351
|
Zhou T, Yu L, Huang J, Zhao X, Li Y, Hu Y, Lei Y. GDF10 inhibits proliferation and epithelial-mesenchymal transition in triple-negative breast cancer via upregulation of Smad7. Aging (Albany NY) 2020; 11:3298-3314. [PMID: 31147529 PMCID: PMC6555447 DOI: 10.18632/aging.101983] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/31/2019] [Indexed: 12/27/2022]
Abstract
Triple-negative breast cancer (TNBC) cannot be treated with current hormonal therapies and has a higher risk of relapse than other breast cancers. To identify potential therapeutic targets for TNBC, we conducted microRNA sequencing (RNA-Seq) in human TNBC specimens and tumor-matched controls. We found that growth differentiation factor-10 (GDF10), a member of the TGF-β superfamily, was downregulated in tumor samples. Further analysis of GDF10 expression in a larger set of clinical TNBC samples using qPCR confirmed its downregulation and association with parameters of disease severity. Using human-derived TNBC cell lines, we carried out GDF10 under- and overexpression experiments, which showed that GDF10 loss promoted cell proliferation and invasion. By contrast, overexpression of GDF10 inhibited proliferation, invasion, and epithelial mesenchymal transition (EMT) via upregulation of Smad7 and E-Cadherin, downregulation of p-Smad2 and N-Cadherin, and reduction of nuclear Smad4 expression. In addition, overexpression of GDF10 reduced tumor burden and induced apoptosis in a TNBC xenograft mouse model. These findings indicate that GDF10 acts as a tumor suppressor in mammary epithelial cells that limits proliferation and suppresses EMT. Efforts aimed at restoring GDF10 expression may thus bring a long-sought therapeutic alternative in the treatment of patients with TNBC.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Breast Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lei Yu
- Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Jianjun Huang
- Department of Breast Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Xueke Zhao
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Yanwen Li
- Department of Breast Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Yaxin Hu
- Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Yu Lei
- Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| |
Collapse
|
352
|
Hu N, Liu J, Xue X, Li Y. The effect of emodin on liver disease -- comprehensive advances in molecular mechanisms. Eur J Pharmacol 2020; 882:173269. [PMID: 32553811 DOI: 10.1016/j.ejphar.2020.173269] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 01/30/2023]
Abstract
Liver injury could be caused by a variety of causes, including alcohol, drug poisoning, autoimmune overreaction, etc. In the period of liver injury, hepatic stellate cells (HSCs) will be activated and produce excessive extracellular matrix (ECM). If injury cannot be suppressed, liver injury will develop into fibrosis, even cirrhosis and liver cancer. It is reported that some monomer components extracted from traditional Chinese medicine have better effects on protecting liver. Emodin, an anthraquinone compound extracted from the traditional Chinese medicine RHEI RADIX ET RHIZOMA, has anti-inflammatory, antioxidant, liver protection and anti-cancer effects, and can prevent liver injury induced by a variety of factors. By searching literatures related to the liver protection of emodin in PUBMED, SINOMED, EBM and CNKI databases, it was found that emodin could inhibit the production and promote the secretion of bile acids, and have a protective effect on intrahepatic cholestasis. Also, emodin reduce collagen synthesis and anti-hepatic fibrosis by inhibiting oxidative stress, TGF-β/Smad pathway and HSCs proliferation, and promoting apoptosis of HSCs. Emodin can also regulate lipid metabolism and regulate the synthesis and oxidation of lipids and cholesterol to protect the nonalcoholic fatty liver. Besides, emodin can induce the apoptosis of hepatocellular carcinoma cells by acting on the death receptor pathway and mitochondrial apoptosis pathway, thus inhibiting the development of hepatocellular carcinoma. Moreover, emodin can modulate immunity and improve immune rejection in liver transplantation animals. In conclusion, emodin has a good effect on liver protection, but further experimental data are needed to verify it.
Collapse
Affiliation(s)
- Naihua Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Jie Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyan Xue
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
353
|
Reprogramming of Mesothelial-Mesenchymal Transition in Chronic Peritoneal Diseases by Estrogen Receptor Modulation and TGF-β1 Inhibition. Int J Mol Sci 2020; 21:ijms21114158. [PMID: 32532126 PMCID: PMC7312018 DOI: 10.3390/ijms21114158] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
In chronic peritoneal diseases, mesothelial-mesenchymal transition is determined by cues from the extracellular environment rather than just the cellular genome. The transformation of peritoneal mesothelial cells and other host cells into myofibroblasts is mediated by cell membrane receptors, Transforming Growth Factor β1 (TGF-β1), Src and Hypoxia-inducible factor (HIF). This article provides a narrative review of the reprogramming of mesothelial mesenchymal transition in chronic peritoneal diseases, drawing on the similarities in pathophysiology between encapsulating peritoneal sclerosis and peritoneal metastasis, with a particular focus on TGF-β1 signaling and estrogen receptor modulators. Estrogen receptors act at the cell membrane/cytosol as tyrosine kinases that can phosphorylate Src, in a similar way to other receptor tyrosine kinases; or can activate the estrogen response element via nuclear translocation. Tamoxifen can modulate estrogen membrane receptors, and has been shown to be a potent inhibitor of mesothelial-mesenchymal transition (MMT), peritoneal mesothelial cell migration, stromal fibrosis, and neoangiogenesis in the treatment of encapsulating peritoneal sclerosis, with a known side effect and safety profile. The ability of tamoxifen to inhibit the transduction pathways of TGF-β1 and HIF and achieve a quiescent peritoneal stroma makes it a potential candidate for use in cancer treatments. This is relevant to tumors that spread to the peritoneum, particularly those with mesenchymal phenotypes, such as colorectal CMS4 and MSS/EMT gastric cancers, and pancreatic cancer with its desmoplastic stroma. Morphological changes observed during mesothelial mesenchymal transition can be treated with estrogen receptor modulation and TGF-β1 inhibition, which may enable the regression of encapsulating peritoneal sclerosis and peritoneal metastasis.
Collapse
|
354
|
Gong Y, Yang Y. Activation of Nrf2/AREs-mediated antioxidant signalling, and suppression of profibrotic TGF-β1/Smad3 pathway: a promising therapeutic strategy for hepatic fibrosis - A review. Life Sci 2020; 256:117909. [PMID: 32512009 DOI: 10.1016/j.lfs.2020.117909] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Hepatic fibrosis (HF) is a wound-healing response that occurs during chronic liver injury and features by an excessive accumulation of extracellular matrix (ECM) components. Activation of hepatic stellate cell (HSC), the leading effector in HF, is responsible for overproduction of ECM. It has been documented that transforming growth factor-β1 (TGF-β1) stimulates superfluous accumulation of ECM and triggers HSCs activation mainly via canonical Smad-dependent pathway. Also, the pro-fibrogenic TGF-β1 is correlated with generation of reactive oxygen species (ROS) and inhibition of antioxidant mechanisms. Moreover, involvement of oxidative stress (OS) can be clearly elucidated as a fundamental event in liver fibrogenesis. Nuclear factor erythroid 2-related factor 2-antioxidant response elements (Nrf2-AREs) pathway, a group of OS-mediated transcription factors with diverse downstream targets, is associated with the induction of diverse detoxifying enzymes and the most pivotal endogenous antioxidative system. More specifically, Nrf2-AREs pathway has recently assigned as a new therapeutic target for cure of HF. The overall goal of this review will focus on recent findings about activation of Nrf2-AREs-mediated antioxidant and suppression of profibrotic TGF-β1/Smad3 pathway in the liver, providing an overview of recent advances in transcriptional repressors that dislocated during HF formation, and highlighting possible novel therapeutic targets for liver fibrosis.
Collapse
Affiliation(s)
- Yongfang Gong
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Yan Yang
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
355
|
Abudukeyoumu A, Li MQ, Xie F. Transforming growth factor-β1 in intrauterine adhesion. Am J Reprod Immunol 2020; 84:e13262. [PMID: 32379911 DOI: 10.1111/aji.13262] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Intrauterine adhesion (IUA), led by trauma to the basal layer, can prevent the endometrium from growing, resulting in complications in females, such as infertility and amenorrhea. Transforming growth factor-β1 (TGF-β1) plays a crucial role in inducing and promoting the differentiation and proliferation of mesenchymal cells, in the secretion of extracellular matrix-associated components, and is a major cytokine in initiating and terminating tissue repair downstream of the TGF-β/Smad signaling pathway. Some evidence supports that TGF-β1 is closely associated with the occurrence and development of IUA, and is regarded as an early risk factor of disease recurrence. Furthermore, the role of TGF-β1 has been demonstrated to be potentially regulated by a variety of cytokines, hormones, enzymes, and microRNAs. This review provides an overview of the expression, function, and regulation of TGF-β1 in IUA, with a brief discussion and perspectives on its future clinical implications on the diagnosis and treatment of IUA.
Collapse
Affiliation(s)
- Ayitila Abudukeyoumu
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Feng Xie
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
356
|
Functional analysis of miRNAs combined with TGF-β1/Smad3 inhibitor in an intrauterine rat adhesion cell model. Mol Cell Biochem 2020; 470:15-28. [PMID: 32447720 DOI: 10.1007/s11010-020-03741-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023]
Abstract
In this study, we aimed to study the role of miRNAs in intrauterine adhesion (IUA) disease. An IUA cell model was constructed by TGF-β1. Smad3 inhibitor (SIS3) can inhibit the Smad3 signaling pathway and affect the role of TGF-β1; thus, it was used to identify the role of Smad3 and related miRNAs in IUA. Cell number significantly increased in the TGF-β1 group after 72 h and 96 h, respectively, compared with that in the control group (P < 0.05). However, cell proliferation was significantly decreased in the TGF-β1 + SIS3 group (P < 0.0001). Cell apoptosis was increased in the TGF-β1 + SIS3 group compared with that in the TGF-β1 group. Western Blot (WB) analysis suggested that TGF-β1 treatment could effectively increase the expression of α-SMA, COL1, Smad3, and p-Smad3, which could be inhibited by SIS3 treatment. A total of 235 and 530 differentially expressed miRNAs in the TGF-β1 + SIS3 group were significantly up- and downregulated compared with those in the TGF-β1 group, respectively. These differentially expressed miRNAs were enriched in the MAPK and PI3K-AKT pathways. The ten most differentially expressed miRNAs were selected to verify their expressions using quantitative real-time polymerase chain reaction (qPCR). Furthermore, overexpression of rno-miR-3586-3p and rno-miR-455-5p can promote cell proliferation and exacerbate the IUA pathogenic process. However, overexpression of rno-miR-204-3p and rno-miR-3578 can inhibit cell behavior and IUA progression. The above results can provide detailed information for the understanding of IUA molecular mechanisms.
Collapse
|
357
|
Alyaseer AAA, de Lima MHS, Braga TT. The Role of NLRP3 Inflammasome Activation in the Epithelial to Mesenchymal Transition Process During the Fibrosis. Front Immunol 2020; 11:883. [PMID: 32508821 PMCID: PMC7251178 DOI: 10.3389/fimmu.2020.00883] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is considered a complex form of tissue damage commonly present in the end stage of many diseases. It is also related to a high percentage of death, whose predominant characteristics are an excessive and abnormal deposition of fibroblasts and myofibroblasts -derived extracellular matrix (ECM) components. Epithelial-to-mesenchymal transition (EMT), a process in which epithelial cells gradually change to mesenchymal ones, is a major contributor in the pathogenesis of fibrosis. The key mediator of EMT is a multifunctional cytokine called transforming growth factor-β (TGF-β) that acts as the main inducer of the ECM assembly and remodeling through the phosphorylation of Smad2/3, which ultimately forms a complex with Smad4 and translocates into the nucleus. On the other hand, the bone morphogenic protein-7 (BMP-7), a member of the TGF family, reverses EMT by directly counteracting TGF-β induced Smad-dependent cell signaling. NLRP3 (NACHT, LRR, and PYD domains-containing protein 3), in turn, acts as cytosolic sensors of microbial and self-derived molecules and forms an immune complex called inflammasome in the context of inflammatory commitments. NLRP3 inflammasome assembly is triggered by extracellular ATP, reactive oxygen species (ROS), potassium efflux, calcium misbalance, and lysosome disruption. Due to its involvement in multiple diseases, NLRP3 has become one of the most studied pattern-recognition receptors (PRRs). Nevertheless, the role of NLRP3 in fibrosis development has not been completely elucidated. In this review, we described the relation of the previously mentioned fibrosis pathway with the NLRP3 inflammasome complex formation, especially EMT-related pathways. For now, it is suggested that the EMT happens independently from the oligomerization of the whole inflammasome complex, requiring just the presence of the NLRP3 receptor and the ASC protein to trigger the EMT events, and we will present different pieces of research that give controversial point of views.
Collapse
Affiliation(s)
| | | | - Tarcio Teodoro Braga
- Department of Pathology, Federal University of Parana, Curitiba, Brazil.,Instituto Carlos Chagas, Fiocruz-Parana, Curitiba, Brazil
| |
Collapse
|
358
|
Gene expression in human liver fibrosis associated with Echinococcus granulosus sensu lato. Parasitol Res 2020; 119:2177-2187. [PMID: 32377911 DOI: 10.1007/s00436-020-06700-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is a dynamic process that occurs in response to chronic liver disease resulting from factors such as chronic infections, autoimmune reactions, allergic responses, toxins, radiation, and infectious agents. Among the infectious agents, multicellular parasites cause chronic inflammation and fibrosis. Twenty-five patients with different stages of cystic echinococcosis (CE) were enrolled in the study. The expression of ACTA2, COL3A1, IFN-γ, MMP2, MMP9, TGF-β1, and TNF-α genes was determined by qRT-PCR in healthy and fibrotic liver tissue of the CE patients. TGF-β1 expression was evaluated by immunohistochemistry, and histology was conducted to assess the development of liver fibrosis. Expression of MMP9, ACTA2, COL3A1, and MMP2 was found significantly higher in the fibrotic tissue compared to healthy tissue. We observed a significant correlation between TGF-β1 and TNF-α gene expressions and liver fibrosis. The mRNA level of IFN-γ was lower in the fibrotic than in the healthy hepatic tissue. Immunohistochemistry analysis revealed TGF-β1 upregulation in the fibrotic tissue. Histology showed inflammation and fibrosis to be significantly higher in the fibrotic tissue. The findings of this study suggest that Echinococcus granulosussensu lato can promotes fibrosis through the overexpression of TGF-β1, MMP9, ACTA2, COL3A1, and MMP2. The downregulation of IFN-γ mRNA in fibrotic samples is probably due to the increased production of TGF-β1 and the suppression of potential anti-fibrotic role of IFN-γ during advanced liver injury caused by E. granulosussensu lato.
Collapse
|
359
|
Lu W, Mei J, Yang J, Wu Z, Liu J, Miao P, Chen Y, Wen Z, Zhao Z, Kong H, Wu C, Yang Y, Chen M. ApoE deficiency promotes non-alcoholic fatty liver disease in mice via impeding AMPK/mTOR mediated autophagy. Life Sci 2020; 252:117601. [PMID: 32304762 DOI: 10.1016/j.lfs.2020.117601] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/11/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
AIM This work was to investigate the relationship between ApoE and autophagy regulated by AMPK/mTOR pathway in the pathological process of NAFLD. MAIN METHODS Both WT and ApoE-/- mice were divided into two groups and allocated into either a normal chow (ND) or a high-fat diet (HFD) for 8 weeks. After that, we detected the indicators of lipid accumulation, hepatic injury, mitochondrial function hallmark, autophagy, apoptosis, inflammation, and oxidative stress by commercially available kits, immunohistochemistry, immunofluorescent staining, and western blot. KEY FINDING We found the lipid levels of serum and liver, and hepatic injury were significantly increased in the ApoE-/--HFD group compared to other groups. ApoE-/- mice exhibited increased deposition of fat in liver tissue. The PGC1α, NRF1, ATP, p-AMPK, AMPK, Beclin1, and LC3 levels were downregulated and ROS, p-mTOR, and mTOR were increased in the ApoE-/--HFD group compared to WT-HFD group. When treated with AMPK and autophagy activators, AICAR and rapamycin, these pathologies and protein levels can be rescued. The expression levels of apoptosis-related proteins, inflammation, and oxidative stress were increased in the ApoE-/--HFD group compared to the WT-HFD group. SIGNIFICANCE Our results indicated that ApoE deficiency can regulate AMPK/mTOR pathway, which leads to NAFLD most likely by modulating hepatic mitochondrial function.
Collapse
Affiliation(s)
- Wanpeng Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jinyu Mei
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Juan Yang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhihan Wu
- First Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Jiayuan Liu
- First Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Pengyu Miao
- First Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Yiliang Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zhenfan Wen
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhongting Zhao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hua Kong
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Chao Wu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei 230031, China
| | - Yan Yang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
360
|
Dessein H, Duflot N, Romano A, Opio C, Pereira V, Mola C, Kabaterene N, Coutinho A, Dessein A. Genetic algorithms identify individuals with high risk of severe liver disease caused by schistosomes. Hum Genet 2020; 139:821-831. [PMID: 32277285 DOI: 10.1007/s00439-020-02160-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/28/2020] [Indexed: 02/06/2023]
Abstract
Schistosomes induce severe hepatic disease, which is fatal in 2-10% of cases, mortality being higher in cases of co-infection with HBV or HCV. Hepatic disease occurs as a consequence of the chronic inflammation caused by schistosome eggs trapped in liver sinusoids. In certain individuals, the repair process leads to a massive accumulation of fibrosis in the periportal spaces. We and others have shown that genetic variants play a crucial role in disease progression from mild to severe fibrosis and explain why hepatic fibrosis progresses rapidly in certain subjects only. We will review here published findings concerning the strategies that have been used in the analysis of hepatic fibrosis in schistosome-infected individuals, the genetic variants that have associated with fibrosis, and variants in new pathways crucial for fibrosis progression. Together, these studies show that the development of fibrosis is under the tight genetic control of various common variants with moderate effects. This polygenic control has made it possible to develop models that identify schistosome-infected individual at risk of severe hepatic disease. We discuss the performances and limitations of these models.
Collapse
Affiliation(s)
- Hélia Dessein
- BILHI Genetics, 60 Avenue André Roussin, 13016, Marseille, France
- UMR_S906-Génétique Et Immunologie Des Maladies Parasitaires, Aix Marseille Université-INSERM, Marseille, France
| | - Nicolas Duflot
- BILHI Genetics, 60 Avenue André Roussin, 13016, Marseille, France
- UMR_S906-Génétique Et Immunologie Des Maladies Parasitaires, Aix Marseille Université-INSERM, Marseille, France
| | - Audrey Romano
- BILHI Genetics, 60 Avenue André Roussin, 13016, Marseille, France
- UMR_S906-Génétique Et Immunologie Des Maladies Parasitaires, Aix Marseille Université-INSERM, Marseille, France
| | - Christopher Opio
- Department of Medicine, Mulago Hospital, Makerere University College of Health Sciences, Kampala, Uganda
| | - Valeria Pereira
- Instituto Aggeu Magalhães, Fiocruz, Fundaçao Oswaldo Cruz, Av. Professor Moraes Rego, S/N Cidade Universitária, Recife, PE, 50740-465, Brazil
| | - Carla Mola
- Instituto Aggeu Magalhães, Fiocruz, Fundaçao Oswaldo Cruz, Av. Professor Moraes Rego, S/N Cidade Universitária, Recife, PE, 50740-465, Brazil
| | - Narcis Kabaterene
- Vector Control Division Uganda, Ministry of Health, Queen's Ln, Kampala, Uganda
| | - Ana Coutinho
- Fundação Oswaldo Cruz Rio de Janeiro, Av. Brasil, 4365, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Alain Dessein
- BILHI Genetics, 60 Avenue André Roussin, 13016, Marseille, France.
- UMR_S906-Génétique Et Immunologie Des Maladies Parasitaires, Aix Marseille Université-INSERM, Marseille, France.
| |
Collapse
|
361
|
Zhou X, Xiong J, Lu S, Luo L, Chen ZL, Yang F, Jin F, Wang Y, Ma Q, Luo YY, Wang YJ, Zhou JB, Liu P, Zhao L. Inhibitory Effect of Corilagin on miR-21-Regulated Hepatic Fibrosis Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 47:1541-1569. [PMID: 31752524 DOI: 10.1142/s0192415x19500794] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Corilagin is a polyphenol that can be extracted from many medicinal plants and shows multiple pharmacological effects. We aimed to investigate the role of corilagin on miR-21-regulated hepatic fibrosis, especially miR-21-regulated TGF-β1/Smad signaling pathway, in hepatic stellate LX2 cell line and Sprague-Dawley rats. The mRNA or protein levels of miR-21, Smad7, connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), tissue inhibitor of metalloproteinase-1 (TIMP-1), matrix metalloproteinase-9 (MMP-9), collagen type I alpha 1 (COL1A1), Smad2, Smad3, Smad2/3, p-Smad2, p-Smad3, p-Smad2/3, and transforming growth factor-β1 (TGF-β1) in LX2 cells and liver tissues were determined. Furthermore, gain-of and loss-of function of miR-21 in miR-21-regulated TGF-β1/Smad signaling pathway were analyzed in LX2 cells. Liver tissues and serum were collected for pathological analysis, immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA). Corilagin treatment reduced mRNA or protein levels of miR-21, CTGF, α-SMA, TIMP-1, TGF-β1, COL1A1, p-Smad2, p-Smad3, and p-Smad2/3 both in vitro and in vivo. While corilagin increased mRNA and protein levels of Smad7 and MMP-9. After gain-of and loss-of function of miR-21, the downstream effectors of miR-21-regulated TGF-β1/Smad signaling pathway in LX2 cells changed accordingly, and the changes were inhibited by corilagin. Simultaneously, administration of corilagin not only ameliorated pathological manifestation of liver fibrosis but also reduced levels of α-SMA and COL1A1 in liver tissues and TGF-β1, ALT levels in serum. Corilagin is able to potentially prevent liver fibrosis by blocking the miR-21-regulated TGF-β1/Smad signaling pathway in LX2 cells and CCl4-induced liver fibrosis rats, which may provide a novel therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Jun Xiong
- Department of Hepatobiliary Surgery, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Shi Lu
- Department of Obstetrics and Gynaecology, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Lei Luo
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | - Zhi-Lin Chen
- Department of Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Fan Yang
- Department of Hepatology, Hubei Provincial Hospital of Chinese Medicine, Wuhan, P. R. China
| | - Feng Jin
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University & Shangdong Provincial Key Laboratory of Stem Cells and Neuro-Oncology, Jining, Shandong, P. R. China
| | - Yao Wang
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | - Qian Ma
- School of Life Science, Hubei University, Wuhan, P. R. China
| | - Ying-Ying Luo
- Department of Integrated Traditional and Western Medicine, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Yu-Jie Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Jia-Bin Zhou
- School of Clinical Medical, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Pan Liu
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | - Lei Zhao
- Department of Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| |
Collapse
|
362
|
Roehlen N, Crouchet E, Baumert TF. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells 2020; 9:cells9040875. [PMID: 32260126 PMCID: PMC7226751 DOI: 10.3390/cells9040875] [Citation(s) in RCA: 581] [Impact Index Per Article: 145.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis due to viral or metabolic chronic liver diseases is a major challenge of global health. Correlating with liver disease progression, fibrosis is a key factor for liver disease outcome and risk of hepatocellular carcinoma (HCC). Despite different mechanism of primary liver injury and disease-specific cell responses, the progression of fibrotic liver disease follows shared patterns across the main liver disease etiologies. Scientific discoveries within the last decade have transformed the understanding of the mechanisms of liver fibrosis. Removal or elimination of the causative agent such as control or cure of viral infection has shown that liver fibrosis is reversible. However, reversal often occurs too slowly or too infrequent to avoid life-threatening complications particularly in advanced fibrosis. Thus, there is a huge unmet medical need for anti-fibrotic therapies to prevent liver disease progression and HCC development. However, while many anti-fibrotic candidate agents have shown robust effects in experimental animal models, their anti-fibrotic effects in clinical trials have been limited or absent. Thus, no approved therapy exists for liver fibrosis. In this review we summarize cellular drivers and molecular mechanisms of fibrogenesis in chronic liver diseases and discuss their impact for the development of urgently needed anti-fibrotic therapies.
Collapse
Affiliation(s)
- Natascha Roehlen
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
| | - Emilie Crouchet
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Correspondence: ; Tel.: +33-366853703
| |
Collapse
|
363
|
Zhang Q, Chang X, Wang H, Liu Y, Wang X, Wu M, Zhan H, Li S, Sun Y. TGF-β1 mediated Smad signaling pathway and EMT in hepatic fibrosis induced by Nano NiO in vivo and in vitro. ENVIRONMENTAL TOXICOLOGY 2020; 35:419-429. [PMID: 31737983 DOI: 10.1002/tox.22878] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/20/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Nickel oxide nanoparticles (Nano NiO) bears hepatotoxicity, while whether it leads to liver fibrosis remains unclear. The aim of this study was to establish the Nano NiO-induced hepatic fibrosis model in vivo and investigate the roles of transforming growth factor β1 (TGF-β1) in Smad pathway activation, epithelial-mesenchymal transition (EMT) occurrence, and extracellular matrix (ECM) deposition in vitro. Male Wistar rats were exposed to 0.015, 0.06, and 0.24 mg/kg Nano NiO by intratracheal instilling twice a week for 9 weeks. HepG2 cells were treated with 100 μg/mL Nano NiO and TGF-β1 inhibitor (SB431542) to explore the mechanism of collagen formation. Results of Masson staining as well as the elevated levels of type I collagen (Col-I) and Col-III suggested that Nano NiO resulted in hepatic fibrosis in rats. Furthermore, Nano NiO increased the protein expression of TGF-β1, p-Smad2, p-Smad3, alpha-smooth muscle actin (α-SMA), matrix metalloproteinase9 (MMP9), and tissue inhibitors of metalloproteinase1 (TIMP1), while decreased the protein content of E-cadherin and Smad7 in rat liver and HepG2 cells. Most importantly, Nano NiO-triggered the abnormal expression of the abovementioned proteins were all alleviated by co-treatment with SB431542, implying that TGF-β1-mediated Smad pathway, EMT and MMP9/TIMP1 imbalance were involved in overproduction of collagen in HepG2 cells. In conclusion, these findings indicated that Nano NiO induced hepatic fibrosis via TGF-β1-mediated Smad pathway activation, EMT occurrence, and ECM deposition.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Haibing Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yunlan Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Minmin Wu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Haibing Zhan
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- Department occupational disease control, Lanzhou Municipal Center for Disease Control, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
364
|
Xu S, Mao Y, Wu J, Feng J, Li J, Wu L, Yu Q, Zhou Y, Zhang J, Chen J, Ji J, Chen K, Wang F, Dai W, Fan X, Guo C. TGF-β/Smad and JAK/STAT pathways are involved in the anti-fibrotic effects of propylene glycol alginate sodium sulphate on hepatic fibrosis. J Cell Mol Med 2020; 24:5224-5237. [PMID: 32233073 PMCID: PMC7205790 DOI: 10.1111/jcmm.15175] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/14/2020] [Accepted: 03/01/2020] [Indexed: 12/25/2022] Open
Abstract
Liver fibrosis, a consequence of unhealthy modern lifestyles, has a growing impact on human health, particularly in developed countries. Here, we have explored the anti‐fibrotic effects of propylene glycol alginate sodium sulphate (PSS), a natural extract from brown algae, in fibrotic mice and cell models. Thus, we established bile duct ligature and carbon tetrachloride mouse models and LX‐2 cell models with or without PSS treatment. Liver pathological sections and the relevant indicators in serum and liver tissues were examined. PSS prevented hepatic injury and fibrosis to a significant extent, and induced up‐regulation of matrix metalloproteinase‐2 and down‐regulation of tissue inhibitor of metalloproteinase‐1 through suppressing the transforming growth factor β1 (TGF‐β1)/Smad pathway. PSS additionally exerted an anti‐autophagy effect through suppressing the Janus kinase (JAK) 2/transducer and activator of transcription 3 (STAT3) pathway. In conclusion, PSS prevents hepatic fibrosis by suppressing inflammation, promoting extracellular matrix (ECM) decomposition and inactivating hepatic stellate cells through mechanisms involving the TGF‐β1/Smad2/3 and JAK2/STAT3 pathways in vivo and in vitro.
Collapse
Affiliation(s)
- Shizan Xu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, China
| | - Yuqing Mao
- Department of Gerontology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, China
| | - Yuting Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, China
| | - Jie Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, China
| | - Jiaojiao Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fan Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
365
|
He X, Chen J, Mu Y, Zhang H, Chen G, Liu P, Liu W. The effects of inhibiting the activation of hepatic stellate cells by lignan components from the fruits of Schisandra chinensis and the mechanism of schisanhenol. J Nat Med 2020; 74:513-524. [PMID: 32193805 DOI: 10.1007/s11418-020-01394-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/06/2020] [Indexed: 12/15/2022]
Abstract
Liver fibrosis is a pathological manifestation induced by chronic liver injury and may cause cirrhosis and liver cancer with the chronic progression of fibrosis. During the onset and progression of liver fibrosis, the activation of hepatic stellate cells (HSCs) is the core mechanism for the secretion of many extracellular matrices to induce fibrosis. Lignans are reportedly the main effective components of Schisandra chinensis with good anti-fibrosis effects. In this study, we compared the inhibiting effects of the seven lignan components from S. chinensis on HSC activation. We found that the seven lignans inhibited the activation of human HSCs (LX-2) in various degrees. Among all lignans, schisanhenol showed the best effect in inhibiting the activation of LX-2 with a dose-effect relationship. Sal also inhibited the phosphorylations of Smad1, Smad2, Smad3, extracellular regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and nuclear transcription factor-κB (NF-κB), as well as downregulated Smad4. All these findings suggested that schisanhenol may ameliorate liver fibrosis by inhibiting the transforming growth factor β (TGF-β)/Smad and mitogen-activated protein kinase (MAPK) signaling pathways. Remarkably, schisanhenol may be a potential anti-liver fibrosis drug and warrants further research.
Collapse
Affiliation(s)
- Xiaoli He
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528 Zhangheng Road, Shanghai, 201203, China.,TCM Department, Ningbo Huamei Hospital Affiliated to Chinese Academy of Sciences, 41 Xibei Road, Ningbo, 315010, China
| | - Jiamei Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Yongping Mu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Hua Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Gaofeng Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China. .,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China. .,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
366
|
Wei Y, Wu Y, Feng K, Zhao Y, Tao R, Xu H, Tang Y. Astragaloside IV inhibits cardiac fibrosis via miR-135a-TRPM7-TGF-β/Smads pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112404. [PMID: 31739105 DOI: 10.1016/j.jep.2019.112404] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 09/19/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiac fibrosis is a common characteristic of many cardiac diseases. Our previous results showed that TRPM7 channel played an important role in the fibrosis process. MicroRNA-135a was reported to get involved in the fibrotic process. Astragalus membranaceus (Fisch.) Bunge was widely used in Chinese traditional medicine and showed cardiac protective effects in previous researches. Astragaloside IV(ASG), which is regarded as the most important ingredient of Astragalus, has been showed the effect of cardiac protection via various mechanisms, while no data suggested its action related to miRNAs regulation. AIM OF THE STUDY The objective of this article is to investigate the inhibition effect of ASG on cardiac fibrosis through the miR-135a-TRPM7-TGF-β/Smads pathway. MATERIALS AND METHODS We extracted the active components from herb according to the paper and measured the content of ASG from the mixture via HPLC. The inhibition potency of cardiac hypertrophy between total extract of Astragalus and ASG was compared. SD rats were treated with ISO (5 mg/kg/day) subcutaneously (s.c.) for 14 days, ASG (10 mg/kg/d) and Astragalus extract (AE) (4.35 g/kg/d, which contained about ASG 10 mg) were given p.o. from the 6th day of the modeling. Cardiac fibroblasts (CFs) of neonatal rats were incubated with ISO (10 μM) and treated with ASG (10 μM) simultaneously for 24 h. RESULTS The results showed that both AE and ASG treatment reduced the TRPM7 expression from the gene level and inhibited cardiac fibrosis. ASG group showed similar potency as the AE mixture. ASG treatment significantly decreased the current, mRNA and protein expression of TRPM7 which was one of targets of miR-135a. The activation of TGF-β/Smads pathway was suppressed and the expression of α-SMA and Collagen I were also decreased obviously. In addition, our results showed that there was a positive feedback between the activation of TGF-β/Smads pathway and the elevation of TRPM7, both of which could promote the development of myocardial fibrosis. CONCLUSIONS AE had the effect of cardiac fibrosis inhibition and decreased the mRNA expression of TRPM7. ASG, as one of the effective ingredients of AE, showed the same potency when given the same dose. ASG inhibited cardiac fibrosis by targeting the miR-135a-TRPM7-TGF-β/Smads pathway.
Collapse
Affiliation(s)
- Yanchun Wei
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Yan Wu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Kai Feng
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Yizhuo Zhao
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Ru Tao
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Haonan Xu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Yiqun Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China.
| |
Collapse
|
367
|
Chen C, Li X, Wang L. Thymosinβ4 alleviates cholestatic liver fibrosis in mice through downregulating PDGF/PDGFR and TGFβ/Smad pathways. Dig Liver Dis 2020; 52:324-330. [PMID: 31542221 DOI: 10.1016/j.dld.2019.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
Liver fibrosis is an important health problem without adequate and effective therapeutics. In this study, effects of thymosinβ4 (Tβ4) on hepatic fibrogenesis and the underlying molecular mechanisms were explored in bile duct ligation (BDL)-induced mice cholestatic liver fibrosis model. Results showed exogenous Tβ4 significantly reduced the mortality and liver/body weight ratio in BDL mice. Histological examinations and biochemical analyses demonstrated that BDL induced evident portal fibrosis and a significant increase in hepatic collagen contents. However, these changes were significantly attenuated by exogenous Tβ4. Quantitative real-time PCR assays showed that Tβ4 suppressed BDL-induced increases in many fibrotic genes expression including α-smooth muscle actin (α-SMA), collagen I, III and fibronectin, TGFβ1, TGFβR II, Smad2, Smad3, and PDGFRβ. Results from immunohistochemistry and Western blots also showed that Tβ4 reduced TGFβ1 and PDGFRβ protein levels in the liver tissues of BDL mice. In vitro studies using LX-2 cells demonstrated that Tβ4 could decrease PDGFRβ and TGFβR II levels in hepatic stellate cells. Taken together, findings in our present studies suggested that exogenous Tβ4 alleviated BDL-induced cholestatic liver fibrosis through downregulating PDGF/PDGFR and TGFβ/Smad pathways.
Collapse
Affiliation(s)
- Cai Chen
- Teaching and Research Centre, Faculty of Medicine, Xinyang Vocational and Technical College, Xinyang, China
| | - Xiankui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China.
| | - Lei Wang
- Department of Respiratory Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
368
|
Lee DY, Yun SM, Song MY, Ji SD, Son JG, Kim EH. Administration of Steamed and Freeze-Dried Mature Silkworm Larval Powder Prevents Hepatic Fibrosis and Hepatocellular Carcinogenesis by Blocking TGF-β/STAT3 Signaling Cascades in Rats. Cells 2020; 9:E568. [PMID: 32121064 PMCID: PMC7140417 DOI: 10.3390/cells9030568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related deaths worldwide and the majority of HCC patients occur with a background of hepatic fibrosis and cirrhosis. We have previously reported the hepatoprotective effects of steamed and freeze-dried mature silkworm larval powder (SMSP) in a chronic ethanol-treated rat model. Here, we assessed the anti-fibrotic and anti-carcinogenic effects of SMSP on diethylnitrosamine (DEN)-treated rats. Wistar rats were intraperitoneally injected with DEN once a week for 12 or 16 weeks with or without SMSP administration (0.1 and 1 g/kg). SMSP administration significantly attenuated tumor foci formation and proliferation in the livers of the rats treated with DEN for 16 weeks. SMSP administration also inhibited hepatic fibrosis by decreasing the levels of collagen fiber and the expression of pro-collagen I and alpha-smooth muscle actin (α-SMA). Moreover, SMSP supplementation improved the major parameters of fibrosis such as transforming growth factor-β (TGF-β), connective tissue growth factor (CTGF), tumor necrosis factor-alpha (TNF-α), plasminogen activator inhibitor-1 (PAI-1), and collagen type I (Col1A1) in the livers from the rats treated with DEN for 16 weeks. As s possible mechanisms, we investigated the effects of SMSP on the TGF-β and signal transducer and activator of transcription 3 (STAT3)-mediated signaling cascades, which are known to promote hepatic fibrosis. We found that SMSP treatment inhibited the activation of TGF-β and the phosphorylation of STAT3 pathway in DEN-treated rats. Moreover, SMSP administration suppressed the expressions of the target genes of TGF-β and STAT3 induced by DEN treatment. Our findings provide experimental evidences that SMSP administration has inhibitory effects of hepatic fibrosis and HCC induced by DEN in vivo and could be a promising strategy for the prevention or treatment of hepatic fibrosis and hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Da-Young Lee
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea; (D.-Y.L.); (S.-M.Y.); (M.-Y.S.)
| | - Sun-Mi Yun
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea; (D.-Y.L.); (S.-M.Y.); (M.-Y.S.)
| | - Moon-Young Song
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea; (D.-Y.L.); (S.-M.Y.); (M.-Y.S.)
| | - Sang-Deok Ji
- Department of Agricultural Biology, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Korea; (S.-D.J.); (J.-G.S.)
| | - Jong-Gon Son
- Department of Agricultural Biology, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Korea; (S.-D.J.); (J.-G.S.)
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea; (D.-Y.L.); (S.-M.Y.); (M.-Y.S.)
| |
Collapse
|
369
|
Src Inhibition Attenuates Liver Fibrosis by Preventing Hepatic Stellate Cell Activation and Decreasing Connetive Tissue Growth Factor. Cells 2020; 9:cells9030558. [PMID: 32120837 PMCID: PMC7140470 DOI: 10.3390/cells9030558] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
The SRC kinase family comprises non-receptor tyrosine kinases that are ubiquitously expressed in all cell types. Although Src is reportedly activated in pulmonary and renal fibrosis, little is known regarding its role in liver fibrosis. This study investigated whether the inhibition of Src protects against liver fibrosis. The expression of Src was upregulated in thioacetamide (TAA)-induced fibrotic mouse liver and cirrhosis of patients, and phospho-Src was upregulated during activation of hepatic stellate cells (HSC). In addition, Src inhibition reduced the expression of α-smooth muscle actin (αSMA) in primary HSCs and suppressed transforming growth factor β (TGF-β)-induced expression of connective tissue growth factor (CTGF) in hepatocytes. Src inhibitor Saracatinib also attenuated TAA-induced expression of type I collagen, αSMA, and CTGF in mouse liver tissues. The antifibrotic effect of Src inhibitors was associated with the downregulation of Smad3, but not of signal transducer and activator of transcription 3 (STAT3). In addition, Src inhibition increased autophagy flux and protected against liver fibrosis. These results suggest that Src plays an important role in liver fibrosis and that Src inhibitors could be treat liver fibrosis.
Collapse
|
370
|
Lv Y, Bing Q, Lv Z, Xue J, Li S, Han B, Yang Q, Wang X, Zhang Z. Imidacloprid-induced liver fibrosis in quails via activation of the TGF-β1/Smad pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135915. [PMID: 31835194 DOI: 10.1016/j.scitotenv.2019.135915] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/26/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Imidacloprid (IMI) is one of the most frequently used neonicotinoid insecticide, and its potential toxicity and environmental hazards have gradually attracted people's attention. Liver fibrosis caused by long-term inflammation or oxidative stress can lead to cirrhosis and liver failure, even death. However, the mechanism of liver fibrosis induced by neonicotinoid insecticide remains unclear. This study investigates whether IMI could induce liver fibrosis in quails and a potential mechanism. Our study used a quail 90-day IMI-induced liver fibrosis model. The results showed that IMI induced histopathological lesions, oxidative stress, inflammation, fibrosis, and changes in nuclear factor-kappa B (NF-κB), nuclear factor-E2-related factor-2 (Nrf2), and transforming growth factor (TGF-β1) levels. Furthermore, IMI enhanced the expression of liver fibrosis marker proteins, including collagen I, α-smooth muscle actin (α-SMA), and fibronectin 1 (FN-1), by activating the TGF-β1/Smad signaling pathway. In conclusion, our study demonstrated that IMI exposure induces liver fibrosis via activation of the TGF-β1/Smad signaling pathway in quails.
Collapse
Affiliation(s)
- Yueying Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China
| | - Qizheng Bing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiangdong Xue
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China.
| |
Collapse
|
371
|
Tanshinone IIA attenuates silica-induced pulmonary fibrosis via Nrf2-mediated inhibition of EMT and TGF-β1/Smad signaling. Chem Biol Interact 2020; 319:109024. [PMID: 32097614 DOI: 10.1016/j.cbi.2020.109024] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/09/2020] [Accepted: 02/21/2020] [Indexed: 12/28/2022]
Abstract
Silicosis is an occupational pulmonary fibrosis that is caused by inhalation of silica (SiO2), and there are no effective drugs to treat this disease. Tanshinone IIA (Tan IIA), a natural product, has been reported to possess antioxidant and anti-fibrotic properties in various diseases. The purpose of the current study was to examine Tan IIA's protective effects against silica-induced pulmonary fibrosis and to explore the underlying mechanisms. We found that in vivo treatment with Tan IIA significantly relieved silica-induced lung fibrosis in a silicosis rat model by histological and immunohistochemical analyses. Further, in vitro mechanistic investigations, mainly using western blot and immunofluorescence analyses, revealed that Tan IIA administration markedly inhibited the silica-induced epithelial-mesenchymal transition (EMT) and transforming growth factor-β1 (TGF-β1)/Smad signaling pathway and also reduced silica-induced oxidative stress and activated the nuclear factor erythroid 2-related factor-2 (Nrf2) signaling pathway in A549 and human bronchial epithelial (HBE) cells. Furthermore, through transfection with siRNA, we demonstrate that Nrf2 activation partially mediates the suppression effects of Tan IIA on EMT and TGF-β1/Smad signaling pathway activation induced by silica exposure, thus mediating the anti-fibrotic effects of Tan IIA against silica-induced pulmonary fibrosis. In our study, Tan IIA has been identified as a possible anti-oxidative and anti-fibrotic drug for silicosis.
Collapse
|
372
|
Fu X, Qie J, Fu Q, Chen J, Jin Y, Ding Z. miR-20a-5p/TGFBR2 Axis Affects Pro-inflammatory Macrophages and Aggravates Liver Fibrosis. Front Oncol 2020; 10:107. [PMID: 32117757 PMCID: PMC7031347 DOI: 10.3389/fonc.2020.00107] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/21/2020] [Indexed: 12/25/2022] Open
Abstract
Combined inhibition of programmed death-ligand 1 (PD-L1) and transforming growth factor-β (TGF-β) displayed additive anti-tumor response in a subgroup of cancer patients, highlighting the importance of understanding the multifaceted roles of TGF-β in immunity and fibrosis. In the present research, we show that TGF-β signaling pathway, controlled by miR-20a-5p and transforming growth factor-β receptor 2 (TGFBR2), alters the inflammation and fibrosis processes in liver. We performed integrated analysis of differently expressed miRNA (DEM) associated with liver fibrosis and screened miR-20a-5p out as a key regulator in inflammation-driven liver fibrosis. We subsequently conducted Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the genes targeted by miR-20a-5p. And the result showed that 12 target genes were significantly enriched in TGF-β signaling pathway. Further study showed that miR-20a-5p was down-regulated and involved in inflammation during liver fibrosis in human and mouse samples, indicating that miR-20a-5p and inflammation are functionally linked during liver fibrosis progression. To uncover the underlying pro-inflammatory mechanism of miR-20a-5p in liver fibrosis, we selected and verified TGFBR2, which is a key functional receptor in TGF-β signaling pathway, as a direct target gene of miR-20a-5p. The downregulation of miR-20a-5p in liver fibrosis resulted in TGFBR2-activated TGF-β signaling pathway, followed by the activation of macrophage and extracellular matrix (ECM) production by hepatic stellate cell (HSC). Our results identify the miR-20a-5p/TGFBR2 axis as a key regulator of TGF-β signaling, and highlight the critical role of miR-20a-5p in the development of liver fibrosis.
Collapse
Affiliation(s)
- Xiutao Fu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingbo Qie
- Minhang Hospital and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingchun Fu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiafeng Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yinpeng Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenbin Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
373
|
Stratton M, Ramachandran A, Camacho EJM, Patil S, Waris G, Grice KA. Anti-fibrotic activity of gold and platinum complexes - Au(I) compounds as a new class of anti-fibrotic agents. J Inorg Biochem 2020; 206:111023. [PMID: 32163811 DOI: 10.1016/j.jinorgbio.2020.111023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/11/2022]
Abstract
Molecular gold(I) and platinum(II) species were examined for the inhibition of liver fibrosis and the hepatitis C virus (HCV). Determination of inhibition efficiency was conducted via morphological analysis, cell viability, western blot analysis, and quantitative reverse transcription polymerase chain reaction (RT-PCR). Auranofin and Ph3PAuCl demonstrated the greatest inhibition of liver fibrosis amongst the tested gold species in human hepatic stellate LX-2 cells. Western blot analysis indicated that auranofin and Ph3PAuCl prevent signal transducer and activator of transcription 3 (STAT3) phosphorylation, which may be a key connection to fibrosis and inflammation. Auranofin and Ph3PAuCl also reduced expression of HCV-nonstructural protein 3 (NS3) and HCV-NS5a proteins in a HCV subgenomic replicon system. These results demonstrate significant promise for the use of gold compounds in treating liver diseases such as HCV.
Collapse
Affiliation(s)
- Matthew Stratton
- Department of Microbiology and Immunology, Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Akshaya Ramachandran
- Department of Microbiology and Immunology, Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | | | - Shivaputra Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Gulam Waris
- Department of Microbiology and Immunology, Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Kyle A Grice
- Department of Chemistry and Biochemistry, College of Science and Health, DePaul University, Chicago, IL 60614, USA.
| |
Collapse
|
374
|
Hu N, Wang C, Dai X, Zhou M, Gong L, Yu L, Peng C, Li Y. Phillygenin inhibits LPS-induced activation and inflammation of LX2 cells by TLR4/MyD88/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112361. [PMID: 31683033 DOI: 10.1016/j.jep.2019.112361] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/12/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine Forsythiae Fructus is the dried fruit of Forsythia suspensa (Thunb.) Vahl. It is commonly used to clear heat and detoxify, reduce swelling and disperse knot, and evacuate wind and heat. AIM OF THE STUDY Inflammation is involved in liver fibrosis. Phillygenin (PHI) is a kind of lignans extracted and separated from Forsythiae Fructus, which has been reported to have a good anti-inflammatory effect. Therefore, we aimed to explore whether PHI has a therapeutic effect on liver fibrosis caused by inflammation. MATERIALS AND METHODS Firstly, the induction of the LX2 cells inflammatory model and fibrosis model by LPS with different concentrations were studied. Then, high, medium and low doses PHI was given for intervention therapy. The secretion of IL-6, IL-1β and TNF-α inflammatory factors were detected by ELISA kit, and the expression of collagen I and α-SMA was detected by Western blot and RT-qPCR. The possible mechanism of PHI on TLR4/MyD88/NF-κB signal pathway was studied by computer-aided drug design software and the results were further verified by Western blot and RT-qPCR experiments. RESULTS The results showed that LPS could promote the expression of IL-6, IL-1β and TNF-α and the expression of collagen I and α-SMA, indicating that LPS could induce inflammation and fibrosis in LX2 cells. PHI could inhibit LX2 cell activation and fibrotic cytokine expression by inhibiting LPS-induced pro-inflammatory reaction. Molecular docking results showed that PHI could successfully dock with TLR4, MyD88, IKKβ, p65, IκBα, and TAK1 proteins. Subsequently, Western blot and qPCR results further proved that PHI could inhibit the proteins expression in TLR4/MyD88/NF-κB signal pathway which were consistent with the molecular docking results. CONCLUSION PHI can inhibit LPS-induced pro-inflammatory reaction and LX2 cell activation through TLR4/MyD88/NF-κB signaling pathway, thereby inhibiting liver fibrosis.
Collapse
Affiliation(s)
- Naihua Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Cheng Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Xuyang Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Mengting Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lihong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lingyuan Yu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
375
|
Jarman EJ, Boulter L. Targeting the Wnt signaling pathway: the challenge of reducing scarring without affecting repair. Expert Opin Investig Drugs 2020; 29:179-190. [DOI: 10.1080/13543784.2020.1718105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Edward J. Jarman
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Luke Boulter
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK
| |
Collapse
|
376
|
Han HS, Lee H, You D, Nguyen VQ, Song DG, Oh BH, Shin S, Choi JS, Kim JD, Pan CH, Jo DG, Cho YW, Choi KY, Park JH. Human adipose stem cell-derived extracellular nanovesicles for treatment of chronic liver fibrosis. J Control Release 2020; 320:328-336. [PMID: 31981658 DOI: 10.1016/j.jconrel.2020.01.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/21/2022]
Abstract
Liver fibrosis is an excessive wound healing process that occurs in response to liver damage depending on underlying aetiologies. Currently, there are no effective therapies and FDA-approved therapeutics for the treatment of liver fibrosis except liver transplantation. Multipotent adipose-derived stem cells (ADSCs) have received significant attention as regenerative medicine for liver fibrosis owing to their advantages over stem cells with other origins. However, intrinsic limitations of stem cell therapies, such as cellular rejection and tumor formation, have impeded clinical applications of the ADSC-based liver therapeutics. To overcome these problems, the extracellular nanovesicles (ENVs) responsible for the therapeutic effect of ADSCs (A-ENVs) have shown considerable promise as cell-free therapeutics for liver diseases. However, A-ENVs have not been used for the treatment of intractable chronic liver diseases including liver fibrosis and cirrhosis. Therefore, in this study, we investigated the in vitro and in vivo antifibrotic efficacy of A-ENVs in thioacetamide-induced liver fibrosis models. A-ENVs significantly downregulated the expression of fibrogenic markers, such as matrix metalloproteinase-2, collagen-1, and alpha-smooth muscle actin. The systemic administration of A-ENVs led to high accumulation in fibrotic liver tissue and the restoration of liver functionality in liver fibrosis models through a marked reduction in α-SMA and collagen deposition. These results demonstrate the significant potential of A-ENVs for use as extracellular nanovesicles-based therapeutics in the treatment of liver fibrosis and possibly other intractable chronic liver diseases.
Collapse
Affiliation(s)
- Hwa Seung Han
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Hansang Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - DongGil You
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Van Quy Nguyen
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dae-Geun Song
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Byeong Hoon Oh
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sol Shin
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Ji Suk Choi
- Department of Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea; Research Institute, Exostemtech Inc., Ansan 15588, Republic of Korea
| | - Jae Dong Kim
- Research Institute, Exostemtech Inc., Ansan 15588, Republic of Korea
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong Woo Cho
- Department of Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea; Research Institute, Exostemtech Inc., Ansan 15588, Republic of Korea.
| | - Ki Young Choi
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea.
| | - Jae Hyung Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
377
|
Wang Y, Zhang X, Mao Y, Liang L, Liu L, Peng W, Liu H, Xiao Y, Zhang Y, Zhang F, Shi M, Liu L, Guo B. Smad2 and Smad3 play antagonistic roles in high glucose-induced renal tubular fibrosis via the regulation of SnoN. Exp Mol Pathol 2020; 113:104375. [PMID: 31917288 DOI: 10.1016/j.yexmp.2020.104375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/10/2019] [Accepted: 01/04/2020] [Indexed: 12/22/2022]
Abstract
Diabetic nephropathy (DN) is a serious microvascular complication of diabetes mellitus.The main pathological features of DN include glomerular sclerosis and renal tubular interstitial fibrosis, which results in epithelial mesenchymal transition (EMT) and excessive extracellular matrix (ECM) deposition.Transforming growth factor-β1(TGF-β1) is a critical factor that regulates the manifestation of renal fibrosis.Smad2 and Smad3 are the main downstream of the TGF-β1 pathway. Ski-related novel protein N(SnoN) is a negative regulator of TGF-β1, and inhibits the activation of the TGF-β1/Smad2/3 signalling pathway. In this study, the expression of Smad2 and Smad3 proteins, SnoN mRNA, SnoN proteins, and the ubiquitination levels of SnoN were determined in DN rats and renal tubular epithelial cells(NRK52E cells). Knockdown and overexpression of Smad2 or Smad3 in NRK52E cells were used to investigate the specific roles of Smad2 and Smad3 in the development of high glucose-induced renal tubular fibrosis, with a specific focus on their effect on the regulation of SnoN expression. Our study demonstrated that Smad3 could inhibit SnoN expression and increase ECM deposition in NRK52E cells, to promote high glucose-induced renal tubular fibrosis. In contrast, Smad2 could induce SnoN expression and reduce ECM deposition, to inhibit high glucose-induced fibrosis. The underlying mechanism involves regulation of SnoN expression. These findings provide a novel mechanism to understanding the significant role of the TGF-β1/ Smad2/3 pathway in DN.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaohuan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yanwen Mao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Luqun Liang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lingling Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wei Peng
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Huiming Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ying Xiao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yingying Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Lirong Liu
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China; Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
378
|
Zhu H, Shan Y, Ge K, Lu J, Kong W, Jia C. Specific Overexpression of Mitofusin-2 in Hepatic Stellate Cells Ameliorates Liver Fibrosis in Mice Model. Hum Gene Ther 2020; 31:103-109. [PMID: 31802713 DOI: 10.1089/hum.2019.153] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a chronic liver disease that could further develop to cirrhosis and liver carcinoma. Hepatic stellate cells (HSCs) are primary effector cells to initiate liver fibrosis. We aimed to explore the function and underlying mechanisms of mitochondrial fusion protein Mitofusin-2 (MFN2) in liver fibrosis. First, we utilized an alpha-smooth muscle actin promoter to overexpress MFN2 specifically in HSCs using adeno-associated virus (AAV) vector (AAV-MFN2). Overexpression of MFN2 was specifically achieved in HSC-T6 cells, but not in murine bone marrow-derived macrophages or hepatocyte AML-12 cells. We found that high expression of MFN2 induced apoptosis of HSC-T6 cells. Mechanistically, we demonstrated that high level of MFN2 inhibited TGF-β1/Smad signaling pathway, triggered downregulation of type I, type III, and type IV collagen, and antagonized the formation of factors associated with liver fibrosis. Furthermore, we found that overexpression of MFN2 using AAV-MFN2 ameliorated CCl4-induced liver fibrosis in vivo with significantly decreased immune cell infiltration. Taken together, our findings indicate that MFN2 is critical in regulating apoptosis and liver fibrosis in HSCs, which might be a useful therapeutic target to treat liver fibrosis.
Collapse
Affiliation(s)
- Hanzhang Zhu
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Yuqiang Shan
- Department of Gastrointestinal Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Ke Ge
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Jun Lu
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Wencheng Kong
- Department of Gastrointestinal Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Changku Jia
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| |
Collapse
|
379
|
Huang X, Wang L, Meng M, Zhang S, Pham TTH, Jiang L, Chen L, Li Y, Zhou X, Qin L, Wu X, Zou C, Huang R. Extract of Averrhoacarambola L. (Oxalidaceae) roots ameliorates carbon tetrachloride-induced hepatic fibrosis in rats. Biomed Pharmacother 2020; 121:109516. [DOI: 10.1016/j.biopha.2019.109516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
|
380
|
Zhou J, Lan Q, Li W, Yang L, You J, Zhang YM, Ni W. Tripartite motif protein 52 (TRIM52) promoted fibrosis in LX-2 cells through PPM1A-mediated Smad2/3 pathway. Cell Biol Int 2020; 44:108-116. [PMID: 31329338 DOI: 10.1002/cbin.11206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/16/2019] [Indexed: 01/24/2023]
Abstract
To investigate the roles of tripartite motif containing 52 (TRIM52) in human hepatic fibrosis in vitro, human hepatic stellate cell line LX-2 cells were transfected with hepatitis B virus (HBV) replicon to establish HBV-induced fibrosis in LX-2 cells, and then treated with small interfering RNA-mediated knockdown of TRIM52 (siTRIM52). LX-2 cells without HBV replicon transfection were treated with lentiviruses-mediated overexpression of TRIM52 and phosphatase magnesium dependent 1A (PPM1A). Fibrosis response of LX-2 cells were assessed by the production of hydroxyproline (Hyp) and collagen I/III, as well as protein levels of α-smooth muscle actin (α-SMA). PPM1A and phosphorylated (p)-Smad2/3 were measured to assess the mechanism. The correlation between TRIM52 and PPM1A was determined using co-immunoprecipitation, and whether and how TRIM52 regulated the degradation of PPM1A were determined by ubiquitination assay. Our data confirmed HBV-induced fibrogenesis of LX-2 cells, as evidenced by significant increase in Hyp and collagen I/III and α-SMA, which was associated with reduction of PPM1A and elevation of transforming growth factor-β (TGF-β), p-Smad2/3, and p-Smad3L. However, those changes induced by HBV were significantly attenuated with additional siTRIM52 treatment. Similar to HBV, overexpression of TRIM52 exerted promoted effect in the fibrosis of LX-2 cells. Interestingly, TRIM52 induced the fibrogenesis of LX-2 cells and the activation of TGF-β/Smad pathway were significantly reversed by PPM1A overexpression. Furthermore, our data confirmed TRIM52 as a deubiquitinase that influenced the accumulation of PPM1A protein, and subsequently regulated the fibrogenesis of LX-2 cells. TRIM52 was a fibrosis promoter in hepatic fibrosis in vitro, likely through PPM1A-mediated TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Ju Zhou
- Department of Infectious Disease, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, P. R. China
| | - Qing Lan
- Department of Infectious Disease, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, P. R. China
| | - Wu Li
- Department of Infectious Disease, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, P. R. China
| | - Lin Yang
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, P. R. China
| | - Jing You
- Department of Infectious Disease, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, P. R. China
| | - Yan-Mei Zhang
- Department of Infectious Disease, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, P. R. China
| | - Wei Ni
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, P. R. China
| |
Collapse
|
381
|
Feng F, Cheng P, Zhang H, Li N, Qi Y, Wang H, Wang Y, Wang W. The Protective Role of Tanshinone IIA in Silicosis Rat Model via TGF-β1/Smad Signaling Suppression, NOX4 Inhibition and Nrf2/ARE Signaling Activation. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4275-4290. [PMID: 31908414 PMCID: PMC6930391 DOI: 10.2147/dddt.s230572] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
Purpose Silicosis is an occupational disease caused by inhalation of silica and there are no effective drugs to treat this disease. Tanshinone IIA (Tan IIA), a traditional natural component, has been reported to possess anti-inflammatory, antioxidant, and anti-fibrotic properties. The current study’s purpose was to examine Tan IIA’s protective effects against silica-induced pulmonary fibrosis and to explore the underlying mechanisms. Methods 48 male SD rats were randomly divided into four groups (n=12): i) Control group; ii) Silicosis group; iii) Tan IIA group; iv) Silicosis +Tan IIA group. Two days after modeling, the rats of Tan IIA group and Silicosis +Tan IIA group were given intraperitoneal administration 25 mg/kg/d Tan IIA for 40 days. Then, the four groups of rats were sacrificed and the lung inflammatory responses were measured by ELISA, lung damage and fibrosis were analyzed by hematoxylin and eosin (H&E) staining and Masson staining, the expression levels of collagen I, fibronectin and α-smooth muscle actin (α-SMA) were measured by immunohistochemistry. The markers of oxidative stress were measured by commercial kits, and the activity of the TGF-β1/Smad and NOX4, Nrf2/ARE signaling pathways were measured by RT-PCR and Western blotting. Results The silica-induced pulmonary inflammtory responses, structural damage and fibrosis were significantly attenuated by Tan IIA treatment. In addition, treatment with Tan IIA decreased collagen I, fibronectin and α-SMA expression, and inhibited TGF-β1/Smad signaling in the lung tissue. The upregulated levels of oxidative stress markers in silicosis rats were also markedly restored following Tan IIA treatment. Furthermore, treatment with Tan IIA reduced NOX4 expression and enhanced activation of the Nrf2/ARE pathway in the lung tissue of silicosis rats. Conclusion These findings suggest that Tan IIA may protect lung from silica damage via the suppression of TGF-β1/Smad signaling, inhibition of NOX4 expression and activation of the Nrf2/ARE pathway. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/kPjjBxXCkyc
Collapse
Affiliation(s)
- Feifei Feng
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, People's Republic of China
| | - Peng Cheng
- Department of Neural Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, People's Republic of China
| | - Huanan Zhang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, People's Republic of China
| | - Nannan Li
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, People's Republic of China
| | - Yuxin Qi
- Department of Respiratory Medicine, Jinan People's Hospital, Jinan, Shandong 250033, People's Republic of China
| | - Hui Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, People's Republic of China
| | - Yongbin Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, People's Republic of China
| | - Wei Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, People's Republic of China
| |
Collapse
|
382
|
Liu KH, Zhou N, Zou Y, Yang YY, OuYang SX, Liang YM. Spleen Tyrosine Kinase (SYK) in the Progression of Peritoneal Fibrosis Through Activation of the TGF-β1/Smad3 Signaling Pathway. Med Sci Monit 2019; 25:9346-9356. [PMID: 31812978 PMCID: PMC6918804 DOI: 10.12659/msm.917287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Long-term exposure to hypertonic and high glucose in peritoneal dialysis fluid can result in peritoneal fibrosis. Spleen tyrosine kinase (SYK) has a role in inflammation and fibrosis. This study aimed to investigate the role of SYK in an in vivo rat model of peritoneal fibrosis and in rat peritoneal mesothelial cells (PMCs) in vitro and to investigate the underlying mechanisms. Material/Methods Sprague-Dawley rats (N=24) were randomized into the sham control group (N=6); the peritoneal fibrosis group (N=6) treated with intraperitoneal chlorhexidine digluconate; the SYK inhibitor group (N=6), treated with chlorhexidine digluconate and fostamatinib; and the TGF-β inhibitor group (N=6), treated with chlorhexidine digluconate and LY2109761. The rat model underwent daily intraperitoneal injection with 0.5 ml of 0.1% chlorhexidine digluconate. Rat peritoneal mesothelial cells (PMCs) were cultured in vitro in high glucose. SYK expression was measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. Enzyme-linked immunosorbent assay (ELISA) and qRT-PCR measured inflammatory mediators. Transforming growth factor-β1 (TGF-β1) and Smad3 were detected by Western blot. Short hairpin RNA (shRNA) was used to target the SYK gene. Results SYK was upregulated in the rat model of peritoneal fibrosis and was induced rat PMCs cultured in high glucose. Knockdown of SYK and inhibition of TGF-β1 significantly reduced fibrosis and inflammation. Findings in the in vivo rat model confirmed that SYK mediated peritoneal fibrosis by regulating TGF-β1/Smad3 signaling. Conclusions In a rat model and in rat PMCs, expression of SYK increased peritoneal fibrosis through activation of the TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Kang-Han Liu
- Department of Nephrology, Hunan Provincial Peoples' Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Nan Zhou
- Department of Nephrology, Hunan Provincial Peoples' Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Yan Zou
- Department of Nephrology, Hunan Provincial Peoples' Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Yi-Ya Yang
- Department of Nephrology, Hunan Provincial Peoples' Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Sha-Xi OuYang
- Department of Nephrology, Hunan Provincial Peoples' Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Yu-Mei Liang
- Department of Nephrology, Hunan Provincial Peoples' Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China (mainland)
| |
Collapse
|
383
|
Zhao Z, Lin CY, Cheng K. siRNA- and miRNA-based therapeutics for liver fibrosis. Transl Res 2019; 214:17-29. [PMID: 31476281 PMCID: PMC6848786 DOI: 10.1016/j.trsl.2019.07.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/08/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is a wound-healing process induced by chronic liver injuries, such as nonalcoholic steatohepatitis, hepatitis, alcohol abuse, and metal poisoning. The accumulation of excessive extracellular matrix (ECM) in the liver is a key characteristic of liver fibrosis. Activated hepatic stellate cells (HSCs) are the major producers of ECM and therefore play irreplaceably important roles during the progression of liver fibrosis. Liver fibrogenesis is highly correlated with the activation of HSCs, which is regulated by numerous profibrotic cytokines. Using RNA interference to downregulate these cytokines in activated HSCs is a promising strategy to reverse liver fibrosis. Meanwhile, microRNAs (miRNAs) have also been exploited for the treatment of liver fibrosis. This review focuses on the current siRNA- and miRNA-based liver fibrosis treatment strategies by targeting activated HSCs in the liver.
Collapse
Affiliation(s)
- Zhen Zhao
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Chien-Yu Lin
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri.
| |
Collapse
|
384
|
Zhang X, Xie X, Wang Y, Li W, Lin Z. Interleukin-26 promotes the proliferation and activation of hepatic stellate cells to exacerbate liver fibrosis by the TGF-β1/Smad2 signaling pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:4271-4279. [PMID: 31933827 PMCID: PMC6949876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Liver fibrosis is a wound-healing process of liver featured by the activation of hepatic stellate cells (HSCs) and the deposition of extra cellular matrix (ECM). Accumulating facts have suggested that interleukin (IL) 26 is involved in the pathogenesis of liver fibrosis by the modulation of HSCs. However, the biological roles of IL-26 in liver fibrosis are still unclear. The present study aimed to determine the effect and mechanism of IL-26 on the proliferation and activation of HSCs in vitro. By cell counting kit (CCK)-8 assay, we observed that IL-26 significantly promoted the proliferation of HSCs by increasing S phase and decreasing G0/G1 phase. Annexin V-FITC/PI double staining showed that IL-26 could suppress the apoptosis of HSCs by inhibition of caspase 3 (CASP3) and Bcl-2 associated X protein (BAX). Furthermore, quantitative real-time PCR (qRT-PCR) assay and western blotting analysis revealed that IL-26 exacerbated the degree of hepatic fibrosis, which was associated with the upregulation of the mRNA levels and protein concentrations of IL-6, IL-10, tumor necrosis factor (TNF)-α, matrix metallopeptidase (MMP)-9, and α-smooth muscle act in (SMA). Mechanistically, western blotting analysis showed that IL-26 upregulated the protein expression levels of transforming growth factor (TGF)-β1 and SMAD family member 2 (Smad2) in HSCs. In summary, the data demonstrated a key role of IL-26 on the proliferation and activation of HSCs in liver fibrosis and the underlying mechanism might be related to the TGF-β1/Smad2 signaling pathway. The finding will provide a proof that targeting IL-26 may be developed as therapeutics for liver fibrosis.
Collapse
Affiliation(s)
- Xinqi Zhang
- Department of Emergency, Changzheng Hospital, Navy Military Medical UniversityShanghai 200003, China
- Department of Emergency, The 960th Hospital of The PLA Joint Logistics Support ForceJinan 250031, Shandong Province, China
| | - Xiaoye Xie
- Department of Emergency, The 960th Hospital of The PLA Joint Logistics Support ForceJinan 250031, Shandong Province, China
| | - Yanzhao Wang
- Department of Emergency, The 960th Hospital of The PLA Joint Logistics Support ForceJinan 250031, Shandong Province, China
| | - Wenfang Li
- Department of Emergency, Changzheng Hospital, Navy Military Medical UniversityShanghai 200003, China
| | - Zhaofen Lin
- Department of Emergency, Changzheng Hospital, Navy Military Medical UniversityShanghai 200003, China
| |
Collapse
|
385
|
Elfeky MG, Mantawy EM, Gad AM, Fawzy HM, El-Demerdash E. Mechanistic aspects of antifibrotic effects of honokiol in Con A-induced liver fibrosis in rats: Emphasis on TGF-β/SMAD/MAPK signaling pathways. Life Sci 2019; 240:117096. [PMID: 31760097 DOI: 10.1016/j.lfs.2019.117096] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023]
Abstract
Aim Liver fibrosis represents a massive global health burden with limited therapeutic options. Thus, the need for curative options is evident. Thus, this study aimed to assess the potential antifibrotic effect of honokiol in Concanavalin A (Con A) induced immunological model of liver fibrosis as well the possible underlying molecular mechanisms. METHODS Male Sprague-Dawley rats were treated with either Con A (20 mg/kg, IV) and/or honokiol (10 mg/kg, orally) for 4 weeks. Hepatotoxicity indices were as well as histopathological evaluation was done. Hepatic fibrosis was assessed by measuring alpha smooth muscle actin (α-SMA) expression and collagen fibers deposition by Masson's trichrome stain and hydroxyproline content. To elucidate the underlying molecular mechanisms, the effect of honokiol on oxidative stress, inflammatory markers as well as transforming growth factor beta (TGF-β)/SMAD and mitogen-activated protein kinase (MAPK) pathways was assessed. KEY FINDINGS Honokiol effectively reversed the hepatotoxicity indices elevations and abnormal histopathological changes induced by Con A. Besides, honokiol attenuated Con A-induced liver fibrosis by down-regulation of hydroxyproline levels, α-SMA expression together with a marked decrease in collagen fibers deposition. Mechanistically Con A induced oxidative stress, provocation of inflammatory responses and activation of TGF-β/SMAD/MAPK pathways. Contrariwise, honokiol co-treatment significantly restored antioxidant defence mechanisms, down-regulated inflammatory cascades and inhibited TGF-β/SMAD/MAPK signaling pathways. CONCLUSION The results provide an evidence for the promising antifibrotic effect of honokiol that could be partially due to suppressing oxidative stress and inflammatory processes as well as inhibition of TGF-β/SMAD/MAPK signaling pathways.
Collapse
Affiliation(s)
- Maha G Elfeky
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Hala M Fawzy
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
386
|
Mohseni R, Arab Sadeghabadi Z, Goodarzi MT, Karimi J. Co-administration of resveratrol and beta-aminopropionitrile attenuates liver fibrosis development via targeting lysyl oxidase in CCl 4-induced liver fibrosis in rats. Immunopharmacol Immunotoxicol 2019; 41:644-651. [PMID: 31724452 DOI: 10.1080/08923973.2019.1688829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objectives: In the current study, we aimed to investigate the effect of administration of resveratrol (RES) and beta-aminopropionitrile (BAPN) separately and together on the liver fibrosis progression via regulation of the gene expression and protein level of lysyl oxidase (LOX).Materials and methods: The six-week old Wistar rats received carbon tetrachloride (CCl4) intraperitoneally and RES and BAPN were administrated orally for eight weeks. The hepatoprotective effects of RES, BAPN, and combination treatment were evaluated. Then the hepatic protein and gene expression levels of LOX were measured.Results: Both RES and BAPN showed the antifibrotic effect through the reduction of collagen fiber bundles, hepatic hydroxyproline content, and protein level of LOX. The antifibrotic effect increased when RES and BAPN up-taken together.Conclusion: The co-administration of RES and BAPN can be considered as a promising therapeutic approach via targeting LOX.
Collapse
Affiliation(s)
- Roohollah Mohseni
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Arab Sadeghabadi
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Jamshid Karimi
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
387
|
Liu W, Feng R, Li X, Li D, Zhai W. TGF-β- and lipopolysaccharide-induced upregulation of circular RNA PWWP2A promotes hepatic fibrosis via sponging miR-203 and miR-223. Aging (Albany NY) 2019; 11:9569-9580. [PMID: 31719209 PMCID: PMC6874441 DOI: 10.18632/aging.102405] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022]
Abstract
Both transforming growth factor-beta (TGF-β) and lipopolysaccharide (LPS) can activate hepatic stellate cells (HSCs), thus increasing expressions of alpha smooth muscle actin (α-SMA) and type I collagen alpha 1 (Col1α1) and promoting liver fibrosis. However, whether TGF-β and LPS have a common downstream reactor remains unclear. Recently, a strong relationship of circular RNAs (circRNAs) and fibrogenesis has been elucidated. In this study, we compared the expressions of several circRNAs in TGF-β- and LPS-activated HSCs, and found that circ-PWWP2A was upregulated in both TGF-β- and LPS-activated HSCs and in mouse fibrotic liver tissues. Meanwhile, circ-PWWP2A was positively correlated with HSC activation and proliferation. Two microRNAs, miR-203 and miR-223, were identified to be the downstream targets of circ-PWWP2A using luciferase reporter assay and pull-down interaction assay. Circ-PWWP2A was suggested to promote HSC activation and proliferation via sponging miR-203 and miR-223, and subsequently increasing Fstl1 and TLR4, respectively. Furthermore, downregulating circ-PWWP2A was indicated to alleviate hepatic fibrosis in vivo. In conclusion, our findings indicated that circ-PWWP2A is the common downstream reactor of TGF-β and LPS in HSC activation, and that circ-PWWP2A plays a critical role in hepatic fibrogenesis via sponging miR-203 and miR-223.
Collapse
Affiliation(s)
- Wentao Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Ruo Feng
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Xingxing Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Dingyang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
388
|
Dewidar B, Meyer C, Dooley S, Meindl-Beinker N. TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis-Updated 2019. Cells 2019; 8:cells8111419. [PMID: 31718044 PMCID: PMC6912224 DOI: 10.3390/cells8111419] [Citation(s) in RCA: 453] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is an advanced liver disease condition, which could progress to cirrhosis and hepatocellular carcinoma. To date, there is no direct approved antifibrotic therapy, and current treatment is mainly the removal of the causative factor. Transforming growth factor (TGF)-β is a master profibrogenic cytokine and a promising target to treat fibrosis. However, TGF-β has broad biological functions and its inhibition induces non-desirable side effects, which override therapeutic benefits. Therefore, understanding the pleiotropic effects of TGF-β and its upstream and downstream regulatory mechanisms will help to design better TGF-β based therapeutics. Here, we summarize recent discoveries and milestones on the TGF-β signaling pathway related to liver fibrosis and hepatic stellate cell (HSC) activation, emphasizing research of the last five years. This comprises impact of TGF-β on liver fibrogenesis related biological processes, such as senescence, metabolism, reactive oxygen species generation, epigenetics, circadian rhythm, epithelial mesenchymal transition, and endothelial-mesenchymal transition. We also describe the influence of the microenvironment on the response of HSC to TGF-β. Finally, we discuss new approaches to target the TGF-β pathway, name current clinical trials, and explain promises and drawbacks that deserve to be adequately addressed.
Collapse
Affiliation(s)
- Bedair Dewidar
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, 31527 Tanta, Egypt
| | - Christoph Meyer
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
| | - Nadja Meindl-Beinker
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
- Correspondence: ; Tel.: +49-621-383-4983; Fax: +49-621-383-1467
| |
Collapse
|
389
|
Feng F, Li N, Cheng P, Zhang H, Wang H, Wang Y, Wang W. Tanshinone IIA attenuates silica-induced pulmonary fibrosis via inhibition of TGF-β1-Smad signaling pathway. Biomed Pharmacother 2019; 121:109586. [PMID: 31706104 DOI: 10.1016/j.biopha.2019.109586] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor-β 1 (TGF-β1) is a key mediator in fibrogenesis, and is upregulated and activated in fibrotic diseases. The exact role of TGF-β1-Smad signaling in the progression of silicosis fibrosis is yet to be conclusively determined. Using a Wistar rat silicosis model, we examined whether tanshinone IIA (Tan IIA) could meliorate silicosis fibrosis. The pulmonary fibroblasts of rats from the normal control group and silicosis-induced model group were extracted and examined so as to further explore the disruption of TGF-β1-Smad signaling pathway in silicosis pathogenesis and the intervention of Tan IIA in this pathway. Using RT-PCR, immunohistochemical staining, and immunofluorescence analysis, we determined that Tan IIA could ameliorate silicosis fibrosis, downregulate collagen I, collagen III, and α-SMA expression both, in vivo and in vitro. In silicosis fibroblasts, TGF-β1 induced phosphorylation of Smad2, Smad3, and negative feedback Smad7 inhibition in a dose dependent manner, and the phosphorylation of Smad3 persisted when the upstream signal was blocked. Tan IIA treatment effectively inhibited the TGF-β1-induced phosphorylation of Smads, especially the persistent phosphorylation of Smad3 in the nucleus, and upregulated the expression of Smad7 in silicosis fibroblasts, leading to a reduction in ECM deposition. Our findings indicate that dysregulation of the TGF-β1-Smad signaling pathway may play an important role in the pathological process of silicosis. Tan IIA thus ameliorates silicosis fibrosis partially by suppressing activation of TGF-β1-Smad signaling pathway, which may turn out to be a potential therapeutic approach to prevent silicosis fibrosis.
Collapse
Affiliation(s)
- Feifei Feng
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, 250033, PR China
| | - Nannan Li
- Medical college of Shandong university, Jinan, 250033, PR China
| | - Peng Cheng
- Department of Neural Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, PR China
| | - Huanan Zhang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, 250033, PR China
| | - Hui Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, 250033, PR China
| | - Yongbin Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, 250033, PR China
| | - Wei Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, 250033, PR China.
| |
Collapse
|
390
|
Penke LR, Peters-Golden M. Molecular determinants of mesenchymal cell activation in fibroproliferative diseases. Cell Mol Life Sci 2019; 76:4179-4201. [PMID: 31563998 PMCID: PMC6858579 DOI: 10.1007/s00018-019-03212-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/01/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Uncontrolled scarring, or fibrosis, can interfere with the normal function of virtually all tissues of the body, ultimately leading to organ failure and death. Fibrotic diseases represent a major cause of death in industrialized countries. Unfortunately, no curative treatments for these conditions are yet available, highlighting the critical need for a better fundamental understanding of molecular mechanisms that may be therapeutically tractable. The ultimate indispensable effector cells responsible for deposition of extracellular matrix proteins that comprise scars are mesenchymal cells, namely fibroblasts and myofibroblasts. In this review, we focus on the biology of these cells and the molecular mechanisms that regulate their pertinent functions. We discuss key pro-fibrotic mediators, signaling pathways, and transcription factors that dictate their activation and persistence. Because of their possible clinical and therapeutic relevance, we also consider potential brakes on mesenchymal cell activation and cellular processes that may facilitate myofibroblast clearance from fibrotic tissue-topics that have in general been understudied.
Collapse
Affiliation(s)
- Loka R Penke
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA.
| |
Collapse
|
391
|
Zai JA, Khan MR, Mughal ZUN, Batool R, Naz I, Maryam S, Zahra Z. Methanol extract of Iphiona aucheri ameliorates CCl 4 induced hepatic injuries by regulation of genes in rats. Toxicol Res (Camb) 2019; 8:815-832. [PMID: 34055308 PMCID: PMC8142630 DOI: 10.1039/c9tx00157c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
We have investigated the protective potential of methanol extract of Iphiona aucheri (IAM) on the expression of endoplasmic reticulum (ER) stress associated genes and inflammatory genes on carbon tetrachloride (CCl4) induced hepatic toxicity in rats. Hepatic damage markers: aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and bilirubin were elevated while the content of antioxidants: catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and reduced glutathione (GSH) were decreased significantly (p < 0.05) in CCl4 treated rats as compared to the control group. The CCl4 intoxication induced a higher expression of glucose-regulated protein 78 kDa (GRP78), X-box-binding protein 1 total (XBP1t), spliced X-box-binding protein 1 (XBP1s), unspliced X-box-binding protein 1 (XBP1u), C/EBP homologous protein (CHOP) and genes involved in inflammation and fibrosis: tumor necrosis factor alpha (TNF-α), transforming growth factor-beta (TGF-β), mothers against DPP homolog 3 (SMAD3), alpha skeletal muscle actin (αSMA) and collagen type I alpha 1 chain (COL1A1). The intoxicated rats showed a low expression of the glutamate-cysteine ligase catalytic subunit (GCLC), protein disulfide isomerase (PDI) and nuclear factor (erythroid-derived 2) like-2 (Nrf2). The administration of IAM to intoxicated rats restored the expression of ER stress, inflammatory, fibrosis and antioxidant genes in a dose dependent manner. Our results indicated that IAM can impede the ER stress and inflammatory genes and it could be a complementary and alternative therapeutic agent for oxidative stress associated disorders.
Collapse
Affiliation(s)
- Jawaid Ahmed Zai
- Department of Biochemistry , Faculty of Biological Sciences , Quaid-i-azam University Islamabad , Islamabad , Pakistan . ; ; ; ; ; ;
| | - Muhammad Rashid Khan
- Department of Biochemistry , Faculty of Biological Sciences , Quaid-i-azam University Islamabad , Islamabad , Pakistan . ; ; ; ; ; ;
| | - Zaib Un Nisa Mughal
- Department of Biochemistry , Faculty of Biological Sciences , Quaid-i-azam University Islamabad , Islamabad , Pakistan . ; ; ; ; ; ;
| | - Riffat Batool
- Department of Biochemistry , Faculty of Biological Sciences , Quaid-i-azam University Islamabad , Islamabad , Pakistan . ; ; ; ; ; ;
| | - Irum Naz
- Department of Biochemistry , Faculty of Biological Sciences , Quaid-i-azam University Islamabad , Islamabad , Pakistan . ; ; ; ; ; ;
| | - Sonia Maryam
- Department of Biochemistry , Faculty of Biological Sciences , Quaid-i-azam University Islamabad , Islamabad , Pakistan . ; ; ; ; ; ;
| | - Zartash Zahra
- Department of Biochemistry , Faculty of Biological Sciences , Quaid-i-azam University Islamabad , Islamabad , Pakistan . ; ; ; ; ; ;
| |
Collapse
|
392
|
Kou X, Sun Y, Li S, Bian W, Liu Z, Zhang D, Jiang J. Pharmacology Study of the Multiple Angiogenesis Inhibitor RC28-E on Anti-Fibrosis in a Chemically Induced Lung Injury Model. Biomolecules 2019; 9:biom9110644. [PMID: 31652997 PMCID: PMC6920960 DOI: 10.3390/biom9110644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 11/30/2022] Open
Abstract
Background: Disease-related injury in any organ triggers a complex cascade of cellular and molecular responses that culminate in tissue fibrosis, inflammation, and angiogenesis simultaneously. Multiple cell angiogenesis is an essential part of the tissue damage response, which is involved in fibrosis development. RC28-E is a novel recombinant dual decoy receptor lgG1 Fc-fusion protein that can block vascular endothelial growth factor (VEGFA), platelet-derived growth factor (PDGF), and fibroblast growth factor-2 (FGF-2) simultaneously. This protein has stepped into clinical trials (NCT03777254) for the treatment of pathological neovascularization-related diseases. Here, we report on the role of RC28-E during anti-fibrosis and its potential multitarget function in regulating fibrosis. Methods: A bleomycin-induced pulmonary fibrosis C57BL/6 mouse model was established. Hematoxylin and eosin staining (HE) and Masson staining (Masson’s) were performed to evaluate the pulmonary fibrosis based on the scoring from, Ashcroft score. Fibrosis related factors and inflammatory cytokines including HYP, α-SMA, procollagen, ICAM, IL-6, IL-1, and TNF-α were also determined at the protein and mRNA levels to characterize the fibrosis. Both mRNA and protein levels of VEGF, FGF, and transforming growth factor (TGF)-β were detected by quantitative real-time PCR (qRT-PCR) and immunohistochemical (IHC) analysis, respectively. Pulmonary fibrosis and related cytokines were re-evaluated in vivo after 3 doses of RC28-E (5 mg/kg, 15 mg/kg, and 50 mg/kg, ip. Tiw × 9) in comparison with a mono-target antagonist treatment (VEGF or FGF blocking). RC28-E attenuated the activation of TGF-β induced fibroblasts in vitro. Expression levels of α-SMA and collagen I, as well as proliferation and migration, were determined with the human skin fibroblast cell line Detroit 551 and primary murine pulmonary fibroblast cells. The mechanism of RC28-E via the TGF-β/Smad pathway was also investigated. Results: RC28-E exhibits significant anti-fibrosis effects on Idiopathic pulmonary fibrosis (IPF) in vivo. Moreover, TGF-β induced fibroblast activation in vitro via the inhibition of the TGF-β downstream Smad pathway, thus providing potential therapeutics for clinical disease-related fibrosis-like IPF as well as chemotherapy-induced fibrosis in cancer therapy.
Collapse
Affiliation(s)
- Xiangying Kou
- Department of Pharmacology, Binzhou Medical University, Yantai 256603, China.
| | - Yeying Sun
- Department of Pharmacology, Binzhou Medical University, Yantai 256603, China.
| | - Shenjun Li
- RemeGen Co., Ltd., Yantai 264006, China.
| | - Weihua Bian
- Department of Pharmacology, Binzhou Medical University, Yantai 256603, China.
| | - Zhihao Liu
- RemeGen Co., Ltd., Yantai 264006, China.
| | - Daolai Zhang
- Department of Pharmacology, Binzhou Medical University, Yantai 256603, China.
| | - Jing Jiang
- Department of Pharmacology, Binzhou Medical University, Yantai 256603, China.
| |
Collapse
|
393
|
Han J, Li J, Qian Y, Liu W, Liang J, Huang Z, Wang S, Zhao C. Identification of plasma miR-148a as a noninvasive biomarker for hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2019; 43:585-593. [PMID: 30824368 DOI: 10.1016/j.clinre.2018.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The detection of microRNA (miRNA) markers in plasma is a potential strategy for hepatocellular carcinoma (HCC) screening. The aim of this study was to characterize miR-148a in the peripheral plasma as a non-invasive biomarker for the diagnosis of HCC. METHODS AND METHODS Quantification of miR-148a was performed on 346 plasma samples, including 155 patients with HCC, 96 patients with liver cirrhosis and 95 healthy controls using quantitative real-time PCR (qRT-PCR). Plasma miR-148a was compared before and after the removal of the tumor in 97 cases of HCC. Receiver operating characteristic (ROC) curves were generated to analyze predictive value of plasma miR148a in HCC. RESULTS Plasma miR-148a levels were significantly lower in HCC patients compared to those with liver cirrhosis (P < 0.01) or healthy controls (P < 0.01). The area under receiver operating characteristic (AUROC) curve for plasma miR-148a was 0.919, with a sensitivity of 89.6 % and a specificity of 89.0% for HCC patients compared with liver cirrhosis. In HCC patients with negative or low AFP, AUROC values for plasma miR-148a were 0.949, with a sensitivity of 90.6% and a specificity of 92.6%. The removal of primary HCC tumor led to increased plasma miR-148a levels (P < 0.0001), indicating that miR-148a is a HCC-specific biomarker. CONCLUSION Plasma miR-148a is a potential non-invasive biomarker for HCC screening, especially for those with negative or low AFP. Detection of miR-148a might be a complementary approach to AFP for predicting HCC occurrence.
Collapse
Affiliation(s)
- Juqiang Han
- Department of Liver Disease, PLA Army General Hospital, Beijing city, Beijing, PR China
| | - Jiarui Li
- Department of Interventional Radiography, The First Hospital of Jilin University, Changchun city, Jilin Province, PR China
| | - Yun Qian
- Department of Digestive Disease, Shenzhen University General Hospital, Shenzhen city, Guangdong Province, PR China
| | - Wenpeng Liu
- Department of Infectious disease, The Third Hospital of Hebei Medical University, Shijiazhuang city, Hebei Province, PR China
| | - Jiguang Liang
- Department of Interventional Radiography, The First Hospital of Jilin University, Changchun city, Jilin Province, PR China
| | - Zhigang Huang
- Department of Epidemiology, Guangdong Medical University, Dongguan city, Guangdong Province, PR China
| | - Shuai Wang
- Department of Liver Disease, PLA Army General Hospital, Beijing city, Beijing, PR China
| | - Caiyan Zhao
- Department of Infectious disease, The Third Hospital of Hebei Medical University, Shijiazhuang city, Hebei Province, PR China.
| |
Collapse
|
394
|
Wu HC, Huang CL, Wang HW, Hsu WF, Tsai TY, Chen SH, Peng CY. Serum miR-21 correlates with the histological stage of chronic hepatitis B-associated liver fibrosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3819-3829. [PMID: 31933770 PMCID: PMC6949750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to investigate the correlation between serum microRNA levels and histological stages of liver fibrosis in patients with chronic hepatitis B (CHB). A total of 28 patients with CHB who received liver biopsy at China Medical University Hospital between October 2012 and April 2013 were included in the study. The patients were divided into four groups according to the histological stages of liver fibrosis by using the METAVIR score. Serum microRNA levels were tested using quantitative real-time PCR after microRNA extraction from patients' serum. Of all the tested microRNAs, miR-21, miR-29, and miR-221 were expressed in the serum. The expression levels of serum miR-21 were significantly correlated with liver fibrosis stages (r = 0.420, P = 0.026). The expression levels of serum miR-21 were significantly correlated with cirrhosis (METAVIR F4 vs. F1-F3, r = 0.386, P = 0.043). The grades of serum miR-21 showed significant ordered differences among different stages of liver fibrosis (P = 0.019). However, miR-21 exhibited an inferior predictive performance for liver fibrosis F2-F4 (AUROC = 0.69) compared with other noninvasive markers of liver fibrosis, namely the aspartate aminotransferase (AST) to platelet ratio index (APRI) and Fibrosis-4 (FIB-4) score (AUROC = 0.83 and 0.86, respectively). Serum miR-21 correlated with the histological stage of liver fibrosis in patients with CHB. The predictive performance of serum miR-21 for the histological stage of liver fibrosis tended to be inferior to those of the APRI and FIB-4 score.
Collapse
Affiliation(s)
- Hsien-Chih Wu
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 40402, Taiwan
- Department of Gastroenterology and Hepatology, Yuanlin Christian HospitalChanghua 40402, Taiwan
| | - Chia-Lin Huang
- Division of Hepatogastroenterology, Department of Internal Medicine, China Medical University HospitalTaichung 40402, Taiwan
| | - Hung-Wei Wang
- Division of Hepatogastroenterology, Department of Internal Medicine, China Medical University HospitalTaichung 40402, Taiwan
| | - Wei-Fan Hsu
- Division of Hepatogastroenterology, Department of Internal Medicine, China Medical University HospitalTaichung 40402, Taiwan
| | - Tsung-Yu Tsai
- Division of Hepatogastroenterology, Department of Internal Medicine, China Medical University HospitalTaichung 40402, Taiwan
| | - Sheng-Hung Chen
- School of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Division of Hepatogastroenterology, Department of Internal Medicine, China Medical University HospitalTaichung 40402, Taiwan
| | - Cheng-Yuan Peng
- School of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Division of Hepatogastroenterology, Department of Internal Medicine, China Medical University HospitalTaichung 40402, Taiwan
| |
Collapse
|
395
|
Dituri F, Cossu C, Mancarella S, Giannelli G. The Interactivity between TGFβ and BMP Signaling in Organogenesis, Fibrosis, and Cancer. Cells 2019; 8:E1130. [PMID: 31547567 PMCID: PMC6829314 DOI: 10.3390/cells8101130] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
The Transforming Growth Factor beta (TGFβ) and Bone Morphogenic Protein (BMP) pathways intersect at multiple signaling hubs and cooperatively or counteractively participate to bring about cellular processes which are critical not only for tissue morphogenesis and organogenesis during development, but also for adult tissue homeostasis. The proper functioning of the TGFβ/BMP pathway depends on its communication with other signaling pathways and any deregulation leads to developmental defects or diseases, including fibrosis and cancer. In this review we explore the cellular and physio-pathological contexts in which the synergism or antagonism between the TGFβ and BMP pathways are crucial determinants for the normal developmental processes, as well as the progression of fibrosis and malignancies.
Collapse
Affiliation(s)
- Francesco Dituri
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Carla Cossu
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Serena Mancarella
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| |
Collapse
|
396
|
Beneficial and Deleterious Effects of Female Sex Hormones, Oral Contraceptives, and Phytoestrogens by Immunomodulation on the Liver. Int J Mol Sci 2019; 20:ijms20194694. [PMID: 31546715 PMCID: PMC6801544 DOI: 10.3390/ijms20194694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
The liver is considered the laboratory of the human body because of its many metabolic processes. It accomplishes diverse activities as a mixed gland and is in continuous cross-talk with the endocrine system. Not only do hormones from the gastrointestinal tract that participate in digestion regulate the liver functions, but the sex hormones also exert a strong influence on this sexually dimorphic organ, via their receptors expressed in liver, in both health and disease. Besides, the liver modifies the actions of sex hormones through their metabolism and transport proteins. Given the anatomical position and physiological importance of liver, this organ is evidenced as an immune vigilante that mediates the systemic immune response, and, in turn, the immune system regulates the hepatic functions. Such feedback is performed by cytokines. Pro-inflammatory and anti-inflammatory cytokines are strongly involved in hepatic homeostasis and in pathological states; indeed, female sex hormones, oral contraceptives, and phytoestrogens have immunomodulatory effects in the liver and the whole organism. To analyze the complex and interesting beneficial or deleterious effects of these drugs by their immunomodulatory actions in the liver can provide the basis for either their pharmacological use in therapeutic treatments or to avoid their intake in some diseases.
Collapse
|
397
|
Gong Z, Lin J, Zheng J, Wei L, Liu L, Peng Y, Liang W, Hu G. Dahuang Zhechong pill attenuates CCl4-induced rat liver fibrosis via the PI3K-Akt signaling pathway. J Cell Biochem 2019; 121:1431-1440. [PMID: 31502329 DOI: 10.1002/jcb.29378] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 08/28/2019] [Indexed: 01/18/2023]
Abstract
It is well characterized that activated hepatic stellate cells (HSCs) exert critical functions in accelerating the progression of liver fibrosis. Previous studies have indicated that Dahuang Zhechong pill (DHZCP), a traditional Chinese herbal medicine, is capable of inactivating HSCs and thus attenuate the formation of liver fibrosis in rats. However, pharmacological mechanisms of DHZCP in alleviating liver fibrosis remain unclear. This study aims to investigate the antifibrotic role of DHZCP through inhibiting the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) pathway. DHZCP was found to significantly suppresses extracellular matrix formation and immune cell infiltration, thus alleviating liver fibrosis symptoms in the in vivo model. Moreover, DHZCP reduced serum levels of transforming growth factor β1 and tumor necrosis factor-α in rats with liver fibrosis. DHZCP treatment remarkably downregulated protein levels of PI3K and phosphorylated Akt, as well as fibrosis markers. In vitro experiments further demonstrated that DHZCP markedly suppressed HSCs proliferation by downregulating PI3K/Akt, which exerted a synergistic effect with the PI3K inhibitor LY294002. To sum up, our results confirmed that DHZCP exerted an antifibrotic effect in the animal model through inactivating the PI3K/Akt pathway, thus protecting rats from liver injury.
Collapse
Affiliation(s)
- Zhenghua Gong
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jiayu Lin
- Department of Gastroenterology, The Eighth Affiliated Hospital Sun Yat-sen University, Shenzhen, China
| | - Jie Zheng
- Department of Traditional Chinese Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Liya Wei
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| | - Li Liu
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yanzhong Peng
- Department of Infectious Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Weicheng Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Guoxin Hu
- Department of Infectious Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
398
|
Tang S, Li Y, Bao Y, Dai Z, Niu T, Wang K, He H, Song D. Novel cytisine derivatives exert anti-liver fibrosis effect via PI3K/Akt/Smad pathway. Bioorg Chem 2019; 90:103032. [DOI: 10.1016/j.bioorg.2019.103032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
|
399
|
Zou GL, Zuo S, Lu S, Hu RH, Lu YY, Yang J, Deng KS, Wu YT, Mu M, Zhu JJ, Zeng JZ, Zhang BF, Wu X, Zhao XK, Li HY. Bone morphogenetic protein-7 represses hepatic stellate cell activation and liver fibrosis via regulation of TGF-β/Smad signaling pathway. World J Gastroenterol 2019; 25:4222-4234. [PMID: 31435175 PMCID: PMC6700693 DOI: 10.3748/wjg.v25.i30.4222] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/25/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver fibrosis is a refractory disease whose persistence can eventually induce cirrhosis or even liver cancer. Early liver fibrosis is reversible by intervention. As a member of the transforming growth factor-beta (TGF-β) superfamily, bone morphogenetic protein 7 (BMP7) has anti-liver fibrosis functions. However, little is known about BMP7 expression changes and its potential regulatory mechanism as well as the relationship between BMP7 and TGF-β during liver fibrosis. In addition, the mechanism underlying the anti-liver fibrosis function of BMP7 needs to be further explored.
AIM To investigate changes in the dynamic expression of BMP7 during liver fibrosis, interactions between BMP7 and TGF-β1, and possible mechanisms underlying the anti-liver fibrosis function of BMP7.
METHODS Changes in BMP7 expression during liver fibrosis and the interaction between BMP7 and TGF-β1 in mice were observed. Exogenous BMP7 was used to treat mouse primary hepatic stellate cells (HSCs) to observe its effect on activation, migration, and proliferation of HSCs and explore the possible mechanism underlying the anti-liver fibrosis function of BMP7. Mice with liver fibrosis received exogenous BMP7 intervention to observe improvement of liver fibrosis by using Masson’s trichrome staining and detecting the expression of the HSC activation indicator alpha-smooth muscle actin (α-SMA) and the collagen formation associated protein type I collagen (Col I). Changes in the dynamic expression of BMP7 during liver fibrosis in the human body were further observed.
RESULTS In the process of liver fibrosis induced by carbon tetrachloride (CCl4) in mice, BMP7 protein expression first increased, followed by a decrease; there was a similar trend in the human body. This process was accompanied by a sustained increase in TGF-β1 protein expression. In vitro experiment results showed that TGF-β1 inhibited BMP7 expression in a time- and dose-dependent manner. In contrast, high doses of exogenous BMP7 inhibited TGF-β1-induced activation, migration, and proliferation of HSCs; this inhibitory effect was associated with upregulation of pSmad1/5/8 and downregulation of phosphorylation of Smad3 and p38 by BMP7. In vivo experiment results showed that exogenous BMP7 improved liver fibrosis in mice.
CONCLUSION During liver fibrosis, BMP7 protein expression first increases and then decreases. This changing trend is associated with inhibition of BMP7 expression by sustained upregulation of TGF-β1 in a time- and dose-dependent manner. Exogenous BMP7 could selectively regulate TGF-β/Smad pathway-associated factors to inhibit activation, migration, and proliferation of HSCs and exert anti-liver fibrosis functions. Exogenous BMP7 has the potential to be used as an anti-liver fibrosis drug.
Collapse
Affiliation(s)
- Gao-Liang Zou
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Shuang Lu
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Rui-Han Hu
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Yin-Ying Lu
- Comprehensive Liver Cancer Center, 302 Hospital, Beijing 100039, China
| | - Jing Yang
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Kai-Sheng Deng
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Ye-Ting Wu
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Mao Mu
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Juan-Juan Zhu
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Jing-Zhang Zeng
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Bao-Fang Zhang
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Xian Wu
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Xue-Ke Zhao
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Hai-Yang Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| |
Collapse
|
400
|
Czekaj P, Król M, Limanówka Ł, Michalik M, Lorek K, Gramignoli R. Assessment of animal experimental models of toxic liver injury in the context of their potential application as preclinical models for cell therapy. Eur J Pharmacol 2019; 861:172597. [PMID: 31408648 DOI: 10.1016/j.ejphar.2019.172597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
Preclinical animal models allow to study development and progression of several diseases, including liver disorders. These studies, for ethical reasons and medical limits, are impossible to carry out in human patients. At the same time, such experimental models constitute an important source of knowledge on pathomechanisms for drug- and virus-induced hepatotoxicity, both acute and chronic. Carbon tetrachloride, D-Galactosamine, and retrorsine are xenobiotics that can be used in immunocompetent animal models of hepatotoxicity, where chemical-intoxicated livers present histological features representative of human viruses-related infection. A prolonged derangement into liver architecture and functions commonly lead to cirrhosis, eventually resulting in hepatocellular carcinoma. In human, orthotopic liver transplantation commonly resolve most the problems related to cirrhosis. However, the shortage of donors does not allow all the patients in the waiting list to receive an organ on time. A promising alternative treatment for acute and chronic liver disease has been advised in liver cell transplantation, but the limited availability of hepatocytes for clinical approaches, in addition to the immunosuppressant regiment required to sustain cellular long-term engraftment have been encouraging the use of alternative cell sources. A recent effective source of stem cells have been recently identified in the human amnion membrane. Human amnion epithelial cells (hAEC) have been preclinically tested and proven sufficient to rescue immunocompetent rodents lethally intoxicated with drugs. The adoption of therapeutic procedures based on hAEC transplant in immunocompetent recipients affected by liver diseases, as well as patients with immune-related disorders, may constitute a successful new alternative therapy in regenerative medicine.
Collapse
Affiliation(s)
- Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland, Medyków 18 str., 40-752, Katowice, Poland.
| | - Mateusz Król
- Students Scientific Society, Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland, Medyków 18 str., 40-752, Katowice, Poland.
| | - Łukasz Limanówka
- Students Scientific Society, Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland, Medyków 18 str., 40-752, Katowice, Poland
| | - Marcin Michalik
- Students Scientific Society, Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland, Medyków 18 str., 40-752, Katowice, Poland
| | - Katarzyna Lorek
- Students Scientific Society, Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland, Medyków 18 str., 40-752, Katowice, Poland
| | - Roberto Gramignoli
- Department of Laboratory Medicine (LABMED), H5, Division of Pathology, Karolinska Institutet, Alfred Nobels Allé 8, 14152, Huddinge, Sweden.
| |
Collapse
|