibrosis in the uIRI model. Taken together, these findings suggest that ATF6α deranges fatty acid metabolism in PTCs, which leads to lipotoxicity-mediated apoptosis and CTGF upregulation, both of which promote tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Tzu-Ming Jao
- Division of Chronic Kidney Disease Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Chia-Hsien Wu
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Mai Sugahara
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hisako Saito
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Maekawa
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yu Ishimoto
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Mari Aoe
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Inoue
- Division of Chronic Kidney Disease Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Bart Staels
- Evaluation et Gestion Informatique de la Diversité Génétique, Université de Lille, Centre Hospitalier Régional Universitaire de Lille, Institut Pasteur de Lille, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1011, Lille, France
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
371
|
Hu H, Tian M, Ding C, Yu S. The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection. Front Immunol 2019; 9:3083. [PMID: 30662442 PMCID: PMC6328441 DOI: 10.3389/fimmu.2018.03083] [Citation(s) in RCA: 644] [Impact Index Per Article: 128.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022] Open
Abstract
Apoptosis is a form of cell death by which the body maintains the homeostasis of the internal environment. Apoptosis is an initiative cell death process that is controlled by genes and is mainly divided into endogenous pathways (mitochondrial pathway), exogenous pathways (death receptor pathway), and apoptotic pathways induced by endoplasmic reticulum (ER) stress. The homeostasis imbalance in ER results in ER stress. Under specific conditions, ER stress can be beneficial to the body; however, if ER protein homeostasis is not restored, the prolonged activation of the unfolded protein response may initiate apoptotic cell death via the up-regulation of the C/EBP homologous protein (CHOP). CHOP plays an important role in ER stress-induced apoptosis and this review focuses on its multifunctional roles in that process, as well as its role in apoptosis during microbial infection. We summarize the upstream and downstream pathways of CHOP in ER stress induced apoptosis. We also focus on the newest discoveries in the functions of CHOP-induced apoptosis during microbial infection, including DNA and RNA viruses and some species of bacteria. Understanding how CHOP functions during microbial infection will assist with the development of antimicrobial therapies.
Collapse
Affiliation(s)
- Hai Hu
- Department of Veterinary Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Mingxing Tian
- Department of Veterinary Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Veterinary Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shengqing Yu
- Department of Veterinary Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
372
|
Choi S, Snider AJ. Diet, lipids and colon cancer. CELLULAR NUTRIENT UTILIZATION AND CANCER 2019; 347:105-144. [DOI: 10.1016/bs.ircmb.2019.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
373
|
Pinto BAS, França LM, Laurindo FRM, Paes AMDA. Unfolded Protein Response: Cause or Consequence of Lipid and Lipoprotein Metabolism Disturbances? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:67-82. [DOI: 10.1007/978-3-030-11488-6_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
374
|
Zhu W, Niu X, Wang M, Li Z, Jiang HK, Li C, Caton SJ, Bai Y. Endoplasmic reticulum stress may be involved in insulin resistance and lipid metabolism disorders of the white adipose tissues induced by high-fat diet containing industrial trans-fatty acids. Diabetes Metab Syndr Obes 2019; 12:1625-1638. [PMID: 31507325 PMCID: PMC6718956 DOI: 10.2147/dmso.s218336] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/17/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Consumption of industrially produced trans-fatty acids (iTFAs) can result in alteration to lipid profile and glucose metabolism. Moreover, a diet high in iTFAs could increase the risk of obesity, cardiovascular diseases (CVDs) and type 2 diabetes mellitus. Glucose and lipid metabolism are closely linked in white adipose tissue (WAT), yet the underlying mechanisms of the effect of iTFAs in WAT are poorly understood. MATERIALS AND METHODS Parameters of glucose homeostasis, lipid profiles and markers of endoplasmic reticulum (ER) stress of WAT were measured in rats maintained on a high-fat diet containing margarine (HFD-M) (n=10) compared to controls maintained on standard chow (n=10) over 16 weeks. RESULTS Fat mass and body weight was significantly increased in rats maintained on the HFD-M compared to controls (P<0.01). HFD-M rats had increased levels of insulin (INS), homeostasis model assessment of insulin resistance and serum lipid profile was significantly altered. The expression of glucose-regulated protein 78 (GRP78) and the phosphorylation of inositol-requiring enzyme 1-alpha and c-Jun N-terminal kinase (JNK) were significantly increased in subcutaneous and retroperitoneal adipose depots of HFD-M-fed rats. In vitro, wider ER lumens were observed in 100μmol/L elaidic acid (EA)-treated human mature adipocytes. We observed activation of ER stress markers, impaired INS receptor signaling and increased lipogenesis in adipocytes after EA exposure. These effects could be alleviated by inhibiting ER stress in adipocytes in vitro. CONCLUSION Collectively these data suggest that ER stress may be involved in INS resistance and lipid metabolism disorders induced by high-fat diet containing iTFAs. These findings suggest that WAT could be regarded as a key target organ for inhibiting ER stress to reverse the impaired INS receptor signaling, alleviate lipid metabolism disorders, and provide a novel approach to prevent and treat INS resistance and dyslipidemia-related chronic diseases such as T2MD and CVDs.
Collapse
Affiliation(s)
- Wanqiu Zhu
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Xin Niu
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Mingxia Wang
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Zhao Li
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Hong-Kun Jiang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Chuntao Li
- Information Center, the First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Samantha J Caton
- School of Health and Related Research (ScHARR), Public Health, University of Sheffield, Sheffield, S1 4DA, UK
| | - Yinglong Bai
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, Liaoning, People’s Republic of China
- Correspondence: Yinglong Bai Department of Maternal and Child Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang110122, Liaoning, People’s Republic of ChinaTel+86 243 193 9406Fax +86 243 193 9406Email
| |
Collapse
|
375
|
Babele PK, Thakre PK, Kumawat R, Tomar RS. Zinc oxide nanoparticles induce toxicity by affecting cell wall integrity pathway, mitochondrial function and lipid homeostasis in Saccharomyces cerevisiae. CHEMOSPHERE 2018; 213:65-75. [PMID: 30212720 DOI: 10.1016/j.chemosphere.2018.09.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/29/2018] [Accepted: 09/04/2018] [Indexed: 05/27/2023]
Abstract
Growing numbers of nanotoxicity research demonstrating that mechanical damage and oxidative stress are potential modes of nanoparticles (NPs) induced toxicity. However, the underlying mechanisms by which NPs interact with the eukaryotic cell and affect their physiological and metabolic functions are not fully known. We investigated the toxic effects of zinc oxide nanoparticles (ZnO-NPs) on budding yeast, Saccharomyces cerevisiae and elucidated the underlying mechanism. We observed cell wall damage and accumulation of reactive oxygen species (ROS) leading to cell death upon ZnO-NPs exposure. We detected a significant change in the cellular distribution of lipid biosynthetic enzymes (Fas1 and Fas2). Furthermore, exposure of ZnO-NPs altered the architecture of endoplasmic reticulum (ER) and mitochondria as well as ER-mitochondria encounter structure (ERMES) complex causing cellular toxicity due to lipid disequilibrium and proteostasis. We also observed significant changes in heat shock and unfolded protein responses, monitored by Hsp104-GFP localization and cytosolic Hac1 splicing respectively. Moreover, we observed activation of MAP kinases of CWI (Mpk1) and HOG (Hog1) pathways upon exposure to ZnO-NPs. Transcript level analyses showed induction of chitin synthesis and redox homeostasis genes. Finally, we observed induction in lipid droplets (LDs) formation, distorted vacuolar morphology and induction of autophagy as monitored by localization of Atg8p. However, we did not observe any significant change in epigenetic marks, examined by western blotting. Altogether, we provide evidence that exposure of ZnO-NPs results in cell death by affecting cell wall integrity and ER homeostasis as well as accumulation of ROS and saturated free fatty acids.
Collapse
Affiliation(s)
- Piyoosh Kumar Babele
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| | - Pilendra Kumar Thakre
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| | - Ramesh Kumawat
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India.
| |
Collapse
|
376
|
Schnell DM, Walton RG, Vekaria HJ, Sullivan PG, Bollinger LM, Peterson CA, Thomas DT. Vitamin D produces a perilipin 2-dependent increase in mitochondrial function in C2C12 myotubes. J Nutr Biochem 2018; 65:83-92. [PMID: 30658160 DOI: 10.1016/j.jnutbio.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/11/2018] [Accepted: 11/10/2018] [Indexed: 02/08/2023]
Abstract
Vitamin D has been connected with increased intramyocellular lipid (IMCL) and has also been shown to increase mitochondrial function and insulin sensitivity. Evidence suggests that perilipin 2 (PLIN2), a perilipin protein upregulated with calcitriol treatment, may be integral to managing increased IMCL capacity and lipid oxidation in skeletal muscle. Therefore, we hypothesized that PLIN2 is required for vitamin D induced IMCL accumulation and increased mitochondrial oxidative function. To address this hypothesis, we treated C2C12 myotubes with 100 nM calcitriol (the active form of vitamin D) and/or PLIN2 siRNA in a four group design and analyzed markers of IMCL accumulation and metabolism using qRT-PCR, cytochemistry, and oxygen consumption assay. Expression of PLIN2, but not PLIN3 or PLIN5 mRNA was increased with calcitriol, and PLIN2 induction was prevented with siRNA knockdown without compensation by other perilipins. PLIN2 knockdown did not appear to prevent lipid accumulation. Calcitriol treatment increased mRNA expression of triglyceride synthesizing genes DGAT1 and DGAT2 and also lipolytic genes ATGL and CGI-58. PLIN2 knockdown decreased the expression of CGI-58 and CPT1, and was required for calcitriol-induced upregulation of DGAT2. Calcitriol increased oxygen consumption rate while PLIN2 knockdown decreased oxygen consumption rate. PLIN2 was required for a calcitriol-induced increase in oxygen consumption driven by mitochondrial complex II. We conclude that calcitriol increases mitochondrial function in myotubes and that this increase is at least in part mediated by PLIN2.
Collapse
Affiliation(s)
| | - R Grace Walton
- Department of Rehabilitation Sciences; Center for Muscle Biology.
| | | | | | | | | | - D Travis Thomas
- Department of Clinical Sciences, University of Kentucky, Lexington, KY 40536.
| |
Collapse
|
377
|
Koh JH, Wang L, Beaudoin-Chabot C, Thibault G. Lipid bilayer stress-activated IRE-1 modulates autophagy during endoplasmic reticulum stress. J Cell Sci 2018; 131:jcs.217992. [PMID: 30333136 DOI: 10.1242/jcs.217992] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022] Open
Abstract
Metabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), are emerging as epidemics that affect the global population. One facet of these disorders is attributed to the disturbance of membrane lipid composition. Perturbation of endoplasmic reticulum (ER) homeostasis through alteration in membrane phospholipids activates the unfolded protein response (UPR) and causes dramatic transcriptional and translational changes in the cell. To restore cellular homeostasis, the three highly conserved UPR transducers ATF6, IRE1 (also known as ERN1 in mammals) and PERK (also known as EIF2AK3 in mammals) mediate adaptive responses upon ER stress. The homeostatic UPR cascade is well characterised under conditions of proteotoxic stress, but much less so under lipid bilayer stress-induced UPR. Here, we show that disrupted phosphatidylcholine (PC) synthesis in Caenorhabditis elegans causes lipid bilayer stress, lipid droplet accumulation and ER stress induction. Transcriptional profiling of PC-deficient worms revealed a unique subset of genes regulated in a UPR-dependent manner that is independent from proteotoxic stress. Among these, we show that autophagy is modulated through the conserved IRE-1-XBP-1 axis, strongly suggesting of the importance of autophagy in maintaining cellular homeostasis during the lipid bilayer stress-induced UPR.
Collapse
Affiliation(s)
- Jhee Hong Koh
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Lei Wang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | | | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
378
|
Gjorgjieva M, Calderaro J, Monteillet L, Silva M, Raffin M, Brevet M, Romestaing C, Roussel D, Zucman-Rossi J, Mithieux G, Rajas F. Dietary exacerbation of metabolic stress leads to accelerated hepatic carcinogenesis in glycogen storage disease type Ia. J Hepatol 2018; 69:1074-1087. [PMID: 30193922 DOI: 10.1016/j.jhep.2018.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 06/11/2018] [Accepted: 07/08/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Glycogen storage disease type Ia (GSDIa) is a rare genetic disease associated with glycogen accumulation in hepatocytes and steatosis. With age, most adult patients with GSDIa develop hepatocellular adenomas (HCA), which can progress to hepatocellular carcinomas (HCC). In this study, we characterized metabolic reprogramming and cellular defense alterations during tumorigenesis in the liver of hepatocyte-specific G6pc deficient (L.G6pc-/-) mice, which develop all the hepatic hallmarks of GSDIa. METHODS Liver metabolism and cellular defenses were assessed at pretumoral (four months) and tumoral (nine months) stages in L.G6pc-/- mice fed a high fat/high sucrose (HF/HS) diet. RESULTS In response to HF/HS diet, hepatocarcinogenesis was highly accelerated since 85% of L.G6pc-/- mice developed multiple hepatic tumors after nine months, with 70% classified as HCA and 30% as HCC. Tumor development was associated with high expression of malignancy markers of HCC, i.e. alpha-fetoprotein, glypican 3 and β-catenin. In addition, L.G6pc-/- livers exhibited loss of tumor suppressors. Interestingly, L.G6pc-/- steatosis exhibited a low-inflammatory state and was less pronounced than in wild-type livers. This was associated with an absence of epithelial-mesenchymal transition and fibrosis, while HCA/HCC showed a partial epithelial-mesenchymal transition in the absence of TGF-β1 increase. In HCA/HCC, glycolysis was characterized by a marked expression of PK-M2, decreased mitochondrial OXPHOS and a decrease of pyruvate entry in the mitochondria, confirming a "Warburg-like" phenotype. These metabolic alterations led to a decrease in antioxidant defenses and autophagy and chronic endoplasmic reticulum stress in L.G6pc-/- livers and tumors. Interestingly, autophagy was reactivated in HCA/HCC. CONCLUSION The metabolic remodeling in L.G6pc-/- liver generates a preneoplastic status and leads to a loss of cellular defenses and tumor suppressors that facilitates tumor development in GSDI. LAY SUMMARY Glycogen storage disease type Ia (GSD1a) is a rare metabolic disease characterized by hypoglycemia, steatosis, excessive glycogen accumulation and tumor development in the liver. In this study, we have observed that GSDIa livers reprogram their metabolism in a similar way to cancer cells, which facilitates tumor formation and progression, in the absence of hepatic fibrosis. Moreover, hepatic burden due to overload of glycogen and lipids in the cells leads to a decrease in cellular defenses, such as autophagy, which could further promote tumorigenesis in the case of GSDI.
Collapse
Affiliation(s)
- Monika Gjorgjieva
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon F-69008, France; Université de Lyon, Lyon F-69008 France; Université Lyon I, Villeurbanne F-69622 France
| | - Julien Calderaro
- Inserm UMR-1162, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France; Université Paris Est Créteil, Créteil, France; APHP, Assistance-Publique Hôpitaux-de-Paris, Département de Pathologie, Hôpital Henri Mondor, Créteil F-94010, France
| | - Laure Monteillet
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon F-69008, France; Université de Lyon, Lyon F-69008 France; Université Lyon I, Villeurbanne F-69622 France
| | - Marine Silva
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon F-69008, France; Université de Lyon, Lyon F-69008 France; Université Lyon I, Villeurbanne F-69622 France
| | - Margaux Raffin
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon F-69008, France; Université de Lyon, Lyon F-69008 France; Université Lyon I, Villeurbanne F-69622 France
| | - Marie Brevet
- Université de Lyon, Lyon F-69008 France; Université Lyon I, Villeurbanne F-69622 France; Service de Pathologie Lyon Est, Centre hospitalier universitaire de Lyon, Lyon F-69437, France
| | - Caroline Romestaing
- Université de Lyon, Lyon F-69008 France; Université Lyon I, Villeurbanne F-69622 France; Centre National de la Recherche Scientifique, UMR 5023, Villeurbanne F-69622 France
| | - Damien Roussel
- Université de Lyon, Lyon F-69008 France; Université Lyon I, Villeurbanne F-69622 France; Centre National de la Recherche Scientifique, UMR 5023, Villeurbanne F-69622 France
| | - Jessica Zucman-Rossi
- Inserm UMR-1162, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Assistance Publique-Hôpitaux de Paris, Paris F-75015, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon F-69008, France; Université de Lyon, Lyon F-69008 France; Université Lyon I, Villeurbanne F-69622 France
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon F-69008, France; Université de Lyon, Lyon F-69008 France; Université Lyon I, Villeurbanne F-69622 France.
| |
Collapse
|
379
|
Chen XD, Zhao ZP, Zhou JC, Lei XG. Evolution, regulation, and function of porcine selenogenome. Free Radic Biol Med 2018; 127:116-123. [PMID: 29698745 PMCID: PMC6420226 DOI: 10.1016/j.freeradbiomed.2018.04.560] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 12/31/2022]
Abstract
Much less research on regulation and function of selenoproteins has been conducted in domestic pigs than in rodents or humans, although pigs are an excellent model of human nutrition and medicine and pork is a widely consumed meat in the world. Phylogenetically, the 25 identified porcine selenoproteins fell into two primitive groups, and might be further divided into three parallel branches. Despite a high similarity to that of humans and rodents, the porcine selenoproteome exhibited the closest evolutionary relationship with that of sheep and cattle among eight domestic species. Expression (mRNA, protein, and/or enzyme activity) of 2/3 of the 25 porcine selenoproteins in various tissues of pigs was affected by dietary Se intakes, and 14 of them showed responses to a high fat diet. When dietary Se deficiency mainly down-regulated the expression of selected selenoproteins, dietary Se excess exerted rather diverse effects on their expression. Overdosing pigs with dietary Se induced hyperinsulinemia, along with lipid accumulation and protein increase, in the liver and muscle by affecting key genes and(or) proteins involved in the metabolisms of glucose, lipid, and protein. In conclusion, expression of porcine selenoproteins was highly responsive to dietary Se and fat intakes, and was involved in body glucose, lipid, and protein metabolism as those of rodents and humans.
Collapse
Affiliation(s)
- Xiao-Dong Chen
- College of Life Science and Technology, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ze-Ping Zhao
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - Ji-Chang Zhou
- School of Public Health School (Shenzhen), Sun Yat-Sen University, Shenzhen 518100, China; Molecular Biology Laboratory, Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
380
|
Sletten AC, Peterson LR, Schaffer JE. Manifestations and mechanisms of myocardial lipotoxicity in obesity. J Intern Med 2018; 284:478-491. [PMID: 29331057 PMCID: PMC6045461 DOI: 10.1111/joim.12728] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Environmental and socioeconomic changes over the past thirty years have contributed to a dramatic rise in the worldwide prevalence of obesity. Heart disease is amongst the most serious health risks of obesity, with increases in both atherosclerotic coronary heart disease and heart failure among obese individuals. In this review, we focus on primary myocardial alterations in obesity that include hypertrophic remodelling and diastolic dysfunction. Obesity-associated perturbations in myocardial and systemic lipid metabolism are important contributors to cardiovascular complications of obesity. Accumulation of excess lipid in nonadipose cells of the cardiovascular system can cause cell dysfunction and cell death, a process known as lipotoxicity. Lipotoxicity has been modelled in mice using high-fat diet feeding, inbred lines with mutations in leptin receptor signalling, and in genetically engineered mice with enhanced myocardial fatty acid uptake, altered lipid droplet homoeostasis or decreased cardiac fatty acid oxidation. These studies, along with findings in cell culture model systems, indicate that the molecular pathophysiology of lipid overload involves endoplasmic reticulum stress, alterations in autophagy, de novo ceramide synthesis, oxidative stress, inflammation and changes in gene expression. We highlight recent advances that extend our understanding of the impact of obesity and altered lipid metabolism on cardiac function.
Collapse
Affiliation(s)
- A C Sletten
- Department of Medicine, Washington University, St Louis, MO, USA
| | - L R Peterson
- Department of Medicine, Washington University, St Louis, MO, USA
| | - J E Schaffer
- Department of Medicine, Washington University, St Louis, MO, USA
| |
Collapse
|
381
|
Song YF, Xu YH, Zhuo MQ, Wu K, Luo Z. CREB element is essential for unfolded protein response (UPR) mediating the Cu-induced changes of hepatic lipogenic metabolism in Chinese yellow catfish (Pelteobagrus fulvidraco). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 203:69-79. [PMID: 30096479 DOI: 10.1016/j.aquatox.2018.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
The present study was conducted to explore the underlying mechanism of unfolded protein response (UPR) mediating the Cu-induced changes of hepatic lipogenic metabolism in a low vertebrate, freshwater teleost yellow catfish Pelteobagrus fulvidraco. To this end, three experiments were conducted. In Exp. 1, we cloned the regions of grp78, perk, ire-1α and atf-6α promoters, and found that multiple cAMP-response element binding protein (CREB) binding sites were identified in their promoter regions. Furthermore, these CREB binding sites played crucial role in transcriptional regulation of UPR. In Exp. 2, the involvement of perk, ire-1α and atf-6α in Cu-induced changes of hepatic lipid metabolism was confirmed by specific miRNA. In Exp. 3, the regulatory mechanism of CREB underlying UPR mediating Cu-induced hepatic lipogenic metabolism were investigated. Cu induced UPR via the activation of CREB binding sites in the promoter regions of grp78, perk, ire-1α and atf-6α. In addition, the inhibition of CREB markedly attenuated the Cu-induced up-regulation of hepatic lipogenic metabolism in hepatocytes. This conclusion was further supported by the results from the trial of CREB over-expression. Taken together, the present study indicated that CREB was essential for UPR mediating Cu-induced lipogenic metabolism, supporting a mechanistic link among CREB, UPR and Cu-induced changes of lipid metabolism.
Collapse
Affiliation(s)
- Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Huan Xu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Mei-Qing Zhuo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| |
Collapse
|
382
|
Petan T, Jarc E, Jusović M. Lipid Droplets in Cancer: Guardians of Fat in a Stressful World. Molecules 2018; 23:molecules23081941. [PMID: 30081476 PMCID: PMC6222695 DOI: 10.3390/molecules23081941] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer cells possess remarkable abilities to adapt to adverse environmental conditions. Their survival during severe nutrient and oxidative stress depends on their capacity to acquire extracellular lipids and the plasticity of their mechanisms for intracellular lipid synthesis, mobilisation, and recycling. Lipid droplets, cytosolic fat storage organelles present in most cells from yeast to men, are emerging as major regulators of lipid metabolism, trafficking, and signalling in various cells and tissues exposed to stress. Their biogenesis is induced by nutrient and oxidative stress and they accumulate in various cancers. Lipid droplets act as switches that coordinate lipid trafficking and consumption for different purposes in the cell, such as energy production, protection against oxidative stress or membrane biogenesis during rapid cell growth. They sequester toxic lipids, such as fatty acids, cholesterol and ceramides, thereby preventing lipotoxic cell damage and engage in a complex relationship with autophagy. Here, we focus on the emerging mechanisms of stress-induced lipid droplet biogenesis; their roles during nutrient, lipotoxic, and oxidative stress; and the relationship between lipid droplets and autophagy. The recently discovered principles of lipid droplet biology can improve our understanding of the mechanisms that govern cancer cell adaptability and resilience to stress.
Collapse
Affiliation(s)
- Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia.
| | - Eva Jarc
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia.
- Jožef Stefan International Postgraduate School, Ljubljana SI-1000, Slovenia.
| | - Maida Jusović
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia.
- Jožef Stefan International Postgraduate School, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
383
|
Mechanisms of NAFLD development and therapeutic strategies. Nat Med 2018; 24:908-922. [PMID: 29967350 DOI: 10.1038/s41591-018-0104-9] [Citation(s) in RCA: 2461] [Impact Index Per Article: 410.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023]
Abstract
There has been a rise in the prevalence of nonalcoholic fatty liver disease (NAFLD), paralleling a worldwide increase in diabetes and metabolic syndrome. NAFLD, a continuum of liver abnormalities from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), has a variable course but can lead to cirrhosis and liver cancer. Here we review the pathogenic and clinical features of NAFLD, its major comorbidities, clinical progression and risk of complications and in vitro and animal models of NAFLD enabling refinement of therapeutic targets that can accelerate drug development. We also discuss evolving principles of clinical trial design to evaluate drug efficacy and the emerging targets for drug development that involve either single agents or combination therapies intended to arrest or reverse disease progression.
Collapse
|
384
|
Activation of the endoplasmic reticulum stress sensor IRE1α by the vaccine adjuvant AS03 contributes to its immunostimulatory properties. NPJ Vaccines 2018; 3:20. [PMID: 29977610 PMCID: PMC6023910 DOI: 10.1038/s41541-018-0058-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 01/31/2023] Open
Abstract
The oil-in-water emulsion Adjuvant System 03 (AS03) is one of the few adjuvants used in licensed vaccines. Previous work indicates that AS03 induces a local and transient inflammatory response that contributes to its adjuvant effect. However, the molecular mechanisms involved in its immunostimulatory properties are ill-defined. Upon intramuscular injection in mice, AS03 elicited a rapid and transient downregulation of lipid metabolism-related genes in the draining lymph node. In vitro, these modifications were associated with profound changes in lipid composition, alteration of endoplasmic reticulum (ER) morphology and activation of the unfolded protein response pathway. In vivo, treatment with a chemical chaperone or deletion of the ER stress sensor kinase IRE1α in myeloid cells decreased AS03-induced cytokine production and its capacity to elicit high affinity antigen-specific antibodies. In summary, our results indicate that IRE1α is a sensor for the metabolic changes induced by AS03 in monocytic cells and may constitute a canonical pathway that could be exploited for the design of novel vaccine adjuvants.
Collapse
|
385
|
Wang Q, Yuan X, Chen Y, Zheng Q, Xu L, Wu Y. Endoplasmic Reticulum Stress Mediated MDRV p10.8 Protein-Induced Cell Cycle Arrest and Apoptosis Through the PERK/eIF2α Pathway. Front Microbiol 2018; 9:1327. [PMID: 29977231 PMCID: PMC6021497 DOI: 10.3389/fmicb.2018.01327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/30/2018] [Indexed: 12/14/2022] Open
Abstract
In this study, the mechanism of Muscovy duck reovirus (MDRV) p10.8 protein-induced pathogenesis was investigated, with a focus on endoplasmic reticulum (ER) stress. In chicken embryo fibroblasts cell lines (DF1), pCI-neo-flg-p10.8 protein transfection increased the phosphorylation (p-) levels of PERK and eIF2α as shown by Western blotting analysis and led to the dissociation of BiP from PERK as shown by co-immunoprecipitation (Co-IP) analysis. Results of treatment with both ER stress activator and inhibitor further confirmed that p10.8 protein induced ER stress. Subsequently, using flow cytometry analysis, it was also found that p10.8 protein induced cell cycle arrest during the G0/G1 phase. Furthermore, p10.8 transfection increased the phosphorylation levels of PERK and eIF2α, and reduced the expression levels of CDK2, CDK4, and Cyclin E according to Western blotting analysis. Treatment with ER stress activator and ER stress inhibitor after p10.8 protein transfection in DF1 cells further indicated that p10.8 protein induced ER stress, which resulted in cell cycle arrest. The results of knockdown of either PERK or eIF2α genes further confirmed that p10.8 protein-induced ER stress led to cell cycle arrest through the PERK/eIF2α pathway. Further results showed that p10.8 protein induced ER stress and apoptosis in DF1 cells. The expression levels of p-PERK, p-eIF2α, CHOP, cleaved-Caspase12, and cleaved-Caspase3 were increased by p10.8 protein. Test results of treatment with each of Tunicamycin, TUDCA and knockdown of PERK, and eIF2α, confirmed that p10.8 protein induced ER stress involving apoptosis via the PERK/eIF2α pathway. In conclusion, MDRV p10.8 protein induced ER stress that caused cell cycle arrest and apoptosis through the PERK/eIF2α pathway.
Collapse
Affiliation(s)
- Quanxi Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoqin Yuan
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingli Zheng
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lihui Xu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yijian Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
386
|
Abstract
The liver has a unique ability of regenerating after injuries or partial loss of its mass. The mechanisms responsible for liver regeneration - mostly occurring when the hepatic tissue is damaged or functionally compromised by metabolic stress - have been studied in considerable detail over the last few decades, because this phenomenon has both basic-biology and clinical relevance. More specifically, recent interest has been focusing on the widespread occurrence of abnormal nutritional habits in the Western world that result in an increased prevalence of non-alcoholic fatty liver disease (NAFLD). NAFLD is closely associated with insulin resistance and dyslipidemia, and it represents a major clinical challenge. The disease may progress to steatohepatitis with persistent inflammation and progressive liver damage, both of which will compromise regeneration under conditions of partial hepatectomy in surgical oncology or in liver transplantation procedures. Here, we analyze the impact of ER stress and SIRT1 in lipid metabolism and in fatty liver pathology, and their consequences on liver regeneration. Moreover, we discuss the fine interplay between ER stress and SIRT1 functioning when contextualized to liver regeneration. An improved understanding of the cellular and molecular intricacies contributing to liver regeneration could be of great clinical relevance in areas as diverse as obesity, metabolic syndrome and type 2 diabetes, as well as oncology and transplantation.
Collapse
Affiliation(s)
| | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
387
|
Anusornvongchai T, Nangaku M, Jao TM, Wu CH, Ishimoto Y, Maekawa H, Tanaka T, Shimizu A, Yamamoto M, Suzuki N, Sassa R, Inagi R. Palmitate deranges erythropoietin production via transcription factor ATF4 activation of unfolded protein response. Kidney Int 2018; 94:536-550. [PMID: 29887316 DOI: 10.1016/j.kint.2018.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 02/02/2018] [Accepted: 03/02/2018] [Indexed: 01/22/2023]
Abstract
Lipotoxicity plays an important role in the progression of chronic kidney damage via various mechanisms, such as endoplasmic reticulum stress. Several studies proposed renal lipotoxicity in glomerular and tubular cells but the effect of lipid on renal erythropoietin (EPO)-producing (REP) cells in the interstitium has not been elucidated. Since renal anemia is caused by derangement of EPO production in REP cells, we evaluated the effect of palmitate, a representative long-chain saturated fatty acid, on EPO production and the endoplasmic reticulum stress pathway. EPO production was suppressed by palmitate (palmitate-conjugated bovine serum albumin [BSA]) or a high palmitate diet, but not oleic acid-conjugated BSA or a high oleic acid diet, especially under cobalt-induced pseudo-hypoxia both in vitro and in vivo. Importantly, suppression of EPO production was not induced by a decrease in transcription factor HIF activity, while it was significantly associated with endoplasmic reticulum stress, particularly transcription factor ATF4 activation, which suppresses 3'-enhancer activity of the EPO gene. ATF4 knockdown by siRNA significantly attenuated the suppressive effect of palmitate on EPO production. Studies utilizing inherited super-anemic mice (ISAM) mated with EPO-Cre mice (ISAM-REC mice) for lineage-labeling of REP cells showed that ATF4 activation by palmitate suppressed EPO production in REP cells. Laser capture microdissection confirmed ATF4 activation in the interstitial area of ISAM-REC mice treated with palmitate-conjugated BSA. Thus, endoplasmic reticulum stress induced by palmitate suppressed EPO expression by REP cells in a manner independent of HIF activation. The link between endoplasmic reticulum stress, dyslipidemia, and hypoxia may contribute to development and progression of anemia in CKD.
Collapse
Affiliation(s)
- Thitinun Anusornvongchai
- Division of CKD Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan; Department of Internal Medicine, Lerdsin General Hospital, Department of Medical Services, Bangkok, Thailand
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tzu-Ming Jao
- Division of CKD Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Chia-Hsien Wu
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yu Ishimoto
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Maekawa
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masayuki Yamamoto
- Division of Interdisciplinary Medical Science, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | | | - Reiko Inagi
- Division of CKD Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
388
|
Valenzuela R, Videla LA. Crosstalk mechanisms in hepatoprotection: Thyroid hormone-docosahexaenoic acid (DHA) and DHA-extra virgin olive oil combined protocols. Pharmacol Res 2018; 132:168-175. [DOI: 10.1016/j.phrs.2017.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/27/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023]
|
389
|
Raouf J, Idborg H, Englund P, Alexanderson H, Dastmalchi M, Jakobsson PJ, Lundberg IE, Korotkova M. Targeted lipidomics analysis identified altered serum lipid profiles in patients with polymyositis and dermatomyositis. Arthritis Res Ther 2018; 20:83. [PMID: 29720222 PMCID: PMC5932839 DOI: 10.1186/s13075-018-1579-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/27/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Polymyositis (PM) and dermatomyositis (DM) are severe chronic autoimmune diseases, characterized by muscle fatigue and low muscle endurance. Conventional treatment includes high doses of glucocorticoids and immunosuppressive drugs; however, few patients recover full muscle function. One explanation of the persistent muscle weakness could be altered lipid metabolism in PM/DM muscle tissue as we previously reported. Using a targeted lipidomic approach we aimed to characterize serum lipid profiles in patients with PM/DM compared to healthy individuals (HI) in a cross-sectional study. Also, in the longitudinal study we compared serum lipid profiles in patients newly diagnosed with PM/DM before and after immunosuppressive treatment. METHODS Lipidomic profiles were analyzed in serum samples from 13 patients with PM/DM, 12 HI and 8 patients newly diagnosed with PM/DM before and after conventional immunosuppressive treatment using liquid chromatography tandem mass spectrometry (LC-MS/MS) and a gas-chromatography flame ionization detector (GC-FID). Functional Index (FI), as a test of muscle performance and serum levels of creatine kinase (s-CK) as a proxy for disease activity were analyzed. RESULTS The fatty acid (FA) composition of total serum lipids was altered in patients with PM/DM compared to HI; the levels of palmitic (16:0) acid were significantly higher while the levels of arachidonic (20:4, n-6) acid were significantly lower in patients with PM/DM. The profiles of serum phosphatidylcholine and triacylglycerol species were changed in patients with PM/DM compared to HI, suggesting disproportionate levels of saturated and polyunsaturated FAs that might have negative effects on muscle performance. After immunosuppressive treatment the total serum lipid levels of eicosadienoic (20:2, n-6) and eicosapentaenoic (20:5, n-3) acids were increased and serum phospholipid profiles were altered in patients with PM/DM. The correlation between FI or s-CK and levels of several lipid species indicate the important role of lipid changes in muscle performance and inflammation. CONCLUSIONS Serum lipids profiles are significantly altered in patients with PM/DM compared to HI. Moreover, immunosuppressive treatment in patients newly diagnosed with PM/DM significantly affected serum lipid profiles. These findings provide new evidence of the dysregulated lipid metabolism in patients with PM/DM that could possibly contribute to low muscle performance.
Collapse
Affiliation(s)
- Joan Raouf
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Helena Idborg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Petter Englund
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Helene Alexanderson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Maryam Dastmalchi
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Ingrid E Lundberg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Marina Korotkova
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden.
| |
Collapse
|
390
|
Mateus D, Marini ES, Progida C, Bakke O. Rab7a modulates ER stress and ER morphology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:781-793. [DOI: 10.1016/j.bbamcr.2018.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/15/2018] [Accepted: 02/28/2018] [Indexed: 02/08/2023]
|
391
|
den Brok MH, Raaijmakers TK, Collado-Camps E, Adema GJ. Lipid Droplets as Immune Modulators in Myeloid Cells. Trends Immunol 2018; 39:380-392. [DOI: 10.1016/j.it.2018.01.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/14/2017] [Accepted: 01/23/2018] [Indexed: 12/23/2022]
|
392
|
Differential Regulation of Toll-Like Receptor-Mediated Cytokine Production by Unfolded Protein Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9827312. [PMID: 29849928 PMCID: PMC5941770 DOI: 10.1155/2018/9827312] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/01/2018] [Indexed: 12/11/2022]
Abstract
The ability of the host immune response is largely mediated by the proinflammatory cytokine production. Physiological and pathological conditions of endoplasmic reticulum (ER) trigger unfolded protein response and contribute to the development or pathology of inflammatory diseases. Under ER stress, unfolded protein response (UPR) signaling pathways participate in upregulating inflammatory cytokine production via NF-kappaB, MAPK, and GSK-3β. Moreover, it has been suggested that ER stress crosstalks with toll-like receptor (TLR) signaling pathway to promote the production of proinflammatory cytokines. In addition, TLR stimulation can lead to UPR activation to promote inflammation. In this review, we will cover how proinflammatory cytokine production by UPR signaling can be induced or amplified in the presence or absence of TLR activation.
Collapse
|
393
|
Cation-Independent Mannose 6-Phosphate Receptor Deficiency Enhances β-Cell Susceptibility to Palmitate. Mol Cell Biol 2018; 38:MCB.00680-17. [PMID: 29378831 DOI: 10.1128/mcb.00680-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/22/2018] [Indexed: 12/29/2022] Open
Abstract
Palmitate attenuates insulin secretion and reduces the viability of insulin-producing cells. Previous studies identified the aberrant palmitoylation or mispalmitoylation of proteins as one mechanism by which palmitate causes β-cell damage. In this report, we identify a role for lysosomal protein degradation as a mechanism by which β cells defend themselves against excess palmitate. The cation-independent mannose 6-phosphate receptor (CI-MPR) is responsible for the trafficking of mannose 6-phosphate-tagged proteins to lysosomes via Golgi sorting and from extracellular locations through endocytosis. RINm5F cells, which are highly sensitive to palmitate, lack CI-MPR. The reconstitution of CI-MPR expression attenuates the induction of endoplasmic reticulum (ER) stress and the toxic effects of palmitate on RINm5F cell viability. INS832/13 cells express CI-MPR and are resistant to the palmitate-mediated loss of cell viability. The reduction of CI-MPR expression increases the sensitivity of INS832/13 cells to the toxic effects of palmitate treatment. The inhibition of lysosomal acid hydrolase activity by weak base treatment of islets under glucolipotoxic conditions causes islet degeneration that is prevented by the inhibition of protein palmitoylation. These findings indicate that defects in lysosomal function lead to the enhanced sensitivity of insulin-producing cells to palmitate and support a role for normal lysosomal function in the protection of β cells from excess palmitate.
Collapse
|
394
|
Lin SH, Cheng PC, Tu ST, Hsu SR, Cheng YC, Liu YH. Effect of metformin monotherapy on serum lipid profile in statin-naïve individuals with newly diagnosed type 2 diabetes mellitus: a cohort study. PeerJ 2018; 6:e4578. [PMID: 29666753 PMCID: PMC5899882 DOI: 10.7717/peerj.4578] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/16/2018] [Indexed: 01/16/2023] Open
Abstract
Background Cardiovascular disease is a major cause of mortality and morbidity in people with type 2 diabetes mellitus (T2DM). Studies have consistently identified dyslipidemia as an important risk factor for the development of macrovascular disease. The landmark United Kingdom Prospective Diabetes Study has shown that metformin therapy reduces cardiovascular events in overweight people with T2DM. This study investigates the effect of metformin monotherapy on serum lipid profile in statin-naïve individuals with newly diagnosed T2DM, and whether the effect, if any, is dosage-related. Methods This cohort study enrolled individuals exceeding 20 years of age, with recent onset T2DM, who received at least 12 months of metformin monotherapy and blood tests for serum lipid at 6-month intervals. Exclusion criteria involved people receiving any additional antidiabetic medication or lipid-lowering drug therapy. Lipid-modifying effect of metformin was recorded as levels of serum triglycerides (TG), high density lipoprotein cholesterol (HDL-C), and low density lipoprotein cholesterol (LDL-C) measured at six month intervals. Results The study enrolled 155 participants with a mean age of 58.6 years and average glycosylated hemoglobin A1c of 8%. After initiating metformin therapy, LDL-C was significantly reduced from 111 mg/dl to 102 mg/dL at 6 months (P < 0.001), TG was reduced from 132 mg/dl to 122 mg/dL at 12 months (P = 0.046), and HDL-C increased from 45.1 mg/dL to 46.9 mg/dL at 12 months (P = 0.02). However, increasing the dosage of metformin yielded no significant effect on its lipid-lowering efficacy. Discussion Metformin monotherapy appreciably improves dyslipidemia in statin-naive people with T2DM. Its lipid-modifying effect may be attributable to insulin sensitization, reduction of irreversibly glycated LDL-C, and weight loss. In practice, people with dyslipidemia who are ineligible for lipid-lowering agents may benefit from metformin therapy. Moreover, previous studies report a synergistic effect between metformin and statin, which may further reduce cardiovascular events in at-risk individuals. Overall, metformin is a safe and efficacious approach to alleviate dyslipidemia in people with newly diagnosed T2DM.
Collapse
Affiliation(s)
- Szu Han Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua City, Taiwan
| | - Po Chung Cheng
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua City, Taiwan
| | - Shih Te Tu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua City, Taiwan
| | - Shang Ren Hsu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua City, Taiwan
| | - Yun Chung Cheng
- Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu Hsiu Liu
- Department of Accounting and Information Systems, National Taichung University of Science and Technology, Taichung, Taiwan
| |
Collapse
|
395
|
Torre‐Villalvazo I, Bunt AE, Alemán G, Marquez‐Mota CC, Diaz‐Villaseñor A, Noriega LG, Estrada I, Figueroa‐Juárez E, Tovar‐Palacio C, Rodriguez‐López LA, López‐Romero P, Torres N, Tovar AR. Adiponectin synthesis and secretion by subcutaneous adipose tissue is impaired during obesity by endoplasmic reticulum stress. J Cell Biochem 2018; 119:5970-5984. [DOI: 10.1002/jcb.26794] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 02/16/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Ivan Torre‐Villalvazo
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| | - Ana E. Bunt
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| | - Gabriela Alemán
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| | - Claudia C. Marquez‐Mota
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
- Departamento de Nutrición Animal y BioquímicaFMVZ‐UNAMMéxico CityMéxico
| | - Andrea Diaz‐Villaseñor
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
- Instituto de Investigaciones BiomédicasIIB‐UNAMMéxico CityMéxico
| | - Lilia G. Noriega
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| | - Isabela Estrada
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| | - Elizabeth Figueroa‐Juárez
- Departamento de Nefrología y Metabolismo MineralInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| | - Claudia Tovar‐Palacio
- Departamento de Nefrología y Metabolismo MineralInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| | - Leonardo A. Rodriguez‐López
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| | - Patricia López‐Romero
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| | - Nimbe Torres
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| | - Armando R. Tovar
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| |
Collapse
|
396
|
Zhang B, Gao C, Li Y, Wang M. D-chiro-inositol enriched Fagopyrum tataricum (L.) Gaench extract alleviates mitochondrial malfunction and inhibits ER stress/JNK associated inflammation in the endothelium. JOURNAL OF ETHNOPHARMACOLOGY 2018; 214:83-89. [PMID: 29225119 DOI: 10.1016/j.jep.2017.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tartary buckwheat is a food medicine dual-use crop with healing effects on cardiovascular diseases and type2 diabetes. It has been proposed that endothelial dysfunction is the initial lesion in these diseases and it's associated with mitochondrial dysfunction, endoplasmic reticulum (ER) stress and inflammation. D-chiro-inositol (DCI) is a bioactive compound of Tartary buckwheat and is always deficit in type2 diabetes. However, it remains unknown whether DCI-enriched Tartary buckwheat extract can ameliorate mitochondrial dysfunction, ER stress and inflammation in the endothelium. MATERIAL AND METHODS Endothelial cells were treated with palmitic acid (PA) and mice were fed with high fat diet (HFD). The effects of DCI-enriched Tartary buckwheat bran extract (TBBE) on superoxide anion generation, dynamin-related protein 1 (Drp1), mitofusin2 (Mfn2), inositol-requiring enzyme-1α (IRE1α) and Jun n-terminal kinase (JNK) activation and inflammation in the endothelium against lipotoxicity were investigated. RESULTS In endothelial cells, TBBE significantly inhibited oxidative stress. Meanwhile, in HFD-fed mice and PA-induced cells, TBBE regulated Drp1 phosphorylation and inhibited its activation, implying the protective effect of TBBE on mitochondrial morphology. As a result, TBBE protected mitochondrial function. Additionally, TBBE inhibited ER stress and reduced the production of IL-6 and VCAM-1, associated with JNK pathway, thereby inhibiting the caspase-3 activation in vivo and in vitro. CONCLUSIONS Taken together, this study indicated the beneficial role of TBBE in endothelial inflammation, with emphasis on mitochondrial dysfunction, ER stress and JNK activation.
Collapse
Affiliation(s)
- Bobo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Caifeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yunlong Li
- Institute of agricultural products processing, Shanxi Academy of Agriculture Sciences, Taiyuan 030031, PR China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
397
|
Varshney R, Varshney R, Mishra R, Gupta S, Sircar D, Roy P. Kaempferol alleviates palmitic acid-induced lipid stores, endoplasmic reticulum stress and pancreatic β-cell dysfunction through AMPK/mTOR-mediated lipophagy. J Nutr Biochem 2018; 57:212-227. [PMID: 29758481 DOI: 10.1016/j.jnutbio.2018.02.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 12/28/2017] [Accepted: 02/13/2018] [Indexed: 12/26/2022]
Abstract
Kaempferol, a natural flavonoid, has the beneficial effects of preserving pancreatic β-cell mass and function, but its action on β-cell lipid metabolism still remains elusive. Recently, autophagy has been reported to play a major role in lipid metabolism in various cell types, but its role in pancreatic β-cell's lipid metabolism is rarely reported. Here, we investigated the role of kaempferol-induced autophagy in inhibition of lipid stores, ER stress and β-cell dysfunction in palmitic acid-challenged RIN-5F cells and isolated pancreatic islets. The lipid-lowering effect of kaempferol was determined by Oil Red O staining, triglyceride assay, BODIPY labeling, RT-PCR and immunoblot analysis of PLIN2 (the lipid droplet coat protein) expression. Further, the involvement of AMPK/mTOR-mediated lipophagy was established by pharmacological and genetic inhibitors of autophagy and AMPK. The co-localization studies of lipid droplets with autophagosomes/lysosomes by BODIPY-MDC-LysoTracker co-staining, LC3/BODIPY labeling and LC3/PLIN2 double immunolabeling further strengthened the findings. Kaempferol treatment exhibited decreased lipid stores and increased co-localization of lipid droplets with autophagosomes and lysosomes in palmitic acid-challenged β-cells. Moreover, inhibition of autophagy led to decreased co-localization and increased lipid droplets accumulation. Kaempferol-induced alleviation of ER stress and β-cell dysfunctions was established by immunoblot analysis of CHOP-10 (a key mediator of cell death in response to ER stress) and insulin content/secretion analysis respectively. Together, these findings suggest that kaempferol prevents ectopic lipid accumulation and ER stress, thus restoring β-cell function through AMPK-mediated lipophagy. The current data implies that kaempferol may be a potential therapeutic candidate to prevent obesity-linked diabetic complications.
Collapse
Affiliation(s)
- Ritu Varshney
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee -247667, Uttarakhand, India
| | - Rajat Varshney
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Izatnagar-, Bareilly -243122, Uttar Pradesh, India
| | - Rutusmita Mishra
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee -247667, Uttarakhand, India
| | - Sumeet Gupta
- College of Pharmacy, Maharishi Markandeshwar University, Mullana- Ambala, 133207, Haryana, India
| | - Debabrata Sircar
- Plant Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee -247667, Uttarakhand, India.
| |
Collapse
|
398
|
Mueller M, Castro RE, Thorell A, Marschall H, Auer N, Herac M, Rodrigues CM, Trauner M. Ursodeoxycholic acid: Effects on hepatic unfolded protein response, apoptosis and oxidative stress in morbidly obese patients. Liver Int 2018; 38:523-531. [PMID: 28853202 PMCID: PMC5836915 DOI: 10.1111/liv.13562] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/15/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Ursodeoxycholic acid (UDCA) is a secondary hydrophilic bile acid (BA) used as therapy for a range of hepatobiliary diseases. Its efficacy in non-alcoholic fatty liver disease (NAFLD) is still under debate. Here, we aimed to decipher molecular mechanisms of UDCA in regulating endoplasmic reticulum (ER) homeostasis, apoptosis and oxidative stress in morbidly obese patients. METHODS In this randomized controlled pharmacodynamic study, liver and serum samples from 40 well-matched morbidly obese NAFLD-patients were analysed. Patients received UDCA (20 mg/kg/d) or no treatment 3 weeks before samples were obtained during bariatric surgery. RESULTS Patients treated with UDCA displayed higher scoring of steatosis (S), activity (A) and fibrosis (F), the so called SAF-scoring. UDCA partially disrupted ER homeostasis by inducing the expression of the ER stress markers CHOP and GRP78. However, ERDJ4 and sXBP1 levels were unaffected. Enhanced CHOP expression, a suggested pro-apoptotic trigger, failed to induce apoptosis via BAK and BAX in the UDCA treated group. Potentially pro-apoptotic miR-34a was reduced in the vesicle-free fraction in serum but not in liver after UDCA treatment. Thiobarbituric acid reactive substances, 4-hydroxynonenal and mRNA levels of several oxidative stress indicators remained unchanged after UDCA treatment. CONCLUSION Our data suggest that UDCA treatment has ambivalent effects in NAFLD patients. While increased SAF-scores and elevated CHOP levels may be disadvantageous in the UDCA treated cohort, UDCA's cytoprotective properties potentially changed the apoptotic threshold as reflected by absent induction of pro-apoptotic triggers. UDCA treatment failed to improve the oxidative stress status in NAFLD patients.
Collapse
Affiliation(s)
- Michaela Mueller
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Rui E. Castro
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbonPortugal,Department of Biochemistry and Human BiologyFaculty of PharmacyUniversidade de LisboaLisbonPortugal
| | - Anders Thorell
- Department of Clinical Science at Danderyds HospitalKarolinska InstitutetStockholmSweden,Department of SurgeryErsta HospitalStockholmSweden
| | - Hanns‐Ulrich Marschall
- Department of Molecular and Clinical MedicineSahlgrenska AcademyInstitute of MedicineUniversity of GothenburgGothenburgSweden
| | - Nicole Auer
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Merima Herac
- Department of Clinical PathologyUniversity of ViennaViennaAustria
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbonPortugal,Department of Biochemistry and Human BiologyFaculty of PharmacyUniversidade de LisboaLisbonPortugal
| | - Michael Trauner
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
399
|
Schmitz-Peiffer C. Anarchy in the UPR: A Ca 2+-insensitive PKC inhibits SERCA activity to promote ER stress. Biosci Rep 2018; 38:BSR20170966. [PMID: 29439143 PMCID: PMC5857902 DOI: 10.1042/bsr20170966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 02/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is highly prevalent in Western countries, and is linked to the development of liver cancer and Type 2 diabetes (T2D). It is strongly associated with obesity, but the dysregulation of liver lipid storage is not fully understood. Fatty acid oversupply to hepatocytes can establish a vicious cycle involving diminished protein folding, endoplasmic reticulum (ER) stress, insulin resistance and further lipogenesis. This commentary discusses the recent findings of Lai et al. published in Bioscience Reports, that implicate protein kinase C delta (PKCδ) activation by fatty acids in the inhibition of the SERCA Ca2+ pump, resulting in reduced ER Ca2+ loading and protein misfolding. PKCδ therefore represents a target for the treatment of both steatosis and insulin resistance, key to the prevention of NAFLD and T2D.
Collapse
Affiliation(s)
- Carsten Schmitz-Peiffer
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, and St Vincents Clinical School, University of New South Wales, Darlinghurst, Sydney, 2010, Australia
| |
Collapse
|
400
|
Piña F, Yagisawa F, Obara K, Gregerson JD, Kihara A, Niwa M. Sphingolipids activate the endoplasmic reticulum stress surveillance pathway. J Cell Biol 2018; 217:495-505. [PMID: 29317528 PMCID: PMC5800815 DOI: 10.1083/jcb.201708068] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/10/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022] Open
Abstract
Proper inheritance of functional organelles is vital to cell survival. In the budding yeast, Saccharomyces cerevisiae, the endoplasmic reticulum (ER) stress surveillance (ERSU) pathway ensures that daughter cells inherit a functional ER. Here, we show that the ERSU pathway is activated by phytosphingosine (PHS), an early biosynthetic sphingolipid. Multiple lines of evidence support this: (1) Reducing PHS levels with myriocin diminishes the ability of cells to induce ERSU phenotypes. (2) Aureobasidin A treatment, which blocks conversion of early intermediates to downstream complex sphingolipids, induces ERSU. (3) orm1Δorm2Δ cells, which up-regulate PHS, show an ERSU response even in the absence of ER stress. (4) Lipid analyses confirm that PHS levels are indeed elevated in ER-stressed cells. (5) Lastly, the addition of exogenous PHS is sufficient to induce all ERSU phenotypes. We propose that ER stress elevates PHS, which in turn activates the ERSU pathway to ensure future daughter-cell viability.
Collapse
Affiliation(s)
- Francisco Piña
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Fumi Yagisawa
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Keisuke Obara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - J D Gregerson
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Maho Niwa
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA
| |
Collapse
|