401
|
Phosphorylation of the mitochondrial ATP-sensitive potassium channel occurs independently of PKCε in turtle brain. Comp Biochem Physiol B Biochem Mol Biol 2016; 200:44-53. [DOI: 10.1016/j.cbpb.2016.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 01/25/2023]
|
402
|
Zhu X, Bührer C, Wellmann S. Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold. Cell Mol Life Sci 2016; 73:3839-59. [PMID: 27147467 PMCID: PMC5021741 DOI: 10.1007/s00018-016-2253-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022]
Abstract
Cold-inducible RNA-binding protein (CIRP) and RNA-binding motif protein 3 (RBM3) are two evolutionarily conserved RNA-binding proteins that are transcriptionally upregulated in response to low temperature. Featuring an RNA-recognition motif (RRM) and an arginine-glycine-rich (RGG) domain, these proteins display many similarities and specific disparities in the regulation of numerous molecular and cellular events. The resistance to serum withdrawal, endoplasmic reticulum stress, or other harsh conditions conferred by RBM3 has led to its reputation as a survival gene. Once CIRP protein is released from cells, it appears to bolster inflammation, contributing to poor prognosis in septic patients. A variety of human tumor specimens have been analyzed for CIRP and RBM3 expression. Surprisingly, RBM3 expression was primarily found to be positively associated with the survival of chemotherapy-treated patients, while CIRP expression was inversely linked to patient survival. In this comprehensive review, we summarize the evolutionary conservation of CIRP and RBM3 across species as well as their molecular interactions, cellular functions, and roles in diverse physiological and pathological processes, including circadian rhythm, inflammation, neural plasticity, stem cell properties, and cancer development.
Collapse
Affiliation(s)
- Xinzhou Zhu
- University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4056, Basel, Switzerland
| | - Christoph Bührer
- Department of Neonatology, Charité University Medical Center, Berlin, Germany
| | - Sven Wellmann
- University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4056, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
403
|
Zhang Y, Wang T, Yang K, Xu J, Ren L, Li W, Liu W. Cerebral Microvascular Endothelial Cell Apoptosis after Ischemia: Role of Enolase-Phosphatase 1 Activation and Aci-Reductone Dioxygenase 1 Translocation. Front Mol Neurosci 2016; 9:79. [PMID: 27630541 PMCID: PMC5005407 DOI: 10.3389/fnmol.2016.00079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/19/2016] [Indexed: 11/13/2022] Open
Abstract
Enolase-phosphatase 1 (ENOPH1), a newly discovered enzyme of the methionine salvage pathway, is emerging as an important molecule regulating stress responses. In this study, we investigated the role of ENOPH1 in blood brain barrier (BBB) injury under ischemic conditions. Focal cerebral ischemia induced ENOPH1 mRNA and protein expression in ischemic hemispheric microvessels in rats. Exposure of cultured brain microvascular endothelial cells (bEND3 cells) to oxygen-glucose deprivation (OGD) also induced ENOPH1 upregulation, which was accompanied by increased cell death and apoptosis reflected by increased 3-(4, 5-Dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide formation, lactate dehydrogenase release and TUNEL staining. Knockdown of ENOPH1 expression with siRNA or overexpressing ENOPH1 with CRISPR-activated plasmids attenuated or potentiated OGD-induced endothelial cell death, respectively. Moreover, ENOPH1 knockdown or overexpression resulted in a significant reduction or augmentation of reactive oxygen species (ROS) generation, apoptosis-associated proteins (caspase-3, PARP, Bcl-2 and Bax) and Endoplasmic reticulum (ER) stress proteins (Ire-1, Calnexin, GRP78 and PERK) in OGD-treated endothelial cells. OGD upregulated the expression of ENOPH1’s downstream protein aci-reductone dioxygenase 1 (ADI1) and enhanced its interaction with ENOPH1. Interestingly, knockdown of ENOPH1 had no effect on OGD-induced ADI1 upregulation, while it potentiated OGD-induced ADI1 translocation from the nucleus to the cytoplasm. Lastly, knockdown of ENOPH1 significantly reduced OGD-induced endothelial monolayer permeability increase. In conclusion, our data demonstrate that ENOPH1 activation may contribute to OGD-induced endothelial cell death and BBB disruption through promoting ROS generation and the activation of apoptosis associated proteins, thus representing a new therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Yuan Zhang
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Department of Pathophysiology, Baotou Medical CollegeBaotou, China
| | - Ting Wang
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China
| | - Ke Yang
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China
| | - Ji Xu
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China
| | - Lijie Ren
- Department of Neurology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, China
| | - Weiping Li
- Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen UniversityShenzhen, China
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen UniversityShenzhen, China
| |
Collapse
|
404
|
Coucha M, Abdelsaid M, Li W, Johnson MH, Orfi L, El-Remessy AB, Fagan SC, Ergul A. Nox4 contributes to the hypoxia-mediated regulation of actin cytoskeleton in cerebrovascular smooth muscle. Life Sci 2016; 163:46-54. [PMID: 27558234 DOI: 10.1016/j.lfs.2016.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/12/2016] [Accepted: 08/19/2016] [Indexed: 11/29/2022]
Abstract
UNLABELLED Ischemia/reperfusion and the resulting oxidative/nitrative stress impair cerebral myogenic tone via actin depolymerization. While it is known that NADPH oxidase (Nox) family is a major source of vascular oxidative stress; the extent and mechanisms by which Nox activation contributes to actin depolymerization, and equally important, the relative role of Nox isoforms in this response is not clear. AIM To determine the role of Nox4 in hypoxia-mediated actin depolymerization and myogenic-tone impairment in cerebral vascular smooth muscle. MAIN METHODS Control and Nox4 deficient (siRNA knock-down) human brain vascular smooth muscle cells (HBVSMC) were exposed to 30-min hypoxia/45-min reoxygenation. Nox2, Nox4, inducible and neuronal nitric oxide synthase (iNOS and nNOS) and nitrotyrosine levels as well as F:G actin were determined. Myogenic-tone was measured using pressurized arteriography in middle cerebral artery isolated from rats subjected to sham, 30-min ischemia/45-min reperfusion or ex-vivo oxygen glucose deprivation in the presence and absence of Nox inhibitors. RESULTS Nox4 and iNOS expression were significantly upregulated following hypoxia or ischemia/reperfusion. Hypoxia augmented nitrotyrosine levels while reducing F actin. These effects were nullified by inhibiting nitration with epicatechin or pharmacological or molecular inhibition of Nox4. Ischemia/reperfusion impaired myogenic-tone, which was restored by the selective inhibition of Nox4. CONCLUSION Nox4 activation in VSMCs contributes to actin depolymerization after hypoxia, which could be the underlying mechanism for myogenic-tone impairment following ischemia/reperfusion.
Collapse
Affiliation(s)
- Maha Coucha
- Charlie Norwood VA Medical Center, Augusta University, United States; Departments of Physiology, Augusta University, United States; Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, United States
| | - Mohammed Abdelsaid
- Charlie Norwood VA Medical Center, Augusta University, United States; Departments of Physiology, Augusta University, United States
| | - Weiguo Li
- Charlie Norwood VA Medical Center, Augusta University, United States; Departments of Physiology, Augusta University, United States
| | | | | | - Azza B El-Remessy
- Charlie Norwood VA Medical Center, Augusta University, United States; Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, United States
| | - Susan C Fagan
- Charlie Norwood VA Medical Center, Augusta University, United States; Departments of Neurology, Augusta University, United States; Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, United States
| | - Adviye Ergul
- Charlie Norwood VA Medical Center, Augusta University, United States; Departments of Physiology, Augusta University, United States; Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, United States.
| |
Collapse
|
405
|
Intranasal Delivery of a Caspase-1 Inhibitor in the Treatment of Global Cerebral Ischemia. Mol Neurobiol 2016; 54:4936-4952. [PMID: 27520275 DOI: 10.1007/s12035-016-0034-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023]
Abstract
Caspase-1 is an enzyme implicated in neuroinflammation, a critical component of many diseases that affect neuronal degeneration. However, it is unknown whether a caspase-1 inhibitor can modify apoptotic neuronal damage incurred during transient global cerebral ischemia (GCI) and whether intranasal administration of a caspase-1 inhibitor is an effective treatment following GCI. The present study was conducted to examine the potential efficiency of post-ischemic intranasal administration of the caspase-1 inhibitor Boc-D-CMK in a 4-vessel occlusion model of GCI in the rat. Herein, we show that intranasal Boc-D-CMK readily penetrated the central nervous system, subsequently inhibiting caspase-1 activity, decreasing mitochondrial dysfunction, and attenuating caspase-3-dependent apoptotic pathway in ischemia-vulnerable hippocampal CA1 region. Further investigation regarding the mechanisms underlying Boc-D-CMK's neuroprotective effects revealed marked inhibition of reactive gliosis, as well as reduction of the neuroinflammatory response via inhibition of the downstream pro-inflammatory cytokine production. Intranasal Boc-D-CMK post-treatment also significantly enhanced the numbers of NeuN-positive cells while simultaneously decreasing the numbers of TUNEL-positive and PARP1-positive cells in hippocampal CA1. Correspondingly, behavioral tests showed that deteriorations in spatial learning and memory performance, and long-term recognition memory following GCI were significantly improved in the Boc-D-CMK post-treated animals. In summary, the current study demonstrates that the caspase-1 inhibitor Boc-D-CMK coordinates anti-inflammatory and anti-apoptotic actions to attenuate neuronal death in the hippocampal CA1 region following GCI. Furthermore, our data suggest that pharmacological inhibition of caspase-1 is a promising neuroprotective strategy to target ischemic neuronal injury and functional deficits following transient GCI.
Collapse
|
406
|
Jeon SJ, Sung JH, Koh PO. Hyperglycemia decreases expression of 14-3-3 proteins in an animal model of stroke. Neurosci Lett 2016; 626:13-8. [PMID: 27177727 DOI: 10.1016/j.neulet.2016.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 01/05/2023]
Abstract
Diabetes is a severe metabolic disorder and a major risk factor for stroke. Stroke severity is worse in patients with diabetes compared to the non-diabetic population. The 14-3-3 proteins are a family of conserved acidic proteins that are ubiquitously expressed in cells and tissues. These proteins are involved in many cellular processes including metabolic pathways, signal transduction, protein trafficking, protein synthesis, and cell cycle control. This study investigated 14-3-3 proteins expression in the cerebral cortex of animals with diabetes, cerebral ischemic injury and a combination of both diabetes and cerebral ischemic injury. Diabetes was induced by intraperitoneal injection of streptozotocin (40mg/kg) in adult male rats. After 4 weeks of treatment, middle cerebral artery occlusion (MCAO) was performed for the induction of focal cerebral ischemia and cerebral cortex tissue was collected 24h after MCAO. We confirmed that diabetes increases infarct volume following MCAO compared to non-diabetic animals. In diabetic animals with MCAO injury, reduction of 14-3-3 β/α, 14-3-3 ζ/δ, 14-3-3 γ, and 14-3-3 ε isoforms was detected. The expression of these proteins was significantly decreased in diabetic animals with MCAO injury compared to diabetic-only and MCAO-only animals. Moreover, Western blot analysis ascertained the decreased expression of 14-3-3 family proteins in diabetic animals with MCAO injury, including β/α, ζ/δ, γ, ε, τ, and η isoforms. These results show the changes of 14-3-3 proteins expression in streptozotocin-induced diabetic animals with MCAO injury. Thus, these findings suggest that decreases in 14-3-3 proteins might be involved in the regulation of 14-3-3 proteins under the presence of diabetes following MCAO.
Collapse
Affiliation(s)
- Seong-Jun Jeon
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 660-701, South Korea
| | - Jin-Hee Sung
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 660-701, South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 660-701, South Korea.
| |
Collapse
|
407
|
Neuroprotective hypothermia - Why keep your head cool during ischemia and reperfusion. Biochim Biophys Acta Gen Subj 2016; 1860:2521-2528. [PMID: 27475000 DOI: 10.1016/j.bbagen.2016.07.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/28/2016] [Accepted: 07/25/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Targeted temperature management (TTM) is the induced cooling of the entire body or specific organs to help prevent ischemia and reperfusion (I/R) injury, as may occur during major surgery, cardiac resuscitation, traumatic brain injury and stroke. Ischemia and reperfusion induce neuronal damage by mitochondrial dysfunction and oxidative injury, ER stress, neuronal excitotoxicity, and a neuroinflammatory response, which may lead to activation of apoptosis pathways. SCOPE OF REVIEW The aim of the current review is to discuss TTM targets that convey neuroprotection and to identify potential novel pharmacological intervention strategies for the prevention of cerebral ischemia and reperfusion injury. MAJOR CONCLUSIONS TTM precludes I/R injury by reducing glutamate release and oxidative stress and inhibiting release of pro-inflammatory factors and thereby counteracts mitochondrial induced apoptosis, neuronal excitotoxicity, and neuroinflammation. Moreover, TTM promotes regulation of the unfolded protein response and induces SUMOylation and the production of cold shock proteins. These advantageous effects of TTM seem to depend on the clinical setting, as well as type and extent of the injury. Therefore, future aims should be to refine hypothermia management in order to optimize TTM utilization and to search for pharmacological agents mimicking the cellular effects of TTM. GENERAL SIGNIFICANCE Bundling knowledge about TTM in the experimental, translational and clinical setting may result in better approaches for diminishing I/R damage. While application of TTM in the clinical setting has some disadvantages, targeting its putative protective pathways may be useful to prevent I/R injury and reduce neurological complications.
Collapse
|
408
|
|
409
|
Sun LP, Xu X, Hwang HH, Wang X, Su KY, Chen YLS. Dichloromethane extracts of propolis protect cell from oxygen-glucose deprivation-induced oxidative stress via reducing apoptosis. Food Nutr Res 2016; 60:30081. [PMID: 27329777 PMCID: PMC4916261 DOI: 10.3402/fnr.v60.30081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/26/2016] [Accepted: 05/05/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Bee propolis, a mixture of the secretion from bee tongue gland and wax gland, was collected from the tree bud and barked by bees. The components were rich in terpenes, phenolics, and flavonoids, and had anti-cancer, anti-bacterial, anti-inflammatory, hepatoprotective, and neuroprotection abilities. However, the potential anti-oxidative stress of propolis was not well documented. This study aimed to study the protective effect of propolis on high-incident nonfatal diseases, such as stroke and cerebral infarction caused by ischemia. OBJECTIVE Oxidative stress caused by acute stroke results in inflammation and injury followed by cell damage and apoptosis. Clarification of the anti-oxidative stress effect of propolis may contribute to stroke prevention and damage reduction. DESIGN Propolis was separated and purified into 70% ethanol and dichloromethane extracts systematically. The fraction three (Fr.3) of dichloromethane was further separated into pinocembrin, pinobanksin, pinobanksin-3-acetate, chrysin, and galangin by chromatography. Compounds extracted from propolis were tested for cell-protection effects in an oxygen-glucose deprivation (OGD) N2a cell model. MTT assay, oxidative stress markers measurement, flow cytometry, and QPCR were used to evaluate cell viability and apoptosis. RESULTS All compounds, especially pinocembrin and galangin, enhanced cell viability in OGD-treated N2a cells. In addition, anti-oxidative enzymes were elevated and cellular Ca(2+) was reduced. They also had extreme anti-apoptosis effects by up-regulating the expression of Bcl-2 mRNA and down-regulating caspase-3 and Bax expression. Taken together, propolis had anti-oxidative effects on stress and protected cells from damage. CONCLUSION The anti-oxidative effect of propolis can be applied to daily food supplements and may benefit stroke patients.
Collapse
Affiliation(s)
- Li-Ping Sun
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiang Xu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Xin Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan;
| | - Yi-Lin S Chen
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan;
| |
Collapse
|
410
|
L L, X W, Z Y. Ischemia-reperfusion Injury in the Brain: Mechanisms and Potential Therapeutic Strategies. ACTA ACUST UNITED AC 2016; 5. [PMID: 29888120 DOI: 10.4172/2167-0501.1000213] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ischemia-reperfusion injury is a common feature of ischemic stroke, which occurs when blood supply is restored after a period of ischemia. Reperfusion can be achieved either by thrombolysis using thrombolytic reagents such as tissue plasminogen activator (tPA), or through mechanical removal of thrombi. Spontaneous reperfusion also occurs after ischemic stroke. However, despite the beneficial effect of restored oxygen supply by reperfusion, it also causes deleterious effect compared with permanent ischemia. With the recent advancement in endovascular therapy including thrombectomy and thrombus disruption, reperfusion-injury has become an increasingly critical challenge in stroke treatment. It is therefore of extreme importance to understand the mechanisms of ischemia-reperfusion injury in the brain in order to develop effective therapeutics. Accumulating experimental evidence have suggested that the mechanisms of ischemia-reperfusion injury include oxidative stress, leukocyte infiltration, platelet adhesion and aggregation, complement activation, mitochondrial mediated mechanisms, and blood-brain-barrier (BBB) disruption, which altogether ultimately lead to edema or hemorrhagic transformation (HT) in the brain. Potential therapeutic strategies against ischemia-reperfusion injury may be developed targeting these mechanisms. In this review, we briefly discuss the pathophysiology and cellular and molecular mechanisms of cerebral ischemia-reperfusion injury, and potential therapeutic strategies.
Collapse
Affiliation(s)
- Lin L
- Institute of Molecular Pharmacology, Wenzhou Medical University, Wenzhou 325035, PR China.,Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wang X
- Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yu Z
- Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
411
|
Atochin DN, Chernysheva GA, Smolyakova VI, Osipenko AN, Logvinov SV, Zhdankina AA, Sysolyatin SV, Kryukov YA, Anfinogenova Y, Plotnikova TM, Plotnikov MB. Neuroprotective effects of p-tyrosol after the global cerebral ischemia in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:784-792. [PMID: 27180226 DOI: 10.1016/j.phymed.2016.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Salidroside is a biologically active compound derived from Rhodiola rosea L. Studies showed that salidroside after i.v. injection is extensively metabolized to p-tyrosol and only trace amounts of salidroside are found in the brain tissue. OBJECTIVE The aim of the study was to investigate the neuroprotective effects of p-tyrosol in the global cerebral ischemia-reperfusion (GCI) model. STUDY DESIGN A total of 103 Wistar rats were assigned to groups of sham-operated (n=10), control (n=42), p-tyrosol-treated (n=36), and pentoxifylline-treated (n=15) animals. The rats of control, p-tyrosol-treated, and pentoxifylline-treated groups received intravenously 0.9% NaCl solution, 2% solution of p-tyrosol in doses of 5mg/kg, 10mg/kg, and 20mg/kg, and pentoxifylline in a dose of 100mg/kg, respectively, daily for 5 days. Rats were examined at days 1, 3, and 5 after GCI. After evaluation of neurological deficit, animals were euthanized for morphological and biochemical characterization. METHODS Rats of control, p-tyrosol-treated, and pentoxifylline-treated groups were exposed to three-vessel model of GCI. Neurological deficit, numeric density of neurons in hippocampal CA1 region, and percentage of neurons with focal and total chromatolysis were studied. Biochemical study assessed contents of conjugated dienes and fluorescent products in brain homogenate. RESULTS In control group, only 50.0% of rats survived by day 5 after the GCI; 38.1% of survived animals had severe neurologic deficit. In brain tissue of PTX-treated rats, the levels of diene conjugates and fluorescent products were 79% and 73%, respectivley, at day 5 compared with control. Differences in diene conjugates were statistically significant compared with control. The survival rate of animals treated with 20mg/kg p-tyrosol was 82.3% at day 5 after GCI. In p-tyrosol-treated GCI rats, the numeric density of neurons in the hippocampal CA1 region was higher by 31% compared with control. The percentage of neurons with focal and total chromatolysis decreased by 27% and 43%, respectively. At day 5 after GCI, the levels of conjugated dienes and fluorescent products were significantly lower (by 37% and 45%, respectively) in group of animals treated with 20mg/kg p-tyrosol compared with control. Moderate neuroprotective effects of 5mg/kg p-tyrosol administration were documented only at day 5 after GCI. In case of 10mg/kg p-tyrosol administration, neuroprotection was documented sooner: at day 1 or 3 after GCI. However, administration of 5 and 10mg/kg p-tyrosol did not affect animal survival. CONCLUSION Course administration of intravenous p-tyrosol in a dose of 20mg/kg increased survival, reduced neurological deficit after GCI, attenuated neuronal damage in the hippocampus, and attenuated lipid peroxidation in brain tissue in animals subject to GCI with reperfusion.
Collapse
Affiliation(s)
- Dmitriy N Atochin
- Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States ; RASA Center in Tomsk, Tomsk Polytechnic University, 30 Lenin Street, Tomsk 634050, Russia
| | - Galina A Chernysheva
- Federal State Budgetary Scientific Institution "E.D. Goldberg Institute of Pharmacology and Regenerative Medicine", 3 Lenin Street, Tomsk 634028, Russia
| | - Vera I Smolyakova
- Federal State Budgetary Scientific Institution "E.D. Goldberg Institute of Pharmacology and Regenerative Medicine", 3 Lenin Street, Tomsk 634028, Russia
| | - Anton N Osipenko
- Siberian State Medical University, 2 Moscowsky Trakt 634050, Tomsk, Russia
| | - Sergey V Logvinov
- Siberian State Medical University, 2 Moscowsky Trakt 634050, Tomsk, Russia
| | - Anna A Zhdankina
- Siberian State Medical University, 2 Moscowsky Trakt 634050, Tomsk, Russia
| | - Sergey V Sysolyatin
- Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences, 1 Socialisticheskaya Street, Biysk, Russia
| | - Yuri A Kryukov
- Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences, 1 Socialisticheskaya Street, Biysk, Russia
| | - Yana Anfinogenova
- Federal State Budgetary Scientific Institution "Research Institute for Cardiology", 111a Kievskaya Street, Tomsk 634012, Russia; RASA Center in Tomsk, Tomsk Polytechnic University, 30 Lenin Street, Tomsk 634050, Russia
| | | | - Mark B Plotnikov
- Federal State Budgetary Scientific Institution "E.D. Goldberg Institute of Pharmacology and Regenerative Medicine", 3 Lenin Street, Tomsk 634028, Russia.
| |
Collapse
|
412
|
Kumfu S, Charununtakorn ST, Jaiwongkam T, Chattipakorn N, Chattipakorn SC. Humanin prevents brain mitochondrial dysfunction in a cardiac ischaemia-reperfusion injury model. Exp Physiol 2016; 101:697-707. [DOI: 10.1113/ep085749] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/31/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Sirinart Kumfu
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| | - Savitree T. Charununtakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| | - Thidarat Jaiwongkam
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| | - Siriporn C. Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|
413
|
Uchino H, Ogihara Y, Fukui H, Chijiiwa M, Sekine S, Hara N, Elmér E. Brain injury following cardiac arrest: pathophysiology for neurocritical care. J Intensive Care 2016; 4:31. [PMID: 27123307 PMCID: PMC4847238 DOI: 10.1186/s40560-016-0140-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/04/2016] [Indexed: 11/27/2022] Open
Abstract
Cardiac arrest induces the cessation of cerebral blood flow, which can result in brain damage. The primary intervention to salvage the brain under such a pathological condition is to restore the cerebral blood flow to the ischemic region. Ischemia is defined as a reduction in blood flow to a level that is sufficient to alter normal cellular function. Brain tissue is highly sensitive to ischemia, such that even brief ischemic periods in neurons can initiate a complex sequence of events that may ultimately culminate in cell death. However, paradoxically, restoration of blood flow can cause additional damage and exacerbate the neurocognitive deficits in patients who suffered a brain ischemic event, which is a phenomenon referred to as “reperfusion injury.” Transient brain ischemia following cardiac arrest results from the complex interplay of multiple pathways including excitotoxicity, acidotoxicity, ionic imbalance, peri-infarct depolarization, oxidative and nitrative stress, inflammation, and apoptosis. The pathophysiology of post-cardiac arrest brain injury involves a complex cascade of molecular events, most of which remain unknown. Many lines of evidence have shown that mitochondria suffer severe damage in response to ischemic injury. Mitochondrial dysfunction based on the mitochondrial permeability transition after reperfusion, particularly involving the calcineurin/immunophilin signal transduction pathway, appears to play a pivotal role in the induction of neuronal cell death. The aim of this article is to discuss the underlying pathophysiology of brain damage, which is a devastating pathological condition, and highlight the central signal transduction pathway involved in brain damage, which reveals potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Hiroyuki Uchino
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023 Japan
| | - Yukihiko Ogihara
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023 Japan
| | - Hidekimi Fukui
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023 Japan
| | - Miyuki Chijiiwa
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023 Japan
| | - Shusuke Sekine
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023 Japan
| | - Naomi Hara
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023 Japan
| | - Eskil Elmér
- Mitochondrial Pathophysiology Unit, Department of Clinical Sciences, Lund University, Box 117, 221 00 Lund, Sweden
| |
Collapse
|
414
|
Oruc S, Gönül Y, Tunay K, Oruc OA, Bozkurt MF, Karavelioğlu E, Bağcıoğlu E, Coşkun KS, Celik S. The antioxidant and antiapoptotic effects of crocin pretreatment on global cerebral ischemia reperfusion injury induced by four vessels occlusion in rats. Life Sci 2016; 154:79-86. [PMID: 27117584 DOI: 10.1016/j.lfs.2016.04.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 12/23/2022]
Abstract
AIMS Cerebral ischemia reperfusion (IR) injury is a process in which oxidative and apoptotic mechanisms play a part. Neuroprotective agents to be found could work out well for the efficient and safe minimization of cerebral IR injury. Crocin is a strong antioxidant agent; however the influence of this agent on the experimental cerebral ischemia model has not been studied extensively and thus it is not well-known. The objective of our study was to investigate the antioxidant, antiapoptotic and protective effects of crocin on the global cerebral IR induced by four-vessel occlusion. MAIN METHODS A total of 30 adult female Sprague-Dawley rats were equally and randomly separated into three groups as follows: sham, IR and IR+crocin (40mg/kg/day orally for 10days). 24h after electrocauterization of bilateral vertebral arteries, bilateral common carotid arteries were occluded for 30min and reperfused for 30min. Oxidative stress parameters (TAS, TOS, OSI), haematoxylin and eosin staining, caspase-3 and hypoxia-inducible factor-1 alpha (HIF-1α) expressions and TUNEL methods were investigated. KEY FINDINGS There was a significant difference between the IR and sham groups by means of OSI level, histopathological scoring, caspase-3, HIF-1α and TUNEL-positive cell parameters. We have also observed that pre-treatment with crocin reduced these parameter levels back to the baseline. SIGNIFICANCE The data obtained from the present study suggest that crocin may exert antiapoptotic, antioxidant and protective effects in IR-mediated brain injury induced by four-vessel occlusion. To the best of our knowledge, this would be the first study to be conducted in this field.
Collapse
Affiliation(s)
- Serdar Oruc
- Afyon Kocatepe University, School of Medicine, Department of Neurology, Afyonkarahisar, Turkey.
| | - Yücel Gönül
- Afyon Kocatepe University, School of Medicine, Department of Anatomy, Afyonkarahisar, Turkey
| | - Kamil Tunay
- Afyon Kocatepe University, School of Medicine, Department of Emergency Medicine, Afyonkarahisar, Turkey
| | - Oya Akpinar Oruc
- Afyon Kocatepe University, School of Medicine, Department of Emergency Medicine, Afyonkarahisar, Turkey
| | - Mehmet Fatih Bozkurt
- Afyon Kocatepe University, School of Veterinary Medicine, Department of Pathology, Afyonkarahisar, Turkey
| | - Ergün Karavelioğlu
- Afyon Kocatepe University, School of Medicine, Department of Neurosurgery, Afyonkarahisar, Turkey
| | - Erman Bağcıoğlu
- Afyon Kocatepe University, School of Medicine, Department of Psychiatry, Afyonkarahisar, Turkey
| | - Kerem Senol Coşkun
- Afyon Kocatepe University, School of Medicine, Department of Psychiatry, Afyonkarahisar, Turkey
| | - Sefa Celik
- Afyon Kocatepe University, School of Medicine, Department of Biochemistry, Afyonkarahisar, Turkey
| |
Collapse
|
415
|
Huang T, Gao D, Hei Y, Zhang X, Chen X, Fei Z. D-allose protects the blood brain barrier through PPARγ-mediated anti-inflammatory pathway in the mice model of ischemia reperfusion injury. Brain Res 2016; 1642:478-486. [PMID: 27103568 DOI: 10.1016/j.brainres.2016.04.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 02/06/2023]
Abstract
Our early experiments confirmed that D-allose was closely involved in the blood brain barrier (BBB) protection from ischemia reperfusion (IR) injury, but the regulatory mechanism is not fully defined. In this study, we aimed to investigate the role of D-allose in the protection of BBB integrity and the relevant mechanisms involved in the mice model of middle cerebral artery occlusion and reperfusion (MCAO/Rep). D-allose was intravenously injected via a tail vein (0.2mg/g and 0.4mg/g, 1h before ischemia), GW9662 was intraperitoneal injected to the mice (4mg/kg) before inducing ischemia 24h. Pretreatment with D-allose ameliorated the neurological deficits, infarct volume and brain edema in brains of MCAO/Rep mice. D-allose inhibited cell apoptosis in the mice model of MCAO/Rep. We observed that D-allose remarkably decreased BBB permeability and prevented the reduction of ZO-1, Occludin and Claudin-5 in mice brains with MCAO/Rep injury. D-allose also repressed the levels of TNF-α, NF-κB, interleukin (IL)-1β and IL-8 in inflammatory responses. The increases of intercellular adhesion molecular-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and CD11b/CD18 were significantly inhibited by D-allose during the MCAO/Rep injury. And D-allose decreased the L-selectin and P-selectin levels after MCAO/Rep. Moreover, D-allose induced up-regulation of peroxisome proliferator-activated receptor γ (PPARγ), and down-regulation of TNF-α and NF-κB after MCAO/Rep, which were abolished by utilization of GW9662. In conclusion, we provided evidences that D-allose may has therapeutic potential against brain IR injury through attenuating BBB disruption and the inflammatory response via PPARγ-dependent regulation of NF-κB.
Collapse
Affiliation(s)
- Tao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.15 Changle West Road, Xincheng District, Xi'an 710032, Shaanxi, China
| | - Dakuan Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.15 Changle West Road, Xincheng District, Xi'an 710032, Shaanxi, China
| | - Yue Hei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.15 Changle West Road, Xincheng District, Xi'an 710032, Shaanxi, China
| | - Xin Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.15 Changle West Road, Xincheng District, Xi'an 710032, Shaanxi, China
| | - Xiaoyan Chen
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.15 Changle West Road, Xincheng District, Xi'an 710032, Shaanxi, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.15 Changle West Road, Xincheng District, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
416
|
Deng QJ, Deng DJ, Che J, Zhao HR, Yu JJ, Lu YY. Hypothalamic paraventricular nucleus stimulation reduces intestinal injury in rats with ulcerative colitis. World J Gastroenterol 2016; 22:3769-3776. [PMID: 27076761 PMCID: PMC4814739 DOI: 10.3748/wjg.v22.i14.3769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/11/2016] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect and mechanism of stimulation of the hypothalamic paraventricular nucleus with glutamate acid in rats with ulcerative colitis (UC).
METHODS: The rats were anesthetized with 10% chloral hydrate via abdominal injection and treated with an equal volume of TNBS + 50% ethanol enema, injected into the upper section of the anus with the tail facing up. Colonic damage scores were calculated after injecting a certain dose of glutamic acid into the paraventricular nucleus (PVN), and the effect of the nucleus tractus solitarius (NTS) and vagus nerve in alleviating UC injury through chemical stimulation of the PVN was observed in rats. Expression changes of C-myc, Apaf-1, caspase-3, interleukin (IL)-6, and IL-17 during the protection against UC injury through chemical stimulation of the PVN in rats were detected by Western blot. Malondialdehyde (MDA) content and superoxide dismutase (SOD) activity in colon tissues of rats were measured by colorimetric methods.
RESULTS: Chemical stimulation of the PVN significantly reduced UC in rats in a dose-dependent manner. The protective effects of the chemical stimulation of the PVN on rats with UC were eliminated after chemical damage to the PVN. After glutamate receptor antagonist kynurenic acid was injected into the PVN, the protective effects of the chemical stimulation of the PVN were eliminated in rats with UC. After AVP-Vl receptor antagonist ([Deamino-penl, val4, D-Arg8]-vasopressin) was injected into NTS or bilateral chemical damage to NTS, the protective effect of the chemical stimulation of PVN on UC was also eliminated. After chemical stimulation of the PVN, SOD activity increased, MDA content decreased, C-myc protein expression significantly increased, caspase-3 and Apaf-1 protein expression significantly decreased, and IL-6 and IL-17 expression decreased in colon tissues in rats with UC.
CONCLUSION: Chemical stimulation of the hypothalamic PVN provides a protective effect against UC injury in rats. Hypothalamic PVN, NTS and vagus nerve play key roles in this process.
Collapse
|
417
|
Tomita H, Tabata K, Takahashi M, Nishiyama F, Sugano E. Light induces translocation of NF-κB p65 to the mitochondria and suppresses expression of cytochrome c oxidase subunit III (COX III) in the rat retina. Biochem Biophys Res Commun 2016; 473:1013-1018. [PMID: 27055596 DOI: 10.1016/j.bbrc.2016.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/03/2016] [Indexed: 11/26/2022]
Abstract
The transcription factor nuclear factor kappaB (NF-κB) plays various roles in cell survival, apoptosis, and inflammation. In the rat retina, NF-κB activity increases after exposure to damaging light, resulting in degeneration of photoreceptors. Here, we report that in dark-adapted rats exposed for 6 h to bright white light, the p65 subunit of retinal NF-κB translocates to the mitochondria, an event associated with a decrease in expression of cytochrome c oxidase subunit III (COX III). However, sustained exposure for 12 h depleted p65 from the mitochondria, and enhanced COX III expression. Treatment with the protective antioxidant PBN prior to light exposure prevents p65 depletion in the mitochondria and COX III upregulation during prolonged exposure, and apoptosis in photoreceptor cells. These results indicate that COX III expression is sensitive to the abundance of NF-κB p65 in the mitochondria, which, in turn, is affected by exposure to damaging light.
Collapse
Affiliation(s)
- Hiroshi Tomita
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan; Soft-Path Engineering Research Center (SPERC), Faculty of Science and Engineering, Iwate University, Morioka 020-8551, Japan; Clinical Research, Innovation and Education Center, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi 980-8574, Japan.
| | - Kitako Tabata
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan.
| | - Maki Takahashi
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan.
| | - Fumiaki Nishiyama
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan.
| | - Eriko Sugano
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan; Soft-Path Engineering Research Center (SPERC), Faculty of Science and Engineering, Iwate University, Morioka 020-8551, Japan.
| |
Collapse
|
418
|
Inhibition of Ectodermal-Neural Cortex 1 Protects Neural Cells from Apoptosis Induced by Hypoxia and Hypoglycemia. J Mol Neurosci 2016; 59:126-34. [DOI: 10.1007/s12031-016-0742-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
|
419
|
Liu X, Zhu X, Chen M, Ge Q, Shen Y, Pan S. Resveratrol protects PC12 cells against OGD/ R-induced apoptosis via the mitochondrial-mediated signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2016; 48:342-53. [PMID: 26960953 DOI: 10.1093/abbs/gmw011] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this study, we investigated the neuroprotective potential of resveratrol against oxygen glucose deprivation/reoxygenation (OGD/R)-induced apoptotic damages in well-differentiated PC12 cells and the underlying mechanisms. Cells were incubated under normal condition or OGD/R in the presence or absence of 10 μM resveratrol. Cell viability was determined with methyl-thiazolyl-tetrazolium (MTT) assay. Apoptotic ratio was determined with Hoechst 33342 staining and Annexin V-FITC/PI double staining. Oxidative stress was evaluated by measuring the intracellular reactive oxygen species (ROS), the mitochondrial superoxide, the malondialdehyde (MDA) content, and the activities of superoxide dismutase (SOD) and catalase (CAT). The intracellular calcium ([Ca2+]i) was estimated by Fluo-3/AM. The mitochondrial membrane potential (MMP) was evaluated by 5,5′,6,6′-tetrachloro-1,1,3,3′-tetraethyl-benzimidazolyl-carbocyanine iodide (JC-1) and rhodamine 123 (Rh123). The opening of mitochondrial permeability transition pore (MPTP) was determined by the Calcein/Co2+-quenching technique. The protein levels of cytochrome c, Bcl-2, Bax, cleaved caspase-9, and cleaved caspase-3 were detected by western blot analysis. The results showed that 10 μM resveratrol attenuated OGD/R-induced cell viability loss and cell apoptosis, which was associated with the decreases in the MDA content and the increases in the SOD and CAT activities. Furthermore, the accumulation of intracellular ROS and mitochondrial superoxide, disturbance of [Ca2+]i homeostasis, reduction of MMP, opening of MPTP, and release of mitochondrial cytochrome c observed in OGD/R-injured cells, which indicated a switch on the mitochondrial-mediated apoptotic pathway, were all reversed by resveratrol. These results suggest that resveratrol administration may play a neuroprotective role via modulating the mitochondrial-mediated signaling pathway in OGD/R-induced PC12 cell injury.
Collapse
|
420
|
Yin Q, Ge H, Liao CC, Liu D, Zhang S, Pan YH. Antioxidant Defenses in the Brains of Bats during Hibernation. PLoS One 2016; 11:e0152135. [PMID: 27010916 PMCID: PMC4806925 DOI: 10.1371/journal.pone.0152135] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/09/2016] [Indexed: 01/12/2023] Open
Abstract
Hibernation is a strategy used by some mammals to survive a cold winter. Small hibernating mammals, such as squirrels and hamsters, use species- and tissue-specific antioxidant defenses to cope with oxidative insults during hibernation. Little is known about antioxidant responses and their regulatory mechanisms in hibernating bats. We found that the total level of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the brain of each of the two distantly related hibernating bats M. ricketti and R. ferrumequinum at arousal was lower than that at torpid or active state. We also found that the levels of malondialdehyde (product of lipid peroxidation) of the two hibernating species of bats were significantly lower than those of non-hibernating bats R. leschenaultia and C. sphinx. This observation suggests that bats maintain a basal level of ROS/RNS that does no harm to the brain during hibernation. Results of Western blotting showed that hibernating bats expressed higher amounts of antioxidant proteins than non-hibernating bats and that M. ricketti bats upregulated the expression of some enzymes to overcome oxidative stresses, such as superoxide dismutase, glutathione reductase, and catalase. In contrast, R. ferrumequinum bats maintained a relatively high level of superoxide dismutase 2, glutathione reductase, and thioredoxin-2 throughout the three different states of hibernation cycles. The levels of glutathione (GSH) were higher in M. ricketti bats than in R. ferrumequinum bats and were significantly elevated in R. ferrumequinum bats after torpor. These data suggest that M. ricketti bats use mainly antioxidant enzymes and R. ferrumequinum bats rely on both enzymes and low molecular weight antioxidants (e.g., glutathione) to avoid oxidative stresses during arousal. Furthermore, Nrf2 and FOXOs play major roles in the regulation of antioxidant defenses in the brains of bats during hibernation. Our study revealed strategies used by bats against oxidative insults during hibernation.
Collapse
Affiliation(s)
- Qiuyuan Yin
- Laboratory of Molecular Ecology and Evolution, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, China
| | - Hanxiao Ge
- Laboratory of Molecular Ecology and Evolution, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, China
| | - Chen-Chong Liao
- Proteomic Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Di Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Shuyi Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- * E-mail: (YP); (SZ)
| | - Yi-Hsuan Pan
- Laboratory of Molecular Ecology and Evolution, School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail: (YP); (SZ)
| |
Collapse
|
421
|
PD98059 Protects Brain against Cells Death Resulting from ROS/ERK Activation in a Cardiac Arrest Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3723762. [PMID: 27069530 PMCID: PMC4812463 DOI: 10.1155/2016/3723762] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/25/2016] [Accepted: 02/11/2016] [Indexed: 11/17/2022]
Abstract
The clinical and experimental postcardiac arrest treatment has not reached therapeutic success. The present study investigated the effect of PD98059 (PD) in rats subjected to cardiac arrest (CA)/cardiopulmonary resuscitation (CPR). Experimental rats were divided randomly into 3 groups: sham, CA, and PD. The rats except for sham group were subjected to CA for 5 min followed by CPR operation. Once spontaneous circulation was restored, saline and PD were injected in CA and PD groups, respectively. The survival rates and neurologic deficit scores (NDS) were observed, and the following indices of brain tissue were evaluated: ROS, MDA, SOD, p-ERK1/2/ERK1/2, caspase-3, Bax, Bcl-2, TUNEL positive cells, and double fluorescent staining of p-ERK/TUNEL. Our results indicated that PD treatment significantly reduced apoptotic neurons and improved the survival rates and NDS. Moreover, PD markedly downregulated the ROS, MDA, p-ERK, and caspase-3, Bax and upregulated SOD and Bcl-2 levels. Double staining p-ERK/TUNEL in choroid plexus and cortex showed that cell death is dependent on ERK activation. The findings in present study demonstrated that PD provides neuroprotection via antioxidant activity and antiapoptosis in rats subjected to CA/CPR.
Collapse
|
422
|
Tewari D, Mukhopadhyay M, Nekkanti MS, Vallabhaneni S, Sahu G, Jetti SK, Preethidan D, Bera AK. Cytoprotective effect of Centella asiatica is mediated through the modulation of mitochondrial voltage-dependent anion channel (VDAC) and scavenging of free radicals. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
423
|
Shah FA, Gim SA, Sung JH, Jeon SJ, Kim MO, Koh PO. Identification of proteins regulated by curcumin in cerebral ischemia. J Surg Res 2016; 201:141-8. [DOI: 10.1016/j.jss.2015.10.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/08/2015] [Accepted: 10/14/2015] [Indexed: 01/01/2023]
|
424
|
Potential Anti-Atherosclerotic Properties of Astaxanthin. Mar Drugs 2016; 14:md14020035. [PMID: 26861359 PMCID: PMC4771988 DOI: 10.3390/md14020035] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 01/20/2023] Open
Abstract
Astaxanthin is a naturally occurring red carotenoid pigment classified as a xanthophyll, found in microalgae and seafood such as salmon, trout, and shrimp. This review focuses on astaxanthin as a bioactive compound and outlines the evidence associated with its potential role in the prevention of atherosclerosis. Astaxanthin has a unique molecular structure that is responsible for its powerful antioxidant activities by quenching singlet oxygen and scavenging free radicals. Astaxanthin has been reported to inhibit low-density lipoprotein (LDL) oxidation and to increase high-density lipoprotein (HDL)-cholesterol and adiponectin levels in clinical studies. Accumulating evidence suggests that astaxanthin could exert preventive actions against atherosclerotic cardiovascular disease (CVD) via its potential to improve oxidative stress, inflammation, lipid metabolism, and glucose metabolism. In addition to identifying mechanisms of astaxanthin bioactivity by basic research, much more epidemiological and clinical evidence linking reduced CVD risk with dietary astaxanthin intake is needed.
Collapse
|
425
|
Arachidonyl-2-Chloroethylamide Alleviates Cerebral Ischemia Injury Through Glycogen Synthase Kinase-3β-Mediated Mitochondrial Biogenesis and Functional Improvement. Mol Neurobiol 2016; 54:1240-1253. [PMID: 26820679 DOI: 10.1007/s12035-016-9731-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023]
Abstract
Arachidonyl-2-chloroethylamide (ACEA), a highly selective agonist of cannabinoid receptor 1 (CB1R), has been reported to protect neurons in ischemic injury. We sought to investigate whether mitochondrial biogenesis was involved in the therapeutic effect of ACEA in cerebral ischemia. Focal cerebral ischemic injury was induced in adult male Sprague Dawley rats. Intraperitoneal injection of 1 mg/kg ACEA improved neurological behavior, reduced infarct volume, and inhibited apoptosis. The volume and numbers of mitochondria were significantly increased after ACEA administration. Expression of mitochondrial transcription factor A (Tfam), nuclear transcription factor-1 (Nrf-1), and cytochrome C oxidase subunit IV (COX IV) were also significantly up-regulated in animals administered ACEA. One thousand nanomoles of ACEA inhibited mitochondrial dysfunction in primary rat cortical neurons exposed to oxygen-glucose deprivation (OGD). Furthermore, ACEA administration increased phosphorylation of glycogen synthase kinase-3β (GSK-3β) after reperfusion. Phosphorylation of GSK-3β induced mitochondrial biogenesis and preserved mitochondrial function whereas inhibition of phosphatidylinositol 3-kinase (PI3K) dampened phosphorylation of GSK-3β and reversed induction of mitochondrial biogenesis and function following ACEA administration. In conclusion, ACEA could induce mitochondrial biogenesis and improve mitochondrial function at the beginning of cerebral ischemia, thus alleviating cerebral ischemia injury. Phosphorylation of GSK-3β might be involved in the regulation of mitochondrial biogenesis induced by ACEA.
Collapse
|
426
|
Dröse S, Stepanova A, Galkin A. Ischemic A/D transition of mitochondrial complex I and its role in ROS generation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:946-57. [PMID: 26777588 PMCID: PMC4893024 DOI: 10.1016/j.bbabio.2015.12.013] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/11/2015] [Accepted: 12/25/2015] [Indexed: 12/12/2022]
Abstract
Mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a key enzyme in cellular energy metabolism and provides approximately 40% of the proton-motive force that is utilized during mitochondrial ATP production. The dysregulation of complex I function – either genetically, pharmacologically, or metabolically induced – has severe pathophysiological consequences that often involve an imbalance in the production of reactive oxygen species (ROS). Slow transition of the active (A) enzyme to the deactive, dormant (D) form takes place during ischemia in metabolically active organs such as the heart and brain. The reactivation of complex I occurs upon reoxygenation of ischemic tissue, a process that is usually accompanied by an increase in cellular ROS production. Complex I in the D-form serves as a protective mechanism preventing the oxidative burst upon reperfusion. Conversely, however, the D-form is more vulnerable to oxidative/nitrosative damage. Understanding the so-called active/deactive (A/D) transition may contribute to the development of new therapeutic interventions for conditions like stroke, cardiac infarction, and other ischemia-associated pathologies. In this review, we summarize current knowledge on the mechanism of A/D transition of mitochondrial complex I considering recently available structural data and site-specific labeling experiments. In addition, this review discusses in detail the impact of the A/D transition on ROS production by complex I and the S-nitrosation of a critical cysteine residue of subunit ND3 as a strategy to prevent oxidative damage and tissue damage during ischemia–reperfusion injury. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. The current knowledge on active/deactive (A/D) transition of complex I is reviewed. The mechanism and driving force of the A/D conformational change are discussed. The A/D transition can affect ROS production and ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Stefan Dröse
- Clinic of Anesthesiology, Intensive-Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main 60590, Germany.
| | - Anna Stepanova
- Medical Biology Centre, School of Biological Sciences, Queens University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alexander Galkin
- Medical Biology Centre, School of Biological Sciences, Queens University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA.
| |
Collapse
|
427
|
Henninger N, Fisher M. Extending the Time Window for Endovascular and Pharmacological Reperfusion. Transl Stroke Res 2016; 7:284-93. [DOI: 10.1007/s12975-015-0444-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/13/2015] [Accepted: 12/14/2015] [Indexed: 01/07/2023]
|
428
|
Whitaker RM, Corum D, Beeson CC, Schnellmann RG. Mitochondrial Biogenesis as a Pharmacological Target: A New Approach to Acute and Chronic Diseases. Annu Rev Pharmacol Toxicol 2016; 56:229-49. [DOI: 10.1146/annurev-pharmtox-010715-103155] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ryan M. Whitaker
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina and
| | - Daniel Corum
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina and
| | - Craig C. Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina and
| | - Rick G. Schnellmann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina and
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina 29425; , , ,
| |
Collapse
|
429
|
Hosain MZ, Mori T, Kishimura A, Katayama Y. Synergy between phenotypic modulation and ROS neutralization in reduction of inflammatory response of hypoxic microglia by using phosphatidylserine and antioxidant containing liposomes. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:290-302. [PMID: 26689775 DOI: 10.1080/09205063.2015.1125565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neuroinflammation caused by microglial activation is a key contributing factor in neurological disorders such as those involving ischaemia. Excess production of reactive oxygen species (ROS) and nitric oxide (NO) stimulates the inflammatory response during ischaemia, significantly damaging cells. Inhibition of inflammatory activation of microglia is a promising potential treatment approach for neurological diseases. In this study, we introduce α-tocopherol and phosphatidylserine (PS) containing liposomes (PST-liposomes) to inhibit the microglial inflammatory response. PS is known to have anti-inflammatory effects on microglia by modulating the microglial phenotype, while α-tocopherol is an antioxidant, known to neutralize ROS. We found that both PS-containing liposomes (PS-liposomes) and PST-liposomes, as compared with phosphatidylcholine containing liposomes, significantly increased viability of hypoxia-treated microglia. The PST-liposomes functioned better than the PS-liposomes and we attribute this superior effect to a synergy between PS and α-tocopherol. This synergic action of PST-liposomes was illustrated in their ability, when incubated with microglia, to reduce NO and pro-inflammatory cytokine (TNF-α) production and increase anti-inflammatory cytokine (TGF-β1) production. Thus, the improved viability of hypoxia-treated microglia when treated with PST-liposomes involved anti-inflammatory effects, including ROS neutralization, as well as induction of a microglial phenotypic change. Our results suggest that PST-liposomes represent a potential therapeutic approach to reducing ischaemic injury in the brain.
Collapse
Affiliation(s)
- Md Zahangir Hosain
- a Graduate School of Systems Life Sciences , Kyushu University , Nishi-ku , Japan
| | - Takeshi Mori
- a Graduate School of Systems Life Sciences , Kyushu University , Nishi-ku , Japan.,b Faculty of Engineering, Department of Applied Chemistry , Kyushu University , Nishi-ku , Japan.,c Center for Future Chemistry, Kyushu University , Nishi-ku , Japan
| | - Akihiro Kishimura
- a Graduate School of Systems Life Sciences , Kyushu University , Nishi-ku , Japan.,b Faculty of Engineering, Department of Applied Chemistry , Kyushu University , Nishi-ku , Japan.,c Center for Future Chemistry, Kyushu University , Nishi-ku , Japan
| | - Yoshiki Katayama
- a Graduate School of Systems Life Sciences , Kyushu University , Nishi-ku , Japan.,b Faculty of Engineering, Department of Applied Chemistry , Kyushu University , Nishi-ku , Japan.,c Center for Future Chemistry, Kyushu University , Nishi-ku , Japan
| |
Collapse
|
430
|
Song W, Song C, Shan Y, Lu W, Zhang J, Hu P, Wu X, Li L, Guo S. The antioxidative effects of three lactobacilli on high-fat diet induced obese mice. RSC Adv 2016. [DOI: 10.1039/c6ra06389f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this paper, three Lactobacillus strains (L. coryniformis subsp. torquens T3, L. paracasei subsp. paracasei M5 and L. paracasei subsp. paracasei X12) isolated in our laboratory were investigated for antioxidant activity in vitro and in vivo.
Collapse
Affiliation(s)
- Wei Song
- Institute of Extreme Environment Nutrition and Protection
- Harbin Institute of Technology
- Harbin 150090
- China
- Department of Food Science and Engineering
| | - Chen Song
- Institute of Extreme Environment Nutrition and Protection
- Harbin Institute of Technology
- Harbin 150090
- China
- Department of Food Science and Engineering
| | - Yujuan Shan
- Institute of Extreme Environment Nutrition and Protection
- Harbin Institute of Technology
- Harbin 150090
- China
- Department of Food Science and Engineering
| | - Weihong Lu
- Institute of Extreme Environment Nutrition and Protection
- Harbin Institute of Technology
- Harbin 150090
- China
- Department of Food Science and Engineering
| | - Jiliang Zhang
- Institute of Extreme Environment Nutrition and Protection
- Harbin Institute of Technology
- Harbin 150090
- China
- Department of Food Science and Engineering
| | - Panpan Hu
- Department of Life Science
- Lvliang University
- Lvliang 033001
- China
| | - Xianfan Wu
- Institute of Extreme Environment Nutrition and Protection
- Harbin Institute of Technology
- Harbin 150090
- China
- Department of Food Science and Engineering
| | - L. Li
- Institute of Extreme Environment Nutrition and Protection
- Harbin Institute of Technology
- Harbin 150090
- China
- Department of Food Science and Engineering
| | - Shouli Guo
- Animal Experiment Center of the Second Affiliated Hospital
- Harbin Medical University
- Harbin 150086
- China
| |
Collapse
|
431
|
Nicolson GL, de Mattos GF, Settineri R, Costa C, Ellithorpe R, Rosenblatt S, La Valle J, Jimenez A, Ohta S. Clinical Effects of Hydrogen Administration: From Animal and Human Diseases to Exercise Medicine. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ijcm.2016.71005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
432
|
Detrimental or beneficial: the role of TRPM2 in ischemia/reperfusion injury. Acta Pharmacol Sin 2016; 37:4-12. [PMID: 26725732 DOI: 10.1038/aps.2015.141] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/14/2015] [Indexed: 12/30/2022]
Abstract
Ischemia/reperfusion (I/R) injury is the main cause of tissue damage and dysfunction. I/R injury is characterized by Ca(2+) overload and production of reactive oxygen species (ROS), which play critical roles in the process of I/R injury to the brain, heart and kidney, but the underlying mechanisms are largely elusive. Recent evidence demonstrates that TRPM2, a Ca(2+)-permeable cationic channel and ROS sensor, is involved in I/R injury, but whether TRPM2 plays a protective or detrimental role in this process remains controversial. In this review, we discuss the recent progress in understanding the role of TRPM2 in reperfusion process after brain, heart and kidney ischemia and the potential of targeting TRPM2 for the development of therapeutic drugs to treat I/R injury.
Collapse
|
433
|
Zhang Y, Wang T, Yang K, Xu J, Wu JM, Liu WL. NADPH oxidase 2 does not contribute to early reperfusion-associated reactive oxygen species generation following transient focal cerebral ischemia. Neural Regen Res 2016; 11:1773-1778. [PMID: 28123418 PMCID: PMC5204230 DOI: 10.4103/1673-5374.194747] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Excess production of reactive oxygen species (ROS) critically contributes to occurrence of reperfusion injury, the paradoxical response of ischemic brain tissue to restoration of cerebral blood flow. However, the enzymatic sources of ROS generation remain to be unclear. This study examined Nox2-containing NADPH oxidase (Nox2) expression and its activity in ischemic brain tissue following post-ischemic reperfusion to clarify the mechanism of enzymatic reaction of ROS. Male Sprague-Dawley rats were subjected to 90-minute middle cerebral artery occlusion, followed by 3 or 22.5 hours of reperfusion. Quantitative reverse transcriptase PCR and western blot assay were performed to measure mRNA and protein expression of Nox2. Lucigenin fluorescence assays were performed to assess Nox activity. Our data showed that Nox2 mRNA and protein expression levels were significantly increased (3.7-fold for mRNA and 3.6-fold for protein) in ischemic brain tissue at 22.5 hours but not at 3 hours following post-ischemic reperfusion. Similar results were obtained for the changes of NADPH oxidase activity in ischemic cerebral tissue at the two reperfusion time points. Our results suggest that Nox2 may not contribute to the early burst of reperfusion-related ROS generation, but is rather an important source of ROS generation during prolonged reperfusion.
Collapse
Affiliation(s)
- Yuan Zhang
- Central Laboratory, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China; Department of Pathophysiology, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Ting Wang
- Central Laboratory, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China; Graduate School of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ke Yang
- Central Laboratory, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China; Graduate School of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ji Xu
- Central Laboratory, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Jian-Ming Wu
- Department of Neurosurgery, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Wen-Lan Liu
- Central Laboratory, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| |
Collapse
|
434
|
Novgorodov SA, Riley CL, Keffler JA, Yu J, Kindy MS, Macklin WB, Lombard DB, Gudz TI. SIRT3 Deacetylates Ceramide Synthases: IMPLICATIONS FOR MITOCHONDRIAL DYSFUNCTION AND BRAIN INJURY. J Biol Chem 2015; 291:1957-1973. [PMID: 26620563 DOI: 10.1074/jbc.m115.668228] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 12/11/2022] Open
Abstract
Experimental evidence supports the role of mitochondrial ceramide accumulation as a cause of mitochondrial dysfunction and brain injury after stroke. Herein, we report that SIRT3 regulates mitochondrial ceramide biosynthesis via deacetylation of ceramide synthase (CerS) 1, 2, and 6. Reciprocal immunoprecipitation experiments revealed that CerS1, CerS2, and CerS6, but not CerS4, are associated with SIRT3 in cerebral mitochondria. Furthermore, CerS1, -2, and -6 are hyperacetylated in the mitochondria of SIRT3-null mice, and SIRT3 directly deacetylates the ceramide synthases in a NAD(+)-dependent manner that increases enzyme activity. Investigation of the SIRT3 role in mitochondrial response to brain ischemia/reperfusion (IR) showed that SIRT3-mediated deacetylation of ceramide synthases increased enzyme activity and ceramide accumulation after IR. Functional studies demonstrated that absence of SIRT3 rescued the IR-induced blockade of the electron transport chain at the level of complex III, attenuated mitochondrial outer membrane permeabilization, and decreased reactive oxygen species generation and protein carbonyls in mitochondria. Importantly, Sirt3 gene ablation reduced the brain injury after IR. These data support the hypothesis that IR triggers SIRT3-dependent deacetylation of ceramide synthases and the elevation of ceramide, which could inhibit complex III, leading to increased reactive oxygen species generation and brain injury. The results of these studies highlight a novel mechanism of SIRT3 involvement in modulating mitochondrial ceramide biosynthesis and suggest an important role of SIRT3 in mitochondrial dysfunction and brain injury after experimental stroke.
Collapse
Affiliation(s)
- Sergei A Novgorodov
- the Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Christopher L Riley
- From the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401
| | - Jarryd A Keffler
- the Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jin Yu
- the Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Mark S Kindy
- From the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401
| | - Wendy B Macklin
- the Department of Cell and Developmental Biology, University of Colorado, Aurora, Colorado 80045, and
| | - David B Lombard
- the Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan 48109
| | - Tatyana I Gudz
- the Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425,; From the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401,.
| |
Collapse
|
435
|
Maiti P, Manna J, Ilavazhagan G, Rossignol J, Dunbar GL. Molecular regulation of dendritic spine dynamics and their potential impact on synaptic plasticity and neurological diseases. Neurosci Biobehav Rev 2015; 59:208-37. [PMID: 26562682 DOI: 10.1016/j.neubiorev.2015.09.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/20/2015] [Accepted: 09/07/2015] [Indexed: 12/12/2022]
Abstract
The structure and dynamics of dendritic spines reflect the strength of synapses, which are severely affected in different brain diseases. Therefore, understanding the ultra-structure, molecular signaling mechanism(s) regulating dendritic spine dynamics is crucial. Although, since last century, dynamics of spine have been explored by several investigators in different neurological diseases, but despite countless efforts, a comprehensive understanding of the fundamental etiology and molecular signaling pathways involved in spine pathology is lacking. The purpose of this review is to provide a contextual framework of our current understanding of the molecular mechanisms of dendritic spine signaling, as well as their potential impact on different neurodegenerative and psychiatric diseases, as a format for highlighting some commonalities in function, as well as providing a format for new insights and perspectives into this critical area of research. Additionally, the potential strategies to restore spine structure-function in different diseases are also pointed out. Overall, these informations should help researchers to design new drugs to restore the structure-function of dendritic spine, a "hot site" of synaptic plasticity.
Collapse
Affiliation(s)
- Panchanan Maiti
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA.
| | - Jayeeta Manna
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - G Ilavazhagan
- Hindustan University, Rajiv Gandhi Salai (OMR), Padur, Kelambakam, Chennai, TN, India.
| | - Julien Rossignol
- Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA; College of Medicine, Central Michigan University, Mt. Pleasant, MI, USA.
| | - Gary L Dunbar
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA.
| |
Collapse
|
436
|
Li Y, Zhang Z. Gastrodin improves cognitive dysfunction and decreases oxidative stress in vascular dementia rats induced by chronic ischemia. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:14099-14109. [PMID: 26823723 PMCID: PMC4713509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/22/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To study the potential protective effects of gastrodin on reducing tissue oxidative stress and attenuating cognitive deficits in vascular dementia induced by cerebral chronic hyperfusion. To explore the detailed molecular mechanisms. METHODS 6 to 8 week old male Wistar rats were adopted as experimental animals. Animals were divided into the following groups: Group 1 (sham group with no occlusion), Group 2 (control group with 2VO procedure), Group 3 (sham group with gastrodin administration), Group 4 (2VO group with gastrodin administration). Morris water maze (MWM) test was adopted to test the learning and memory function of rats within different groups. MDA, glutathione peroxidase and total thiol assessment was done to reflect the oxidative stress in the brain tissue. Cell counting kit-8 (CCK8) and flow cytometry (FCM) were performed to examine the cell viability and apoptosis rate of SH-SY5Y cells induced by hydrogen peroxide and rescued by gastrodin treatments. Reactive oxygen species (ROS) generation was determined by the 2', 7'-dichlorofluorescein diacetate (DCFH-DA) assay. qPCR and Western blot (WB) were adopted to detect the molecular mechanisms related to the anti-apoptosis and ROS scavenging effects of gastrodin. RESULTS Our results indicated an obvious protective effect of gastrodin on vascular dementia induced brain ischemia. Administration of gastrodin could improve the impaired learning and memory function induced by 2VO procedure in rats. The levels of MDA were partially decreased by the administration of gastrodin. The levels of glutathione peroxidase and total thiol were partially restored by the administration of gastrodin. Cell viability was improved by gastrodin in a dose-dependent pattern on SH-SY5Y cells induced by hydrogen peroxide (P < 0.05). Cell apoptosis rate was reduced by gastrodin in a dose-dependent pattern on SH-SY5Y cells induced by hydrogen peroxide (P < 0.05). Gastrodin could scavenge ROS generation induced by pre-treatment of hydrogen peroxide. Both qPCR and WB results showed significant enhancements on the expression levels of NFE2L2, ADH7, GPX2 and GPX3 (P < 0.05). CONCLUSION Gastrodin administration is protective on the learning and memory functions that might be affected by vascular dementia induced oxidative stress due to brain ischemia. On the molecular level, NFE2L2, ADH7, GPX2 and GPX3 were up regulated by gastrodin.
Collapse
MESH Headings
- Alcohol Dehydrogenase/metabolism
- Animals
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Behavior, Animal/drug effects
- Benzyl Alcohols/pharmacology
- Brain/blood supply
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- Brain/physiopathology
- Brain Ischemia/complications
- Brain Ischemia/physiopathology
- Cell Line, Tumor
- Cerebrovascular Circulation
- Chronic Disease
- Cognition/drug effects
- Dementia, Vascular/drug therapy
- Dementia, Vascular/etiology
- Dementia, Vascular/metabolism
- Dementia, Vascular/pathology
- Dementia, Vascular/physiopathology
- Dementia, Vascular/psychology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Glucosides/pharmacology
- Glutathione Peroxidase/metabolism
- Humans
- Male
- Malondialdehyde/metabolism
- Maze Learning/drug effects
- NF-E2-Related Factor 2/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Neuroprotective Agents/pharmacology
- Oxidative Stress/drug effects
- Rats, Wistar
- Reactive Oxygen Species/metabolism
- Sulfhydryl Compounds/metabolism
- Time Factors
Collapse
Affiliation(s)
- Yang Li
- Department of Neurosurgery, The First Affiliated Hospital of Liaoning Medical University Jinzhou 121000, Liaoning Province, China
| | - Zhenxing Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Liaoning Medical University Jinzhou 121000, Liaoning Province, China
| |
Collapse
|
437
|
Datta NS, Chukkapalli S, Vengalil N, Zhan E, Przyklenk K, Lasley R. Parathyroid hormone-related peptide protects cardiomyocytes from oxidative stress-induced cell death: First evidence of a novel endocrine-cardiovascular interaction. Biochem Biophys Res Commun 2015; 468:202-7. [PMID: 26518653 DOI: 10.1016/j.bbrc.2015.10.130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 10/24/2015] [Indexed: 11/27/2022]
Abstract
Although there is a growing interest in the molecular cross-talk between the endocrine and cardiovascular systems, the cardiac effects of calcium-regulating hormones (i.e., parathyroid hormone-related peptide (PTHrP)) have not been explored. In this study, we examined the effect of PTHrP on the viability of isolated adult mouse cardiomyocytes subjected to oxidative stress. Myocytes from 19 to 22 week old male 129J/C57BL6 mice were exposed to oxidative insult in the form of H2O2 which led to more than 70% loss of cell viability. Herein we demonstrate, for the first time, that pretreatment with 100 nM PTHrP prior to 100 μM H2O2 incubation prevents H2O2 -induced cell death by more than 50%. Immunoblot analysis revealed H2O2 induction of MKP-1 protein expression while PTHrP decreased MKP-1 expression. Moreover, myocytes derived from MKP1 KO mice were resistant to oxidative injury. No added benefit of PTHrP treatment was noted in MKP-1 null cardiomyocytes. Using specific pharmacological inhibitors we demonstrated that P-p38, P-ERK and P-AKT mediated PTHrP's cardioprotective action. These data provide novel evidence that: i) down-regulation of MKP1 affords profound protection against oxidative stress; and ii) PTHrP is cardioprotective, possibly via down-regulation of MKP-1 and activation of MAPK and PI3K/AKT signaling.
Collapse
Affiliation(s)
- Nabanita S Datta
- Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Sahiti Chukkapalli
- Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Nathan Vengalil
- Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Enbo Zhan
- Department of Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Karin Przyklenk
- Department of Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Robert Lasley
- Department of Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
438
|
Hu Y, Deng H, Xu S, Zhang J. MicroRNAs Regulate Mitochondrial Function in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci 2015; 16:24895-917. [PMID: 26492239 PMCID: PMC4632781 DOI: 10.3390/ijms161024895] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/08/2015] [Indexed: 01/30/2023] Open
Abstract
Cerebral ischemia-reperfusion injury involves multiple independently fatal terminal pathways in the mitochondria. These pathways include the reactive oxygen species (ROS) generation caused by changes in mitochondrial membrane potential and calcium overload, resulting in apoptosis via cytochrome c (Cyt c) release. In addition, numerous microRNAs are associated with the overall process. In this review, we first briefly summarize the mitochondrial changes in cerebral ischemia-reperfusion and then describe the possible molecular mechanism of miRNA-regulated mitochondrial function, which likely includes oxidative stress and energy metabolism, as well as apoptosis. On the basis of the preceding analysis, we conclude that studies of microRNAs that regulate mitochondrial function will expedite the development of treatments for cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yue Hu
- Graduate School, Tianjin University of Traditional Chinese Medicine, 312 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| | - Hao Deng
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| | - Junping Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| |
Collapse
|
439
|
Park S, Kim DS, Kang S, Moon BR. Fermented soybeans, Chungkookjang, prevent hippocampal cell death and β-cell apoptosis by decreasing pro-inflammatory cytokines in gerbils with transient artery occlusion. Exp Biol Med (Maywood) 2015; 241:296-307. [PMID: 26468168 DOI: 10.1177/1535370215606811] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/20/2015] [Indexed: 01/03/2023] Open
Abstract
Since Chungkookjang, a short-term fermented soybean, is known to improve glucose metabolism and antioxidant activity, it may prevent the neurological symptoms and glucose disturbance induced by artery occlusion. We investigated the protective effects and mechanisms of traditional (TFC) and standardized Chungkookjang fermented with Bacillus licheniformis (BLFC) against ischemia/reperfusion damage in the hippocampal CA1 region and against hyperglycemia after transient cerebral ischemia in gerbils. Gerbils were subjected to either an occlusion of the bilateral common carotid arteries for 8 min to render them ischemic or a sham operation. Ischemic gerbils were fed either a 40% fat diet containing 10% of either cooked soybean (CSB), TFC, or BLFC for 28 days. Neuronal cell death and cytokine expression in the hippocampus, neurological deficit, serum cytokine levels, and glucose metabolism were measured. TFC and BLFC contained more isoflavonoid aglycones than CSB. Artery occlusion increased the expressions of IL-1β and TNF-α as well as cell death in the hippocampal CA1 region and induced severe neurological symptoms. CSB, TFC, and BLFC prevented the neuronal cell death and the symptoms such as dropped eyelid, bristling hair, reduced muscle tone and flexor reflex, and abnormal posture and walking patterns, and suppressed cytokine expressions. CSB was less effective than TFC and BLFC. Artery occlusion induced glucose intolerance due to decreased insulin secretion and β-cell mass. TFC and BLFC prevented the impairment of glucose metabolism by artery occlusion. Especially TFC and BLFC increased β-cell proliferation and suppressed the β-cell apoptosis by suppressing TNF-α and IL-1β which in turn decreased cleaved caspase-3 that caused apoptosis. In conclusion, TFC and BLFC may prevent and alleviate neuronal cell death in the hippocampal CA1 region and neurological symptoms and poststroke hyperglycemia in gerbils with artery occlusion. This might be associated with increased isoflavonoid aglycones.
Collapse
Affiliation(s)
- Sunmin Park
- Dept. of Food and Nutrition, College of Natural Science, Obesity/Diabetes Research Institutes, Hoseo University, Asan-Si 336-795, Korea
| | - Da Sol Kim
- Dept. of Food and Nutrition, College of Natural Science, Obesity/Diabetes Research Institutes, Hoseo University, Asan-Si 336-795, Korea
| | - Sunna Kang
- Dept. of Food and Nutrition, College of Natural Science, Obesity/Diabetes Research Institutes, Hoseo University, Asan-Si 336-795, Korea
| | - Bo Reum Moon
- Dept. of Food and Nutrition, College of Natural Science, Obesity/Diabetes Research Institutes, Hoseo University, Asan-Si 336-795, Korea
| |
Collapse
|
440
|
Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 2015; 6:524-551. [PMID: 26484802 PMCID: PMC4625011 DOI: 10.1016/j.redox.2015.08.020] [Citation(s) in RCA: 1034] [Impact Index Per Article: 103.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 12/11/2022] Open
Abstract
Reperfusion injury, the paradoxical tissue response that is manifested by blood flow-deprived and oxygen-starved organs following the restoration of blood flow and tissue oxygenation, has been a focus of basic and clinical research for over 4-decades. While a variety of molecular mechanisms have been proposed to explain this phenomenon, excess production of reactive oxygen species (ROS) continues to receive much attention as a critical factor in the genesis of reperfusion injury. As a consequence, considerable effort has been devoted to identifying the dominant cellular and enzymatic sources of excess ROS production following ischemia-reperfusion (I/R). Of the potential ROS sources described to date, xanthine oxidase, NADPH oxidase (Nox), mitochondria, and uncoupled nitric oxide synthase have gained a status as the most likely contributors to reperfusion-induced oxidative stress and represent priority targets for therapeutic intervention against reperfusion-induced organ dysfunction and tissue damage. Although all four enzymatic sources are present in most tissues and are likely to play some role in reperfusion injury, priority and emphasis has been given to specific ROS sources that are enriched in certain tissues, such as xanthine oxidase in the gastrointestinal tract and mitochondria in the metabolically active heart and brain. The possibility that multiple ROS sources contribute to reperfusion injury in most tissues is supported by evidence demonstrating that redox-signaling enables ROS produced by one enzymatic source (e.g., Nox) to activate and enhance ROS production by a second source (e.g., mitochondria). This review provides a synopsis of the evidence implicating ROS in reperfusion injury, the clinical implications of this phenomenon, and summarizes current understanding of the four most frequently invoked enzymatic sources of ROS production in post-ischemic tissue. Reperfusion injury is implicated in a variety of human diseases and disorders. Evidence implicating ROS in reperfusion injury continues to grow. Several enzymes are candidate sources of ROS in post-ischemic tissue. Inter-enzymatic ROS-dependent signaling enhances the oxidative stress caused by I/R. .
Collapse
Affiliation(s)
- D Neil Granger
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, United States.
| | - Peter R Kvietys
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
441
|
Lu Q, Tucker D, Dong Y, Zhao N, Zhang Q. Neuroprotective and Functional Improvement Effects of Methylene Blue in Global Cerebral Ischemia. Mol Neurobiol 2015; 53:5344-55. [PMID: 26433378 DOI: 10.1007/s12035-015-9455-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/25/2015] [Indexed: 11/25/2022]
Abstract
Transient global cerebral ischemia (GCI) causes delayed neuronal cell death in the vulnerable hippocampus CA1 subfield, as well as behavioral deficits. Ischemia reperfusion (I/R) produces excessive reactive oxygen species and plays a key role in brain injury. The mitochondrial electron respiratory chain is the main cellular source of free radical generation, and dysfunction of mitochondria has a significant impact on the neuronal cell death in ischemic brain. The aim of the present study is to investigate the potential beneficial effects of methylene blue (MB) in a four-vessel occlusion (4VO) GCI model on adult male rats. MB was delivered at a dose of 0.5 mg/kg/day for 7 days, through a mini-pump implanted subcutaneously after GCI. We first found that MB significantly improved ischemic neuronal survival in the hippocampal CA1 region as measured by cresyl violet staining as well as NeuN staining. We also found that MB has the ability to rescue ischemia-induced decreases of cytochrome c oxidase activity and ATP generation in the CA1 region following I/R. Further analysis with labeling of MitoTracker® Red revealed that the depolarization of mitochondrial membrane potential (MMP) was markedly attenuated following MB treatment. In addition, the induction of caspase-3, caspase-8, and caspase-9 activities and the increased numbers of TUNEL-positive cells of the CA1 region were significantly reduced by MB application. Correspondingly, Barnes maze tests showed that the deterioration of spatial learning and memory performance following GCI was significantly improved in the MB-treatment group compared to the ischemic control group. In summary, our study suggests that MB may be a promising therapeutic agent targeting neuronal cell death and cognitive deficits following transient global cerebral ischemia.
Collapse
Affiliation(s)
- Qing Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regent University, 1120 15th Street, CA3050, Augusta, GA, 30912, USA
| | - Donovan Tucker
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regent University, 1120 15th Street, CA3050, Augusta, GA, 30912, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regent University, 1120 15th Street, CA3050, Augusta, GA, 30912, USA
| | - Ningjun Zhao
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regent University, 1120 15th Street, CA3050, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regent University, 1120 15th Street, CA3050, Augusta, GA, 30912, USA.
| |
Collapse
|
442
|
Effects of alpha-tocopherol associated with lovastatin on brain tissue and memory function in SHRSPs. Physiol Behav 2015; 149:303-9. [DOI: 10.1016/j.physbeh.2015.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 12/22/2022]
|
443
|
Perinatal brain damage: The term infant. Neurobiol Dis 2015; 92:102-12. [PMID: 26409031 PMCID: PMC4915441 DOI: 10.1016/j.nbd.2015.09.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/27/2015] [Accepted: 09/22/2015] [Indexed: 12/21/2022] Open
|
444
|
Nichols M, Zhang J, Polster BM, Elustondo PA, Thirumaran A, Pavlov EV, Robertson GS. Synergistic neuroprotection by epicatechin and quercetin: Activation of convergent mitochondrial signaling pathways. Neuroscience 2015; 308:75-94. [PMID: 26363153 DOI: 10.1016/j.neuroscience.2015.09.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/25/2015] [Accepted: 09/03/2015] [Indexed: 01/08/2023]
Abstract
In view of evidence that increased consumption of epicatechin (E) and quercetin (Q) may reduce the risk of stroke, we have measured the effects of combining E and Q on mitochondrial function and neuronal survival following oxygen-glucose deprivation (OGD). Relative to mouse cortical neuron cultures pretreated (24h) with either E or Q (0.1-10μM), E+Q synergistically attenuated OGD-induced neuronal cell death. E, Q and E+Q (0.3μM) increased spare respiratory capacity but only E+Q (0.3μM) preserved this crucial parameter of neuronal mitochondrial function after OGD. These improvements were accompanied by corresponding increases in cyclic AMP response element binding protein (CREB) phosphorylation and the expression of CREB-target genes that promote neuronal survival (Bcl-2) and mitochondrial biogenesis (PGC-1α). Consistent with these findings, E+Q (0.1 and 1.0μM) elevated mitochondrial gene expression (MT-ND2 and MT-ATP6) to a greater extent than E or Q after OGD. Q (0.3-3.0μM), but not E (3.0μM), elevated cytosolic calcium (Ca(2+)) spikes and the mitochondrial membrane potential. Conversely, E and E+Q (0.1 and 0.3μM), but not Q (0.1 and 0.3μM), activated protein kinase B (Akt). Nitric oxide synthase (NOS) inhibition with L-N(G)-nitroarginine methyl ester (1.0μM) blocked neuroprotection by E (0.3μM) or Q (1.0μM). Oral administration of E+Q (75mg/kg; once daily for 5days) reduced hypoxic-ischemic brain injury. These findings suggest E and Q activate Akt- and Ca(2+)-mediated signaling pathways that converge on NOS and CREB resulting in synergistic improvements in neuronal mitochondrial performance which confer profound protection against ischemic injury.
Collapse
Affiliation(s)
- M Nichols
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - J Zhang
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - B M Polster
- Department of Anesthesiology, Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - P A Elustondo
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - A Thirumaran
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - E V Pavlov
- Department of Basic Sciences, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA.
| | - G S Robertson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Psychiatry, 5909 Veterans' Memorial Lane, 8th Floor Abbie J. Lane Memorial Building, QEII Health Sciences Centre, Halifax, Nova Scotia B3H 2E2, Canada.
| |
Collapse
|
445
|
Andrabi SS, Parvez S, Tabassum H. Melatonin and Ischemic Stroke: Mechanistic Roles and Action. Adv Pharmacol Sci 2015; 2015:384750. [PMID: 26435711 PMCID: PMC4575994 DOI: 10.1155/2015/384750] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/09/2015] [Accepted: 08/19/2015] [Indexed: 11/21/2022] Open
Abstract
Stroke is one of the most devastating neurological disabilities and brain's vulnerability towards it proves to be fatal and socio-economic loss of millions of people worldwide. Ischemic stroke remains at the center stage of it, because of its prevalence amongst the several other types attacking the brain. The various cascades of events that have been associated with stroke involve oxidative stress, excitotoxicity, mitochondrial dysfunction, upregulation of Ca(2+) level, and so forth. Melatonin is a neurohormone secreted by pineal and extra pineal tissues responsible for various physiological processes like sleep and mood behaviour. Melatonin has been implicated in various neurological diseases because of its antioxidative, antiapoptotic, and anti-inflammatory properties. We have previously reviewed the neuroprotective effect of melatonin in various models of brain injury like traumatic brain injury and spinal cord injury. In this review, we have put together the various causes and consequence of stroke and protective role of melatonin in ischemic stroke.
Collapse
Affiliation(s)
- Syed Suhail Andrabi
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Heena Tabassum
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| |
Collapse
|
446
|
Marshall J, Wong KY, Rupasinghe CN, Tiwari R, Zhao X, Berberoglu ED, Sinkler C, Liu J, Lee I, Parang K, Spaller MR, Hüttemann M, Goebel DJ. Inhibition of N-Methyl-D-aspartate-induced Retinal Neuronal Death by Polyarginine Peptides Is Linked to the Attenuation of Stress-induced Hyperpolarization of the Inner Mitochondrial Membrane Potential. J Biol Chem 2015; 290:22030-22048. [PMID: 26100636 PMCID: PMC4571956 DOI: 10.1074/jbc.m115.662791] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/09/2015] [Indexed: 02/02/2023] Open
Abstract
It is widely accepted that overactivation of NMDA receptors, resulting in calcium overload and consequent mitochondrial dysfunction in retinal ganglion neurons, plays a significant role in promoting neurodegenerative disorders such as glaucoma. Calcium has been shown to initiate a transient hyperpolarization of the mitochondrial membrane potential triggering a burst of reactive oxygen species leading to apoptosis. Strategies that enhance cell survival signaling pathways aimed at preventing this adverse hyperpolarization of the mitochondrial membrane potential may provide a novel therapeutic intervention in retinal disease. In the retina, brain-derived neurotrophic factor has been shown to be neuroprotective, and our group previously reported a PSD-95/PDZ-binding cyclic peptide (CN2097) that augments brain-derived neurotrophic factor-induced pro-survival signaling. Here, we examined the neuroprotective properties of CN2097 using an established retinal in vivo NMDA toxicity model. CN2097 completely attenuated NMDA-induced caspase 3-dependent and -independent cell death and PARP-1 activation pathways, blocked necrosis, and fully prevented the loss of long term ganglion cell viability. Although neuroprotection was partially dependent upon CN2097 binding to the PDZ domain of PSD-95, our results show that the polyarginine-rich transport moiety C-R(7), linked to the PDZ-PSD-95-binding cyclic peptide, was sufficient to mediate short and long term protection via a mitochondrial targeting mechanism. C-R(7) localized to mitochondria and was found to reduce mitochondrial respiration, mitochondrial membrane hyperpolarization, and the generation of reactive oxygen species, promoting survival of retinal neurons.
Collapse
Affiliation(s)
- John Marshall
- From the Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, 02912
| | - Kwoon Y Wong
- the Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105
| | - Chamila N Rupasinghe
- the Geisel School of Medicine at Dartmouth, Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center, Lebanon, New Hampshire 03756
| | - Rakesh Tiwari
- the Chapman University School of Pharmacy, Irvine, California 92618
| | - Xiwu Zhao
- the Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105
| | | | - Christopher Sinkler
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, and
| | - Jenney Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, and
| | - Icksoo Lee
- the College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do, 330-714, Republic of Korea
| | - Keykavous Parang
- the Chapman University School of Pharmacy, Irvine, California 92618
| | - Mark R Spaller
- the Geisel School of Medicine at Dartmouth, Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center, Lebanon, New Hampshire 03756
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, and
| | | |
Collapse
|
447
|
Mehrjerdi FZ, Aboutaleb N, Pazoki-Toroudi H, Soleimani M, Ajami M, Khaksari M, Safari F, Habibey R. The Protective Effect of Remote Renal Preconditioning Against Hippocampal Ischemia Reperfusion Injury: Role of KATP Channels. J Mol Neurosci 2015; 57:554-60. [DOI: 10.1007/s12031-015-0636-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/28/2015] [Indexed: 12/23/2022]
|
448
|
Mitochondrial CB1 receptor is involved in ACEA-induced protective effects on neurons and mitochondrial functions. Sci Rep 2015. [PMID: 26215450 PMCID: PMC4516969 DOI: 10.1038/srep12440] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial dysfunction contributes to cell death after cerebral ischemia/reperfusion (I/R) injury. Cannabinoid CB1 receptor is expressed in neuronal mitochondrial membranes (mtCB1R) and involved in regulating mitochondrial functions under physiological conditions. However, whether mtCB1R affords neuroprotection against I/R injury remains unknown. We used mouse models of cerebral I/R, primary cultured hippocampal neurons exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) and Ca(2+)-induced injury in purified neuronal mitochondria to investigate the role of mtCB1R in neuroprotection. Our results showed selective cell-permeant CB1 receptor agonist, arachidonyl-2-chloroethylamide (ACEA), significantly up-regulated the expression of mtCB1R protein in hippocampal neurons and tissue. In vitro, ACEA restored cell viability, inhibited generation of reactive oxygen species (ROS), decreased lactate dehydrogenase (LDH) release and reduced apoptosis, improved mitochondrial function. In vivo, ACEA ameliorated neurological scores, diminished the number of TUNEL-positive neurons and decreased the expression of cleaved caspase-3. However, ACEA-induced benefits were blocked by the selective cell-permeant CB1 receptor antagonist AM251, but just partially by the selective cell-impermeant CB1 receptor antagonist hemopressin. In purified neuronal mitochondria, mtCB1R activation attenuated Ca(2+)-induced mitochondrial injury. In conclusion, mtCB1R is involved in ACEA-induced protective effects on neurons and mitochondrial functions, suggesting mtCB1R may be a potential novel target for the treatment of brain ischemic injury.
Collapse
|
449
|
Moghaddas A, Dashti-Khavidaki S. Potential protective effects of l-carnitine against neuromuscular ischemia-reperfusion injury: From experimental data to potential clinical applications. Clin Nutr 2015. [PMID: 26199084 DOI: 10.1016/j.clnu.2015.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIM Ischemia-reperfusion (I/R) injury plays important role in morbidity and mortality in several pathologies, including myocardial infarction, ischemic stroke, acute kidney injury, trauma, and circulatory arrest. An imbalance in metabolic supply and tissue's demand during ischemia results in profound tissue hypoxia and microvascular dysfunction. Subsequently, reperfusion further results in activation of immune responses and cell death programs. l-carnitine and its derivatives have been administered to improve tolerance against I/R injury in various tissues. Anti-ischemic properties of l-carnitine and its derivative in neuromuscular organs will be reviewed here at the light of pertinent results from basic and clinical researches. METHOD All available in vitro and in vivo studies, patents, clinical trials, and meeting abstracts in English language that examined the protective effects of l-carnitine against I/R induced injury in neuromuscular organs were reviewed. Materials were obtained by searching ELSEVIER, web of knowledge, PubMed, Scopus, clinical trials, and Cochrane database of systematic reviews. CONCLUSION Although animal studies on central nervous system and some human studies on muscular system were in favors of effects of l-carnitine against I/R injury, however, more clinical trials are needed to clarify the clinical importance of l-carnitine as a treatment option to manage I/R-induced injury of neuromuscular system.
Collapse
Affiliation(s)
- Azadeh Moghaddas
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
450
|
The Possible Damaged Mechanism and the Preventive Effect of Monosialotetrahexosylganglioside in a Rat Model of Cerebral Ischemia-Reperfusion Injury. J Stroke Cerebrovasc Dis 2015; 24:1471-8. [DOI: 10.1016/j.jstrokecerebrovasdis.2015.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 11/18/2022] Open
|