401
|
Molecular Dambusters: What Is Behind Hyperpermeability in Bradykinin-Mediated Angioedema? Clin Rev Allergy Immunol 2021; 60:318-347. [PMID: 33725263 PMCID: PMC7962090 DOI: 10.1007/s12016-021-08851-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2021] [Indexed: 02/08/2023]
Abstract
In the last few decades, a substantial body of evidence underlined the pivotal role of bradykinin in certain types of angioedema. The formation and breakdown of bradykinin has been studied thoroughly; however, numerous questions remained open regarding the triggering, course, and termination of angioedema attacks. Recently, it became clear that vascular endothelial cells have an integrative role in the regulation of vessel permeability. Apart from bradykinin, a great number of factors of different origin, structure, and mechanism of action are capable of modifying the integrity of vascular endothelium, and thus, may participate in the regulation of angioedema formation. Our aim in this review is to describe the most important permeability factors and the molecular mechanisms how they act on endothelial cells. Based on endothelial cell function, we also attempt to explain some of the challenging findings regarding bradykinin-mediated angioedema, where the function of bradykinin itself cannot account for the pathophysiology. By deciphering the complex scenario of vascular permeability regulation and edema formation, we may gain better scientific tools to be able to predict and treat not only bradykinin-mediated but other types of angioedema as well.
Collapse
|
402
|
Abji F, Rasti M, Gómez-Aristizábal A, Muytjens C, Saifeddine M, Mihara K, Motahhari M, Gandhi R, Viswanathan S, Hollenberg MD, Oikonomopoulou K, Chandran V. Proteinase-Mediated Macrophage Signaling in Psoriatic Arthritis. Front Immunol 2021; 11:629726. [PMID: 33763056 PMCID: PMC7982406 DOI: 10.3389/fimmu.2020.629726] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022] Open
Abstract
Objective Multiple proteinases are present in the synovial fluid (SF) of an arthritic joint. We aimed to identify inflammatory cell populations present in psoriatic arthritis (PsA) SF compared to osteoarthritis (OA) and rheumatoid arthritis (RA), identify their proteinase-activated receptor 2 (PAR2) signaling function and characterize potentially active SF serine proteinases that may be PAR2 activators. Methods Flow cytometry was used to characterize SF cells from PsA, RA, OA patients; PsA SF cells were further characterized by single cell 3’-RNA-sequencing. Active serine proteinases were identified through cleavage of fluorogenic trypsin- and chymotrypsin-like substrates, activity-based probe analysis and proteomics. Fluo-4 AM was used to monitor intracellular calcium cell signaling. Cytokine expression was evaluated using a multiplex Luminex panel. Results PsA SF cells were dominated by monocytes/macrophages, which consisted of three populations representing classical, non-classical and intermediate cells. The classical monocytes/macrophages were reduced in PsA compared to OA/RA, whilst the intermediate population was increased. PAR2 was elevated in OA vs. PsA/RA SF monocytes/macrophages, particularly in the intermediate population. PAR2 expression and signaling in primary PsA monocytes/macrophages significantly impacted the production of monocyte chemoattractant protein-1 (MCP-1). Trypsin-like serine proteinase activity was elevated in PsA and RA SF compared to OA, while chymotrypsin-like activity was elevated in RA compared to PsA. Tryptase-6 was identified as an active serine proteinase in SF that could trigger calcium signaling partially via PAR2. Conclusion PAR2 and its activating proteinases, including tryptase-6, can be important mediators of inflammation in PsA. Components within this proteinase-receptor axis may represent novel therapeutic targets.
Collapse
Affiliation(s)
- Fatima Abji
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Mozhgan Rasti
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Carla Muytjens
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Mahmoud Saifeddine
- Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Koichiro Mihara
- Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Majid Motahhari
- Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Rajiv Gandhi
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Division of Orthopaedic Surgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| | - Sowmya Viswanathan
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada.,Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Katerina Oikonomopoulou
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Vinod Chandran
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
403
|
Burr SD, Stewart JA. Rap1a Overlaps the AGE/RAGE Signaling Cascade to Alter Expression of α-SMA, p-NF-κB, and p-PKC-ζ in Cardiac Fibroblasts Isolated from Type 2 Diabetic Mice. Cells 2021; 10:cells10030557. [PMID: 33806572 PMCID: PMC8000763 DOI: 10.3390/cells10030557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease, specifically heart failure, is a common complication for individuals with type 2 diabetes mellitus. Heart failure can arise with stiffening of the left ventricle, which can be caused by “active” cardiac fibroblasts (i.e., myofibroblasts) remodeling the extracellular matrix (ECM). Differentiation of fibroblasts to myofibroblasts has been demonstrated to be an outcome of AGE/RAGE signaling. Hyperglycemia causes advanced glycated end products (AGEs) to accumulate within the body, and this process is greatly accelerated under chronic diabetic conditions. AGEs can bind and activate their receptor (RAGE) to trigger multiple downstream outcomes, such as altering ECM remodeling, inflammation, and oxidative stress. Previously, our lab has identified a small GTPase, Rap1a, that possibly overlaps the AGE/RAGE signaling cascade to affect the downstream outcomes. Rap1a acts as a molecular switch connecting extracellular signals to intracellular responses. Therefore, we hypothesized that Rap1a crosses the AGE/RAGE cascade to alter the expression of AGE/RAGE associated signaling proteins in cardiac fibroblasts in type 2 diabetic mice. To delineate this cascade, we used genetically different cardiac fibroblasts from non-diabetic, diabetic, non-diabetic RAGE knockout, diabetic RAGE knockout, and Rap1a knockout mice and treated them with pharmacological modifiers (exogenous AGEs, EPAC, Rap1a siRNA, and pseudosubstrate PKC-ζ). We examined changes in expression of proteins implicated as markers for myofibroblasts (α-SMA) and inflammation/oxidative stress (NF-κB and SOD-1). In addition, oxidative stress was also assessed by measuring hydrogen peroxide concentration. Our results indicated that Rap1a connects to the AGE/RAGE cascade to promote and maintain α-SMA expression in cardiac fibroblasts. Moreover, Rap1a, in conjunction with activation of the AGE/RAGE cascade, increased NF-κB expression as well as hydrogen peroxide concentration, indicating a possible oxidative stress response. Additionally, knocking down Rap1a expression resulted in an increase in SOD-1 expression suggesting that Rap1a can affect oxidative stress markers independently of the AGE/RAGE signaling cascade. These results demonstrated that Rap1a contributes to the myofibroblast population within the heart via AGE/RAGE signaling as well as promotes possible oxidative stress. This study offers a new potential therapeutic target that could possibly reduce the risk for developing diabetic cardiovascular complications attributed to AGE/RAGE signaling.
Collapse
|
404
|
Guo Q, Zhao L, Zhu Y, Wu J, Hao C, Song S, Shi W. Optimization of culture medium for Sanghuangporus vaninii and a study on its therapeutic effects on gout. Biomed Pharmacother 2021; 135:111194. [PMID: 33395608 DOI: 10.1016/j.biopha.2020.111194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/05/2020] [Accepted: 12/26/2020] [Indexed: 12/13/2022] Open
Abstract
The increasing incidence of gout poses a very challenging management problem. However, the currently available drugs often have various toxic side effects. As a traditional edible and medicinal macrofungus, Sanghuangporus vaninii presents high medical research value. Therefore, to improve fermentation efficiency and identify novel anti-gout drugs, we optimized the culture medium of S. vaninii with lignin and further investigated its anti-gout effects. The results indicated that 0.06 g/L of lignin was most favorable for S. vaninii growth. In the hyperuricemia cell model, we found that S. vaninii could significantly induce the downregulation of xanthine oxidoreductase and the upregulation of hypoxanthine-guanine phosphoribosyltransferase. Furthermore, following oral administration of the extracts, the serum uric acid levels of mice with hyperuricemia were effectively reduced. In a gouty arthritis rat model, S. vaninii also achieved strong suppression of synovial swelling, indicating its anti-inflammatory activity. In addition, the antioxidant assays suggested that S. vaninii shows a strong free radical scavenging capacity and can effectively alleviate cellular oxidative stress. This activity further enhances its anti-inflammatory activity and reduces the incidence of comorbidities. In summary, our results provide the basis for the utilization of S. vaninii to develop anti-gout drugs.
Collapse
Affiliation(s)
- Qiong Guo
- Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Liying Zhao
- Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Yuhua Zhu
- Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Jiang Wu
- School of Stomatology, Jiamusi University, Jiamusi, Heilongjiang, 154002, China
| | - Cuiting Hao
- Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Shuang Song
- Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Wei Shi
- Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Life Sciences, Jilin University, Changchun, Jilin, 130012, China.
| |
Collapse
|
405
|
Dhouibi R, Affes H, Salem MB, Moalla D, Marekchi R, Charfi S, Hammami S, Sahnoun Z, Jamoussi K, Zeghal KM, Ksouda K. Creation of an adequate animal model of hyperuricemia (acute and chronic hyperuricemia); study of its reversibility and its maintenance. Life Sci 2021; 268:118998. [PMID: 33417953 DOI: 10.1016/j.lfs.2020.118998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/18/2020] [Accepted: 12/27/2020] [Indexed: 12/30/2022]
Abstract
AIM Hyperuricemia is defined by the European Rheumatology Society as a uric acid level greater than 6 mg/dl (60 mg/l or 360 μmol/l). Our goal was to evaluate the hypouricemic effect of nettle. For this reason, we have first of all try to create an hyperuricemic animal model which is very suitable because at the level of literature there is not an exact model, there are many models and our objective is to set an adequate model. MATERIALS AND METHODS An attempt has been made to test acute and chronic hyperuricemia by varying the duration and method of induction of potassium oxonate. Similarly, attempts have been made to induce chronic hyperuricemia through an animal and vegetable diet. The reversibility of hyperuricemia was tested with a maintenance protocol. KEY FINDINGS For the creation of the hyperuricemia model, it has been shown that acute hyperuricemia cannot be induced by short administration of potassium oxonate and persistent chronic hyperuricemia can be induced only after daily administration of oxonate of potassium by intraperitoneal injection for 15 days. Indeed, hyperuricemia was reversible after stopping the administration of potassium oxonate. The high-purine diet is also capable of inducing chronic hyperuricemia but to a less extent. SIGNIFICANCE After creating an adequate model of hyperuricemia while setting the dose of potassium oxonate, route of administration and duration. A maintenance protocol was followed which subsequently made it possible to deduce that the daily administration of potassium oxonate must be continued to maintain the hyperuricemia.
Collapse
Affiliation(s)
- Raouia Dhouibi
- Laboratory of Pharmacology, Faculty of Medicine of Sfax, University of Sfax, Tunisia.
| | - Hanen Affes
- Laboratory of Pharmacology, Faculty of Medicine of Sfax, University of Sfax, Tunisia.
| | - Maryem Ben Salem
- Laboratory of Pharmacology, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Dorsaf Moalla
- Laboratory of Pharmacology, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Rim Marekchi
- Laboratory of Biochemistry, CHU Hedi Cheker of Sfax, Tunisia
| | - Slim Charfi
- Department of Anatomopathology, CHU Habib Bourguiba of Sfax, Tunisia
| | - Serria Hammami
- Laboratory of Pharmacology, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Zouheir Sahnoun
- Laboratory of Pharmacology, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Kamel Jamoussi
- Laboratory of Biochemistry, CHU Hedi Cheker of Sfax, Tunisia
| | - Khaled Mounir Zeghal
- Laboratory of Pharmacology, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Kamilia Ksouda
- Laboratory of Pharmacology, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| |
Collapse
|
406
|
Deng Y, Liu F, Yang X, Xia Y. The Key Role of Uric Acid in Oxidative Stress, Inflammation, Fibrosis, Apoptosis, and Immunity in the Pathogenesis of Atrial Fibrillation. Front Cardiovasc Med 2021; 8:641136. [PMID: 33718459 PMCID: PMC7952317 DOI: 10.3389/fcvm.2021.641136] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Atrial fibrillation (AF) is a highly prevalent cardiac arrhythmia that leads to numerous adverse outcomes including stroke, heart failure, and death. Hyperuricemia is an important risk factor that contributes to atrium injury and AF, but the underlying molecular mechanism remains to be elucidated. In this review, we discussed the scientific evidence for clarifying the role of hyperuricemia in the pathogenesis of AF. Experimental and Clinical evidence endorse hyperuricemia as an independent risk factor for the incidence of AF. Various in vivo and in vitro investigations showed that hyperuricemia might play a critical role in the pathogenesis of AF at different UA concentrations through the activation of oxidative stress, inflammation, fibrosis, apoptosis, and immunity.
Collapse
Affiliation(s)
- Yawen Deng
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fei Liu
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaolei Yang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
407
|
Wang C, Nan X, Pei S, Zhao Y, Wang X, Ma S, Ma G. Salidroside and isorhamnetin attenuate urotensin II-induced inflammatory response in vivo and in vitro: Involvement in regulating the RhoA/ROCK II pathway. Oncol Lett 2021; 21:292. [PMID: 33732368 PMCID: PMC7905674 DOI: 10.3892/ol.2021.12553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022] Open
Abstract
Urotensin II (UII), a vital vasoconstrictor peptide, causes an inflammatory response in the pathogenesis of atherosclerosis. Previous studies have reported that the Ras homolog gene family, member A (RhoA)/Rho kinases (ROCK) pathway modulates the inflammatory response of the atherosclerotic process. However, to the best of our knowledge, whether the RhoA/ROCK pathway mediates the inflammatory effect of UII has not been previously elucidated. Salidroside and isorhamnetin are two early developed antioxidant Tibetan drugs, both displaying cardioprotective effects against atherosclerosis. Therefore, the aim of the present study was to investigate the protective effects of salidroside, isorhamnetin or combination of these two drugs on the UII-induced inflammatory response in vivo (rats) or in vitro [primary vascular smooth muscle cells (VSMCs)], as well as to examine the role of the RhoA/ROCK pathway in these processes. The levels of inflammatory markers were measured via ELISA. The mRNA and protein expression levels of RhoA and ROCK II were detected using reverse transcription-quantitative PCR assay and western blot analysis. It was demonstrated that salidroside, isorhamnetin and both in combination decreased the levels of the serum pro-inflammatory cytokines TNF-α and IL-1β, as well as increased the levels of the anti-inflammatory cytokine IL-10 and macrophage migration inhibitory factor in rats with subacute infusion of UII and in the culture supernatant from primary VSMCs-exposed to UII. Moreover, salidroside, isorhamnetin and both in combination attenuated the mRNA and protein expression levels of RhoA and ROCK II in vivo and in vitro, at concentrations corresponding to human therapeutic blood plasma concentrations. Thus, these drugs could inhibit the RhoA/ROCK II pathway under UII conditions. The combination of salidroside and isorhamnetin did not display a stronger inhibitory effect on the inflammatory response and the RhoA/ROCK II pathway compared with salidroside and isorhamnetin in isolation. Collectively, the results indicated that salidroside, isorhamnetin and both in combination inhibited the RhoA/ROCK II pathway, which then attenuated the inflammatory response under UII-induced conditions, resulting in cardioprotection in atherosclerosis.
Collapse
Affiliation(s)
- Chenjing Wang
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Xiaodong Nan
- Intensive Care Unit, Gansu Provincial Corps Hospital of Chinese People's Armed Police Force, Lanzhou, Gansu 730050, P.R. China
| | - Shuyan Pei
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Yu Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Xiaokun Wang
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Shijie Ma
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Guoyan Ma
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
408
|
Saadeh K, Fazmin IT. Mitochondrial Dysfunction Increases Arrhythmic Triggers and Substrates; Potential Anti-arrhythmic Pharmacological Targets. Front Cardiovasc Med 2021; 8:646932. [PMID: 33659284 PMCID: PMC7917191 DOI: 10.3389/fcvm.2021.646932] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Incidence of cardiac arrhythmias increases significantly with age. In order to effectively stratify arrhythmic risk in the aging population it is crucial to elucidate the relevant underlying molecular mechanisms. The changes underlying age-related electrophysiological disruption appear to be closely associated with mitochondrial dysfunction. Thus, the present review examines the mechanisms by which age-related mitochondrial dysfunction promotes arrhythmic triggers and substrate. Namely, via alterations in plasmalemmal ionic currents (both sodium and potassium), gap junctions, cellular Ca2+ homeostasis, and cardiac fibrosis. Stratification of patients' mitochondrial function status permits application of appropriate anti-arrhythmic therapies. Here, we discuss novel potential anti-arrhythmic pharmacological interventions that specifically target upstream mitochondrial function and hence ameliorates the need for therapies targeting downstream changes which have constituted traditional antiarrhythmic therapy.
Collapse
Affiliation(s)
- Khalil Saadeh
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ibrahim Talal Fazmin
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
409
|
Ma J, Chen Q, Ma S. Left atrial fibrosis in atrial fibrillation: Mechanisms, clinical evaluation and management. J Cell Mol Med 2021; 25:2764-2775. [PMID: 33576189 PMCID: PMC7957273 DOI: 10.1111/jcmm.16350] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/05/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF), the commonest arrhythmia, shows associations with various disease conditions. Mounting evidence indicates that atrial fibrosis is an important part of the arrhythmogenic substrate, with an essential function in the generation of conduction abnormalities that underlie the transition from paroxysmal to persistent AF, which in turn contributes to AF perpetuation. Left atrial (LA) fibrosis is considered a possible major factor and predictor in AF treatment. The present review provides insights into LA fibrosis’ association with AF. The information is focused on clinical aspects and mechanisms, clinical evaluating methods that evaluate fibrosis changes and examining possible options for the prevention of atrial fibrosis.
Collapse
Affiliation(s)
- Jin Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qiuxiong Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shiyu Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
410
|
Sarhene M, Ni JY, Duncan ES, Liu Z, Li S, Zhang J, Guo R, Gao S, Gao X, Fan G. Ginsenosides for cardiovascular diseases; update on pre-clinical and clinical evidence, pharmacological effects and the mechanisms of action. Pharmacol Res 2021; 166:105481. [PMID: 33549726 DOI: 10.1016/j.phrs.2021.105481] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) remains the major cause of death worldwide, accounting for almost 31% of the global mortality annually. Several preclinical studies have indicated that ginseng and the major bioactive ingredient (ginsenosides) can modulate several CVDs through diverse mechanisms. However, there is paucity in the translation of such experiments into clinical arena for cardiovascular ailments due to lack of conclusive specific pathways through which these activities are initiated and lack of larger, long-term well-structured clinical trials. Therefore, this review elaborates on current pharmacological effects of ginseng and ginsenosides in the cardiovascular system and provides some insights into the safety, toxicity, and synergistic effects in human trials. The review concludes that before ginseng, ginsenosides and their preparations could be utilized in the clinical treatment of CVDs, there should be more preclinical studies in larger animals (like the guinea pig, rabbit, dog, and monkey) to find the specific dosages, address the toxicity, safety and synergistic effects with other conventional drugs. This could lead to the initiation of large-scale, long-term well-structured randomized, and placebo-controlled clinical trials to test whether treatment is effective for a longer period and test the efficacy against other conventional therapies.
Collapse
Affiliation(s)
- Michael Sarhene
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Jing Yu Ni
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Esi Sophia Duncan
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Zhihao Liu
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Sheng Li
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Jing Zhang
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Rui Guo
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Shan Gao
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China.
| |
Collapse
|
411
|
Djuretić J, Dimitrijević M, Stojanović M, Stevuljević JK, Hamblin MR, Micov A, Stepanović-Petrović R, Leposavić G. Infrared radiation from cage bedding moderates rat inflammatory and autoimmune responses in collagen-induced arthritis. Sci Rep 2021; 11:2882. [PMID: 33536461 PMCID: PMC7858598 DOI: 10.1038/s41598-021-81999-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022] Open
Abstract
The development of collagen type II (CII)-induced arthritis (CIA), a model of rheumatoid arthritis, in rats housed in cages with bedding composed of Celliant fibres containing ceramic particles, which absorb body heat and re-emit the energy back to the body in the form of infrared radiation (+IRF rats), and those housed in cages with standard wooden shaving bedding (-IRF control rats) was examined. The appearance of the first signs of CIA was postponed, while the disease was milder (judging by the arthritic score, paw volume, and burrowing behaviour) in +IRF compared with -IRF rats. This correlated with a lower magnitude of serum anti-CII IgG antibody levels in +IRF rats, and lower production level of IL-17, the Th17 signature cytokine, in cultures of their paws. This could be partly ascribed to impaired migration of antigen-loaded CD11b + dendritic cells and their positioning within lymph nodes in +IRF rats reflecting diminished lymph node expression of CCL19 /CCL21. Additionally, as confirmed in rats with carrageenan-induced paw inflammation (CIPI), the infrared radiation from Celliant fibres, independently from immunomodulatory effects, exerted anti-inflammatory effects (judging by a shift in pro-inflammatory mediator to anti-inflammatory/immunoregulatory mediator ratio towards the latter in paw cultures) and ameliorated burrowing behaviour in CIA rats.
Collapse
Affiliation(s)
- Jasmina Djuretić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Marija Stojanović
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Jelena Kotur Stevuljević
- Department of Biochemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Ana Micov
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Radica Stepanović-Petrović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia.
| |
Collapse
|
412
|
Wang L, Mi B, Zhang Y, Yan H, Zhu H. Alendronate promotes the gene expression of extracellular matrix mediated by SP-1/SOX-9. Hum Exp Toxicol 2021; 40:1173-1182. [PMID: 33522294 DOI: 10.1177/0960327120988875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Osteoarthritis (OA) is a disease with significant degenerative changes of articular cartilage, which is reported to be closely related to the integrity of chondrocytes extracellular matrix (ECM). Alendronate belongs to the family of bisphosphonates with promising cartilage repair function. In the present study, the effects of Alendronate on the gene expression of chondrocytes ECM and the potential mechanism will be investigated to explore the potential therapeutic property of Alendronate on OA. METHODS Human SW1353 chondrocytes were stimulated with 1 and 2 μM Alendronate for 12 h. The gene expression of Col2α1, COL9α2, and Acan in the treated chondrocytes was determined by qRT-PCR. QRT-PCR and western blot analysis were used to evaluate the expression level of SOX-9 in the treated chondrocytes. The expression level of SP-1 was checked by qRT-PCR and immunostaining. SiRNA against SP-1 was transfected into chondrocytes to knockdown the expression of SP-1. The levels of p-ERK1/2 and total ERK1/2 were examined using western blot analysis. TNF-α was used to induce an OA-like in vitro model in the chondrocytes for therapeutic evaluations. RESULTS Treatment with Alendronate increased the levels of ECM related genes (Col2α1, COL9α2, and Acan) in a dose-dependent manner through increasing the expression of SOX-9, a central regulator of ECM genes. Additionally, our findings demonstrate that the effects of Alendronate in the expression of SOX-9 are mediated by SP-1 as silencing of SP-1 abolished these effects. Notably, Alendronate increased the phosphorylation of ERK1/2 and inhibition of ERK1/2 using its specific inhibitor U0126 blocked the expression of SP-1. Finally, we found that treatment with Alendronate could rescue TNF-α-induced reduction of Col2α1, COL9α2, Acan and SOX-9. CONCLUSION Our data indicated that Alendronate might promote the gene expression of extracellular matrix through SOX-9 mediated by the ERK1/2/SP1 signaling pathway.
Collapse
Affiliation(s)
- L Wang
- Department of Surgery, 481863Shandong Medical College, Linyi, Shandong, China
| | - B Mi
- Department of Trauma Surgery, 529858Linyi People's Hospital, Linyi, Shandong, China
| | - Y Zhang
- Department of Oncology, 529858Linyi People's Hospital, Linyi, Shandong, China
| | - H Yan
- Department of Internal Medicine, 481863Shandong Medical College, Linyi, Shandong, China
| | - H Zhu
- Department of Femoral Head Specialist, 529858Linyi People's Hospital, Linyi, Shandong, China
| |
Collapse
|
413
|
Xu R, Chen MY, Liang W, Chen Y, Guo MY. Zinc Deficiency Aggravation of ROS and Inflammatory Injury Leading to Renal Fibrosis in Mice. Biol Trace Elem Res 2021; 199:622-632. [PMID: 32394356 DOI: 10.1007/s12011-020-02184-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/30/2020] [Indexed: 01/12/2023]
Abstract
Zinc (Zn) is a trace element with a variety of anti-inflammatory and antioxidant effects. Zn deficiency is related to tissue fibrosis. The present study was designed to investigate the effect of Zn on renal fibrosis. Mouse models were successfully established by feeding mice diets with different concentrations of Zn. Zn deficiency induced a decrease in Zn levels in kidney tissue. The results also revealed renal vasodilation, hyperemia, and inflammatory cell infiltration, and the levels of creatinine and urea nitrogen were increased. Furthermore, the TUNEL results showed a large degree of renal cell necrosis caused by Zn deficiency. Meanwhile, the corresponding antioxidant and anti-inflammatory regulators (MT-1, MT-2, Nrf2, and TGF-β1) were detected by RT-PCR, showing that the expression of MT-1, MT-2, and Nrf2 decreased but that TGF-β1 expression increased. The results of Sirius red staining proved that the expression of collagen was increased by Zn deficiency. The immunohistochemical experiments found that the expression of α-smooth muscle actin (α-SMA) increased. ELISA showed that the expression of Collagen I, III, and IV; fibronectin (FN); and inflammatory factors (TNF-α and IL-1β) were remarkably increased. The expression of MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, MMP-12, and TIMP-1, which are extracellular matrix-regulating molecules, was detected by RT-PCR. The results showed that the expression of TIMPs was increased but that the expression of MMPs was decreased. We also obtained consistent results in vivo. All the experimental results indicated that Zn deficiency could aggravate fibrosis by increasing inflammation in the kidney.
Collapse
Affiliation(s)
- Ran Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Miao-Yu Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wan Liang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yu Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Meng-Yao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
414
|
Feng J, Liu L, Yao F, Zhou D, He Y, Wang J. The protective effect of tanshinone IIa on endothelial cells: a generalist among clinical therapeutics. Expert Rev Clin Pharmacol 2021; 14:239-248. [PMID: 33463381 DOI: 10.1080/17512433.2021.1878877] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Tanshinone IIa (TSA) has been approved to treat cardiovascular diseases by the China State Food and Drug Administration. TSA has exhibited a variety of pharmacological effects, including vasodilator, antioxidant, anti-inflammatory, and anti-tumor properties. Endothelial cells play an important physiological role in vascular homeostasis and control inflammation, coagulation, and thrombosis. Accumulating studies have shown that TSA can improve endothelial function through various pathways. AREAS COVERED The PubMed database was reviewed for relevant papers published up to 2020. This review summarizes the current clinical and pharmaceutical studies to provide a systemic overview of the pharmacological and therapeutic effects of TSA on endothelial cells. EXPERT OPINION TSA is a representative monomeric compound extracted from Danshen and it exhibits significant pharmacological and therapeutic properties to improve endothelial cell function, including alleviating oxidative stress, attenuating inflammatory injury, modulating ion channels and so on. TSA represents a spectrum of agents that are extracted from plants and can restore the endothelial function to establish the beneficial and harmless molecular therapeutics. This also suggests the possible detection of endothelial cells for very early diagnosis of diseases. In future, precise therapeutic methods will be developed to repair endothelial cells injury and recover endothelial dysfunction.
Collapse
Affiliation(s)
- Jun Feng
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Liu
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangfang Yao
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daixing Zhou
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yang He
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junshuai Wang
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
415
|
Lenz M, Kaun C, Krychtiuk KA, Haider P, Brekalo M, Maier N, Goederle L, Binder CJ, Huber K, Hengstenberg C, Wojta J, Hohensinner PJ, Speidl WS. Effects of Nicorandil on Inflammation, Apoptosis and Atherosclerotic Plaque Progression. Biomedicines 2021; 9:biomedicines9020120. [PMID: 33513743 PMCID: PMC7912627 DOI: 10.3390/biomedicines9020120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Nicorandil, a balanced vasodilator, is used in the second-line therapy of angina pectoris. In this study, we aimed to illuminate the effects of nicorandil on inflammation, apoptosis, and atherosclerotic plaque progression. Twenty-five LDL-R -/- mice were fed a high-fat diet for 14 weeks. After 6 weeks mice were randomly allocated to treatment with nicorandil (10 mg/kg/day) or tap water. Nicorandil treatment led to a more stable plaque phenotype, displaying an increased thickness of the fibrous cap (p = 0.014), a significant reduction in cholesterol clefts (p = 0.045), and enhanced smooth muscle cell content (p = 0.009). In endothelial cells nicorandil did not reduce the induction of adhesion molecules or proinflammatory cytokines. In H2O2 challenged endothelial cells, pretreatment with nicorandil significantly reduced the percentage of late apoptotic/necrotic cells (p = 0.016) and the ratio of apoptotic to living cells (p = 0.036). Atherosclerotic lesions of animals treated with nicorandil exhibited a significantly decreased content of cleaved caspase-3 (p = 0.034), lower numbers of apoptotic nuclei (p = 0.040), and reduced 8-oxogunanine staining (p = 0.039), demonstrating a stabilizing effect of nicorandil in established atherosclerotic lesions. We suggest that nicorandil has a positive effect on atherosclerotic plaque stabilization by reducing apoptosis.
Collapse
Affiliation(s)
- Max Lenz
- Department of Internal Medicine II—Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (C.K.); (K.A.K.); (P.H.); (M.B.); (N.M.); (C.H.); (J.W.); (W.S.S.)
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
| | - Christoph Kaun
- Department of Internal Medicine II—Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (C.K.); (K.A.K.); (P.H.); (M.B.); (N.M.); (C.H.); (J.W.); (W.S.S.)
| | - Konstantin A. Krychtiuk
- Department of Internal Medicine II—Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (C.K.); (K.A.K.); (P.H.); (M.B.); (N.M.); (C.H.); (J.W.); (W.S.S.)
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
| | - Patrick Haider
- Department of Internal Medicine II—Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (C.K.); (K.A.K.); (P.H.); (M.B.); (N.M.); (C.H.); (J.W.); (W.S.S.)
| | - Mira Brekalo
- Department of Internal Medicine II—Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (C.K.); (K.A.K.); (P.H.); (M.B.); (N.M.); (C.H.); (J.W.); (W.S.S.)
| | - Nadine Maier
- Department of Internal Medicine II—Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (C.K.); (K.A.K.); (P.H.); (M.B.); (N.M.); (C.H.); (J.W.); (W.S.S.)
| | - Laura Goederle
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (L.G.); (C.J.B.)
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (L.G.); (C.J.B.)
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Kurt Huber
- 3rd Medical Department for Cardiology and Emergency Medicine, Wilhelminenhospital and Sigmund Freud University, 1160 Vienna, Austria;
| | - Christian Hengstenberg
- Department of Internal Medicine II—Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (C.K.); (K.A.K.); (P.H.); (M.B.); (N.M.); (C.H.); (J.W.); (W.S.S.)
| | - Johann Wojta
- Department of Internal Medicine II—Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (C.K.); (K.A.K.); (P.H.); (M.B.); (N.M.); (C.H.); (J.W.); (W.S.S.)
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
- Core Facility Imaging, Medical University of Vienna, 1090 Vienna, Austria
| | - Philipp J. Hohensinner
- Department of Internal Medicine II—Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (C.K.); (K.A.K.); (P.H.); (M.B.); (N.M.); (C.H.); (J.W.); (W.S.S.)
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40400-73515
| | - Walter S. Speidl
- Department of Internal Medicine II—Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (C.K.); (K.A.K.); (P.H.); (M.B.); (N.M.); (C.H.); (J.W.); (W.S.S.)
| |
Collapse
|
416
|
Cafestol Inhibits High-Glucose-Induced Cardiac Fibrosis in Cardiac Fibroblasts and Type 1-Like Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:4503747. [PMID: 33488743 PMCID: PMC7790572 DOI: 10.1155/2020/4503747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/05/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023]
Abstract
Diabetes is associated with the development of myocardial fibrosis, which is related to various cardiac diseases. Cafestol, one of the active ingredients in coffee, has been reported to exert biological effects. However, whether cafestol can ameliorate diabetes-induced cardiac fibrosis remains unknown. The aim of this study was to evaluate the effects of cafestol on cardiac fibrosis in high-glucose-treated cardiac fibroblasts and streptozocin- (STZ-) induced diabetic rats. Rat cardiac fibroblasts were cultured in high-glucose (25 mM) media in the absence or presence of cafestol, and the changes in collagen synthesis, transforming growth factor-β1 (TGF-β1) production, and related signaling molecules were assessed on the basis of 3H-proline incorporation, enzyme-linked immunosorbent assay, and western blotting. Cardiac fibroblasts exposed to high-glucose conditions exhibited increased collagen synthesis, TGF-β1 production, and Smad2/3 phosphorylation, and these effects were mitigated by cafestol treatment. Furthermore, cafestol increased the translocation of nuclear factor erythroid 2-related factor 2 and increased the expression of heme oxygenase-1. The results of molecular docking analysis suggested a selective interaction of cafestol with Kelch-like ECH-associated protein 1. The rats with untreated STZ-induced diabetes exhibited considerable collagen accumulation, which was ameliorated by cafestol. Moreover, activities of catalase, superoxide dismutase, general matrix metalloproteinase, and reduced glutathione concentration were upregulated, whereas malondialdehyde level was downregulated by treatment with cafestol in rats with cardiac fibrosis. These findings highlight the effects of cafestol, which may be useful in treating diabetes-related cardiac fibrosis.
Collapse
|
417
|
Abstract
PURPOSE OF REVIEW Hyperuricemia is highly prevalent, affecting approximately 38 million individuals in the United States. However, the significance of asymptomatic hyperuricemia - hyperuricemia in the absence of gout - continues to be debated. RECENT FINDINGS Asymptomatic hyperuricemia results in monosodium urate crystal deposition in tissues, which may promote chronic inflammation. Intracellularly, hyperuricemia inhibits the master regulator adenosine monophosphate (AMP)-associated protein kinase and may condition innate immune responses through durable epigenetic modifications. At the population level, asymptomatic hyperuricemia is associated with multiple comorbidities, including hypertension, chronic kidney disease, coronary artery disease, and diabetes; limitations of these studies include that most are retrospective and some do not rigorously distinguish between asymptomatic hyperuricemia and gout. Treatment studies suggest that urate lowering may reduce the risk of incidence or progression of some of these comorbidities; unfortunately, many of these treatment studies are small or flawed, and not all study results are consistent. SUMMARY Accumulating evidence suggests that asymptomatic hyperuricemia contributes to the comorbidities with which it associates and that proper asymptomatic hyperuricemia treatment may reduce future risk. Additional prospective trials are needed to definitely establish causality and support decision-making as to whether, and which patients with asymptomatic hyperuricemia would warrant urate-lowering treatment.
Collapse
|
418
|
Hu X, Li L, Song Y, Lu Y. Effectiveness and safety of traditional Chinese medicines for pulmonary heart disease: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e24131. [PMID: 33429786 PMCID: PMC7793432 DOI: 10.1097/md.0000000000024131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Previous review indicate that the effect of traditional Chinese medicines (TCM) on pulmonary heart disease (PHD) remains uncertainty. Therefore, we designed this study to systematically evaluate the effectiveness and safety of TCM in the treatment of PHD. METHODS Nine online databases will be searched from inception to October 01, 2021, and we will not restrict the language on included trials. Randomized controlled trials that included patients with PHD receiving TCM therapy vs a control group will be included. Two of us will perform independently the selection of studies, risk of bias assessment, and data extraction. The RevMan V.5.2 software with fixed effects model or random effects model will be used to syntheses the data, according to the heterogeneity test to conduct the data synthesis. The dichotomous data and the continuous data will be presented with risk ratios with 95% confidence intervals and weighted mean differences or standardized mean differences with 95% confidence intervals. And we will use the Grading of Recommendations Assessment, Development, and Evaluation system to evaluate the evidence quality. RESULT This study will assess effects and safety for TCM on PHD. CONCLUSION The conclusion of this study will provide evidence to prove the safety and effectiveness of TCM on PHD. TRIAL REGISTRATION NUMBER INPLASY2020120024.
Collapse
Affiliation(s)
- Xinyu Hu
- Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine
| | - Lulu Li
- Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine
| | - Yuanying Song
- Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine
| | - Yun Lu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
419
|
Kianu Phanzu B, Nkodila Natuhoyila A, Kintoki Vita E, M'Buyamba Kabangu JR, Longo-Mbenza B. Association between insulin resistance and left ventricular hypertrophy in asymptomatic, Black, sub-Saharan African, hypertensive patients: a case-control study. BMC Cardiovasc Disord 2021; 21:1. [PMID: 33388039 PMCID: PMC7777396 DOI: 10.1186/s12872-020-01829-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 12/15/2020] [Indexed: 01/19/2023] Open
Abstract
Background Conflicting information exists regarding the association between insulin resistance (IR) and left ventricular hypertrophy (LVH). We described the associations between obesity, fasting insulinemia, homeostasis model assessment of insulin resistance (HOMA-IR), and LVH in Black patients with essential hypertension. Methods A case–control study was conducted at the Centre Médical de Kinshasa (CMK), the Democratic Republic of the Congo, between January and December 2019. Cases and controls were hypertensive patients with and without LVH, respectively. The relationships between obesity indices, physical inactivity, glucose metabolism and lipid disorder parameters, and LVH were assessed using linear and logistic regression analyses in simple and univariate exploratory analyses, respectively. When differences were observed between LVH and independent variables, the effects of potential confounders were studied through the use of multiple linear regression and in conditional logistic regression in multivariate analyses. The coefficients of determination (R2), adjusted odds ratios (aORs), and their 95% confidence intervals (95% CIs) were calculated to determine associations between LVH and the independent variables.
Results Eighty-eight LVH cases (52 men) were compared against 132 controls (81 men). Variation in left ventricular mass (LVM) could be predicted by the following variables: age (19%), duration of hypertension (31.3%), body mass index (BMI, 44.4%), waist circumference (WC, 42.5%), glycemia (20%), insulinemia (44.8%), and HOMA-IR (43.7%). Hypertension duration, BMI, insulinemia, and HOMA-IR explained 68.3% of LVM variability in the multiple linear regression analysis. In the logistic regression model, obesity increased the risk of LVH by threefold [aOR 2.8; 95% CI (1.06–7.4); p = 0.038], and IR increased the risk of LVH by eightfold [aOR 8.4; 95 (3.7–15.7); p < 0.001]. Conclusion Obesity and IR appear to be the primary predictors of LVH in Black sub-Saharan African hypertensive patients. The comprehensive management of cardiovascular risk factors should be emphasized, with particular attention paid to obesity and IR. A prospective population-based study of Black sub-Saharan individuals that includes the use of serial imaging remains essential to better understand subclinical LV deterioration over time and to confirm the role played by IR in Black sub-Saharan individuals with hypertension.
Collapse
Affiliation(s)
- Bernard Kianu Phanzu
- Cardiology Unit, University Hospital of Kinshasa, PO Box 1038, Kinshasa, Democratic Republic of Congo. .,Centre Médical de Kinshasa (CMK), Kinshasa, Democratic Republic of Congo.
| | | | - Eleuthère Kintoki Vita
- Cardiology Unit, University Hospital of Kinshasa, PO Box 1038, Kinshasa, Democratic Republic of Congo
| | | | - Benjamin Longo-Mbenza
- Cardiology Unit, University Hospital of Kinshasa, PO Box 1038, Kinshasa, Democratic Republic of Congo
| |
Collapse
|
420
|
Bano N, Zia-Ul-Haq M. Carotenoids in diabetes, retinopathy, and cardiovascular risk. DIABETES AND CARDIOVASCULAR DISEASE 2021:123-152. [DOI: 10.1016/b978-0-12-817428-9.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
421
|
Ahmad SS, Khalid M, Kamal MA, Younis K. Study of Nutraceuticals and Phytochemicals for the Management of Alzheimer's Disease: A Review. Curr Neuropharmacol 2021; 19:1884-1895. [PMID: 33588732 PMCID: PMC9185787 DOI: 10.2174/1570159x19666210215122333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/06/2021] [Accepted: 02/12/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) affects several people worldwide and has devastating impacts on society with a limited number of approaches for its pharmacological treatment. The main causes of AD are not clear yet. However, the formation of senile plaques, neurofibrillary tangles, hyper-phosphorylation of tau protein, and disruption of redox homeostasis may cause AD. These causes have a positive correlation with oxidative stress, producing reactive ions, which are responsible for altering the physiological condition of the body. CONCLUSION Ongoing research recommended the use of phytochemicals as acetylcholinesterase inhibitors to hinder the onset and progression of AD. The natural compound structures, including lignans, flavonoids, tannins, polyphenols, triterpenes, sterols, and alkaloids have anti-inflammatory, antioxidant, and anti-amyloidogenic properties. The purpose of this article is to provide a brief introduction to AD along with the use of natural compounds as new therapeutic approaches for its management.
Collapse
Affiliation(s)
| | | | - Mohammad A. Kamal
- Address correspondence to these authors at the Department of Bioengineering, Integral University Lucknow, UP-226026, India; E-mail: and King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; E-mail:
| | - Kaiser Younis
- Address correspondence to these authors at the Department of Bioengineering, Integral University Lucknow, UP-226026, India; E-mail: and King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; E-mail:
| |
Collapse
|
422
|
Garvin AM, Khokhar BS, Czubryt MP, Hale TM. RAS inhibition in resident fibroblast biology. Cell Signal 2020; 80:109903. [PMID: 33370581 DOI: 10.1016/j.cellsig.2020.109903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Angiotensin II (Ang II) is a primary mediator of profibrotic signaling in the heart and more specifically, the cardiac fibroblast. Ang II-mediated cardiomyocyte hypertrophy in combination with cardiac fibroblast proliferation, activation, and extracellular matrix production compromise cardiac function and increase mortality in humans. Profibrotic actions of Ang II are mediated by increasing production of fibrogenic mediators (e.g. transforming growth factor beta, scleraxis, osteopontin, and periostin), recruitment of immune cells, and via increased reactive oxygen species generation. Drugs that inhibit Ang II production or action, collectively referred to as renin angiotensin system (RAS) inhibitors, are first line therapeutics for heart failure. Moreover, transient RAS inhibition has been found to persistently alter hypertensive cardiac fibroblast responses to injury providing a useful tool to identify novel therapeutic targets. This review summarizes the profibrotic actions of Ang II and the known impact of RAS inhibition on cardiac fibroblast phenotype and cardiac remodeling.
Collapse
Affiliation(s)
- Alexandra M Garvin
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Bilal S Khokhar
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Michael P Czubryt
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA.
| |
Collapse
|
423
|
Nephroprotective Role of Zhibai Dihuang Wan in Aristolochic Acid-Intoxicated Zebrafish. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5204348. [PMID: 33344639 PMCID: PMC7725560 DOI: 10.1155/2020/5204348] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Zhibai Dihuang Wan (ZDW) is an eight-herbal formula of traditional Chinese medicine. Clinically, it regulated immune activity and was used to treat diabetes and renal disease. In this study, we aimed to explore the nephroprotective effect of ZDW in an aristolochic acid- (AA-) intoxicated zebrafish model. We used a green fluorescent kidney transgenic zebrafish to evaluate the nephroprotective effects of ZDW by recording subtle changes in the kidney. Our results demonstrated that ZDW treatment can attenuate AA-induced kidney malformations (60% for AA-treated, 47% for pretreatment with ZDW, and 17% for cotreatment ZDW with AA, n = 50). Furthermore, we found that the expression levels of tnfα and mpo were decreased either in pretreatment or cotreatment groups. In conclusion, our findings revealed that AA-induced nephrotoxicities can be attenuated by ZDW. Therefore, we believe that zebrafish represent an efficient model for screening AA-protective Chinese medicine.
Collapse
|
424
|
Peng TC, Chang SP, Chi LM, Lin LM. The effectiveness of far-infrared irradiation on foot skin surface temperature and heart rate variability in healthy adults over 50 years of age: A randomized study. Medicine (Baltimore) 2020; 99:e23366. [PMID: 33327260 PMCID: PMC7738146 DOI: 10.1097/md.0000000000023366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Far-infrared irradiation (FIR) is used in the medical field to improve wound healing, hemodialysis with peripheral artery occlusive disease, and osteoarthritis but seldom used in ameliorating poor lower extremity circulation. The purpose of this study was to evaluate the effect of FIR on changes in foot skin surface temperature (FSST) and autonomic nerve system (ANS) activity to evaluate its effectiveness in improving lower limb circulation. METHODS A randomized controlled study was conducted. Subjects (n = 44), all over the age of 50 years and satisfying the inclusion criteria, were randomly allocated into 2 groups. The intervention group received FIR on a lower limb for 40 minutes and the control group received no intervention. Left big toe (LBT), right big toe (RBT), left foot dorsal (LFD), right foot dorsal (RFD) surface skin temperature, autonomic nervous activity, and blood pressure were assessed. RESULTS The main results were skin surface temperature at the LBT increased from 30.8 ± 0.4°C to 34.8 ± 0.4°C, at RBT increased from 29.6 ± 0.4°C to 35.3 ± 0.4°C and LFD increased from 31.9 ± 0.3°C to 36.4 ± 0.4°C, RFD increased from 30.7 ± 0.3°C to 37.7 ± 0.2°C. FIR caused a significant increase of the FSST ranging in a 4°C to 7°C increase after 40 minutes irradiation (P < .001). The ANS low-frequency (LF) and high-frequency (HF) activity showed a statistically significant increase in the FIR group (P < .05) but not the LF/HF ratio. CONCLUSION FIR significantly increased the FSST from between 4°C and 7°C after 40 minutes irradiation, which might improve lower extremity circulation and regulation of ANS activity.
Collapse
Affiliation(s)
| | - Su-Ping Chang
- Unit of Infection Control and Management, Tzu Chi Hospital
| | - Lee-Mei Chi
- Department of Nursing, Tzu Chi University of Science and Technology
| | - Li-Mei Lin
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| |
Collapse
|
425
|
High Capability of Pentagalloylglucose (PGG) in Inhibiting Multiple Types of Membrane Ionic Currents. Int J Mol Sci 2020; 21:ijms21249369. [PMID: 33316951 PMCID: PMC7763472 DOI: 10.3390/ijms21249369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022] Open
Abstract
Pentagalloyglucose (PGG, penta-O-galloyl-β-d-glucose; 1,2,3,4,6-pentagalloyl glucose), a pentagallic acid ester of glucose, is recognized to possess anti-bacterial, anti-oxidative and anti-neoplastic activities. However, to what extent PGG or other polyphenolic compounds can perturb the magnitude and/or gating of different types of plasmalemmal ionic currents remains largely uncertain. In pituitary tumor (GH3) cells, we found out that PGG was effective at suppressing the density of delayed-rectifier K+ current (IK(DR)) concentration-dependently. The addition of PGG could suppress the density of proton-activated Cl− current (IPAC) observed in GH3 cells. The IC50 value required for the inhibitory action of PGG on IK(DR) or IPAC observed in GH3 cells was estimated to be 3.6 or 12.2 μM, respectively, while PGG (10 μM) mildly inhibited the density of the erg-mediated K+ current or voltage-gated Na+ current. The presence of neither chlorotoxin, hesperetin, kaempferol, morin nor iberiotoxin had any effects on IPAC density, whereas hydroxychloroquine or 4-[(2-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5yl)oxy] butanoic acid suppressed current density effectively. The application of PGG also led to a decrease in the area of voltage-dependent hysteresis of IPAC elicited by long-lasting isosceles-triangular ramp voltage command, suggesting that hysteretic strength was lessened in its presence. In human cardiac myocytes, the exposure to PGG also resulted in a reduction of ramp-induced IK(DR) density. Taken literally, PGG-perturbed adjustment of ionic currents could be direct and appears to be independent of its anti-oxidative property.
Collapse
|
426
|
Ansari MA, Khan FB, Safdari HA, Almatroudi A, Alzohairy MA, Safdari M, Amirizadeh M, Rehman S, Equbal MJ, Hoque M. Prospective therapeutic potential of Tanshinone IIA: An updated overview. Pharmacol Res 2020; 164:105364. [PMID: 33285229 DOI: 10.1016/j.phrs.2020.105364] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 01/03/2023]
Abstract
In the past decades, the branch of complementary and alternative medicine based therapeutics has gained considerable attention worldwide. Pharmacological efficacy of various traditional medicinal plants, their products and/or product derivatives have been explored on an increasing scale. Tanshinone IIA (Tan IIA) is a pharmacologically active lipophilic component of Salvia miltiorrhiza extract. Tan IIA shares a history of high repute in Traditional Chinese Medicine. Reckoning with these, the present review collates the pharmacological properties of Tan IIA with a special emphasis on its therapeutic potential against diverse diseases including cardiovascular diseases, cerebrovascular diseases, cancer, diabetes, obesity and neurogenerative diseases. Further, possible applications of various therapeutic preparations of Tan IIA were discussed with special emphasis on nano-based drug delivery formulations. Considering the tremendous advancement in the field of nanomedicine and the therapeutic potential of Tan IIA, the convergence of these two aspects can be foreseen with great promise in clinical application.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1881, Dammam 31441, Saudi Arabia
| | - Farheen Badrealam Khan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Haaris Ahsan Safdari
- New Technology Center, University of Warsaw, Stefana Banacha 2c, 02-097 Warszawa, Poland
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Mohammadreza Safdari
- Imam Ali Hospital, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehran Amirizadeh
- Department of Pharmacotherapy, Faculty of Pharmacy, University of Medical Sciences, Khorramabad, Lorestan, Iran
| | - Suriya Rehman
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1881, Dammam 31441, Saudi Arabia
| | - Mohammad Javed Equbal
- Biomedical Institute for Regenerative Research, Texas A&M University Commerce, Commerce, TX 75429, United States.
| | - Mehboob Hoque
- Department of Biological Sciences, Aliah University, Kolkata 700 160, India.
| |
Collapse
|
427
|
Aujla PK, Kassiri Z. Diverse origins and activation of fibroblasts in cardiac fibrosis. Cell Signal 2020; 78:109869. [PMID: 33278559 DOI: 10.1016/j.cellsig.2020.109869] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022]
Abstract
Cardiac fibroblasts (cFBs) have emerged as a heterogenous cell population. Fibroblasts are considered the main cell source for synthesis of the extracellular matrix (ECM) and as such a dysregulation in cFB function, activity, or viability can lead to disrupted ECM structure or fibrosis. Fibrosis can be initiated in response to different injuries and stimuli, and can be reparative (beneficial) or reactive (damaging). FBs need to be activated to myofibroblasts (MyoFBs) which have augmented capacity in synthesizing ECM proteins, causing fibrosis. In addition to the resident FBs in the myocardium, a number of other cells (pericytes, fibrocytes, mesenchymal, and hematopoietic cells) can transform into MyoFBs, further driving the fibrotic response. Multiple molecules including hormones, cytokines, and growth factors stimulate this process leading to generation of activated MyoFBs. Contribution of different cell types to cFBs and MyoFBs can result in an exponential increase in the number of MyoFBs and an accelerated pro-fibrotic response. Given the diversity of the cell sources, and the array of interconnected signalling pathways that lead to formation of MyoFBs and subsequently fibrosis, identifying a single target to limit the fibrotic response in the myocardium has been challenging. This review article will delineate the importance and relevance of fibroblast heterogeneity in mediating fibrosis in different models of heart failure and will highlight important signalling pathways implicated in myofibroblast activation.
Collapse
Affiliation(s)
- Preetinder K Aujla
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
428
|
Sun M, Zhu T, Tong J, Caidan R, Wang K, Kai G, Zhang W, Ru L, Pengcuo J, Tong L. Screening active components from Rubus amabilis for pancreatic β-cells protection. PHARMACEUTICAL BIOLOGY 2020; 58:674-685. [PMID: 32659127 PMCID: PMC7470145 DOI: 10.1080/13880209.2020.1787467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/13/2020] [Accepted: 06/19/2020] [Indexed: 06/01/2023]
Abstract
CONTEXT Rubus species (Rosaceae) have been used in folk medicine to treat diabetes due to their hypoglycaemic activity. OBJECTIVE To screen the active components that act as hypoglycaemic agents in Rubus amabilis Focke and the underlying mechanisms. MATERIALS AND METHODS Aqueous stem extract of R. amabilis was incubated with MIN6 β-cells, PBS was used as the blank control. Then the cells were washed, cell membrane-bound components were dissociated and identified by UPLC/MS. Total procyanidins (PCs) in R. amabilis was enriched and the cytotoxicity and anti-proliferation on β-cell were evaluated by MTT assay. PCs at 25, 50, and 75 μg/mL was applied for 24 h to determine its effects on palmitate (PA)-induced apoptosis and GSIS. Western blotting was employed to detect the protein expression of PI3K/Akt/FoxO1 signalling. The antioxidant indices were also measured. RESULTS β-Cell membrane-bound components were identified as three procyanidin B dimers and a C trimer. PCs showed no significant cytotoxicity up to a concentrations of 100 μg/mL. PCs treatment reversed the elevated apoptosis rate and impaired GSIS induced by PA. PCs markedly decreased the intracellular ROS and MDA production and increased the SOD activity. Moreover, PCs promoted the phosphorylation of Akt and FoxO1, and regulated Pdx-1 and Bax expression in MIN6 cells. Discussion and conclusion: The active components that act as hypoglycaemic agents in R. amabilis are procyanidins, which protected MIN6 cells against PA-induced apoptosis by activating PI3K/Akt/FoxO1 signalling. These results indicate that β-cell extraction, combined with UPLC/MS, is a valid method for screening antidiabetic components from herbal medicines.
Collapse
Affiliation(s)
- Min Sun
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University, Hefei, P. R. China
| | - Tiantian Zhu
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University, Hefei, P. R. China
| | - Jinzhi Tong
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University, Hefei, P. R. China
| | - Rezeng Caidan
- College of Pharmacy, Qinghai Nationalities University, Xining, P. R. China
| | - Kaijin Wang
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University, Hefei, P. R. China
| | - Guiqing Kai
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University, Hefei, P. R. China
| | - Wenna Zhang
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University, Hefei, P. R. China
| | - Lei Ru
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University, Hefei, P. R. China
| | - Jiumei Pengcuo
- Qinghai Jiumei Tibetan Medicine Co., Ltd., Xining, P. R. China
| | - Li Tong
- Traditional Chinese and Tibetan Medicine Research Centre, Medical College of Qinghai University, Xining, P. R. China
| |
Collapse
|
429
|
Takano APC, Senger N, Barreto-Chaves MLM. The endocrinological component and signaling pathways associated to cardiac hypertrophy. Mol Cell Endocrinol 2020; 518:110972. [PMID: 32777452 DOI: 10.1016/j.mce.2020.110972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Although myocardial growth corresponds to an adaptive response to maintain cardiac contractile function, the cardiac hypertrophy is a condition that occurs in many cardiovascular diseases and typically precedes the onset of heart failure. Different endocrine factors such as thyroid hormones, insulin, insulin-like growth factor 1 (IGF-1), angiotensin II (Ang II), endothelin (ET-1), catecholamines, estrogen, among others represent important stimuli to cardiomyocyte hypertrophy. Thus, numerous endocrine disorders manifested as changes in the local environment or multiple organ systems are especially important in the context of progression from cardiac hypertrophy to heart failure. Based on that information, this review summarizes experimental findings regarding the influence of such hormones upon signalling pathways associated with cardiac hypertrophy. Understanding mechanisms through which hormones differentially regulate cardiac hypertrophy could open ways to obtain therapeutic approaches that contribute to prevent or delay the onset of heart failure related to endocrine diseases.
Collapse
Affiliation(s)
| | - Nathalia Senger
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | |
Collapse
|
430
|
Abstract
Juices, wine, coffee, and cocoa are rich sources of natural polyphenolic compounds that have potent antioxidant activities proven by in vitro and in vivo studies. These polyphenolic compounds quench reactive oxygen and nitrogen species (RONS) or reactive free radicals and act as natural antioxidants which are also able to protect against reactive oxygen species (ROS)-mediated oxidative damage, which elevates cellular antioxidant capacity to induce antioxidant defense mechanisms by modulating transcription factors. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcription factor encoded in humans. It is activated as a result of oxidative stress and induces the expression of its target genes. This is one of the most important cellular defense mechanisms against oxidative stress. However, the oxidative stress alone is not enough to activate Nrf2. Hence phytochemicals, especially polyphenolics, act as natural Nrf2 activators. Herein, this review discusses the natural products identified in juices, coffee, cocoa and wines that modulate Nrf2 activity in cellular systems.
Collapse
|
431
|
Hahn D, Shin SH, Bae JS. Natural Antioxidant and Anti-Inflammatory Compounds in Foodstuff or Medicinal Herbs Inducing Heme Oxygenase-1 Expression. Antioxidants (Basel) 2020; 9:E1191. [PMID: 33260980 PMCID: PMC7761319 DOI: 10.3390/antiox9121191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible antioxidant enzyme that catalyzes heme group degradation. Decreased level of HO-1 is correlated with disease progression, and HO-1 induction suppresses development of metabolic and neurological disorders. Natural compounds with antioxidant activities have emerged as a rich source of HO-1 inducers with marginal toxicity. Here we discuss the therapeutic role of HO-1 in obesity, hypertension, atherosclerosis, Parkinson's disease and hepatic fibrosis, and present important signaling pathway components that lead to HO-1 expression. We provide an updated, comprehensive list of natural HO-1 inducers in foodstuff and medicinal herbs categorized by their chemical structures. Based on the continued research in HO-1 signaling pathways and rapid development of their natural inducers, HO-1 may serve as a preventive and therapeutic target for metabolic and neurological disorders.
Collapse
Affiliation(s)
- Dongyup Hahn
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Korea
| | - Seung Ho Shin
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
432
|
Phungphong S, Kijtawornrat A, Wattanapermpool J, Bupha-Intr T. Improvement in cardiac function of ovariectomized rats by antioxidant tempol. Free Radic Biol Med 2020; 160:239-245. [PMID: 32763410 DOI: 10.1016/j.freeradbiomed.2020.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/27/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022]
Abstract
A rise in heart disease incidence in women after menopause has led to investigations into the role of female sex hormones on cardiac function. Although various adverse changes in cardiac contractile function following loss of female sex hormones have been reported, a clear mechanism of action has never been characterized. In order to examine whether an elevation in oxidative stress is a major cause of cardiac contractile dysfunction after female sex hormone deprivation, cardiac functions of ovariectomized rats with and without supplementation of superoxide scavenger tempol were compared to those of sham-operated controls. Chronic deprivation of female sex hormones reduced total oxidative capacity and increased plasma carbonyl protein content. Tempol supplementation of ovariectomized rats significantly ameliorated plasma oxidative stress status. Echocardiography demonstrated a significant decrease in left ventricular ejection fraction in ovariectomized rats, which was completely prevented by tempol supplementation. Decreased myocardial contractility occurs with reduced maximum myofilament force of contraction and amplitude of transient intracellular Ca2+ concentration, both phenomena completely attenuated by tempol supplementation. However, tempol only partially prevented shift of heart myosin heavy chain from dominant α-to β-isoform of ovariectomized rats. Immunoblot analysis of protein carbonylation indicated that tempol supplementation significantly reduced the level of cardiac myofibrillar proteins oxidation increased in ovariectomized rat heart. Taken together, the results indicate changes of cardiac contractile machinery following loss of female sex hormones were, in part, due to an increase in oxidative stress, and antioxidant supplementation could be considered another potential prevention measure in postmenopausal women.
Collapse
Affiliation(s)
- Sukanya Phungphong
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Anusak Kijtawornrat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Tepmanas Bupha-Intr
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
433
|
Bilayer nicorandil-loaded small-diameter vascular grafts improve endothelial cell function via PI3K/AKT/eNOS pathway. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00107-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
434
|
Pretreatment of Ascorbic Acid Inhibits MPTP-Induced Astrocytic Oxidative Stress through Suppressing NF- κB Signaling. Neural Plast 2020; 2020:8872296. [PMID: 33281897 PMCID: PMC7685864 DOI: 10.1155/2020/8872296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 10/14/2020] [Indexed: 11/29/2022] Open
Abstract
Astrocytes are a major constituent of the central nervous system (CNS). Astrocytic oxidative stress contributes to the development of Parkinson's disease (PD). Maintaining production of antioxidant and detoxification of reactive oxygen and nitrogen species (ROS/RNS) in astrocytes is critical to prevent PD. Study has illuminated that ascorbic acid (AA) stimulates dopamine synthesis and expression of tyrosine hydroxylase in human neuroblastoma cells. However, the role and regulatory mechanisms of AA on detoxification of astrocytes are still unclear. The purpose of our study is in-depth study of the regulatory mechanism of AA on detoxification of astrocytes. We found that AA pretreatment decreased the expression of ROS and inducible nitric oxide synthase (iNOS) in MPP+-treated astrocytes. In contrast, the expression levels of antioxidative substances—including superoxide dismutase (SOD), glutathione (GSH), and glutamate-cysteine ligase modifier (GCLM) subunit—were upregulated after AA pretreatment in MPP+-treated astrocytes. However, inhibition of NF-κB prevented such AA induced increases in antioxidative substances following MPP+ treatment in astrocytes, suggesting that AA improved antioxidative function of astrocytes through inhibiting NF-κB-mediated oxidative stress. Furthermore, in vivo studies revealed that AA preadministration also suppressed NF-κB and upregulated the expression levels of antioxidative substances in the midbrain of MPTP-treated mice. Additionally, pretreatment of AA alleviated MPTP-induced PD-like pathology in mice. Taken together, our results demonstrate that preadministration of AA improves the antioxidative function of astrocytes through suppressing NF-κB signaling, following alleviated the pathogenesis of PD which induced by MPTP. Hence, our findings elucidate a novel protective mechanism of AA in astrocytes.
Collapse
|
435
|
Abstract
Myocardial fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix proteins, is a common pathophysiologic companion of many different myocardial conditions. Fibrosis may reflect activation of reparative or maladaptive processes. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. Immune cells, vascular cells and cardiomyocytes may also acquire a fibrogenic phenotype under conditions of stress, activating fibroblast populations. Fibrogenic growth factors (such as transforming growth factor-β and platelet-derived growth factors), cytokines [including tumour necrosis factor-α, interleukin (IL)-1, IL-6, IL-10, and IL-4], and neurohumoral pathways trigger fibrogenic signalling cascades through binding to surface receptors, and activation of downstream signalling cascades. In addition, matricellular macromolecules are deposited in the remodelling myocardium and regulate matrix assembly, while modulating signal transduction cascades and protease or growth factor activity. Cardiac fibroblasts can also sense mechanical stress through mechanosensitive receptors, ion channels and integrins, activating intracellular fibrogenic cascades that contribute to fibrosis in response to pressure overload. Although subpopulations of fibroblast-like cells may exert important protective actions in both reparative and interstitial/perivascular fibrosis, ultimately fibrotic changes perturb systolic and diastolic function, and may play an important role in the pathogenesis of arrhythmias. This review article discusses the molecular mechanisms involved in the pathogenesis of cardiac fibrosis in various myocardial diseases, including myocardial infarction, heart failure with reduced or preserved ejection fraction, genetic cardiomyopathies, and diabetic heart disease. Development of fibrosis-targeting therapies for patients with myocardial diseases will require not only understanding of the functional pluralism of cardiac fibroblasts and dissection of the molecular basis for fibrotic remodelling, but also appreciation of the pathophysiologic heterogeneity of fibrosis-associated myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
436
|
Ashour H, Elsayed MH, Elmorsy S, Harb IA. Hypothesis: The potential therapeutic role of nicorandil in COVID-19. Clin Exp Pharmacol Physiol 2020; 47:1791-1797. [PMID: 32881062 PMCID: PMC7436472 DOI: 10.1111/1440-1681.13395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/14/2020] [Accepted: 08/02/2020] [Indexed: 12/16/2022]
Abstract
At present, there is yet no specific antiviral treatment or immunization against the newly identified human severe acute respiratory syndrome virus (SARS-CoV2) that results in a rapidly progressive pandemic coronavirus disease 2019 (COVID-19). We believe in a crucial need for a clinical strategy to counteract this viral pandemic based on the known pathogenesis throughout the disease course. Evidence suggests that exaggerated patient's inflammatory response and oxidative stress are likely to aggravate the disease pathology. The resulting endothelial dysfunction further induces fibrosis and coagulopathy. These disturbances can generate severe acute respiratory distress syndrome (ARDS) that can progress into respiratory and circulatory failure. Nicorandil is an anti-anginal vasodilator drug acts by increasing nitric oxide bioavailability and opening of the KATP channel. Recently, nicorandil has been recognized to possess multiple protective effects against tissue injury. Here, we address a possible modulatory role of nicorandil against COVID-19 pathogenesis. We hypothesise nicorandil would be an effective form of adjuvant therapy against COVID-19.
Collapse
Affiliation(s)
- Hend Ashour
- Faculty of MedicineDepartment of PhysiologyKing Khalid UniversityAbhaSaudi Arabia
- Faculty of MedicineDepartment of PhysiologyKasr AlainyCairo UniversityCairoEgypt
| | - Mohamed H. Elsayed
- Department of Pediatrics ICUAl‐Ahrar Teaching HospitalZagazigEgypt
- Department of Pediatrics ICUKing Fahd Armed Forces HospitalKhamis MushaitSaudi Arabia
| | - Soha Elmorsy
- Faculty of MedicineDepartment of Medical PharmacologyCairo UniversityCairoEgypt
| | - Inas A. Harb
- Faculty of MedicineDepartment of Medical PharmacologyCairo UniversityCairoEgypt
| |
Collapse
|
437
|
Untargeted Metabolomics Reveals the Protective Effect of a Traditional Chinese Herbal Decoction on Cisplatin-Induced Acute Kidney Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8524132. [PMID: 33101449 PMCID: PMC7569447 DOI: 10.1155/2020/8524132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/25/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
Our previous studies have demonstrated that Jian-Pi-Yi-Shen formula (JPYSF), a traditional Chinese herbal decoction, has a renoprotective effect in 5/6 nephrectomy-induced chronic kidney injury. However, the role and potential mechanisms of JPYSF in the treatment of acute kidney injury (AKI) remain unknown. This study was designed to test the beneficial effect of JPYSF in an AKI mouse model and to investigate the underlying mechanism by using metabolomics analysis. The AKI mouse model was induced by a single intraperitoneal injection of cisplatin at a dose of 20 mg/kg. The mice in the treatment group were pretreated orally with JPYSF (18.35 g/kg/d) for 5 days before cisplatin injection. Seventy-two hours after cisplatin injection, serum and kidney samples were collected for biochemical and histological examination. Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) was applied to analyze metabolic profiling variations in the kidney. The results showed that pretreatment with JPYSF obviously reduced the levels of serum creatinine and blood urea nitrogen and alleviated renal pathological injury in AKI mice. Orthogonal partial least-squares discriminant analysis (OPLS-DA) score plot revealed a clear separation between the AKI and AKI + JPYSF group. A total of 68 and 87 significantly differentially expressed metabolites were identified in the kidney of AKI mice responding to JPYSF treatment in negative and positive ion mode, respectively. The pivotal pathways affected by JPYSF included vitamin B6 metabolism, alanine, aspartate and glutamate metabolism, lysine biosynthesis, and butanoate metabolism. In conclusion, JPYSF can protect the kidney from cisplatin-induced AKI, which may be associated with regulating renal metabolic disorders.
Collapse
|
438
|
Yuan Q, Yang F, Dai S, Wang Z, Xu Y, Xu BC, Sun Y, Zheng B, Zhao Y, Wang W, Liu B, Wang J, Cui S, Cao S, Zhang R, Xue L, Wei S, Xue M, Xu T, Xu F, Chen Y. Aldehyde dehydrogenase 2 protects against sympathetic excitation-induced cardiac fibrosis. Biochem Biophys Res Commun 2020; 533:1427-1434. [PMID: 33333711 DOI: 10.1016/j.bbrc.2020.09.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
Sympathetic stimulated-cardiac fibrosis imposes great significance on both disease progression and survival in the pathogenesis of many cardiovascular diseases. However, there are few effective therapies targeting it clinically. The cardioprotective effect of aldehyde dehydrogenase 2 (ALDH2) has been explored in many pathological conditions, whether it can exert benefit effects on chronic sympathetic stimulus-induced cardiac fibrosis remains unclear. In this study, we determined to explore the role of ALDH2 on isoproterenol (ISO)-induced cardiac fibroblasts (CF) proliferation and cardiac fibrosis. It was found that ALDH2 enzymatic activity was impaired in ISO-induced HCF proliferation and Aldh2 deficiency promoted mouse CF proliferation. Alda-1, an ALDH2 activator, exerted obvious suppressive effect on ISO-induced HCF proliferation, together with the induction of cell cycle arrest at G0/G1 phase and decreased expression of cyclin E1 and cyclin-dependent kinase 2 (CDK2). Mechanistically, the inhibitory role of Alda-1 on HCF proliferation was achieved by decreasing mitochondrial reactive oxygen species (ROS) production, which was partially reversed by rotenone, an inducer of ROS. In addition, wild-type mice treated with Alda-1 manifested with reduced fibrosis and better cardiac function after ISO pump. In summary, Alda-1 alleviates sympathetic excitation-induced cardiac fibrosis via decreasing mitochondrial ROS accumulation, highlighting ALDH2 activity as a promising drug target of cardiac fibrosis.
Collapse
Affiliation(s)
- Qiuhuan Yuan
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Feihong Yang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China; Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuai Dai
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China; Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zheng Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Youshun Xu
- School of Basic Medical Sciences, Shandong University, China
| | - Bai-Chao Xu
- Department of Physical Education, Hainan Medical University, China
| | - Yi Sun
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Boyuan Zheng
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Zhao
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Wenjun Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Baoshan Liu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Sumei Cui
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Shengchuan Cao
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Rui Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Li Xue
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Shujian Wei
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Mengyang Xue
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Tonghui Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
439
|
Gopal R, Marinelli MA, Alcorn JF. Immune Mechanisms in Cardiovascular Diseases Associated With Viral Infection. Front Immunol 2020; 11:570681. [PMID: 33193350 PMCID: PMC7642610 DOI: 10.3389/fimmu.2020.570681] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Influenza virus infection causes 3-5 million cases of severe illness and 250,000-500,000 deaths worldwide annually. Although pneumonia is the most common complication associated with influenza, there are several reports demonstrating increased risk for cardiovascular diseases. Several clinical case reports, as well as both prospective and retrospective studies, have shown that influenza can trigger cardiovascular events including myocardial infarction (MI), myocarditis, ventricular arrhythmia, and heart failure. A recent study has demonstrated that influenza-infected patients are at highest risk of having MI during the first seven days of diagnosis. Influenza virus infection induces a variety of pro-inflammatory cytokines and chemokines and recruitment of immune cells as part of the host immune response. Understanding the cellular and molecular mechanisms involved in influenza-associated cardiovascular diseases will help to improve treatment plans. This review discusses the direct and indirect effects of influenza virus infection on triggering cardiovascular events. Further, we discussed the similarities and differences in epidemiological and pathogenic mechanisms involved in cardiovascular events associated with coronavirus disease 2019 (COVID-19) compared to influenza infection.
Collapse
Affiliation(s)
- Radha Gopal
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States
| | | | | |
Collapse
|
440
|
Di Pietro N, Baldassarre MPA, Cichelli A, Pandolfi A, Formoso G, Pipino C. Role of Polyphenols and Carotenoids in Endothelial Dysfunction: An Overview from Classic to Innovative Biomarkers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6381380. [PMID: 33133348 PMCID: PMC7593735 DOI: 10.1155/2020/6381380] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Nowadays, the dramatically increased prevalence of metabolic diseases, such as obesity and diabetes mellitus and their related complications, including endothelial dysfunction and cardiovascular disease, represents one of the leading causes of death worldwide. Dietary nutrients together with healthy lifestyles have a crucial role in the endothelium health-promoting effects. From a growing body of evidence, active natural compounds from food, including polyphenols and carotenoids, have attracted particular attention as a complementary therapy on atherosclerosis and cardiovascular disease, as well as preventive approaches through the attenuation of inflammation and oxidative stress. They mainly act as radical scavengers by promoting a variety of biological mechanisms, such as improvements in endothelial function, blood pressure, platelet activity, and insulin sensitivity, and by modulating various known biomarkers. The present review highlights the role of polyphenols and carotenoids in early endothelial dysfunction with attention to their beneficial effect in modulating both classical and recent technologically generated emerging biomarkers. These, alone or in combination, can play an important role in the prediction, diagnosis, and evolution of cardiovascular disease. However, a main challenge is to speed up early and prompt new interventions in order to prevent or slow down disease progression, even with an adequate intake of bioactive compounds. Hence, there is an urgent need of new more validated, appropriate, and reliable diagnostic and therapeutic biomarkers useful to diagnose endothelial dysfunction at an earlier stage.
Collapse
Affiliation(s)
- Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Pompea Antonia Baldassarre
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Angelo Cichelli
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Gloria Formoso
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Caterina Pipino
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
441
|
Kumar G, Dey SK, Kundu S. Functional implications of vascular endothelium in regulation of endothelial nitric oxide synthesis to control blood pressure and cardiac functions. Life Sci 2020; 259:118377. [PMID: 32898526 DOI: 10.1016/j.lfs.2020.118377] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022]
Abstract
The endothelium is the innermost vascular lining performing significant roles all over the human body while maintaining the blood pressure at physiological levels. Malfunction of endothelium is thus recognized as a biomarker linked with many vascular diseases including but not limited to atherosclerosis, hypertension and thrombosis. Alternatively, prevention of endothelial malfunctioning or regulating the functions of its associated physiological partners like endothelial nitric oxide synthase can prevent the associated vascular disorders which account for the highest death toll worldwide. While many anti-hypertensive drugs are available commercially, a comprehensive description of the key physiological roles of the endothelium and its regulation by endothelial nitric oxide synthase or vice versa is the need of the hour to understand its contribution in vascular homeostasis. This, in turn, will help in designing new therapeutics targeting endothelial nitric oxide synthase or its interacting partners present in the cellular pool. This review describes the central role of vascular endothelium in the regulation of endothelial nitric oxide synthase while outlining the emerging drug targets present in the vasculature with potential to treat vascular disorders including hypertension.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Biochemistry, University of Delhi, South Campus, New Delhi 110021, India
| | - Sanjay Kumar Dey
- Department of Biochemistry, University of Delhi, South Campus, New Delhi 110021, India; Center for Advanced Biotechnology and Medicine, Rutgers University, NJ 08854, USA
| | - Suman Kundu
- Department of Biochemistry, University of Delhi, South Campus, New Delhi 110021, India.
| |
Collapse
|
442
|
Sweeney M, Corden B, Cook SA. Targeting cardiac fibrosis in heart failure with preserved ejection fraction: mirage or miracle? EMBO Mol Med 2020; 12:e10865. [PMID: 32955172 PMCID: PMC7539225 DOI: 10.15252/emmm.201910865] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is central to the pathology of heart failure, particularly heart failure with preserved ejection fraction (HFpEF). Irrespective of the underlying profibrotic condition (e.g. ageing, diabetes, hypertension), maladaptive cardiac fibrosis is defined by the transformation of resident fibroblasts to matrix-secreting myofibroblasts. Numerous profibrotic factors have been identified at the molecular level (e.g. TGFβ, IL11, AngII), which activate gene expression programs for myofibroblast activation. A number of existing HF therapies indirectly target fibrotic pathways; however, despite multiple clinical trials in HFpEF, a specific clinically effective antifibrotic therapy remains elusive. Therapeutic inhibition of TGFβ, the master-regulator of fibrosis, has unfortunately proven toxic and ineffective in clinical trials to date, and new approaches are needed. In this review, we discuss the pathophysiology and clinical implications of interstitial fibrosis in HFpEF. We provide an overview of trials targeting fibrosis in HFpEF to date and discuss the promise of potential new therapeutic approaches and targets in the context of underlying molecular mechanisms.
Collapse
Affiliation(s)
- Mark Sweeney
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- Wellcome Trust 4i/NIHR Clinical Research FellowImperial CollegeLondonUK
| | - Ben Corden
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingaporeSingapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Stuart A Cook
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingaporeSingapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- National Heart and Lung InstituteImperial College LondonLondonUK
| |
Collapse
|
443
|
Buijsers B, Yanginlar C, de Nooijer A, Grondman I, Maciej-Hulme ML, Jonkman I, Janssen NAF, Rother N, de Graaf M, Pickkers P, Kox M, Joosten LAB, Nijenhuis T, Netea MG, Hilbrands L, van de Veerdonk FL, Duivenvoorden R, de Mast Q, van der Vlag J. Increased Plasma Heparanase Activity in COVID-19 Patients. Front Immunol 2020; 11:575047. [PMID: 33123154 PMCID: PMC7573491 DOI: 10.3389/fimmu.2020.575047] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/14/2020] [Indexed: 12/23/2022] Open
Abstract
Reports suggest a role of endothelial dysfunction and loss of endothelial barrier function in COVID-19. It is well established that the endothelial glycocalyx-degrading enzyme heparanase contributes to vascular leakage and inflammation. Low molecular weight heparins (LMWH) serve as an inhibitor of heparanase. We hypothesize that heparanase contributes to the pathogenesis of COVID-19, and that heparanase may be inhibited by LMWH. To test this hypothesis, heparanase activity and heparan sulfate levels were measured in plasma of healthy controls (n = 10) and COVID-19 patients (n = 48). Plasma heparanase activity and heparan sulfate levels were significantly elevated in COVID-19 patients. Heparanase activity was associated with disease severity including the need for intensive care, lactate dehydrogenase levels, and creatinine levels. Use of prophylactic LMWH in non-ICU patients was associated with a reduced heparanase activity. Since there is no other clinically applied heparanase inhibitor currently available, therapeutic treatment of COVID-19 patients with low molecular weight heparins should be explored.
Collapse
Affiliation(s)
- Baranca Buijsers
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cansu Yanginlar
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Aline de Nooijer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Inge Grondman
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marissa L. Maciej-Hulme
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Inge Jonkman
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nico A. F. Janssen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nils Rother
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mark de Graaf
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Pickkers
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthijs Kox
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Deparment of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Luuk Hilbrands
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank L. van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Raphaël Duivenvoorden
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Quirijn de Mast
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
444
|
Zhang X, Wang T, Yang Y, Li R, Chen Y, Li R, Jiang X, Wang L. Tanshinone IIA attenuates acetaminophen-induced hepatotoxicity through HOTAIR-Nrf2-MRP2/4 signaling pathway. Biomed Pharmacother 2020; 130:110547. [PMID: 32777703 DOI: 10.1016/j.biopha.2020.110547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/20/2023] Open
Abstract
Tanshinone IIA (Tan IIA), an active component in S. miltiorrhiza, has been reported to have excellent antioxidant and detoxifying activity. Here, we prove that Tan IIA attenuates acetaminophen-induced hepatotoxicity from a pharmacokinetic perspective. Compared with acetaminophen (APAP, 200 mg/kg) treated mice, Tan IIA pretreatment (30 mg/kg/d) not only reduced the plasma level of the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI) but also increased its bile level. After Tan IIA pretreatment, significant induction of nuclear factor E2-related factor 2 (Nrf2), multidrug resistance-associated protein 2 (Mrp2), and multidrug resistance-associated protein 4 (Mrp4) mRNA and protein expression was detected in Nrf2+/+ mouse liver, however, much lower increase of Mrp2 and Mrp4 mRNA and protein expression was observed in Nrf2-/- mouse liver. Luciferase reporter and chromatin immunoprecipitation assays demonstrated that Nrf2 bounds to antioxidant responsive elements (AREs) of the MRP2 and MRP4 promoter, thus regulating the expression of MRP2 and MRP4. in vitro experiments revealed that Tan IIA increase Nrf2, MRP2, and MRP4 expression through a mechanism of inhibiting the expression of HOX transcript antisense RNA (HOTAIR) which belongs to long non-coding RNAs. Collectively, the present results demonstrated that Tan IIA could protect against APAP-induced hepatotoxicity by altering the pharmacokinetic characteristics of APAP and its metabolites via HOTAIR-Nrf2-MRP2/4 signaling pathway, and HOTAIR plays a pivotal role in the MRP2 and MRP4 expression regulated by Nrf2.
Collapse
Affiliation(s)
- Xiqian Zhang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Department of Pharmacy, The Third People's Hospital of Chengdu & College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Ting Wang
- Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yujie Yang
- Department of Pharmacy, The Third People's Hospital of Chengdu & College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Ruina Li
- Department of Pharmacy, Shenzhen Nanshan District People's Hospital, Nanshan District, Shenzhen 518052, China
| | - Ya Chen
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rong Li
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xuehua Jiang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Wang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
445
|
Fekete M, Pako J, Nemeth AN, Tarantini S, Varga JT. Prevalence of influenza and pneumococcal vaccination in chronic obstructive pulmonary disease patients in association with the occurrence of acute exacerbations. J Thorac Dis 2020; 12:4233-4242. [PMID: 32944335 PMCID: PMC7475525 DOI: 10.21037/jtd-20-814] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Based on current evidence, vaccination is recommended against the influenza virus and pneumococcus to avoid serious acute exacerbations in patients with chronic obstructive pulmonary disease (COPD), but the rate of their vaccination coverage is still suboptimal. To determine the prevalence and effectiveness of influenza and pneumococcal vaccination in COPD patients, and to prove its hypothetical association with the decreasing number of acute exacerbations. Methods We conducted a retrospective, population-based cohort study. Influenza and pneumococcal vaccination history were collected from 250 patients selected by simple random sampling from all COPD patients in Budapest at the Department of Pulmonary Rehabilitation of the National Koranyi Institute of Pulmonology between 01 January 2019 and 01 June 2019. Inclusion criteria were the following: age 40 years and diagnosis of COPD. Odds ratios (ORs) were evaluated based on the occurrence of acute exacerbations during the preceding year. Results The average age was 66.62 (±8.34) years, 67.30 (±8.54) for males, and 66.09 (±8.16) for females. Man:woman ratio: 43.6%:56.4% in total. Overall prevalence of influenza vaccination was 23.6%, and the pneumococcal vaccination rate was 10.8% among COPD patients. Influenza and pneumococcal vaccination showed a significant protective effect and reduced the occurrence of exacerbations in the following year, influenza vaccination OR: 2.11 (95% CI: 0.88-5.02), pneumococcal vaccination OR: 1.06 (95% CI: 0.84-1.34), when taking both vaccination: OR: 2.37 (95% CI: 1.39-4.08). Conclusions We found association between influenza and pneumococcal vaccination and the reduced risk of hospitalization due to exacerbations in the ensuing year. The prevalence of vaccination is significantly below the optimal level.
Collapse
Affiliation(s)
- Monika Fekete
- Department of Public Health, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Judit Pako
- National Koranyi Institute for Pulmonology, Budapest, Hungary
| | - Anna N Nemeth
- Department of Public Health, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Stefano Tarantini
- Department of Biochemistry and Molecular Biology at University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | |
Collapse
|
446
|
Therapeutic Benefit of the Association of Lodenafil with Mesenchymal Stem Cells on Hypoxia-induced Pulmonary Hypertension in Rats. Cells 2020; 9:cells9092120. [PMID: 32961896 PMCID: PMC7565793 DOI: 10.3390/cells9092120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by the remodeling of pulmonary arteries, with an increased pulmonary arterial pressure and right ventricle (RV) overload. This work investigated the benefit of the association of human umbilical cord mesenchymal stem cells (hMSCs) with lodenafil, a phosphodiesterase-5 inhibitor, in an animal model of PAH. Male Wistar rats were exposed to hypoxia (10% O2) for three weeks plus a weekly i.p. injection of a vascular endothelial growth factor receptor inhibitor (SU5416, 20 mg/kg, SuHx). After confirmation of PAH, animals received intravenous injection of 5.105 hMSCs or vehicle, followed by oral treatment with lodenafil carbonate (10 mg/kg/day) for 14 days. The ratio between pulmonary artery acceleration time and RV ejection time reduced from 0.42 ± 0.01 (control) to 0.24 ± 0.01 in the SuHx group, which was not altered by lodenafil alone but was recovered to 0.31 ± 0.01 when administered in association with hMSCs. RV afterload was confirmed in the SuHx group with an increased RV systolic pressure (mmHg) of 52.1 ± 8.8 normalized to 29.6 ± 2.2 after treatment with the association. Treatment with hMSCs + lodenafil reversed RV hypertrophy, fibrosis and interstitial cell infiltration in the SuHx group. Combined therapy of lodenafil and hMSCs may be a strategy for PAH treatment.
Collapse
|
447
|
Watanabe T. Neopterin derivatives - a novel therapeutic target rather than biomarker for atherosclerosis and related diseases. VASA 2020; 50:165-173. [PMID: 32924886 DOI: 10.1024/0301-1526/a000903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review provides an updated overview of the emerging roles of neopterin derivatives in atherosclerosis. Neopterin, a metabolite of guanosine triphosphate, is produced by interferon-γ-activated macrophages and is expressed at high levels in atheromatous plaques within the human carotid and coronary arteries as well as in the aorta. Plasma concentrations of neopterin are higher in patients with carotid, cerebral, and coronary artery diseases as well as aortic aneurysm. The concentration of neopterin is positively correlated with the severity of coronary artery disease. However, a prospective cohort study showed that neopterin contributes to protection against plaque formation in carotid arteries in patients with atherosclerosis. Moreover, using both in vitro and in vivo experiments, a recent study has shown the atheroprotective effects of neopterin. Neopterin suppresses the expression of monocyte chemotactic protein-1, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 in endothelial cells, and thereby suppresses the adhesion of monocytes to endothelial cells. It also suppresses the inflammatory phenotype of monocyte-derived macrophages. In addition, neopterin suppresses oxidized low-density lipoprotein-induced foam cell formation in macrophages and the migration and proliferation of vascular smooth muscle cells. Neopterin injection into apolipoprotein E-deficient (Apoe-/-) mice suppresses the development of atherosclerotic lesions. A neopterin derivative tetrahydroneopterin (BH4), also known as a cofactor for nitric oxide (NO) synthases, suppresses atherosclerosis and vascular injury-induced neointimal hyperplasia in Apoe-/- mice. BH4 administration improves endothelial dysfunction in patients with coronary artery disease. These findings suggest that neopterin production may increase to counteract the progression of atherosclerosis, as neopterin contributes to atheroprotection. Otherwise, the increased neopterin levels in atherosclerosis may reflect a compensatory mechanism associated with inducible NO synthase upregulation in macrophages to supply BH4 for high output NO production caused by decreased endothelial NO synthase in atherosclerosis. Therefore, neopterin derivatives are a novel therapeutic target for atherosclerosis and related diseases.
Collapse
Affiliation(s)
- Takuya Watanabe
- Department of Internal Medicine, Ushioda General Hospital/Clinic, Yokohama, Japan
| |
Collapse
|
448
|
Liao X, Gao Y, Liu J, Tao L, Xie J, Gu Y, Liu T, Wang D, Xie D, Mo S. Combination of Tanshinone IIA and Cisplatin Inhibits Esophageal Cancer by Downregulating NF-κB/COX-2/VEGF Pathway. Front Oncol 2020; 10:1756. [PMID: 33014864 PMCID: PMC7511800 DOI: 10.3389/fonc.2020.01756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/05/2020] [Indexed: 11/13/2022] Open
Abstract
Cisplatin (DDP) represents one of the common drugs used for esophageal squamous cell carcinoma (ESCC), but side effects associated with DDP and drug resistance lead to the failure of treatment. This study aimed to understand whether tanshinone IIA (tan IIA) and DDP could generate a synergistic antitumor effect on ESCC cells. Tan IIA and DDP are demonstrated to restrain ESCC cell proliferation in a time- and dose-dependent mode. Tan IIA and DDP at a ratio of 2:1 present a synergistic effect on ESCC cells. The combination suppresses cell migration and invasion abilities, arrests the cell cycle, and causes apoptosis in HK and K180 cells. Molecular docking indicates that tan IIA and DDP could be docked into active sites with the tested proteins. In all treated groups, the expression levels of E-cadherin, β-catenin, Bax, cleaved caspase-9, P21, P27, and c-Fos were upregulated, and the expression levels of fibronectin, vimentin, Bcl-2, cyclin D1, p-Akt, p-ERK, p-JNK, P38, COX-2, VEGF, IL-6, NF-κB, and c-Jun proteins were downregulated. Among these, the combination induced the most significant difference. Our results suggest that tan IIA could be a novel treatment for combination therapy for ESCC.
Collapse
Affiliation(s)
- Xiaozhong Liao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Gao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lanting Tao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Xie
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yueyu Gu
- The Second Clinical College, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Taoli Liu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dongmei Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Suilin Mo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
449
|
Guo WP, Tang D, Pang YY, Li XJ, Chen G, Huang ZG, Tang XZ, Lai QQ, Gan JY, Huang XL, Liu XF, Wei ZX, Ma W. Immunohistochemical basigin expression level in thyroid cancer tissues. World J Surg Oncol 2020; 18:240. [PMID: 32891152 PMCID: PMC7487720 DOI: 10.1186/s12957-020-01975-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Thyroid cancer (TC) is the most common endocrine malignancy; basigin (also known as BSG) plays a crucial role in tumor cell invasion, metastasis, and angiogenesis. This study was designed to identify the change of BSG expression in TC and its possible potential mechanism. METHODS The BSG expression levels in TC were demonstrated using data collected from in-house immunohistochemical (IHC), RNA-sequencing (RNA-seq), microarrays, and literatures. Integrated analysis was performed to determined BSG expression levels in TC comprehensively. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed with the integration of BSG co-expressed genes and differentially expressed genes (DEGs) in TC tissues to explore the potential mechanisms of BSG in TC. RESULTS The protein expression level of BSG was significantly higher in TC cases based on the IHC experiments. In addition, the combined SMD for BSG expression was 0.39 (p < 0.0001), the diagnostic odds ratio was 3.69, and the AUC of the sROC curve was 0.6986 using 1182 TC cases and 437 non-cancerous cases from 17 independent datasets. Furthermore, BSG co-expressed genes tended to be enriched in gene terms of the extracellular matrix (ECM), cell adhesion, and cell-cell interactions. The expression levels of nine hub BSG co-expressed genes were markedly upregulated in TC cases. CONCLUSION BSG expression levels were closely correlated with the progression of TC and may affect the signals of the ECM, cell adhesion, and cell-cell interactions.
Collapse
Affiliation(s)
- Wan-Ping Guo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Deng Tang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yu-Yan Pang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Jiao Li
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Zhun Tang
- Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qin-Qiao Lai
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jin-Yan Gan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Li Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Fan Liu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhi-Xiao Wei
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Wei Ma
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
450
|
Li S, Wu C, Fan C, Zhang P, Yu G, Li K. Tanshinone II A improves the chemosensitivity of breast cancer cells to doxorubicin by inhibiting β-catenin nuclear translocation. J Biochem Mol Toxicol 2020; 35:e22620. [PMID: 32886829 DOI: 10.1002/jbt.22620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/01/2020] [Accepted: 08/25/2020] [Indexed: 11/09/2022]
Abstract
Numerous evidence link aberrant nuclear β-catenin accumulation to the development of breast cancer resistance, therefore, targeted inhibition of β-catenin nuclear translocation may effectively improve the chemosensitivity of breast cancer. Doxorubicin (Dox) is the most commonly used chemotherapeutic drug for breast cancer. Here, we determined that tanshinone II A (Tan II A) could improve the sensitivity of Dox-resistant breast cancer MCF-7/dox cells to Dox, and evaluated whether the sensitization effect of Tan II A on Dox was targeted to inhibit β-catenin nuclear translocation. The results showed that Tan II A not only significantly inhibited the nuclear translocation of β-catenin in MCF-7/dox cells treated by Dox but also inhibited the nuclear translocation of β-catenin in MCF-7 cells treated by Dox to a certain degree. Furthermore, when the above two cells treated by Dox combined with Tan II A were intervened with β-catenin agonist WAY-262611, with the re-nuclear translocation of β-catenin in the cells, the sensitization effect of Tan II A on Dox was greatly reduced. These results indicated that Tan II A could improve the chemosensitivity of breast cancer cells to Dox by inhibiting β-catenin nuclear translocation. Therefore, Tan II A could be used as a potential chemosensitizer in combination with Dox for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Shizheng Li
- Department of Emergency Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chunxia Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chenxing Fan
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Puwei Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Guifa Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Kun Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|