401
|
Espinosa-Díez C, Miguel V, Vallejo S, Sánchez FJ, Sandoval E, Blanco E, Cannata P, Peiró C, Sánchez-Ferrer CF, Lamas S. Role of glutathione biosynthesis in endothelial dysfunction and fibrosis. Redox Biol 2018; 14:88-99. [PMID: 28888203 PMCID: PMC5596265 DOI: 10.1016/j.redox.2017.08.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022] Open
Abstract
Glutathione (GSH) biosynthesis is essential for cellular redox homeostasis and antioxidant defense. The rate-limiting step requires glutamate-cysteine ligase (GCL), which is composed of the catalytic (GCLc) and the modulatory (GCLm) subunits. To evaluate the contribution of GCLc to endothelial function we generated an endothelial-specific Gclc haplo-insufficient mouse model (Gclc e/+ mice). In murine lung endothelial cells (MLEC) derived from these mice we observed a 50% reduction in GCLc levels compared to lung fibroblasts from the same mice. MLEC obtained from haplo-insufficient mice showed significant reduction in GSH levels as well as increased basal and stimulated ROS levels, reduced phosphorylation of eNOS (Ser 1177) and increased eNOS S-glutathionylation, compared to MLEC from wild type (WT) mice. Studies in mesenteric arteries demonstrated impaired endothelium-dependent vasodilation in Gclc(e/+) male mice, which was corrected by pre-incubation with GSH-ethyl-ester and BH4. To study the contribution of endothelial GSH synthesis to renal fibrosis we employed the unilateral ureteral obstruction model in WT and Gclc(e/+) mice. We observed that obstructed kidneys from Gclc(e/+) mice exhibited increased deposition of fibrotic markers and reduced Nrf2 levels. We conclude that the preservation of endothelial GSH biosynthesis is not only critical for endothelial function but also in anti-fibrotic responses.
Collapse
Affiliation(s)
- Cristina Espinosa-Díez
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa", (CSIC-UAM), Madrid, Spain
| | - Verónica Miguel
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa", (CSIC-UAM), Madrid, Spain
| | - Susana Vallejo
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid and Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), Spain
| | - Francisco J Sánchez
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa", (CSIC-UAM), Madrid, Spain
| | - Elena Sandoval
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa", (CSIC-UAM), Madrid, Spain
| | - Eva Blanco
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa", (CSIC-UAM), Madrid, Spain
| | - Pablo Cannata
- Department of Pathology, Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spain
| | - Concepción Peiró
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid and Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), Spain
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid and Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), Spain
| | - Santiago Lamas
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa", (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
402
|
Nyp MF, Mabry SM, Navarro A, Menden H, Perez RE, Sampath V, Ekekezie II. Lung epithelial-specific TRIP-1 overexpression maintains epithelial integrity during hyperoxia exposure. Physiol Rep 2018; 6:e13585. [PMID: 29484847 PMCID: PMC5827472 DOI: 10.14814/phy2.13585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 12/19/2022] Open
Abstract
The onset and degree of injury occurring in animals that develop hyperoxic acute lung injury (HALI) is dependent on age at exposure, suggesting that developmentally regulated pathways/factors must underlie initiation of the epithelial injury and subsequent repair. Type II TGFβ receptor interacting protein-1 (TRIP-1) is a negative regulator of TGFβ signaling, which we have previously shown is a developmentally regulated protein with modulatory effects on epithelial-fibroblastic signaling. The aim of this study was to assess if type II alveolar epithelial cells overexpressing TRIP-1 are protected against hyperoxia-induced epithelial injury, and in turn HALI. Rat lung epithelial cells (RLE) overexpressing TRIP-1 or LacZ were exposed to 85% oxygen for 4 days. A surfactant protein C (SPC)-driven TRIP-1 overexpression mouse (TRIP-1AECTg+ ) was generated and exposed to hyperoxia (>95% for 4 days) at 4 weeks of age to assess the effects TRIP-1 overexpression has on HALI. RLE overexpressing TRIP-1 resisted hyperoxia-induced apoptosis. Mice overexpressing TRIP-1 in their lung type II alveolar epithelial cells (TRIP-1AECTg+ ) showed normal lung development, increased phospho-AKT level and E-cadherin, along with resistance to HALI, as evidence by less TGFβ activation, apoptosis, alveolar macrophage influx, KC expression. Taken together, these findings point to existence of a TRIP-1 mediated molecular pathway affording protection against epithelial/acute lung injury.
Collapse
Affiliation(s)
- Michael F. Nyp
- Division of NeonatologyDepartment of PediatricsChildren's Mercy Kansas CityKansas CityMissouri
- Department of PediatricsUniversity of Missouri Kansas CityKansas CityMissouri
| | - Sherry M. Mabry
- Division of NeonatologyDepartment of PediatricsChildren's Mercy Kansas CityKansas CityMissouri
- Department of PediatricsUniversity of Missouri Kansas CityKansas CityMissouri
| | - Angels Navarro
- Division of NeonatologyDepartment of PediatricsChildren's Mercy Kansas CityKansas CityMissouri
- Department of PediatricsUniversity of Missouri Kansas CityKansas CityMissouri
| | - Heather Menden
- Division of NeonatologyDepartment of PediatricsChildren's Mercy Kansas CityKansas CityMissouri
- Department of PediatricsUniversity of Missouri Kansas CityKansas CityMissouri
| | - Ricardo E. Perez
- Department of Anatomy and Cell BiologyRush UniversityChicagoIllinois
| | - Venkatesh Sampath
- Division of NeonatologyDepartment of PediatricsChildren's Mercy Kansas CityKansas CityMissouri
- Department of PediatricsUniversity of Missouri Kansas CityKansas CityMissouri
| | - Ikechukwu I. Ekekezie
- Division of NeonatologyDepartment of PediatricsChildren's Mercy Kansas CityKansas CityMissouri
- Department of PediatricsUniversity of Missouri Kansas CityKansas CityMissouri
| |
Collapse
|
403
|
Guan Y, Tan Y, Liu W, Yang J, Wang D, Pan D, Sun Y, Zheng C. NF-E2-Related Factor 2 Suppresses Intestinal Fibrosis by Inhibiting Reactive Oxygen Species-Dependent TGF-β1/SMADs Pathway. Dig Dis Sci 2018; 63:366-380. [PMID: 28815354 DOI: 10.1007/s10620-017-4710-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/01/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS This study aimed to evaluate the antifibrotic effects of NF-E2-Related Factor 2 (Nrf2) on intestinal fibrosis. Intestinal fibrosis is a common complication of Crohn's disease; however, its mechanism of intestinal fibrosis is largely unclear. METHODS BALB/c mice received 2,4,6-trinitrobenzene sulfonic acid weekly via intrarectal injections to induce chronic fibrotic colitis. They also diet containing received 1% (w/w) tert-butylhydroquinone (tBHQ), which is an agonist of Nrf2. Human intestinal fibroblasts (CCD-18Co cells) were pretreated with tBHQ or si-Nrf2 followed by stimulation with transforming growth factor-β1 (TGF-β1), which transformed the cells into myofibroblasts. The main fibrosis markers such as α-smooth muscle actin, collagen I, tissue inhibitor of metalloproteinase-1, and TGF-β1/SMADs signaling pathway were detected by quantitative real-time RT-PCR, immunohistochemical analysis, and Western blot analysis. Levels of cellular reactive oxygen species (ROS) were detected by dichlorodihydrofluorescein diacetate. RESULTS tBHQ suppressed the intestinal fibrosis through the TGF-β1/SMADs signaling pathway in TNBS-induced colitis and CCD-18Co cells. Moreover, Nrf2 knockdown enhanced the TGF-β1-induced differentiation of CCD-18Co cells. ROS significantly increased in TGF-β1-stimulated CCD-18Co cells. Pretreatment with H2O2, the primary component of ROS, was demonstrated to block the effect of tBHQ on reducing the expression of TGF-β1. Moreover, scavenging ROS by N-acetyl cysteine could inhibit the increasing expression of TGF-β1 promoted by Nrf2 knockdown. CONCLUSIONS The results suggested that Nrf2 suppressed intestinal fibrosis by inhibiting ROS/TGF-β1/SMADs pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Yadi Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110022, Liaoning Province, China
| | - Yue Tan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110022, Liaoning Province, China
| | - Weiyu Liu
- Department of Gastroenterology, The People's Hospital Liaoning Provincial, 33 Wenyi Road, Shenhe District, Shenyang, 110013, Liaoning Province, China
| | - Jun Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110022, Liaoning Province, China
| | - Dongxu Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110022, Liaoning Province, China
| | - Di Pan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110022, Liaoning Province, China
| | - Yan Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110022, Liaoning Province, China
| | - Changqing Zheng
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110022, Liaoning Province, China.
| |
Collapse
|
404
|
Zhou F, Wang A, Li D, Wang Y, Lin L. Pinocembrin from Penthorum chinense Pursh suppresses hepatic stellate cells activation through a unified SIRT3-TGF-β-Smad signaling pathway. Toxicol Appl Pharmacol 2018; 341:38-50. [DOI: 10.1016/j.taap.2018.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/03/2018] [Accepted: 01/13/2018] [Indexed: 01/18/2023]
|
405
|
Abstract
Intestinal fibrosis, a common complication of inflammatory bowel diseases, becomes clinically apparent in ~ 40% of patients with Crohn's disease and ~ 5% of those with ulcerative colitis. Fibrosis, a consequence of local chronic inflammation, is characterized by excessive deposition of extracellular matrix (ECM) proteins by activated myofibroblasts, which are modulated by pro-fibrotic and anti-fibrotic factors. Fibrosis depends on the balance between production and degradation of ECM proteins. Although the transforming growth factor (TGF)-β1/Smad pathway is the major driving force of fibrosis, several pro-fibrogenic and anti-fibrogenic endogenous factors appear to interact directly with this pathway such as reactive oxygen species (ROS) and nuclear factor-erythroid 2-related factor 2 (Nrf2), which are connected with TGF-β1 during fibrosis development in several organs, including the intestine. Nrf2 is a ubiquitous master transcription factor that upregulates the expression of antioxidant enzymes and cytoprotective proteins mediated by antioxidant response elements (AREs). Here, I describe and discuss the links among TGF-β1, ROS, and Nrf2-AREs in the pathogenesis of intestinal fibrosis.
Collapse
Affiliation(s)
- Giovanni Latella
- Gastroenterology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazza S. Tommasi n.1, Coppito, 67100, L'Aquila, Italy.
| |
Collapse
|
406
|
Affiliation(s)
- Giovanni Latella
- Gastroenterology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazza S. Tommasi n.1, Coppito, 67100, L'Aquila, Italy.
| |
Collapse
|
407
|
MiR200 and miR302: Two Big Families Influencing Stem Cell Behavior. Molecules 2018; 23:molecules23020282. [PMID: 29385685 PMCID: PMC6017081 DOI: 10.3390/molecules23020282] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 02/08/2023] Open
Abstract
In this review, we described different factors that modulate pluripotency in stem cells, in particular we aimed at following the steps of two large families of miRNAs: the miR-200 family and the miR-302 family. We analyzed some factors tuning stem cells behavior as TGF-β, which plays a pivotal role in pluripotency inhibition together with specific miRNAs, reactive oxygen species (ROS), but also hypoxia, and physical stimuli, such as ad hoc conveyed electromagnetic fields. TGF-β plays a crucial role in the suppression of pluripotency thus influencing the achievement of a specific phenotype. ROS concentration can modulate TGF-β activation that in turns down regulates miR-200 and miR-302. These two miRNAs are usually requested to maintain pluripotency, while they are down-regulated during the acquirement of a specific cellular phenotype. Moreover, also physical stimuli, such as extremely-low frequency electromagnetic fields or high-frequency electromagnetic fields conveyed with a radioelectric asymmetric conveyer (REAC), and hypoxia can deeply influence stem cell behavior by inducing the appearance of specific phenotypes, as well as a direct reprogramming of somatic cells. Unraveling the molecular mechanisms underlying the complex interplay between externally applied stimuli and epigenetic events could disclose novel target molecules to commit stem cell fate.
Collapse
|
408
|
Dash S, Sarashetti PM, Rajashekar B, Chowdhury R, Mukherjee S. TGF-β2-induced EMT is dampened by inhibition of autophagy and TNF-α treatment. Oncotarget 2018; 9:6433-6449. [PMID: 29464083 PMCID: PMC5814223 DOI: 10.18632/oncotarget.23942] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 12/23/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) typically develops in a chronic inflammatory setting causal to release of a plethora of growth factors and cytokines. However, the molecular effect of these cytokines on HCC progression is poorly understood. In this study, we exposed HCC cells to TGF-β2 (Transforming Growth Factor-β2), which resulted in a significant elevation of EMT (Epithelial to Mesenchymal Transition) like features. Molecular analysis of EMT markers showed an increase at both RNA and protein levels upon TGF-β2 administration along with up-regulation of TGF-β-induced Smad signaling. Induction of EMT was associated with a simultaneous increase in reactive oxygen species (ROS) and cytostasis of TGF-β2-treated cells. Importantly, quenching of ROS resulted in a significant promotion of TGF-β2-induced EMT. Furthermore, cells treated with TGF-β2 also showed an enhanced autophagic flux. Interestingly, inhibition of autophagy by chloroquine-di-phosphate (CQDP) or siRNA-mediated ablation of ATG5 drastically inhibited TGF-β2-induced EMT. Autophagy inhibition significantly increased ROS levels promoting apoptosis. It was further observed that pro-inflammatory cytokine like, TNF-α (Tumor Necrosis Factor-α) can antagonize TGF-β2-induced response by down-regulating autophagy, increasing ROS levels and thus inhibiting EMT in HCC cells. This inhibitory effect of TNF-α is serum-independent. Transcriptomic analysis through RNA sequencing was further performed which validated that TGF-β2-induced autophagic genes are inhibited by TNF-α treatment suppressing EMT. Our study suggests that autophagy plays a pro-metastatic role facilitating EMT by regulating ROS levels in HCC cells and TNF-α can suppress EMT by inhibiting autophagy. We provide unique mechanistic insights into the role of TGF-β2 in HCC cells, along with appropriate cues to effectively control the disease.
Collapse
Affiliation(s)
- Subhra Dash
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | | | - Balaji Rajashekar
- Genotypic Technology Pvt. Ltd., Bangalore, India
- Institute of Computer Science, University of Tartu, Estonia
| | - Rajdeep Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Sudeshna Mukherjee
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| |
Collapse
|
409
|
Zhao X, Luo G, Fan Y, Ma X, Zhou J, Jiang H. ILEI is an important intermediate participating in the formation of TGF-β1-induced renal tubular EMT. Cell Biochem Funct 2018; 36:46-55. [PMID: 29336056 DOI: 10.1002/cbf.3316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/23/2017] [Accepted: 12/05/2017] [Indexed: 11/06/2022]
Abstract
Renal interstitial fibrosis is the most common process by which chronic kidney diseases progress to end-stage renal failure. Epithelial-to-mesenchymal transitions (EMTs) play a crucial role in the progression of renal interstitial fibrosis. A newly identified cytokine, interleukin-like EMT inducer (ILEI), has been linked to EMT in some diseases. However, the effects of ILEI on renal tubular EMT have not yet been well established. Here, we characterize the expression of ILEI in tubular EMT and describe the role and mechanism of ILEI in transforming growth factor beta 1 (TGF-β1)-induced renal tubular EMT. The results indicate that ILEI is involved in renal tubular EMT induced by TGF-β1, as overexpression of ILEI not only induces EMT of HK-2 cells independently but also profoundly enhances EMT in response to TGF-β1. Supporting this finding, ILEI small interfering RNA was found to block the EMT of HK-2 cells induced by TGF-β1. This work additionally suggests ILEI mediates TGF-β1-dependent EMT via the extracellular regulated protein kinases (ERKs) and protein kinase B (Akt) signalling pathways. In conclusion, ILEI appears to play a crucial role in mediating TGF-β1-induced EMT through the Akt and ERK pathways, which may provide a therapeutic target for the treatment of fibrotic kidney diseases. SIGNIFICANCE OF THE STUDY There is no study reporting the effect of ILEI in renal EMTs. In this research, we examined the role and mechanism of ILEI in EMT using tubular epithelial cell; we found that ILEI participated in renal tubular EMT, and overexpression of ILEI can not only induce EMT of HK-2 cells independently but also enhance EMT in response to TGF-β1. Meanwhile, we found ILEI small interfering RNA blocked the EMT induced by TGF-β1, and ILEI participates in the EMT caused by TGF-β1 via ERK and Akt signalling pathways. We hoped to provide new ideas in further study on the prevention and treatment of fibrotic kidney diseases.
Collapse
Affiliation(s)
- Xing Zhao
- Department of Pediatrics, First Hospital of China Medical University, Shenyang City, 110001, China
| | - Gang Luo
- Department of Pediatrics, First Hospital of China Medical University, Shenyang City, 110001, China
| | - Yan Fan
- Department of Pediatrics, First Hospital of China Medical University, Shenyang City, 110001, China
| | - Xiaoxue Ma
- Department of Pediatrics, First Hospital of China Medical University, Shenyang City, 110001, China
| | - Jieqing Zhou
- Department of Pediatrics, First Hospital of China Medical University, Shenyang City, 110001, China
| | - Hong Jiang
- Department of Pediatrics, First Hospital of China Medical University, Shenyang City, 110001, China
| |
Collapse
|
410
|
Tangtrongsup S, Kisiday JD. Modulating the oxidative environment during mesenchymal stem cells chondrogenesis with serum increases collagen accumulation in agarose culture. J Orthop Res 2018; 36:506-514. [PMID: 28548680 DOI: 10.1002/jor.23618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/19/2017] [Indexed: 02/04/2023]
Abstract
Chondrogenesis of mesenchymal stem cells (MSCs) is induced in culture conditions that have been associated with oxidative stress, although the extent to which the oxidative environment affects differentiation and extracellular matrix (ECM) accumulation is not known. The objectives of this study were to evaluate the oxidative environment during MSCs chondrogenesis in conventional serum-free medium, and the effect of serum-supplementation on intracellular reactive oxygen species (ROS) and chondrogenesis. Young adult equine MSCs were seeded into agarose and cultured in chondrogenic medium, with or without 5% fetal bovine serum (FBS), for up to 15 days. Samples were evaluated for intracellular ROS, the antioxidant glutathione, ECM and gene expression measures of chondrogenesis, and carbonylation as an indicator of oxidative damage. Intracellular ROS increased with time in culture, and was lower in medium supplemented with FBS. Glutathione decreased ∼12-fold during early chondrogenesis (p < 0.0001), and was not affected by FBS (p = 0.25). After 15 days of culture, FBS supplementation increased hydroxyproline accumulation ∼80% (p = 0.0002); otherwise, measures of chondrogenesis were largely unaffected. Protein carbonylation in chondrogenic MSCs cultures was not significantly different between serum-free and FBS cultures (p = 0.72). Supplementation with adult equine serum increased hydroxyproline accumulation by 45% over serum-free culture (p = 0.0006). In conclusion, this study characterized changes in the oxidative environment during MSC chondrogenesis, and suggested that lowering ROS may be an effective approach to increase collagen accumulation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:506-514, 2018.
Collapse
Affiliation(s)
- Suwimol Tangtrongsup
- Department of Clinical Sciences, Orthopaedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523, Colorado
| | - John D Kisiday
- Department of Clinical Sciences, Orthopaedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523, Colorado
| |
Collapse
|
411
|
Pourgholamhossein F, Rasooli R, Pournamdari M, Pourgholi L, Samareh-Fekri M, Ghazi-Khansari M, Iranpour M, Poursalehi HR, Heidari MR, Mandegary A. Pirfenidone protects against paraquat-induced lung injury and fibrosis in mice by modulation of inflammation, oxidative stress, and gene expression. Food Chem Toxicol 2017; 112:39-46. [PMID: 29273418 DOI: 10.1016/j.fct.2017.12.034] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/09/2017] [Accepted: 12/18/2017] [Indexed: 01/11/2023]
Abstract
In this study we investigated the protective effects and possible mechanisms of pirfenidone (PF) in paraquat (PQ)-induced lung injury and fibrosis in mice. Lung injury was induced by injection of PQ (20 mg/kg). Thereafter, mice orally received water and PF (100 and 200 mg/kg) for four weeks. After 28 days, the inflammation and fibrosis were determined in the lungs by analysis of histopathology, bronchoalveolar lavage fluid (BALF) cell count, lung wet/dry weight ratio, hydroxyproline content, and oxidative stress biomarkers. Expression of several genes involved in fibrogenesis and modulation of reactive oxygen species (ROS) production, such as TGF-β1, α-SMA, collagen Iα and IV, NOX1, NOX4, iNOS, and GPX1 were determined using RT-qPCR. PF significantly decreased the lung fibrosis and edema, inflammatory cells infiltration, TGF-β1 concentration, and amount of hydroxyproline in the lung tissue. PF dose-dependently improved the expression level of the studied genes to the near normal. Decreasing of lung lipid peroxidation and catalase activity, and increasing of SOD activity in the treated mice were significant compared to the control group. Pirfenidone ameliorate paraquat induced lung injury and fibrosis partly through inhibition of inflammation and oxidative stress, and downregulation of genes encoding for profibrotic cytokines and enzymatic systems for ROS production.
Collapse
Affiliation(s)
- Fateme Pourgholamhossein
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| | - Rokhsana Rasooli
- Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mostafa Pournamdari
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Leyla Pourgholi
- Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mitra Samareh-Fekri
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Iranpour
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hamid-Reza Poursalehi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mahmoud-Reza Heidari
- Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ali Mandegary
- Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
412
|
Yu Y, Wu N, Yi Y, Li Y, Zhang L, Yang Q, Miao W, Ding X, Jiang L, Huang H. Dispersible MoS2 Nanosheets Activated TGF-β/Smad Pathway and Perturbed the Metabolome of Human Dermal Fibroblasts. ACS Biomater Sci Eng 2017; 3:3261-3272. [DOI: 10.1021/acsbiomaterials.7b00575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yadong Yu
- Jiangsu
National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Na Wu
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Yanliang Yi
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Yangying Li
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Lei Zhang
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Qi Yang
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Wenjun Miao
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Xuefang Ding
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Ling Jiang
- College
of Food Science and Light Industry, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - He Huang
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| |
Collapse
|
413
|
Ventura J, Lobachevsky PN, Palazzolo JS, Forrester H, Haynes NM, Ivashkevich A, Stevenson AW, Hall CJ, Ntargaras A, Kotsaris V, Pollakis GC, Potsi G, Skordylis K, Terzoudi G, Pateras IS, Gorgoulis VG, Georgakilas AG, Sprung CN, Martin OA. Localized Synchrotron Irradiation of Mouse Skin Induces Persistent Systemic Genotoxic and Immune Responses. Cancer Res 2017; 77:6389-6399. [PMID: 29113972 DOI: 10.1158/0008-5472.can-17-1066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/07/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022]
Abstract
The importance of nontargeted (systemic) effects of ionizing radiation is attracting increasing attention. Exploiting synchrotron radiation generated by the Imaging and Medical Beamline at the Australian Synchrotron, we studied radiation-induced nontargeted effects in C57BL/6 mice. Mice were locally irradiated with a synchrotron X-ray broad beam and a multiplanar microbeam radiotherapy beam. To assess the influence of the beam configurations and variations in peak dose and irradiated area in the response of normal tissues outside the irradiated field at 1 and 4 days after irradiation, we monitored oxidatively induced clustered DNA lesions (OCDL), DNA double-strand breaks (DSB), apoptosis, and the local and systemic immune responses. All radiation settings induced pronounced persistent systemic effects in mice, which resulted from even short exposures of a small irradiated area. OCDLs were elevated in a wide variety of unirradiated normal tissues. In out-of-field duodenum, there was a trend for elevated apoptotic cell death under most irradiation conditions; however, DSBs were elevated only after exposure to lower doses. These genotoxic events were accompanied by changes in plasma concentrations of macrophage-derived cytokine, eotaxin, IL10, TIMP1, VEGF, TGFβ1, and TGFβ2, along with changes in tissues in frequencies of macrophages, neutrophils, and T lymphocytes. Overall, our findings have implications for the planning of therapeutic and diagnostic radiation treatments to reduce the risk of radiation-related adverse systemic effects. Cancer Res; 77(22); 6389-99. ©2017 AACR.
Collapse
Affiliation(s)
- Jessica Ventura
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Pavel N Lobachevsky
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jason S Palazzolo
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Helen Forrester
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Nicole M Haynes
- Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Alesia Ivashkevich
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia.,Radiation Oncology, Canberra Hospital, Garran, Australian Capital Territory, Australia
| | - Andrew W Stevenson
- CSIRO, Clayton, Victoria, Australia.,Australian Synchrotron, Clayton, Victoria, Australia
| | | | - Andreas Ntargaras
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Vasilis Kotsaris
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Gerasimos Ch Pollakis
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Gianna Potsi
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Konstantinos Skordylis
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Georgia Terzoudi
- Laboratory of Health Physics, Radiobiology and Cytogenetics, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research 'Demokritos', Athens, Greece
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Carl N Sprung
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Olga A Martin
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
414
|
Huang LS, Jiang P, Feghali-Bostwick C, Reddy SP, Garcia JGN, Natarajan V. Lysocardiolipin acyltransferase regulates TGF-β mediated lung fibroblast differentiation. Free Radic Biol Med 2017; 112:162-173. [PMID: 28751023 DOI: 10.1016/j.freeradbiomed.2017.07.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 07/13/2017] [Accepted: 07/21/2017] [Indexed: 12/30/2022]
Abstract
Lysocardiolipin acyltransferase (LYCAT), a cardiolipin remodeling enzyme, plays a key role in mitochondrial function and vascular development. We previously reported that reduced LYCAT mRNA levels in peripheral blood mononuclear cells correlated with poor pulmonary function outcomes and decreased survival in IPF patients. Further LYCAT overexpression reduced lung fibrosis, and LYCAT knockdown accentuated experimental pulmonary fibrosis. NADPH Oxidase 4 (NOX4) expression and oxidative stress are known to contribute to lung fibroblast differentiation and progression of fibrosis. In this study, we investigated the role of LYCAT in TGF-β mediated differentiation of human lung fibroblasts to myofibroblasts, and whether this occurred through mitochondrial superoxide and NOX4 mediated hydrogen peroxide (H2O2) generation. Our data indicated that LYCAT expression was up-regulated in primary lung fibroblasts isolated from IPF patients and bleomycin-challenged mice, compared to controls. In vitro, siRNA-mediated SMAD3 depletion inhibited TGF-β stimulated LYCAT expression in human lung fibroblasts. ChIP immunoprecipitation assay revealed TGF-β stimulated SMAD2/3 binding to the endogenous LYCAT promoter, and mutation of the SMAD2/3 binding sites (-179/-183 and -540/-544) reduced TGF-β-stimulated LYCAT promoter activity. Overexpression of LYCAT attenuated TGF-β-induced mitochondrial and intracellular oxidative stress, NOX4 expression and differentiation of human lung fibroblasts. Further, pretreatment with Mito-TEMPO, a mitochondrial superoxide scavenger, blocked TGF-β-induced mitochondrial superoxide, NOX4 expression and differentiation of human lung fibroblasts. Treatment of human lung fibroblast with NOX1/NOX4 inhibitor, GKT137831, also attenuated TGF-β induced fibroblast differentiation and mitochondrial oxidative stress. Collectively, these results suggest that LYCAT is a negative regulator of TGF-β-induced lung fibroblast differentiation by modulation of mitochondrial superoxide and NOX4 dependent H2O2 generation, and this may serve as a potential therapeutic target for human lung fibrosis.
Collapse
Affiliation(s)
- Long Shuang Huang
- Department of Pharmacology, The University of Illinois at Chicago, Chicago, IL, USA; Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA.
| | - Peiyue Jiang
- Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | | | - Sekhar P Reddy
- Department of Pediatrics, The University of Illinois at Chicago, Chicago, IL, USA
| | | | - Viswanathan Natarajan
- Department of Pharmacology, The University of Illinois at Chicago, Chicago, IL, USA; Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
415
|
Cardiac Nonmyocyte Cell Functions and Crosstalks in Response to Cardiotoxic Drugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1089359. [PMID: 29201269 PMCID: PMC5671742 DOI: 10.1155/2017/1089359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/24/2017] [Indexed: 01/06/2023]
Abstract
The discovery of the molecular mechanisms involved in the cardiac responses to anticancer drugs represents the current goal of cardio-oncology research. The oxidative stress has a pivotal role in cardiotoxic responses, affecting the function of all types of cardiac cells, and their functional crosstalks. Generally, cardiomyocytes are the main target of research studies on cardiotoxicity, but recently the contribution of the other nonmyocyte cardiac cells is becoming of growing interest. This review deals with the role of oxidative stress, induced by anticancer drugs, in cardiac nonmyocyte cells (fibroblasts, vascular cells, and immune cells). The alterations of functional interplays among these cardiac cells are discussed, as well. These interesting recent findings increase the knowledge about cardiotoxicity and suggest new molecular targets for both diagnosis and therapy.
Collapse
|
416
|
Yuan T, Chen Y, Zhang H, Fang L, Du G. Salvianolic Acid A, a Component of Salvia miltiorrhiza, Attenuates Endothelial-Mesenchymal Transition of HPAECs Induced by Hypoxia. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1185-1200. [PMID: 28893092 DOI: 10.1142/s0192415x17500653] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salvianolic acid A (SAA), a polyphenols acid, is a bioactive ingredient from a traditional Chinese medicine called Dan shen (Salvia Miltiorrhiza Bunge). According to previous studies, it was shown to have various effects such as anti-oxidative stress, antidiabetic complications and antipulmonary hypertension. This study aimed to investigate the effect of SAA on pulmonary arterial endothelial-mesenchymal transition (EndoMT) induced by hypoxia and the underlying mechanisms. Primary cultured human pulmonary arterial endothelial cells (HPAECs) were exposed to 1% O2 for 48[Formula: see text]h with or without SAA treatment. SAA treatment improved the morphology of HPAECs and inhibited the cytoskeleton remodeling. A total of 3[Formula: see text][Formula: see text]M SAA reduced migration distances from 262.2[Formula: see text][Formula: see text]m to 198.4[Formula: see text][Formula: see text]m at 24[Formula: see text]h and 344.8[Formula: see text][Formula: see text]m to 109.3[Formula: see text][Formula: see text]m at 48[Formula: see text]h. It was observed that the production of ROS in cells was significantly reduced by the treatment of 3[Formula: see text][Formula: see text]M SAA. Meanwhile, SAA alleviated the loss of CD31 and slightly inhibited the expression of [Formula: see text]-SMA. The mechanisms study shows that SAA treatment increased the phosphorylation levels of Smad1/5, but inhibited that of Smad2/3. Furthermore, SAA attenuated the phosphorylation levels of ERK and Cofilin, which were enhanced by hypoxia. Based on these results, our study indicated that SAA treatment can protect HPAECs from endoMT induced by hypoxia, which may perform via the inhibition on ROS production and further through the downstream effectors of BMPRs or TGF[Formula: see text]R including Smads, ERK and ROCK/cofilin pathways.
Collapse
Affiliation(s)
- Tianyi Yuan
- * Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Union Medical College, Beijing 100050, China
| | - Yucai Chen
- * Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Union Medical College, Beijing 100050, China
| | - Huifang Zhang
- * Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Union Medical College, Beijing 100050, China
| | - Lianhua Fang
- * Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Union Medical College, Beijing 100050, China.,† Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- * Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Union Medical College, Beijing 100050, China.,† Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
417
|
Xu F, Liu Y, Shi L, Cai H, Liu W, Hu Y, Li Y, Yuan W. RGS3 inhibits TGF-β1/Smad signalling in adventitial fibroblasts. Cell Biochem Funct 2017; 35:334-338. [PMID: 28845525 DOI: 10.1002/cbf.3280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/18/2017] [Accepted: 07/03/2017] [Indexed: 12/27/2022]
Abstract
Recent evidence suggests that adventitial fibroblasts (AFs) are crucially implicated in atherosclerosis. However, the mechanisms by which AFs are dysfunctional and contribute to atherosclerosis remain unclear. This study aimed to investigate the role of regulator of G-protein signalling 3 (RGS3) in the regulation of AFs using apoE knockout mouse as the model. Pathological changes in aortic arteries of apoE knockout mice fed with hyperlipid diet were examined by Movat staining. The expression of RGS3, α-SMA, TGF-β1, Smad2, and Smad3 in the adventitia was detected by immunohistochemistry. Adventitial fibroblasts were isolated from aortic arteries of apoE knockout mice and infected with RGS3 overexpression lentivirus or empty lentivirus. The expression of RGS3, α-SMA, TGF-β1, Smad2, and Smad3 in AFs was detected by real-time polymerase chain reaction and Western blot analysis. We found that hyperlipidic diet caused significant aortic intima thickening and atherosclerotic plaques in 15-week-old apoE knockout mice. Compared to wild-type mice, RGS3 expression was lower while α-SMA, TGF-β1, Smad2, and Smad3 expression was higher in the adventitia of apoE knockout mice. In addition, lentivirus mediated overexpression of RGS3 caused decreased expression of α-SMA, TGF-β1, Smad2, and Smad3 in AFs derived from apoE(-/-) mice. In conclusion, these results suggest that RGS3 may provide protection against pathological changes of AFs and the development of atherosclerosis by inhibiting TGF-β1/Smad signalling. RGS3 may be a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Fang Xu
- Department of Pathophysiology, Binzhou Medical University, Yantai, China
| | - Ying Liu
- Affiliated Hospital, Binzhou Medical University, Binzhou, China
| | - Lei Shi
- Department of Pathophysiology, Binzhou Medical University, Yantai, China
| | - Hongjing Cai
- Department of Pathophysiology, Binzhou Medical University, Yantai, China
| | - Wei Liu
- Department of Pathophysiology, Binzhou Medical University, Yantai, China
| | - Yejia Hu
- Department of Pathophysiology, Binzhou Medical University, Yantai, China
| | - Yuling Li
- Department of Pathophysiology, Binzhou Medical University, Yantai, China
| | - Wendan Yuan
- College of Basic Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
418
|
Sharma I, Tupe RS, Wallner AK, Kanwar YS. Contribution of myo-inositol oxygenase in AGE:RAGE-mediated renal tubulointerstitial injury in the context of diabetic nephropathy. Am J Physiol Renal Physiol 2017; 314:F107-F121. [PMID: 28931523 DOI: 10.1152/ajprenal.00434.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advanced glycation end products (AGEs) play a role in pathogenesis of diabetic nephropathy (DN). Myo-inositol oxygenase (MIOX) has been implicated in tubulointerstitial injury in the context of DN. We investigated the effect of AGEs on MIOX expression and delineated mechanisms that lead to tubulointerstitial injury. The status of MIOX, RAGE, and relevant cellular signaling pathways activated following AGE:RAGE interaction was examined in tubular cells and kidneys of AGE-BSA-treated mice. A solid-phase assay revealed an enhanced binding of RAGE with AGE-BSA, AGE-laminin, and AGE-collagen IV. The cells treated with AGE-BSA had increased MIOX activity/expression and promoter activity. This was associated with activation of various signaling kinases of phosphatidylinositol 3-kinase (PI3K)-AKT pathway and increased expression of NF-κB, transforming growth factor (TGF)-β, and fibronectin, which was negated with the treatment of MIOX/RAGE- small interfering (si) RNA. Concomitant with MIOX upregulation, there was an increased generation of reactive oxygen species (ROS), which could be abrogated with MIOX/RAGE- siRNA treatment. The kidneys of mice treated with AGE-BSA had significantly high urinary A/C ratio, upregulation of MIOX, RAGE and NF-κB, along with influx of monocytes into the tubulointerstitium, increased the expression of MCP-1, IL-6, and fibronectin and increased the generation of ROS. Such perturbations were abrogated with the concomitant treatment of inhibitors MIOX or RAGE (d-glucarate and FPS-ZM1). These studies support a role of AGE:RAGE interaction in the activation of PI3K-AKT pathway and upregulation of MIOX, with excessive generation of ROS, increased expression of NF-κB, inflammatory cytokines, TGF-β, and fibronectin. Collectively, these observations highlight the relevance of the biology of MIOX in the contribution toward tubulointerstitial injury in DN.
Collapse
Affiliation(s)
- Isha Sharma
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Rashmi S Tupe
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth University , Pune , India
| | - Aryana K Wallner
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
419
|
Kabel AM, Elkhoely AA. Targeting proinflammatory cytokines, oxidative stress, TGF-β1 and STAT-3 by rosuvastatin and ubiquinone to ameliorate trastuzumab cardiotoxicity. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.06.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
420
|
Maezawa T, Tanaka M, Kanazashi M, Maeshige N, Kondo H, Ishihara A, Fujino H. Astaxanthin supplementation attenuates immobilization-induced skeletal muscle fibrosis via suppression of oxidative stress. J Physiol Sci 2017; 67:603-611. [PMID: 27714500 PMCID: PMC10718026 DOI: 10.1007/s12576-016-0492-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
Immobilization induces skeletal muscle fibrosis characterized by increasing collagen synthesis in the perimysium and endomysium. Transforming growth factor-β1 (TGF-β1) is associated with this lesion via promoting differentiation of fibroblasts into myofibroblasts. In addition, reactive oxygen species (ROS) are shown to mediate TGF-β1-induced fibrosis in tissues. These reports suggest the importance of ROS reduction for attenuating skeletal muscle fibrosis. Astaxanthin, a powerful antioxidant, has been shown to reduce ROS production in disused muscle. Therefore, we investigated the effects of astaxanthin supplementation on muscle fibrosis under immobilization. In the present study, immobilization increased the collagen fiber area, the expression levels of TGF-β1, α-smooth muscle actin, and superoxide dismutase-1 protein and ROS production. However, these changes induced by immobilization were attenuated by astaxanthin supplementation. These results indicate the effectiveness of astaxanthin supplementation on skeletal muscle fibrosis induced by ankle joint immobilization.
Collapse
Affiliation(s)
- Toshiyuki Maezawa
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, Hyogo, 654-0142, Japan
| | - Masayuki Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, Hyogo, 654-0142, Japan
- Department of Physical Therapy, Faculty of Human Sciences, Osaka University of Human Sciences, 1-4-1 Shojaku, Settsu-shi, Osaka, 566-8501, Japan
| | - Miho Kanazashi
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen-cho, Mihara-shi, Hiroshima, 723-0053, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, Hyogo, 654-0142, Japan
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women's University, Nagoya, 4-21 Shioji-cho, Mizuho-ku, Nagoya-shi, Aichi, 467-8611, Japan
| | - Akihiko Ishihara
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8501, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, Hyogo, 654-0142, Japan.
| |
Collapse
|
421
|
Redox regulation in tumor cell epithelial-mesenchymal transition: molecular basis and therapeutic strategy. Signal Transduct Target Ther 2017; 2:17036. [PMID: 29263924 PMCID: PMC5661624 DOI: 10.1038/sigtrans.2017.36] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 02/05/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is recognized as a driving force of cancer cell metastasis and drug resistance, two leading causes of cancer recurrence and cancer-related death. It is, therefore, logical in cancer therapy to target the EMT switch to prevent such cancer metastasis and recurrence. Previous reports have indicated that growth factors (such as epidermal growth factor and fibroblast growth factor) and cytokines (such as the transforming growth factor beta (TGF-β) family) are major stimulators of EMT. However, the mechanisms underlying EMT initiation and progression remain unclear. Recently, emerging evidence has suggested that reactive oxygen species (ROS), important cellular secondary messengers involved in diverse biological events in cancer cells, play essential roles in the EMT process in cancer cells by regulating extracellular matrix (ECM) remodeling, cytoskeleton remodeling, cell–cell junctions, and cell mobility. Thus, targeting EMT by manipulating the intracellular redox status may hold promise for cancer therapy. Herein, we will address recent advances in redox biology involved in the EMT process in cancer cells, which will contribute to the development of novel therapeutic strategies by targeting redox-regulated EMT for cancer treatment.
Collapse
|
422
|
Kawami M, Deguchi J, Yumoto R, Sakakibara N, Tsukamoto I, Konishi R, Takano M. Effect of COA-Cl on transforming growth factor-β1-induced epithelial–mesenchymal transition in RLE/Abca3 cells. Drug Metab Pharmacokinet 2017; 32:224-227. [DOI: 10.1016/j.dmpk.2017.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/19/2017] [Accepted: 05/09/2017] [Indexed: 01/15/2023]
|
423
|
El-Tanbouly DM, Wadie W, Sayed RH. Modulation of TGF-β/Smad and ERK signaling pathways mediates the anti-fibrotic effect of mirtazapine in mice. Toxicol Appl Pharmacol 2017. [DOI: 10.1016/j.taap.2017.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
424
|
Rasooli R, Rajaian H, Pardakhty A, Mandegary A. Preference of Aerosolized Pirfenidone to Oral Intake: An Experimental Model of Pulmonary Fibrosis by Paraquat. J Aerosol Med Pulm Drug Deliv 2017; 31:25-32. [PMID: 28696894 DOI: 10.1089/jamp.2016.1342] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Inhalation drug delivery is a fast, effective, and safe route of delivering medication directly to the lungs. Thanks to the large surface area and highly vascularized epithelium in lung, pulmonary drug delivery has been considered as an effective route to deliver drugs to the systemic circulation. Pirfenidone (PF), an oral antifibrotic agent, has been shown to slow down the progression of the lung fibrosis. Inhalation or intrapulmonary delivery of PF appears to be a good alternative to optimize drug delivery and minimize the dosage, adverse and nonspecific effects. METHODS Pulmonary fibrosis was induced by paraquat in rats. After induction of fibrosis, PF was administered via oral and inhalation routes for 14 consecutive days. The efficacy of oral and inhalation routes were compared by evaluating morphological changes, hydroxyproline content, tissue oxidative stress parameters, and proinflammatory and profibrotic genes expression including transforming growth factor beta 1 (TGF-β1), tumor necrosis factor alpha (TNF-α), tissue inhibitor of metalloproteinase 1 (TIMP-1), and matrix metalloproteinase 2 (MMP-2) genes. RESULTS The results showed similar therapeutic effects and efficacy for both inhalation and oral routes; however, the dose of inhalation route was much less than that for oral administration. CONCLUSION In conclusion, PF offers great potential as an inhalation delivery formulation for treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Rokhsana Rasooli
- 1 Department of Pharmacology, School of Veterinary Medicine, Shiraz University , Shiraz, Iran
| | - Hamid Rajaian
- 1 Department of Pharmacology, School of Veterinary Medicine, Shiraz University , Shiraz, Iran
| | - Abbas Pardakhty
- 2 Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman, Iran
| | - Ali Mandegary
- 2 Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman, Iran .,3 Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology, Kerman University of Medical Sciences , Kerman, Iran .,4 Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences , Kerman, Iran
| |
Collapse
|
425
|
Wang A, Wang F, Yin Y, Zhang M, Chen P. Dexamethasone reduces serum level of IL-17 in Bleomycin-A5-induced rats model of pulmonary fibrosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:783-787. [PMID: 28608724 DOI: 10.1080/21691401.2017.1339051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Aihua Wang
- Department of Respiratory Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Fengqiang Wang
- Department of Respiratory Medicine, Liaocheng People's Hospital, Liaocheng, China
| | - Yingqiu Yin
- Department of Respiratory Medicine, Yuebei People’s Hospital, Shaoguan, China
| | - Min Zhang
- Department of tubercular Medicine, Shandong Chest Hospital, Jinan, China
| | - Ping Chen
- Department of Pharmacy, Shandong Provincial Hospital, Jinan, China
| |
Collapse
|
426
|
Horas H Nababan S, Nishiumi S, Kawano Y, Kobayashi T, Yoshida M, Azuma T. Adrenic acid as an inflammation enhancer in non-alcoholic fatty liver disease. Arch Biochem Biophys 2017; 623-624:64-75. [DOI: 10.1016/j.abb.2017.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/23/2017] [Accepted: 04/25/2017] [Indexed: 12/19/2022]
|
427
|
Malik S, Suchal K, Khan SI, Bhatia J, Kishore K, Dinda AK, Arya DS. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways. Am J Physiol Renal Physiol 2017; 313:F414-F422. [PMID: 28566504 DOI: 10.1152/ajprenal.00393.2016] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 05/12/2017] [Accepted: 05/26/2017] [Indexed: 12/23/2022] Open
Abstract
Diabetic nephropathy (DN), a microvascular complication of diabetes, has emerged as an important health problem worldwide. There is strong evidence to suggest that oxidative stress, inflammation, and fibrosis play a pivotal role in the progression of DN. Apigenin has been shown to possess antioxidant, anti-inflammatory, antiapoptotic, antifibrotic, as well as antidiabetic properties. Hence, we evaluated whether apigenin halts the development and progression of DN in streptozotocin (STZ)-induced diabetic rats. Male albino Wistar rats were divided into control, diabetic control, and apigenin treatment groups (5-20 mg/kg po, respectively), apigenin per se (20 mg/kg po), and ramipril treatment group (2 mg/kg po). A single injection of STZ (55 mg/kg ip) was administered to all of the groups except control and per se groups to induce type 1 diabetes mellitus. Rats with fasting blood glucose >250 mg/dl were included in the study and randomized to different groups. Thereafter, the protocol was continued for 8 mo in all of the groups. Apigenin (20 mg/kg) treatment attenuated renal dysfunction, oxidative stress, and fibrosis (decreased transforming growth factor-β1, fibronectin, and type IV collagen) in the diabetic rats. It also significantly prevented MAPK activation, which inhibited inflammation (reduced TNF-α, IL-6, and NF-κB expression) and apoptosis (increased expression of Bcl-2 and decreased Bax and caspase-3). Furthermore, histopathological examination demonstrated reduced inflammation, collagen deposition, and glomerulosclerosis in the renal tissue. In addition, all of these changes were comparable with those produced by ramipril. Hence, apigenin ameliorated renal damage due to DN by suppressing oxidative stress and fibrosis and by inhibiting MAPK pathway.
Collapse
Affiliation(s)
- Salma Malik
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India; and
| | - Kapil Suchal
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India; and
| | - Sana Irfan Khan
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India; and
| | - Jagriti Bhatia
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India; and
| | - Kamal Kishore
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India; and
| | - Amit Kumar Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India; and
| |
Collapse
|
428
|
Anwar M, Ahmad S, Akhtar R, Mahmood A, Mahmood S. Antioxidant Supplementation: A Linchpin in Radiation-Induced Enteritis. Technol Cancer Res Treat 2017; 16:676-691. [PMID: 28532242 PMCID: PMC5762044 DOI: 10.1177/1533034617707598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Radiation enteritis is one of the most feared complications of abdominal and pelvic regions. Thus, radiation to abdominal or pelvic malignancies unavoidably injures the intestine. Because of rapid cell turnover, the intestine is highly sensitive to radiation injury, which is the limiting factor in the permissible dosage of irradiation. Bowel injuries such as fistulas, strictures, and chronic malabsorption are potentially life-threatening complications and have an impact on patient quality of life. The incidence of radiation enteritis is increasing because of the current trend of combined chemotherapy and radiation. The consequences of radiation damage to the intestine may result in considerable morbidity and even mortality. The observed effects of ionizing radiation are mediated mainly by oxygen-free radicals that are generated by its action on water and are involved in several steps of signal transduction cascade, leading to apoptosis. The oxyradicals also induce DNA strand breaks and protein oxidation. An important line of defense against free radical damage is the presence of antioxidants. Therefore, administration of antioxidants may ameliorate the radiation-induced damage to the intestine.
Collapse
Affiliation(s)
- Mumtaz Anwar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shabeer Ahmad
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Reyhan Akhtar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Akhtar Mahmood
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Safrun Mahmood
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
429
|
Lei Y, Chen Q, Chen J, Liu D. Potential ameliorative effects of grape seed-derived polyphenols against cadmium induced prostatic deficits. Biomed Pharmacother 2017; 91:707-713. [PMID: 28499242 DOI: 10.1016/j.biopha.2017.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023] Open
Abstract
Grape (Vitis vinifera) is consumed as fruit and wine for people. In this study, rat model of prostatic deficits was induced by orally receiving 60mg/L cadmium chlorine (CdCl2) through drinking water for 20 weeks. Grape seed-derived polyphenols extract (GSP) was orally given for 20 weeks. Finally, the prostatic levels of E-cadherin, fibronectin, and α-smooth muscle actin were measured by immunohistochemical and qPCR analysis. The oxidative stress was measured by detecting the levels of malondialdehyde, nitric oxide, reduced glutathione/oxidized glutathione and enzymatic antioxidant status. Additionally, the prostatic expressions of transforming growth factor-β1 (TGF-β1), type I TGF-β receptor (TGF-βRI), Smad3, phosphorylation-Smad3 (p-Smad3), Smad7, nuclear related factor-2 (Nrf-2), heme oxygenase-1 (HO-1) and γ-glutamate cysteine ligase catalytic subunit (γ-GCLC) were measured by western blot. The levels of microRNA (miR)-133a/b were measured by qPCR. It was observed that GSP ameliorated the prostatic oxidative stress and fibrosis induced by CdCl2. GSP also inhibited the over-generation of TGF-β1 and p-Smad3, as well as enhanced the levels of Smad7, Nrf-2, HO-1, γ-GCLC and miR-133a/b. These results showed that GSP could attenuate Cd-induced prostatic deficits.
Collapse
Affiliation(s)
- Yongfang Lei
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Chen
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinglou Chen
- Department of Pharmacy, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
430
|
Zhang D, Liu B, Cao B, Wei F, Yu X, Li GF, Chen H, Wei LQ, Wang PL. Synergistic protection of Schizandrin B and Glycyrrhizic acid against bleomycin-induced pulmonary fibrosis by inhibiting TGF-β1/Smad2 pathways and overexpression of NOX4. Int Immunopharmacol 2017; 48:67-75. [PMID: 28476015 DOI: 10.1016/j.intimp.2017.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/19/2017] [Accepted: 04/23/2017] [Indexed: 11/17/2022]
Abstract
Pulmonary fibrosis, a progressive and lethal lung disease, is a major therapeutic challenge for which new therapeutic strategies are warranted. Schisandrin B (Sch B) and Glycyrrhizic acid (GA) are the principal active ingredients of Schisandra chinensis and Glycyrrhiza glabra respectively, which have been reported to protect against lung injures. The present study was aimed at exploring the combinatorial therapeutic effects on bleomycin-induced pulmonary fibrosis. Lung fibrotic injuries were induced in mice by a single intratracheal instillation of 5mg/kg bleomycin (BLM). Then, these mice were administered with Sch B (100mg/kg) or/and GA (75mg/kg) for 28days. BLM-triggered structure distortion, collagen overproduction, excessive inflammatory infiltration, pro-inflammatory cytokine release, and oxidative stress damages in lung tissues were attenuated to a higher degree by combinatorial treatment than by treatment of the individual agents. The expression of TGF-β1 and the phosphorylation of its downstream target, Smad2 were enhanced by BLM, but weakened by Sch B or/and GA. Furthermore, the significant overexpression of NADPH oxidase 4 (NOX4) was observed in BLM-induced pulmonary fibrosis, which was inhibited by Sch B or/and GA. Our study reveals that the synergistic protection by Sch B and GA against BLM-induced pulmonary fibrosis is correlated to its anti-inflammatory, anti-oxidative and anti-fibrotic properties, involving inhibition of TGF-β1/Smad2 signaling pathways and overexpression of NOX4.
Collapse
Affiliation(s)
- Di Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Institute of Otorhinolaryngology, Tianjin First Center Hospital, Tianjin 300192, China
| | - Bin Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin 300162, China
| | - Bo Cao
- Department of Rescue Equipment Science, Logistics University of Chinese People's Armed Police Force, Tianjin 300162, China; Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Tianjin 300162, China.
| | - Fei Wei
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin 300162, China
| | - Xin Yu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin 300162, China
| | - Guo-Feng Li
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin 300162, China
| | - Hong Chen
- Department of Rescue Equipment Science, Logistics University of Chinese People's Armed Police Force, Tianjin 300162, China
| | - Lu-Qing Wei
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin 300162, China
| | - Pei-Lan Wang
- Clinic of Outpatient Department, Chinese People's Liberation Army General Hospital, Beijing 100853, China.
| |
Collapse
|
431
|
Wei J, Zhu H, Lord G, Bhattachayya M, Jones BM, Allaway G, Biswal SS, Korman B, Marangoni RG, Tourtellotte WG, Varga J. Nrf2 exerts cell-autonomous antifibrotic effects: compromised function in systemic sclerosis and therapeutic rescue with a novel heterocyclic chalcone derivative. Transl Res 2017; 183:71-86.e1. [PMID: 28027929 PMCID: PMC7205471 DOI: 10.1016/j.trsl.2016.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/26/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022]
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) governs antioxidant, innate immune and cytoprotective responses and its deregulation is prominent in chronic inflammatory conditions. To examine the hypothesis that Nrf2 might be implicated in systemic sclerosis (SSc), we investigated its expression, activity, and mechanism of action in SSc patient samples and mouse models of fibrosis and evaluated the effects of a novel pharmacologic Nrf2 agonist. We found that both expression and activity of Nrf2 were significantly reduced in SSc patient skin biopsies and showed negative correlation with inflammatory gene expression. In skin fibroblasts, Nrf2 mitigated fibrotic responses by blocking canonical transforming growth factor-β (TGF-β)-Smad signaling, whereas silencing Nrf2 resulted in constitutively elevated collagen synthesis, spontaneous myofibroblast differentiation, and enhanced TGF-ß responses. Bleomycin treatment of Nrf2-null mice resulted in exaggerated fibrosis. In wild-type mice, treatment with a novel pharmacologic Nrf2 agonist 2-trifluoromethyl-2'-methoxychalcone prevented dermal fibrosis induced by TGF-β. These findings are the first to identify Nrf2 as a cell-intrinsic antifibrotic factor with key roles in maintaining extracellular matrix homeostasis and a pathogenic role in SSc. Pharmacologic reactivation of Nrf2, therefore, represents a novel therapeutic strategy toward effective treatment of fibrosis in SSc.
Collapse
Affiliation(s)
- Jun Wei
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Ill.
| | - Hongyan Zhu
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Ill
| | - Gabriel Lord
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Ill
| | - Mitra Bhattachayya
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Ill
| | | | | | - Shyam S Biswal
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Md
| | - Benjamin Korman
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Ill
| | | | - Warren G Tourtellotte
- Department of Pathology, Feinberg School of Medicine, Chicago, Ill; Department of Neurology, Feinberg School of Medicine, Chicago, Ill
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
432
|
Morry J, Ngamcherdtrakul W, Yantasee W. Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol 2017; 11:240-253. [PMID: 28012439 PMCID: PMC5198743 DOI: 10.1016/j.redox.2016.12.011] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress, mainly contributed by reactive oxygen species (ROS), has been implicated in pathogenesis of several diseases. We review two primary examples; fibrosis and cancer. In fibrosis, ROS promote activation and proliferation of fibroblasts and myofibroblasts, activating TGF-β pathway in an autocrine manner. In cancer, ROS account for its genomic instability, resistance to apoptosis, proliferation, and angiogenesis. Importantly, ROS trigger cancer cell invasion through invadopodia formation as well as extravasation into a distant metastasis site. Use of antioxidant supplements, enzymes, and inhibitors for ROS-generating NADPH oxidases (NOX) is a logical therapeutic intervention for fibrosis and cancer. We review such attempts, progress, and challenges. Lastly, we review how nanoparticles with inherent antioxidant activity can also be a promising therapeutic option, considering their additional feature as a delivery platform for drugs, genes, and imaging agents.
Collapse
Affiliation(s)
- Jingga Morry
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Worapol Ngamcherdtrakul
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA; PDX Pharmaceuticals, LLC, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA; PDX Pharmaceuticals, LLC, 3303 SW Bond Ave, Portland, OR 97239, USA.
| |
Collapse
|
433
|
Chatterjee A, Kosmacek EA, Oberley-Deegan RE. MnTE-2-PyP Treatment, or NOX4 Inhibition, Protects against Radiation-Induced Damage in Mouse Primary Prostate Fibroblasts by Inhibiting the TGF-Beta 1 Signaling Pathway. Radiat Res 2017; 187:367-381. [PMID: 28225655 DOI: 10.1667/rr14623.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prostate cancer patients who undergo radiotherapy frequently suffer from side effects caused by radiation-induced damage to normal tissues adjacent to the tumor. Exposure of these normal cells during radiation treatment can result in tissue fibrosis and cellular senescence, which ultimately leads to postirradiation-related chronic complications including urinary urgency and frequency, erectile dysfunction, urethral stricture and incontinence. Radiation-induced reactive oxygen species (ROS) have been reported as the most potent causative factor for radiation damage to normal tissue. While MnTE-2-PyP, a ROS scavenger, protects normal cells from radiation-induced damage, it does not protect cancer cells during radiation treatment. However, the mechanism by which MnTE-2-PyP provides protection from radiation-induced fibrosis has been unclear. Our current study reveals the underlying molecular mechanism of radiation protection by MnTE-2-PyP in normal mouse prostate fibroblast cells. To investigate the role of MnTE-2-PyP in normal tissue protection after irradiation, primary prostate fibroblasts from C57BL/6 mice were cultured in the presence or absence of MnTE-2-PyP and exposed to 2 Gy of X rays. We found that MnTE-2-PyP could protect primary prostate fibroblasts from radiation-induced activation, as measured by the contraction of collagen discs, and senescence, detected by beta-galactosidase staining. We observed that MnTE-2-PyP inhibited the TGF-β-mediated fibroblast activation pathway by downregulating the expression of TGF-β receptor 2, which in turn reduced the activation and/or expression of SMAD2, SMAD3 and SMAD4. As a result, SMAD2/3-mediated transcription of profibrotic markers was reduced by MnTE-2-PyP. Due to the inhibition of the TGF-β pathway, fibroblasts treated with MnTE-2-PyP could resist radiation-induced activation and senescence. NADPH oxidase 4 (NOX4) expression is upregulated after irradiation and produces ROS. As was observed with MnTE-2-PyP treatment, NOX4-/- fibroblasts were protected from radiation-induced fibroblast activation and senescence. However, NOX4-/- fibroblasts had reduced levels of active TGF-β1, which resulted in decreased TGF-β signaling. Therefore, our data suggest that reduction of ROS levels, either by MnTE-2-PyP treatment or by eliminating NOX4 activity, significantly protects normal prostate tissues from radiation-induced tissue damage, but that these approaches work on different components of the TGF-β signaling pathway. This study proposes a crucial insight into the molecular mechanism executed by MnTE-2-PyP when utilized as a radioprotector. An understanding of how this molecule works as a radioprotector will lead to a better controlled mode of treatment for post therapy complications in prostate cancer patients.
Collapse
Affiliation(s)
- Arpita Chatterjee
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Elizabeth A Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
434
|
Tamaki R, Kanai-Mori A, Morishige Y, Koike A, Yanagihara K, Amano F. Effects of 5-fluorouracil, adriamycin and irinotecan on HSC-39, a human scirrhous gastric cancer cell line. Oncol Rep 2017; 37:2366-2374. [DOI: 10.3892/or.2017.5470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/18/2017] [Indexed: 11/06/2022] Open
|
435
|
Abstract
Purpose of review Glomerular filtration occurs in specialized, microscopic organelles. Each glomerulus contains unique cells and these cooperate to maintain normal filtration. Phenomenal adaptation is required for the glomerulus to respond to variable mechanical loads and this adaptation requires efficient communication between the resident cells. This review will focus on the latest discoveries related to signalling events that mediate the crosstalk between glomerular cells, and detail how disease processes can influence normal regulation. Recent findings New data indicate that the crosstalk between glomerular cells involves an increasing number of secreted signalling ligands that act in an autocrine or paracrine fashion. Furthermore, extended roles for some of the classical signalling molecules have been described and there is emerging evidence of therapeutic strategies to manipulate cellular crosstalk. The glomerular extracellular matrix harbours many of these signalling ligands, acting as a reservoir and presenting ligands to cell surface receptors. Signals can also be transferred between cells by extracellular vesicles and this is an emerging concept in cellular crosstalk. Summary Recent discoveries are building our understanding about glomerular cell crosstalk, and this review focuses on growth factors and signalling peptides, methods of delivery to target cells, and the potential for developing new therapies for glomerular disease.
Collapse
|
436
|
Regulation of Calcium Homeostasis by ER Redox: A Close-Up of the ER/Mitochondria Connection. J Mol Biol 2017; 429:620-632. [PMID: 28137421 DOI: 10.1016/j.jmb.2017.01.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 01/17/2023]
Abstract
Calcium signaling plays an important role in cell survival by influencing mitochondria-related processes such as energy production and apoptosis. The endoplasmic reticulum (ER) is the main storage compartment for cell calcium (Ca2+; ~60-500μM), and the Ca2+ released by the ER has a prompt effect on the homeostasis of the juxtaposed mitochondria. Recent findings have highlighted a close connection between ER redox and Ca2+ signaling that is mediated by Ca2+-handling proteins. This paper describes the redox-regulated mediators and mechanisms that orchestrate Ca2+ signals from the ER to mitochondria.
Collapse
|
437
|
Bhreathnach U, Griffin B, Brennan E, Ewart L, Higgins D, Murphy M. Profibrotic IHG-1 complexes with renal disease associated HSPA5 and TRAP1 in mitochondria. Biochim Biophys Acta Mol Basis Dis 2017; 1863:896-906. [PMID: 28115289 DOI: 10.1016/j.bbadis.2017.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/01/2023]
Abstract
The highly conserved mitochondrial protein induced in high glucose-1 (IHG-1) functions to maintain mitochondrial quality and is associated with the development of fibrosis in diabetic nephropathy. Towards identifying novel approaches to treating diabetic kidney disease, IHG-1-protein-protein interactions were investigated using epitope-tagged immunoprecipitation analyses followed by mass spectrometry. Here we show that IHG-1 is solely expressed in mitochondria and localised to the inner mitochondrial membrane, the region where mitochondrial reactive oxygen species are generated. Chaperones HSPA5 and TRAP1 and cold shock protein YBX1 were identified as IHG-1 binding partners. All three proteins are important in the cellular response to oxidative stress and play important roles in mitochondrial transcription and DNA repair. Both redox imbalance and IHG-1 stimulate TGF-β signalling. IHG-1, HSPA5 and YBX1 all show increased expression in diabetic nephropathy, chronic kidney disease and in the Unilateral Ureteral Obstruction model of kidney fibrosis. Increased IHG-1 expression in UUO correlated with loss of TRAP1 expression. IHG-1 may target TRAP1 for degradation. When IHG-1 is no longer localised to mitochondria, it retains the ability to interact with the cold shock protein YBX1, facilitating anti-fibrotic actions in the nucleus. Targeting these proteins may offer alternative treatments for fibrotic kidney disease.
Collapse
Affiliation(s)
- Una Bhreathnach
- Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Brenda Griffin
- Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin Brennan
- Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Leah Ewart
- Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Debra Higgins
- Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Madeline Murphy
- Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
438
|
Stenke E, Bourke B, Knaus U. Crohn's Strictures-Moving Away from the Knife. Front Pediatr 2017; 5:141. [PMID: 28670577 PMCID: PMC5472668 DOI: 10.3389/fped.2017.00141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/02/2017] [Indexed: 01/14/2023] Open
Abstract
Crohn's disease (CD) is a lifelong inflammatory bowel disease with a rapidly rising incidence in the pediatric population. A common complication of CD is the development of fibrotic strictures, which may be present at initial diagnosis or develop many years later. Clinical presentation depends on stricture location and degree of obstruction, and strictures frequently contain a mixture of inflammatory and fibrotic tissue. Histological examination of Crohn's strictures shows thickening of the muscular layers and the submucosa, where increased collagen deposition by activated myofibroblasts is concentrated around islands of smooth muscle cells and at the superficial margin of the muscularis propria. No antifibrotic therapies for Crohn's strictures exist. Profibrotic transforming growth factor-β (TGFβ)/bone morphogenetic protein signaling stimulates myofibroblast differentiation and extracellular matrix deposition. Understanding and targeting TGFβ1 downstream signaling is the main focus of current research, raising the possibility of specific antifibrotic therapy in CD becoming available in the future.
Collapse
Affiliation(s)
- Emily Stenke
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Billy Bourke
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland.,Department of Pediatric Gastroenterology, Our Lady's Children's Hospital, Dublin, Ireland
| | - Ulla Knaus
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
439
|
Lozhkin A, Vendrov AE, Pan H, Wickline SA, Madamanchi NR, Runge MS. NADPH oxidase 4 regulates vascular inflammation in aging and atherosclerosis. J Mol Cell Cardiol 2017; 102:10-21. [PMID: 27986445 PMCID: PMC5625334 DOI: 10.1016/j.yjmcc.2016.12.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 01/10/2023]
Abstract
We recently reported that increased NADPH oxidase 4 (NOX4) expression and activity during aging results in enhanced cellular and mitochondrial oxidative stress, vascular inflammation, dysfunction, and atherosclerosis. The goal of the present study was to elucidate the molecular mechanism(s) for these effects and determine the importance of NOX4 modulation of proinflammatory gene expression in mouse vascular smooth muscle cells (VSMCs). A novel peptide-mediated siRNA transfection approach was used to inhibit Nox4 expression with minimal cellular toxicity. Using melittin-derived peptide p5RHH, we achieved significantly higher transfection efficiency (92% vs. 85% with Lipofectamine) and decreased toxicity (p<0.001 vs. Lipofectamine in MTT and p<0.0001 vs. Lipofectamine in LDH assays) in VSMCs. TGFβ1 significantly upregulates Nox4 mRNA (p<0.01) and protein (p<0.01) expression in VSMCs. p5RHH-mediated Nox4 siRNA transfection greatly attenuated TGFβ1-induced upregulation of Nox4 mRNA (p<0.01) and protein (p<0.0001) levels and decreased hydrogen peroxide production (p<0.0001). Expression of pro-inflammatory genes Ccl2, Ccl5, Il6, and Vcam1 was significantly upregulated in VSMCs in several settings cells isolated from aged vs. young wild-type mice, in atherosclerotic arteries of Apoe-/- mice, and atherosclerotic human carotid arteries and correlated with NOX4 expression. p5RHH-mediated Nox4 siRNA transfection significantly attenuated the expression of these pro-inflammatory genes in TGFβ1-treated mouse VSMCs, with the highest degree of inhibition in the expression of Il6. p5RHH peptide-mediated knockdown of TGFβ-activated kinase 1 (TAK1, also known as Map3k7), Jun, and Rela, but not Nfkb2, downregulated TGFβ1-induced Nox4 expression in VSMCs. Together, these data demonstrate that increased expression and activation of NOX4, which might result from increased TGFβ1 levels seen during aging, induces a proinflammatory phenotype in VSMCs, enhancing atherosclerosis.
Collapse
Affiliation(s)
- Andrey Lozhkin
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, MI, USA
| | - Aleksandr E Vendrov
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, MI, USA
| | - Hua Pan
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis 63110, MO, USA
| | - Samuel A Wickline
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis 63110, MO, USA
| | - Nageswara R Madamanchi
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, MI, USA
| | - Marschall S Runge
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, MI, USA.
| |
Collapse
|
440
|
Rosenbloom J, Macarak E, Piera-Velazquez S, Jimenez SA. Human Fibrotic Diseases: Current Challenges in Fibrosis Research. Methods Mol Biol 2017; 1627:1-23. [PMID: 28836191 DOI: 10.1007/978-1-4939-7113-8_1] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Human fibrotic diseases constitute a major health problem worldwide owing to the large number of affected individuals, the incomplete knowledge of the fibrotic process pathogenesis, the marked heterogeneity in their etiology and clinical manifestations, the absence of appropriate and fully validated biomarkers, and, most importantly, the current void of effective disease-modifying therapeutic agents. The fibrotic disorders encompass a wide spectrum of clinical entities including systemic fibrotic diseases such as systemic sclerosis (SSc), sclerodermatous graft vs. host disease, and nephrogenic systemic fibrosis, as well as numerous organ-specific disorders including radiation-induced fibrosis and cardiac, pulmonary, liver, and kidney fibrosis. Although their causative mechanisms are quite diverse and in several instances have remained elusive, these diseases share the common feature of an uncontrolled and progressive accumulation of fibrotic tissue in affected organs causing their dysfunction and ultimate failure. Despite the remarkable heterogeneity in the etiologic mechanisms responsible for the development of fibrotic diseases and in their clinical manifestations, numerous studies have identified activated myofibroblasts as the common cellular element ultimately responsible for the replacement of normal tissues with nonfunctional fibrotic tissue. Critical signaling cascades, initiated primarily by transforming growth factor-β (TGF-β), but also involving numerous cytokines and signaling molecules which stimulate profibrotic reactions in myofibroblasts, offer potential therapeutic targets. Here, we briefly review the current knowledge of the molecular mechanisms involved in the development of tissue fibrosis and point out some of the most important challenges to research in the fibrotic diseases and to the development of effective therapeutic approaches for this often fatal group of disorders. Efforts to further clarify the complex pathogenetic mechanisms of the fibrotic process should be encouraged to attain the elusive goal of developing effective therapies for these serious, untreatable, and often fatal disorders.
Collapse
Affiliation(s)
- Joel Rosenbloom
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Edward Macarak
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sonsoles Piera-Velazquez
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sergio A Jimenez
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
441
|
Dong J, Ma Q. Myofibroblasts and lung fibrosis induced by carbon nanotube exposure. Part Fibre Toxicol 2016; 13:60. [PMID: 27814727 PMCID: PMC5097370 DOI: 10.1186/s12989-016-0172-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/25/2016] [Indexed: 01/07/2023] Open
Abstract
Carbon nanotubes (CNTs) are newly developed materials with unique properties and a range of industrial and commercial applications. A rapid expansion in the production of CNT materials may increase the risk of human exposure to CNTs. Studies in rodents have shown that certain forms of CNTs are potent fibrogenic inducers in the lungs to cause interstitial, bronchial, and pleural fibrosis characterized by the excessive deposition of collagen fibers and the scarring of involved tissues. The cellular and molecular basis underlying the fibrotic response to CNT exposure remains poorly understood. Myofibroblasts are a major type of effector cells in organ fibrosis that secrete copious amounts of extracellular matrix proteins and signaling molecules to drive fibrosis. Myofibroblasts also mediate the mechano-regulation of fibrotic matrix remodeling via contraction of their stress fibers. Recent studies reveal that exposure to CNTs induces the differentiation of myofibroblasts from fibroblasts in vitro and stimulates pulmonary accumulation and activation of myofibroblasts in vivo. Moreover, mechanistic analyses provide insights into the molecular underpinnings of myofibroblast differentiation and function induced by CNTs in the lungs. In view of the apparent fibrogenic activity of CNTs and the emerging role of myofibroblasts in the development of organ fibrosis, we discuss recent findings on CNT-induced lung fibrosis with emphasis on the role of myofibroblasts in the pathologic development of lung fibrosis. Particular attention is given to the formation and activation of myofibroblasts upon CNT exposure and the possible mechanisms by which CNTs regulate the function and dynamics of myofibroblasts in the lungs. It is evident that a fundamental understanding of the myofibroblast and its function and regulation in lung fibrosis will have a major influence on the future research on the pulmonary response to nano exposure, particle and fiber-induced pneumoconiosis, and other human lung fibrosing diseases.
Collapse
Affiliation(s)
- Jie Dong
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Road, Morgantown, WV, USA
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Road, Morgantown, WV, USA.
| |
Collapse
|
442
|
Özay R, Türkoğlu E, Gürer B, Dolgun H, Evirgen O, Ergüder Bİ, Hayırlı N, Gürses L, Şekerci Z, Yılmaz ER. Does Decorin Protect Neuronal Tissue via Its Antioxidant and Antiinflammatory Activity from Traumatic Brain Injury? An Experimental Study. World Neurosurg 2016; 97:407-415. [PMID: 27744073 DOI: 10.1016/j.wneu.2016.09.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND The development of secondary brain injury via oxidative stress after traumatic brain injury (TBI) is well known. Decorin (DC) inactivates transforming growth factor β1, complement system, and tumor necrosis factor α, which are related to oxidative stress and apoptosis. Consequently, the aim of the present study was to evaluate the role of DC on TBI. METHODS A total of 24 male rats were used and divided into 4 groups as follows; control, trauma, DC, and methylprednisolone (MP). The trauma, DC, and MP groups were subjected to closed-head contusive weight-drop injuries. Rats received treatment with intraperitoneal saline, DC, or MP, respectively. All the animals were killed at the 24th hour after trauma and brain tissues were extracted. The oxidant/antioxidant parameters (malondialdehyde, glutathione peroxidase, superoxide dismutase, and NO) and caspase 3 in the cerebral tissue were analyzed, and histomorphologic evaluation of the cerebral tissue was performed. RESULTS Levels of malondialdehyde, NO, and activity of caspase 3 were significantly reduced, and in addition glutathione peroxidase and superoxide dismutase levels were increased in the DC and MP groups compared with the trauma group. The pathology scores and the percentage of degenerated neurons were statistically lower in the DC and MP groups than in the trauma group. CONCLUSIONS The results of the present study showed that DC inactivates transforming growth factor β1 and protects the brain tissue and neuronal cells after TBI.
Collapse
Affiliation(s)
- Rafet Özay
- Ministry of Health Diskapi Yildirim Beyazit Training and Research Hospital, Neurosurgery Clinic, Ankara, Turkey.
| | - Erhan Türkoğlu
- Ministry of Health Diskapi Yildirim Beyazit Training and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| | - Bora Gürer
- Ministry of Health Fatih Sultan Mehmet Training and Research Hospital, Neurosurgery Clinic, İstanbul, Turkey
| | - Habibullah Dolgun
- Ministry of Health Diskapi Yildirim Beyazit Training and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| | - Oya Evirgen
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Berrin İmge Ergüder
- Department of Biochemistry, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Nazlı Hayırlı
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Levent Gürses
- Ministry of Health Diskapi Yildirim Beyazit Training and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| | - Zeki Şekerci
- Ministry of Health Diskapi Yildirim Beyazit Training and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| | - Erdal Reşit Yılmaz
- Ministry of Health Diskapi Yildirim Beyazit Training and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| |
Collapse
|
443
|
Barnes PJ. Sex Differences in Chronic Obstructive Pulmonary Disease Mechanisms. Am J Respir Crit Care Med 2016; 193:813-4. [PMID: 27082528 DOI: 10.1164/rccm.201512-2379ed] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Peter J Barnes
- 1 National Heart and Lung Institute Imperial College London London, United Kingdom
| |
Collapse
|
444
|
Jenkins RG. To Suppress the Radicals We Must Have Biomarkers of Oxidative Stress. Am J Respir Crit Care Med 2016; 193:817-9. [PMID: 27082531 DOI: 10.1164/rccm.201511-2311ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- R Gisli Jenkins
- 1 Respiratory Research Unit Nottingham University Hospitals Nottingham, United Kingdom
| |
Collapse
|
445
|
Sadhukhan P, Saha S, Sinha K, Brahmachari G, Sil PC. Selective Pro-Apoptotic Activity of Novel 3,3'-(Aryl/Alkyl-Methylene)Bis(2-Hydroxynaphthalene-1,4-Dione) Derivatives on Human Cancer Cells via the Induction Reactive Oxygen Species. PLoS One 2016; 11:e0158694. [PMID: 27380262 PMCID: PMC4933382 DOI: 10.1371/journal.pone.0158694] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/20/2016] [Indexed: 12/30/2022] Open
Abstract
Selective induction of apoptosis in cancer cells barring the normal cells is considered as an effective strategy to combat cancer. In the present study, a series of twenty-two (22) synthetic 3,3'-(aryl/alkyl-methylene)bis(2-hydroxynaphthalene-1,4-dione) bis-lawsone derivatives were assayed for their pro-apoptotic activity in six different cell lines (five cancerous and one normal) using MTT assay. Out of these 22 test compounds, 1j was found to be the most effective in inducing apoptosis in human glioma cells (CCF-4) among the different cell lines used in the study. The activity of this compound, 1j, was then compared to a popular anticancer drug, cisplatin, having limited usage because of its nephrotoxic nature. In this study, 1j derivative showed much less toxicity to the normal kidney cells compared to cisplatin, thus indicating the superiority of 1j as a possible anticancer agent. This compound was observed to induce apoptosis in the glioma cells by inducing the caspase dependent apoptotic pathways via ROS and downregulating the PI3K/AKT/mTOR pathway. Estimation of different oxidative stress markers also confirms the induction of oxidative stress in 1j exposed cancer cells. The toxicity of 1j compound toward cancer cells was confirmed further by different flow cytometrical analyses to estimate the mitochondrial membrane potential and cell cycle. The sensitivity of malignant cells to apoptosis, provoked by this synthetic derivative in vitro, deserves further studies in suitable in vivo models. These studies not only identified a novel anticancer drug candidate but also help to understand the metabolism of ROS and its application in cancer treatment.
Collapse
Affiliation(s)
- Pritam Sadhukhan
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sukanya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Krishnendu Sinha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, 731235, West Bengal, India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| |
Collapse
|
446
|
Schober-Halper B, Hofmann M, Oesen S, Franzke B, Wolf T, Strasser EM, Bachl N, Quittan M, Wagner KH, Wessner B. Elastic band resistance training influences transforming growth factor-ß receptor I mRNA expression in peripheral mononuclear cells of institutionalised older adults: the Vienna Active Ageing Study (VAAS). IMMUNITY & AGEING 2016; 13:22. [PMID: 27375767 PMCID: PMC4929754 DOI: 10.1186/s12979-016-0077-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/29/2016] [Indexed: 01/11/2023]
Abstract
Background Ageing, inactivity and obesity are associated with chronic low-grade inflammation contributing to a variety of lifestyle-related diseases. Transforming growth factor-β (TGF-β) is a multimodal protein with various cellular functions ranging from tissue remodelling to the regulation of inflammation and immune functions. While it is generally accepted that aerobic exercise exerts beneficial effects on several aspects of immune functions, even in older adults, the effect of resistance training remains unclear. The aim of this study was to investigate whether progressive resistance training (6 months) with or without nutritional supplementation (protein and vitamins) would influence circulating C-reactive protein and TGF-β levels as well as TGF-β signalling in peripheral mononuclear cells (PBMCs) of institutionalised adults with a median age of 84.5 (65.0–97.4) years. Results Elastic band resistance training significantly improved performance as shown by the arm-lifting test (p = 0.007), chair stand test (p = 0.001) and 6-min walking test (p = 0.026). These results were paralleled by a reduction in TGF-β receptor I (TGF-βRI) mRNA expression in PBMCs (p = 0.006), while circulating inflammatory markers were unaffected. Protein and vitamin supplementation did not provoke any additional effects. Interestingly, muscular endurance of upper and lower body and aerobic performance at baseline were negatively associated with changes in circulating TGF-β at the early phase of the study. Furthermore, drop-outs of the study were characterised not only by lower physical performance but also higher TGF-β and TGF-βRI mRNA expression, and lower miRNA-21 expression. Conclusions Progressive resistance training with elastic bands did not influence chronic low-grade inflammation but potentially affected TGF-β signalling in PBMCs through altered TGF-βRI mRNA expression. There appears to be an association between physical performance and TGF-β expression in PBMCs of older adults, in which the exact mechanisms need to be clarified.
Collapse
Affiliation(s)
- Barbara Schober-Halper
- Research Platform Active Ageing, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Marlene Hofmann
- Research Platform Active Ageing, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Stefan Oesen
- Research Platform Active Ageing, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Bernhard Franzke
- Research Platform Active Ageing, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Thomas Wolf
- Department of Sports and Exercise Physiology, Centre for Sport Science and University Sports, University of Vienna, Auf der Schmelz 6, 1150 Vienna, Austria
| | - Eva-Maria Strasser
- Karl Landsteiner Institute for Remobilization and Functional Health/Institute for Physical Medicine and Rehabilitation, Kaiser Franz Joseph Hospital, Social Medical Centre - South, Kundratstrasse 3, 1100 Vienna, Austria
| | - Norbert Bachl
- Department of Sports and Exercise Physiology, Centre for Sport Science and University Sports, University of Vienna, Auf der Schmelz 6, 1150 Vienna, Austria
| | - Michael Quittan
- Karl Landsteiner Institute for Remobilization and Functional Health/Institute for Physical Medicine and Rehabilitation, Kaiser Franz Joseph Hospital, Social Medical Centre - South, Kundratstrasse 3, 1100 Vienna, Austria
| | - Karl-Heinz Wagner
- Research Platform Active Ageing, University of Vienna, Althanstraße 14, 1090 Vienna, Austria ; Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Barbara Wessner
- Research Platform Active Ageing, University of Vienna, Althanstraße 14, 1090 Vienna, Austria ; Department of Sports and Exercise Physiology, Centre for Sport Science and University Sports, University of Vienna, Auf der Schmelz 6, 1150 Vienna, Austria
| |
Collapse
|
447
|
Photobiomodulation Therapy Decreases Oxidative Stress in the Lung Tissue after Formaldehyde Exposure: Role of Oxidant/Antioxidant Enzymes. Mediators Inflamm 2016; 2016:9303126. [PMID: 27293324 PMCID: PMC4886066 DOI: 10.1155/2016/9303126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 01/10/2023] Open
Abstract
Formaldehyde is ubiquitous pollutant that induces oxidative stress in the lung. Several lung diseases have been associated with oxidative stress and their control is necessary. Photobiomodulation therapy (PBMT) has been highlighted as a promissory treatment, but its mechanisms need to be better investigated. Our objective was to evaluate the effects of PBMT on the oxidative stress generated by FA exposure. Male Wistar rats were submitted to FA exposure of 1% or vehicle (3 days) and treated or not with PBMT (1 and 5 h after each FA exposure). Rats treated only with laser were used as control. Twenty-four hours after the last FA exposure, we analyzed the effects of PBMT on the generation of nitrites and hydrogen peroxide, oxidative burst, glutathione reductase, peroxidase, S-transferase enzyme activities, the gene expression of nitric oxide, cyclooxygenase, superoxide dismutase, the catalase enzyme, and heme oxygenase-1. PBMT reduced the generation of nitrites and hydrogen peroxide and increased oxidative burst in the lung cells. A decreased level of oxidant enzymes was observed which were concomitantly related to an increased level of antioxidants. This study provides new information about the antioxidant mechanisms of PBMT in the lung and might constitute an important tool for lung disease treatment.
Collapse
|
448
|
Piera-Velazquez S, Mendoza FA, Jimenez SA. Endothelial to Mesenchymal Transition (EndoMT) in the Pathogenesis of Human Fibrotic Diseases. J Clin Med 2016; 5:jcm5040045. [PMID: 27077889 PMCID: PMC4850468 DOI: 10.3390/jcm5040045] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/18/2016] [Accepted: 04/06/2016] [Indexed: 02/08/2023] Open
Abstract
Fibrotic diseases encompass a wide spectrum of clinical entities including systemic fibrotic diseases such as systemic sclerosis, sclerodermatous graft versus host disease, nephrogenic systemic fibrosis, and IgG₄-associated sclerosing disease, as well as numerous organ-specific disorders including radiation-induced fibrosis, and cardiac, pulmonary, liver, and kidney fibrosis. Although their causative mechanisms are quite diverse, these diseases share the common feature of an uncontrolled and progressive accumulation of fibrous tissue macromolecules in affected organs leading to their dysfunction and ultimate failure. The pathogenesis of fibrotic diseases is complex and despite extensive investigation has remained elusive. Numerous studies have identified myofibroblasts as the cells responsible for the establishment and progression of the fibrotic process. Tissue myofibroblasts in fibrotic diseases originate from several sources including quiescent tissue fibroblasts, circulating CD34+ fibrocytes, and the phenotypic conversion of various cell types including epithelial and endothelial cells into activated myofibroblasts. However, the role of the phenotypic transition of endothelial cells into mesenchymal cells (Endothelial to Mesenchymal Transition or EndoMT) in the pathogenesis of fibrotic disorders has not been fully elucidated. Here, we review the evidence supporting EndoMT's contribution to human fibrotic disease pathogenesis.
Collapse
Affiliation(s)
- Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA.
| | - Fabian A Mendoza
- Rheumatology Division, Department of Medicine, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA.
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA.
| |
Collapse
|
449
|
Lung extracellular matrix and redox regulation. Redox Biol 2016; 8:305-15. [PMID: 26938939 PMCID: PMC4777985 DOI: 10.1016/j.redox.2016.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/28/2022] Open
Abstract
Pulmonary fibrosis affects millions worldwide and, even though there has been a significant investment in understanding the processes involved in wound healing and maladaptive repair, a complete understanding of the mechanisms responsible for lung fibrogenesis eludes us, and interventions capable of reversing or halting disease progression are not available. Pulmonary fibrosis is characterized by the excessive expression and uncontrolled deposition of extracellular matrix (ECM) proteins resulting in erosion of the tissue structure. Initially considered an 'end-stage' process elicited after injury, these events are now considered pathogenic and are believed to contribute to the course of the disease. By interacting with integrins capable of signal transduction and by influencing tissue mechanics, ECM proteins modulate processes ranging from cell adhesion and migration to differentiation and growth factor expression. In doing so, ECM proteins help orchestrate complex developmental processes and maintain tissue homeostasis. However, poorly controlled deposition of ECM proteins promotes inflammation, fibroproliferation, and aberrant differentiation of cells, and has been implicated in the pathogenesis of pulmonary fibrosis, atherosclerosis and cancer. Considering their vital functions, ECM proteins are the target of investigation, and oxidation-reduction (redox) reactions have emerged as important regulators of the ECM. Oxidative stress invariably accompanies lung disease and promotes ECM expression directly or through the overproduction of pro-fibrotic growth factors, while affecting integrin binding and activation. In vitro and in vivo investigations point to redox reactions as targets for intervention in pulmonary fibrosis and related disorders, but studies in humans have been disappointing probably due to the narrow impact of the interventions tested, and our poor understanding of the factors that regulate these complex reactions. This review is not meant to provide a comprehensive review of this field, but rather to highlight what has been learned and to raise interest in this area in need of much attention.
Collapse
|