401
|
Abstract
Shank3, which encodes a scaffolding protein at glutamatergic synapses, is a genetic risk factor for autism. In this study, we examined the impact of Shank3 deficiency on the NMDA-type glutamate receptor, a key player in cognition and mental illnesses. We found that knockdown of Shank3 with a small interfering RNA (siRNA) caused a significant reduction of NMDAR-mediated ionic or synaptic current, as well as the surface expression of NR1 subunits, in rat cortical cultures. The effect of Shank3 siRNA on NMDAR currents was blocked by an actin stabilizer, and was occluded by an actin destabilizer, suggesting the involvement of actin cytoskeleton. Since actin dynamics is regulated by the GTPase Rac1 and downstream effector p21-activated kinase (PAK), we further examined Shank3 regulation of NMDARs when Rac1 or PAK was manipulated. We found that the reducing effect of Shank3 siRNA on NMDAR currents was mimicked and occluded by specific inhibitors for Rac1 or PAK, and was blocked by constitutively active Rac1 or PAK. Immunocytochemical data showed a strong reduction of F-actin clusters after Shank3 knockdown, which was occluded by a PAK inhibitor. Inhibiting cofilin, the primary downstream target of PAK and a major actin depolymerizing factor, prevented Shank3 siRNA from reducing NMDAR currents and F-actin clusters. Together, these results suggest that Shank3 deficiency induces NMDAR hypofunction by interfering with the Rac1/PAK/cofilin/actin signaling, leading to the loss of NMDAR membrane delivery or stability. It provides a potential mechanism for the role of Shank3 in cognitive deficit in autism.
Collapse
|
402
|
Chronic stress induces a selective decrease in AMPA receptor-mediated synaptic excitation at hippocampal temporoammonic-CA1 synapses. J Neurosci 2013; 33:15669-74. [PMID: 24089474 DOI: 10.1523/jneurosci.2588-13.2013] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic stress promotes depression, but how it disrupts cognition and mood remains unknown. Chronic stress causes atrophy of pyramidal cell dendrites in the hippocampus and cortex in human and animal models, and a depressive-like behavioral state. We now test the hypothesis that excitatory temporoammonic (TA) synapses in the distal dendrites of CA1 pyramidal cells in rats are altered by chronic unpredictable stress (CUS) and restored by chronic antidepressant treatment, in conjunction with the behavioral consequences of CUS. We observed a decrease in AMPAR-mediated excitation at TA-CA1 synapses, but not Schaffer collateral-CA1 synapses, after CUS, with a corresponding layer-specific decrease in GluA1 expression. Both changes were reversed by chronic fluoxetine. CUS also disrupted long-term memory consolidation in the Morris water maze, a function of TA-CA1 synapses. The decreases in TA-CA1 AMPAR-mediated excitation and performance in the consolidation test were correlated positively with decreases in sucrose preference, a measure of anhedonia. We conclude that chronic stress selectively decreases AMPAR number and function at specific synapses and suggest that this underlies various depressive endophenotypes. Our findings provide evidence that glutamatergic dysfunction is an underlying cause of depression and that current first-line antidepressant drugs act by restoring excitatory synaptic strength. Our findings suggest novel therapeutic targets for this debilitating disease.
Collapse
|
403
|
Negrón-Oyarzo I, Pérez MÁ, Terreros G, Muñoz P, Dagnino-Subiabre A. Effects of chronic stress in adolescence on learned fear, anxiety, and synaptic transmission in the rat prelimbic cortex. Behav Brain Res 2013; 259:342-53. [PMID: 24216268 DOI: 10.1016/j.bbr.2013.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/28/2013] [Accepted: 11/02/2013] [Indexed: 01/01/2023]
Abstract
The prelimbic cortex and amygdala regulate the extinction of conditioned fear and anxiety, respectively. In adult rats, chronic stress affects the dendritic morphology of these brain areas, slowing extinction of learned fear and enhancing anxiety. The aim of this study was to determine whether rats subjected to chronic stress in adolescence show changes in learned fear, anxiety, and synaptic transmission in the prelimbic cortex during adulthood. Male Sprague Dawley rats were subjected to seven days of restraint stress on postnatal day forty-two (PND 42, adolescence). Afterward, the fear-conditioning paradigm was used to study conditioned fear extinction. Anxiety-like behavior was measured one day (PND 50) and twenty-one days (PND 70, adulthood) after stress using the elevated-plus maze and dark-light box tests, respectively. With another set of rats, excitatory synaptic transmission was analyzed with slices of the prelimbic cortex. Rats that had been stressed during adolescence and adulthood had higher anxiety-like behavior levels than did controls, while stress-induced slowing of learned fear extinction in adolescence was reversed during adulthood. As well, the field excitatory postsynaptic potentials of stressed adolescent rats had significantly lower amplitudes than those of controls, although the amplitudes were higher in adulthood. Our results demonstrate that short-term stress in adolescence induces strong effects on excitatory synaptic transmission in the prelimbic cortex and extinction of learned fear, where the effect of stress on anxiety is more persistent than on the extinction of learned fear. These data contribute to the understanding of stress neurobiology.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Laboratory of Behavioral Neurobiology, Department of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile; Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Ángel Pérez
- Laboratory of Behavioral Neurobiology, Department of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| | - Gonzalo Terreros
- Laboratory of Behavioral Neurobiology, Department of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Alexies Dagnino-Subiabre
- Laboratory of Behavioral Neurobiology, Department of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
404
|
Finsterwald C, Alberini CM. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies. Neurobiol Learn Mem 2013; 112:17-29. [PMID: 24113652 DOI: 10.1016/j.nlm.2013.09.017] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/20/2013] [Accepted: 09/25/2013] [Indexed: 12/17/2022]
Abstract
A proper response against stressors is critical for survival. In mammals, the stress response is primarily mediated by secretion of glucocorticoids via the hypothalamic-pituitary-adrenocortical (HPA) axis and release of catecholamines through adrenergic neurotransmission. Activation of these pathways results in a quick physical response to the stress and, in adaptive conditions, mediates long-term changes in the brain that lead to the formation of long-term memories of the experience. These long-term memories are an essential adaptive mechanism that allows an animal to effectively face similar demands again. Indeed, a moderate stress level has a strong positive effect on memory and cognition, as a single arousing or moderately stressful event can be remembered for up to a lifetime. Conversely, exposure to extreme, traumatic, or chronic stress can have the opposite effect and cause memory loss, cognitive impairments, and stress-related psychopathologies such as anxiety disorders, depression and post-traumatic stress disorder (PTSD). While more effort has been devoted to the understanding of the negative effects of chronic stress, much less has been done thus far on the identification of the mechanisms engaged in the brain when stress promotes long-term memory formation. Understanding these mechanisms will provide critical information for use in ameliorating memory processes in both normal and pathological conditions. Here, we will review the role of glucocorticoids and glucocorticoid receptors (GRs) in memory formation and modulation. Furthermore, we will discuss recent findings on the molecular cascade of events underlying the effect of GR activation in adaptive levels of stress that leads to strong, long-lasting memories. Our recent data indicate that the positive effects of GR activation on memory consolidation critically engage the brain-derived neurotrophic factor (BDNF) pathway. We propose and will discuss the hypothesis that stress promotes the formation of strong long-term memories because the activation of hippocampal GRs after learning is coupled to the recruitment of the growth and pro-survival BDNF/cAMP response element-binding protein (CREB) pathway, which is well-know to be a general mechanism required for long-term memory formation. We will then speculate about how these results may explain the negative effects of traumatic or chronic stress on memory and cognitive functions.
Collapse
|
405
|
McEwen BS, Morrison JH. The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron 2013; 79:16-29. [PMID: 23849196 DOI: 10.1016/j.neuron.2013.06.028] [Citation(s) in RCA: 636] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2013] [Indexed: 12/14/2022]
Abstract
The prefrontal cortex (PFC) is involved in working memory and self-regulatory and goal-directed behaviors and displays remarkable structural and functional plasticity over the life course. Neural circuitry, molecular profiles, and neurochemistry can be changed by experiences, which influence behavior as well as neuroendocrine and autonomic function. Such effects have a particular impact during infancy and in adolescence. Behavioral stress affects both the structure and function of PFC, though such effects are not necessarily permanent, as young animals show remarkable neuronal resilience if the stress is discontinued. During aging, neurons within the PFC become less resilient to stress. There are also sex differences in the PFC response to stressors. While such stress and sex hormone-related alterations occur in regions mediating the highest levels of cognitive function and self-regulatory control, the fact that they are not necessarily permanent has implications for future behavior-based therapies that harness neural plasticity for recovery.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
406
|
Involvement of NR1, NR2A different expression in brain regions in anxiety-like behavior of prenatally stressed offspring. Behav Brain Res 2013; 257:1-7. [PMID: 24029697 DOI: 10.1016/j.bbr.2013.08.044] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/12/2013] [Accepted: 08/27/2013] [Indexed: 11/24/2022]
Abstract
Prenatal stress (PS) has been shown to be associated with anxiety. However, the underlying neurological mechanisms are not well understood. To determine the effects of PS on anxiety-like behavior in the adult offspring, we evaluated anxiety-like behavior using open field test (OFT) and elevated plus maze (EPM) in the 3-month offspring. Both male and female offspring showed a significant reduction of crossing counts in the center, total crossing counts, rearing counts and time spent in the center in the OFT, and only male offspring showed a decreased percentage of open-arm entries and open-arm time in open arms in the EPM. Additionally, expression of NR1 and NR2A subunit of N-methyl-D-aspartate receptor (NMDAR) in the hippocampus (HIP), prefrontal cortex (PFC) and striatum (STR) was studied. Our results showed that PS reduced NR1 and NR2A expression in the HIP, NR2A expression in the PFC and STR in the offspring. The altered NR1 and NR2A could have potential impact on anxiety-like behavior in the adult offspring exposed to PS.
Collapse
|
407
|
Yuen EY, Zhong P, Li X, Wei J, Yan Z. Restoration of glutamatergic transmission by dopamine D4 receptors in stressed animals. J Biol Chem 2013; 288:26112-26120. [PMID: 23884421 DOI: 10.1074/jbc.m112.396648] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The prefrontal cortex (PFC), a key brain region for cognitive and emotional processes, is highly regulated by dopaminergic inputs. The dopamine D4 receptor, which is enriched in PFC, has been implicated in mental disorders, such as attention deficit-hyperactivity disorder and schizophrenia. Recently we have found homeostatic regulation of AMPA receptor-mediated synaptic transmission in PFC pyramidal neurons by the D4 receptor, providing a potential mechanism for D4 in stabilizing cortical excitability. Because stress is tightly linked to adaptive and maladaptive changes associated with mental health and disorders, we examined the synaptic actions of D4 in stressed rats. We found that neural excitability was elevated by acute stress and dampened by repeated stress. D4 activation produced a potent reduction of excitatory transmission in acutely stressed animals and a marked increase of excitatory transmission in repeatedly stressed animals. These effects of D4 targeted GluA2-lacking AMPA receptors and relied on the bi-directional regulation of calcium/calmodulin kinase II activity. The restoration of PFC glutamatergic transmission in stress conditions may enable D4 receptors to serve as a synaptic stabilizer in normal and pathological conditions.
Collapse
Affiliation(s)
- Eunice Y Yuen
- From the Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York 14214
| | - Ping Zhong
- From the Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York 14214
| | - Xiangning Li
- From the Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York 14214
| | - Jing Wei
- From the Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York 14214
| | - Zhen Yan
- From the Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York 14214.
| |
Collapse
|
408
|
Joëls M, Pasricha N, Karst H. The interplay between rapid and slow corticosteroid actions in brain. Eur J Pharmacol 2013; 719:44-52. [PMID: 23886619 DOI: 10.1016/j.ejphar.2013.07.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 07/01/2013] [Accepted: 07/04/2013] [Indexed: 11/26/2022]
Abstract
Stress causes the release of many transmitters and hormones, including corticosteroids. These molecules enter the brain and exert their effects through the mineralo- and glucocorticoid receptor. The former receptor plays an important role in neuronal stability. However, it also mediates rapid non-genomic corticosteroid effects that in synergy with other stress mediators activate limbic cells and promote behavioral choices allowing the organism to quickly respond to the imminent danger. Glucocorticoid receptors primarily mediate slow genomic effects, for instance in the hippocampus and prefrontal cortex, which are thought to contribute to contextual and higher cognitive aspects of behavioral performance several hours after stress. Rapid and slow effects interact and collectively contribute to successful behavioral adaptation. Long-term disturbances in the release pattern of corticosteroid hormones and in the responsiveness of their receptors give rise to structural and functional changes in neuronal properties which may contribute to the expression of psychopathology.
Collapse
Affiliation(s)
- Marian Joëls
- Department of Neuroscience & Pharmacology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | - Natasha Pasricha
- Department of Neuroscience & Pharmacology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Henk Karst
- Department of Neuroscience & Pharmacology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
409
|
Murck H. Ketamine, magnesium and major depression--from pharmacology to pathophysiology and back. J Psychiatr Res 2013; 47:955-65. [PMID: 23541145 DOI: 10.1016/j.jpsychires.2013.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/14/2013] [Accepted: 02/26/2013] [Indexed: 01/08/2023]
Abstract
UNLABELLED The glutamatergic mechanism of antidepressant treatments is now in the center of research to overcome the limitations of monoamine-based approaches. There are several unresolved issues. For the action of the model compound, ketamine, NMDA-receptor block, AMPA-receptor activation and BDNF release appear to be involved in a mechanism, which leads to synaptic sprouting and strengthened synaptic connections. The link to the pathophysiology of depression is not clear. An overlooked connection is the role of magnesium, which acts as physiological NMDA-receptor antagonist: 1. There is overlap between the actions of ketamine with that of high doses of magnesium in animal models, finally leading to synaptic sprouting. 2. Magnesium and ketamine lead to synaptic strengthening, as measured by an increase in slow wave sleep in humans. 3. Pathophysiological mechanisms, which have been identified as risk factors for depression, lead to a reduction of (intracellular) magnesium. These are neuroendocrine changes (increased cortisol and aldosterone) and diabetes mellitus as well as Mg(2+) deficiency. 4. Patients with therapy refractory depression appear to have lower CNS Mg(2+) levels in comparison to health controls. 5. Experimental Mg(2+) depletion leads to depression- and anxiety like behavior in animal models. 6. Ketamine, directly or indirectly via non-NMDA glutamate receptor activation, acts to increase brain Mg(2+) levels. Similar effects have been observed with other classes of antidepressants. 7. Depressed patients with low Mg(2+) levels tend to be therapy refractory. Accordingly, administration of Mg(2+) either alone or in combination with standard antidepressants acts synergistically on depression like behavior in animal models. CONCLUSION On the basis of the potential pathophysiological role of Mg(2+)-regulation, it may be possible to predict the action of ketamine and of related compounds based on Mg(2+) levels. Furthermore, screening for compounds to increase neuronal Mg(2+) concentration could be a promising instrument to identify new classes of antidepressants. Overall, any discussion of the glutamatergic system in affective disorders should consider the role of Mg(2+).
Collapse
|
410
|
Green MR, McCormick CM. Effects of stressors in adolescence on learning and memory in rodent models. Horm Behav 2013; 64:364-79. [PMID: 23998678 DOI: 10.1016/j.yhbeh.2012.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/04/2012] [Accepted: 09/23/2012] [Indexed: 02/07/2023]
Abstract
This article is part of a Special Issue "Puberty and Adolescence". Learning and memory is affected by a myriad of factors, including exposure to stressors and the corresponding rise in circulating glucocorticoids. Nevertheless, the effects of stressors depend on the sex, species, the type of stressor used, the duration of exposure, as well as the developmental time-point in which stressors are experienced. Effects of stress in adolescence, however, have received less attention than other developmental periods. In adolescence, the hypothalamic-pituitary-adrenal axis and brain regions involved in learning and memory, which also richly express corticosteroid receptors, are continuing to develop, and thus the effects of stress exposures would be expected to differ from those in adulthood. We conclude from a review of the available literature in animal models that hippocampal function is particularly sensitive to adolescent stressors, and the effects tend to be most evident several weeks after the exposure, suggesting stressors alter the developmental trajectory of the hippocampus.
Collapse
Affiliation(s)
- Matthew R Green
- Department of Psychology, Brock University, 500 Glenridge Ave., St. Catharines, Ontario, Canada
| | | |
Collapse
|
411
|
Keil MF, Briassoulis G, Nesterova M, Miraftab N, Gokarn N, Wu TJ, Stratakis CA. Threat bias in mice with inactivating mutations of Prkar1a. Neuroscience 2013; 241:206-14. [PMID: 23531435 PMCID: PMC3646976 DOI: 10.1016/j.neuroscience.2013.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 01/18/2023]
Abstract
Anxiety disorders are associated with abnormalities in the neural processing of threat-related stimuli. However, the neurobiological mechanisms underlying threat bias in anxiety are not well understood. We recently reported that a Prkar1a heterozygote (Prkar1a(+/-)) mouse with haploinsufficiency for the main regulatory subunit (R1α) of protein kinase A (PKA) exhibits an anxiety-like phenotype associated with increased cAMP signaling in the amygdala. Prkar1a(+/-) mice provide a novel model to test the direct effect of altered PKA expression and subsequent anxiety-like behavioral phenotype on the response to threat. We hypothesized that Prkar1a(+/-)mice would exhibit a bias in threat detection since increased amygdala activity during emotional stimuli is associated with a maladaptive response. We measured behavior and PKA activity in brain areas after exposure to predator or control odor exposure in male Prkar1a(+/-) and wild-type (WT) littermates. Indeed, there were significant differences in the behavioral response to threat detection; WT mice showed the expected response of decrease in exploratory behavior during predator vs. control odor exposure, while Prkar1a(+/-) mice did not alter their behavior between conditions. Basal and total PKA activity was independently associated with genotype, with an interaction between genotype and threat condition. Prkar1a(+/-) mice had higher PKA activity in amygdala and ventromedial hypothalamus in response to predator odor. In contrast, WT mice had higher PKA activity in amygdala and orbitofrontal cortex after exposure to control odor. Dysregulated PKA activity in the amygdala-prefrontal cortex circuitry in Prkar1a(+/-) mice is associated with behavioral phenotype of anxiety and a bias for threat. This is likely related to a failure to inhibit the amydgala response, which is an effect of the genotype. These results suggest that the alteration in PKA signaling in Prkar1a(+/-) mice is not ubiquitous in the brain; tissue-specific effects of the cAMP/PKA pathway are related to threat detection and fear sensitization.
Collapse
Affiliation(s)
- M F Keil
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
412
|
Cheng J, Liu W, Duffney LJ, Yan Z. SNARE proteins are essential in the potentiation of NMDA receptors by group II metabotropic glutamate receptors. J Physiol 2013; 591:3935-47. [PMID: 23774277 DOI: 10.1113/jphysiol.2013.255075] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The group II metabotropic glutamate receptors (group II mGluRs) have emerged as the new drug targets for the treatment of mental disorders like schizophrenia. To understand the potential mechanisms underlying the antipsychotic effects of group II mGluRs, we examined their impact on NMDA receptors (NMDARs), since NMDAR hypofunction has been implicated in schizophrenia. The activation of group II mGluRs caused a significant enhancement of NMDAR currents in cortical pyramidal neurons, which was associated with increased NMDAR surface expression and synaptic localization. We further examined whether these effects of group II mGluRs are through the regulation of NMDAR exocytosis via SNARE proteins, a family of proteins involved in vesicle fusion. We found that the enhancing effect of APDC, a selective agonist of group II mGluRs, on NMDAR currents was abolished when botulinum toxin was delivered into the recorded neurons to disrupt the SNARE complex. Inhibiting the function of two key SNARE proteins, SNAP-25 and syntaxin 4, also eliminated the effect of APDC on NMDAR currents. Moreover, the application of APDC increased the activity of Rab4, a small Rab GTPase mediating fast recycling from early endosomes to the plasma membrane, and enhanced the interaction between syntaxin 4 and Rab4. Knockdown of Rab4 or expression of dominant-negative Rab4 attenuated the effect of APDC on NMDAR currents. Taken together, these results have identified key molecules involved in the group II mGluR-induced potentiation of NMDAR exocytosis and function.
Collapse
Affiliation(s)
- Jia Cheng
- Department of Physiology and Biophysics, State University of New York at Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
413
|
Stress and excitatory synapses: from health to disease. Neuroscience 2013; 248:626-36. [PMID: 23727506 DOI: 10.1016/j.neuroscience.2013.05.043] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 05/01/2013] [Accepted: 05/21/2013] [Indexed: 01/20/2023]
Abstract
Individuals are exposed to stressful events in their daily life. The effects of stress on brain function ranges from highly adaptive to increasing the risk to develop psychopathology. For example, stressful experiences are remembered well which can be seen as a highly appropriate behavioral adaptation. On the other hand, stress is an important risk factor, in susceptible individuals, for depression and anxiety. An important question that remains to be addressed is how stress regulates brain function and what determines the threshold between adaptive and maladaptive responses. Excitatory synapses play a crucial role in synaptic transmission, synaptic plasticity and behavioral adaptation. In this review we discuss how brief and prolonged exposure to stress, in adulthood and early life, regulate the function of these synapses, and how these effects may contribute to behavioral adaptation and psychopathology.
Collapse
|
414
|
Gulley JM, Juraska JM. The effects of abused drugs on adolescent development of corticolimbic circuitry and behavior. Neuroscience 2013; 249:3-20. [PMID: 23711583 DOI: 10.1016/j.neuroscience.2013.05.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 01/01/2023]
Abstract
Adolescence is a period of significant neurobiological change that occurs as individuals transition from childhood to adulthood. Because the nervous system is in a relatively labile state during this stage of development, it may be especially sensitive to experience-induced plasticity. One such experience that is relatively common to adolescents is the exposure to drugs of abuse, particularly alcohol and psychostimulants. In this review, we highlight recent findings on the long-lasting effects of exposure to these drugs during adolescence in humans as well as in animal models. Whenever possible, our focus is on studies that use comparison groups of adolescent- and adult-exposed subjects as this is a more direct test of the hypothesis that adolescence represents a period of enhanced vulnerability to the effects of drug-induced plasticity. Lastly, we suggest areas of future investigation that are needed and methodological concerns that should be addressed.
Collapse
Affiliation(s)
- J M Gulley
- Department of Psychology and Neuroscience Program, University of Illinois at Urbana-Champaign, IL, USA.
| | | |
Collapse
|
415
|
Xiong Z, Liu Y, Hu L, Ma B, Ai Y, Xiong C. A rapid facilitation of acid-sensing ion channels current by corticosterone in cultured hippocampal neurons. Neurochem Res 2013; 38:1446-53. [PMID: 23640176 DOI: 10.1007/s11064-013-1045-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/23/2013] [Accepted: 04/10/2013] [Indexed: 12/17/2022]
Abstract
Acid-sensing ion channels (ASIC) play an important role in the central neuronal system and excessive activation of ASICs induces neuronal damage. Recent studies show that ASIC1a, a subunit of ASIC, is involved in stress processes but the mechanisms by which ASIC1a is regulated by corticosterone (CORT), a stress-induced hormone, are as yet unelucidated. In the present study, to explore the effects of CORT on ASIC1a in cultured hippocampal neurons, the whole-cell patch clamp technique was used. We present data showing that extracellular application of 1 and 10 μM CORT increase the inward current when solution of pH 6.0 is applied to the exterior of the cell. Moreover, extracellular application of membrane-impermeable CORT-BSA (1 μM) maintains current elevation induced by the action of ASIC1a. However, intracellular application of CORT (1 μM) did not increase ASIC1a current. Subsequent extracellular application of CORT enhanced the amplitude of ASIC1a current. Also, RU38486 (10 μM), an antagonist of nuclear glucocorticoids receptor, did not block an increase of ASIC1a current induced by CORT. In addition, CORT application further resulted in a significant enhancement of ASIC1a current in the presence of phorbol 12-myristate 13-acetate (0.5 μM) or bryostatin1 (1 μM), which are both protein kinase C (PKC) agonists. On the contrary, after pretreatment with GF109203X (3 μM), an antagonist of PKC, CORT did not elevate ASIC1a current. These data indicate that the rapid increase of ASIC1a current induced by CORT may be caused by the activation of corticosteroid receptors found on the cell membranes of hippocampal neurons and it may involve a PKC-dependent mechanism.
Collapse
Affiliation(s)
- Zhe Xiong
- Medical College, Jianghan University, Wuhan, 430056, China
| | | | | | | | | | | |
Collapse
|
416
|
Sinnamon GCB, Caltabiano M, Baune BT. Differentiating disordered affect in children and adolescents with type 1 diabetes. J Affect Disord 2013; 147:51-8. [PMID: 23141632 DOI: 10.1016/j.jad.2012.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 02/02/2023]
Abstract
BACKGROUND There is evidence for increased risk of affective disorders (AD) in adults with type 1 diabetes however, the prevalence and characteristics of AD in young people with the condition is unclear. Comorbid AD in type 1 diabetes is associated with deleterious self-management, sub-optimal clinical indicators, reduced quality of life, poorer physical health, increased complications, increased high risk behaviours in adolescence and young adulthood, and earlier mortality. The present study investigated the prevalence and character of AD in young people with type 1 diabetes. METHODS The self-report PH-PANAS-C was employed in a cross-sectional, case-control design to identify and differentiate full-syndrome (FS) and subthreshold (St) levels of AD in 53 participants with type 1 diabetes (case) and 54 age-balanced controls (N=107; 7-18 yrs). RESULTS Case participants reported greater AD than controls. When differentiated, only anxiety was significantly more prevalent. Case participants reported less positive affect, and greater negative affect and autonomic arousal. Further, 1:3 case participants presented with St symptoms of AD. LIMITATIONS Self-report measures are known to produce moderated responses therefore symptoms may be more severe than reported. There has been some suggestion that responses to somatic items in the PH-PANAS-C may relate to diabetes-specific states rather than affect-related symptoms however, recent evidence has refuted this argument. CONCLUSIONS AD, particularly anxiety, represents a significant clinical concern in young people with type 1 diabetes both as a disorder in its own right and as a major impediment to primary care and management of the diabetes. The significant dominance of anxiety-related symptoms and prevalence of subthreshold presentation warrant further investigation.
Collapse
Affiliation(s)
- Grant C B Sinnamon
- Department of Psychiatry and Psychiatric Neuroscience, School of Medicine and Dentistry, James Cook University, Angus Smith Drive, Townsville, QLD, Australia.
| | | | | |
Collapse
|
417
|
Local potentiation of excitatory synapses by serotonin and its alteration in rodent models of depression. Nat Neurosci 2013; 16:464-72. [PMID: 23502536 PMCID: PMC3609911 DOI: 10.1038/nn.3355] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/14/2013] [Indexed: 12/14/2022]
Abstract
The causes of major depression remain unknown. Antidepressants elevate concentrations of monoamines, particularly serotonin, but it remains uncertain which downstream events are critical to their therapeutic effects. We found that endogenous serotonin selectively potentiated excitatory synapses formed by the temporoammonic pathway with CA1 pyramidal cells via activation of serotonin receptors (5-HT(1B)Rs), without affecting nearby Schaffer collateral synapses. This potentiation was expressed postsynaptically by AMPA-type glutamate receptors and required calmodulin-dependent protein kinase-mediated phosphorylation of GluA1 subunits. Because they share common expression mechanisms, long-term potentiation and serotonin-induced potentiation occluded each other. Long-term consolidation of spatial learning, a function of temporoammonic-CA1 synapses, was enhanced by 5-HT(1B)R antagonists. Serotonin-induced potentiation was quantitatively and qualitatively altered in a rat model of depression, restored by chronic antidepressants, and required for the ability of chronic antidepressants to reverse stress-induced anhedonia. Changes in serotonin-mediated potentiation, and its recovery by antidepressants, implicate excitatory synapses as a locus of plasticity in depression.
Collapse
|
418
|
Sherrill LK, Stanis JJ, Gulley JM. Age-dependent effects of repeated amphetamine exposure on working memory in rats. Behav Brain Res 2013; 242:84-94. [PMID: 23291159 DOI: 10.1016/j.bbr.2012.12.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/20/2012] [Accepted: 12/24/2012] [Indexed: 11/27/2022]
Abstract
Cognitive dysfunction is a hallmark of chronic psychostimulant misuse. Adolescents may have heightened risk of developing drug-induced deficits because their brains are already undergoing widespread changes in anatomy and function as a normal part of development. To address this hypothesis, we performed two sets of experiments where adolescent and young adult rats were pre-exposed to saline or amphetamine (1 or 3mg/kg) and subsequently tested in a prefrontal cortex (PFC)-sensitive working memory task. A total of ten injections of AMPH or saline (in control rats) were given every other day over the course of 19 days. After rats reached adulthood (>90 days old), cognitive performance was assessed using operant-based delayed matching-to-position (DMTP) and delayed nonmatching-to-position (DNMTP) tasks. DNMTP was also assessed following challenges with amphetamine (0.3-1.25mg/kg), and ketamine (5.0-10mg/kg). In experiment one, we also measured the locomotor response following the first and tenth pre-exposure to amphetamine and after an amphetamine challenge given at the conclusion of operant testing. Compared to adult-exposed groups, adolescents were less sensitive to the psychomotor effects of amphetamine. However, they were more vulnerable to exposure-induced cognitive impairments. For example, adolescent-exposed rats displayed delay-dependent deficits in accuracy, increased sensitivity to proactive interference, and required more training to reach criterion. Drug challenges produced deficits in DNMTP performance, but these were not dependent on pre-exposure group. These studies demonstrate age of exposure-dependent effects of amphetamine on cognition in a PFC-sensitive task, suggesting a heightened sensitivity of adolescents to amphetamine-induced neuroplasticity.
Collapse
Affiliation(s)
- Luke K Sherrill
- Department of Psychology, University of Illinois, Urbana-Champaign, USA
| | | | | |
Collapse
|
419
|
Occlusal disharmony leads to learning deficits associated with decreased cellular proliferation in the hippocampal dentate gyrus of SAMP8 mice. Neurosci Lett 2012; 534:228-32. [PMID: 23262093 DOI: 10.1016/j.neulet.2012.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/28/2012] [Accepted: 12/06/2012] [Indexed: 11/23/2022]
Abstract
Occlusal disharmony is associated with increased plasma corticosterone levels, learning deficits, and morphologic alterations in the hippocampus via chronic stress. Here, we investigated the occlusal disharmony-induced impairment of hippocampal function. We first examined the effects of raising the bite on newborn cell proliferation in the hippocampal dentate gyrus (DG) in senescence-accelerated prone mice. Raising the bite significantly decreased cell proliferation in the hippocampal DG in an age-dependent manner. Immediately after raising the bite, cell proliferation decreased abruptly in the aged mice, then gradually increased, but did not recover to control levels within 2wk. Further, learning-induced cell proliferation was impaired in aged bite-raised mice. These findings suggest that occlusal disharmony induced by raising the bite impaired cell proliferation in the hippocampal DG, leading to learning deficits.
Collapse
|
420
|
Shanmugan S, Epperson CN. Estrogen and the prefrontal cortex: towards a new understanding of estrogen's effects on executive functions in the menopause transition. Hum Brain Mapp 2012; 35:847-65. [PMID: 23238908 DOI: 10.1002/hbm.22218] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/25/2012] [Accepted: 10/03/2012] [Indexed: 01/03/2023] Open
Abstract
Midlife decline in cognition, specifically in areas of executive functioning, is a frequent concern for which menopausal women seek clinical intervention. The dependence of executive processes on prefrontal cortex function suggests estrogen effects on this brain region may be key in identifying the sources of this decline. Recent evidence from rodent, nonhuman primate, and human subject studies indicates the importance of considering interactions of estrogen with neurotransmitter systems, stress, genotype, and individual life events when determining the cognitive effects of menopause and estrogen therapy.
Collapse
Affiliation(s)
- Sheila Shanmugan
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Penn Center for Women's Behavioral Wellness, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
421
|
Abstract
Basic and clinical studies demonstrate that depression is associated with reduced size of brain regions that regulate mood and cognition, including the prefrontal cortex and the hippocampus, and decreased neuronal synapses in these areas. Antidepressants can block or reverse these neuronal deficits, although typical antidepressants have limited efficacy and delayed response times of weeks to months. A notable recent discovery shows that ketamine, a N-methyl-D-aspartate receptor antagonist, produces rapid (within hours) antidepressant responses in patients who are resistant to typical antidepressants. Basic studies show that ketamine rapidly induces synaptogenesis and reverses the synaptic deficits caused by chronic stress. These findings highlight the central importance of homeostatic control of mood circuit connections and form the basis of a synaptogenic hypothesis of depression and treatment response.
Collapse
Affiliation(s)
- Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, USA.
| | | |
Collapse
|
422
|
Joëls M, Sarabdjitsingh RA, Karst H. Unraveling the Time Domains of Corticosteroid Hormone Influences on Brain Activity: Rapid, Slow, and Chronic Modes. Pharmacol Rev 2012; 64:901-38. [DOI: 10.1124/pr.112.005892] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
423
|
Cory-Slechta DA, Merchant-Borna K, Allen JL, Liu S, Weston D, Conrad K. Variations in the nature of behavioral experience can differentially alter the consequences of developmental exposures to lead, prenatal stress, and the combination. Toxicol Sci 2012; 131:194-205. [PMID: 22930682 DOI: 10.1093/toxsci/kfs260] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Behavioral experience (BE) can critically influence later behavior and brain function, but the central nervous system (CNS) consequences of most developmental neurotoxicants are examined in the absence of any such context. We previously demonstrated marked differences in neurotransmitter changes produced by developmental lead (Pb) exposure ± prenatal stress (PS) depending upon whether or not rats had been given BE (Cory-Slechta, D. A., Virgolini, M. B., Rossi-George, A., Weston, D., and Thiruchelvam, M. (2009). The current study examined the hypothesis that the nature of the BE itself would be a critical determinant of outcome in mice that had been continually exposed to 0 or 100 ppm Pb acetate in drinking water alone or in combination with prenatal restraint stress. Half of the offspring in each of the four resulting groups/gender were exposed to positively reinforced (food-rewarded Fixed Interval schedule-controlled behavior) or negatively reinforced (inescapable forced swim) BE. Brain monoamines and amino acids differed significantly in relation to BE, even in control animals, as did the trajectory of effects of Pb ± PS, particularly in frontal cortex, hippocampus (both genders), and midbrain (males). In males, Pb ± PS-related changes in neurotransmitters correlated with behavioral performance. These findings suggest that CNS consequences of developmental toxicants studied in the absence of a broader spectrum of BEs may not necessarily be predictive of human outcomes. Evaluating the role of specific BEs as a modulator of neurodevelopmental insults offers the opportunity to determine what specific BEs may ameliorate the associated impacts and can assist in establishing underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | | | | | | | | | |
Collapse
|
424
|
Effects of environmental manipulations in genetically targeted animal models of affective disorders. Neurobiol Dis 2012; 57:12-27. [PMID: 22525570 DOI: 10.1016/j.nbd.2012.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/02/2012] [Accepted: 04/06/2012] [Indexed: 12/31/2022] Open
Abstract
Mental illness is the leading cause of disability worldwide. We are only just beginning to reveal and comprehend the complex interaction that exists between the genetic makeup of an organism and the potential modifying effect of the environment in which it lives, and how this translates into mediating susceptibility to neurological and psychiatric conditions. The capacity to address this issue experimentally has been facilitated by the availability of rodent models which allow the precise manipulation of genetic and environmental factors. In this review, we discuss the valuable nature of animal models in furthering our understanding of the relationship between genetic and environmental factors in affective illnesses, such as anxiety and depressive disorders. We first highlight the behavioral impairments exhibited by genetically targeted animal models of affective disorders, and then provide a discussion of the underlying neurobiology, focusing on animal models that involve exposure to stress. This is followed by a review of recent studies that report of beneficial effects of environmental manipulations such as environmental enrichment and enhanced physical activity and discuss the likely mechanisms that mediate those benefits.
Collapse
|