401
|
Chen L, Huang Y, Huang C, Hu B, Hu C, Zhou B. Acute exposure to DE-71 causes alterations in visual behavior in zebrafish larvae. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1370-1375. [PMID: 23400899 DOI: 10.1002/etc.2168] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/28/2012] [Accepted: 01/03/2013] [Indexed: 06/01/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) cause neurobehavioral toxicity, but their effects on visual behavior remain unknown. In the present study, the impact of PBDEs on visual behavior was examined using optokinetic responses and phototaxis in zebrafish larvae. Zebrafish embryos were exposed to pentabrominated diphenyl ethers mixture (DE-71) at concentrations of 0, 0.32, 3.58, and 31.0 µg/L until 15 d postfertilization. The authors then assessed photoreceptor opsin expression, retinal histology, and visual behavior of the larvae. The results showed that the transcriptions of the opsin genes, zfrho and zfgr1, were significantly upregulated. Western blotting further demonstrated a significant increase in rhodopsin protein expression after exposure of the larvae to DE-71. Histological examination revealed the following morphological alterations in the retina: increased area of inner nuclear layer, decreased area of inner plexiform layer, and decreased density of ganglion cells. Tests of optokinetic and phototactic behavior showed hyperactive responses on exposure to DE-71, including increased saccadic eye movements and phototactic response. The present study is the first to demonstrate that the acute exposure of zebrafish larvae to DE-71 causes biochemical and structural changes in the eye that lead to behavioral alterations. Analysis of these visual behavioral paradigms may be useful in predicting the adverse effects of toxicants on visual function in fish.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | | | |
Collapse
|
402
|
Puttonen HAJ, Sundvik M, Rozov S, Chen YC, Panula P. Acute ethanol treatment upregulates Th1, Th2, and Hdc in larval zebrafish in stable networks. Front Neural Circuits 2013; 7:102. [PMID: 23754986 PMCID: PMC3668275 DOI: 10.3389/fncir.2013.00102] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/10/2013] [Indexed: 01/13/2023] Open
Abstract
Earlier studies in zebrafish have revealed that acutely given ethanol has a stimulatory effect on locomotion in fish larvae but the mechanism of this effect has not been revealed. We studied the effects of ethanol concentrations between 0.75 and 3.00% on 7-day-old larval zebrafish (Danio rerio) of the Turku strain. At 0.75-3% concentrations ethanol increased swimming speed during the first minute. At 3% the swimming speed decreased rapidly after the first minute, whereas at 0.75 and 1.5% a prolonged increase in swimming speed was seen. At the highest ethanol concentration dopamine levels decreased significantly after a 10-min treatment. We found that ethanol upregulates key genes involved in the biosynthesis of histamine (hdc) and dopamine (th1 and th2) following a short 10-min ethanol treatment, measured by qPCR. Using in situ hybridization and immunohistochemistry, we further discovered that the morphology of the histaminergic and dopaminergic neurons and networks in the larval zebrafish brain was unaffected by both the 10-min and a longer 30-min treatment. The results suggest that acute ethanol rapidly decreases dopamine levels, and activates both forms or th to replenish the dopamine stores within 30 min. The dynamic changes in histaminergic and dopaminergic system enzymes occurred in the same cells which normally express the transcripts. As both dopamine and histamine are known to be involved in the behavioral effects of ethanol and locomotor stimulation, these results suggest that rapid adaptations of these networks are associated with altered locomotor activity.
Collapse
Affiliation(s)
- Henri A J Puttonen
- Neuroscience Center and Institute of Biomedicine/Anatomy, University of Helsinki Helsinki, Finland
| | | | | | | | | |
Collapse
|
403
|
Holcombe A, Howorko A, Powell RA, Schalomon M, Hamilton TJ. Reversed scototaxis during withdrawal after daily-moderate, but not weekly-binge, administration of ethanol in zebrafish. PLoS One 2013; 8:e63319. [PMID: 23675478 PMCID: PMC3652870 DOI: 10.1371/journal.pone.0063319] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/01/2013] [Indexed: 12/20/2022] Open
Abstract
Alcohol abuse can lead to severe psychological and physiological damage. Little is known, however, about the relative impact of a small, daily dose of alcohol (daily-moderate schedule) versus a large, once per week dose (weekly-binge schedule). In this study, we examined the effect of each of these schedules on behavioural measures of anxiety in zebrafish (Danio rerio). Adult wild-type zebrafish were administered either 0.2% ethanol on a daily-moderate schedule or 1.4% ethanol on a weekly-binge schedule for a period of 21 days, and then tested for scototaxis (preference for darkness) during withdrawal. Compared to a control group with no alcohol exposure, the daily-moderate group spent significantly more time on the light side of the arena (indicative of decreased anxiety) on day two of withdrawal, but not day 9 of withdrawal. The weekly-binge group was not significantly different from the control group on either day of withdrawal and showed no preference for either the light or dark zones. Our results indicate that even a small dose of alcohol on a daily basis can cause significant, though reversible, changes in behaviour.
Collapse
Affiliation(s)
- Adam Holcombe
- Department of Psychology, Grant MacEwan University, Edmonton, Alberta, Canada
| | - Adam Howorko
- Department of Psychology, Grant MacEwan University, Edmonton, Alberta, Canada
| | - Russell A. Powell
- Department of Psychology, Grant MacEwan University, Edmonton, Alberta, Canada
| | - Melike Schalomon
- Department of Psychology, Grant MacEwan University, Edmonton, Alberta, Canada
| | - Trevor J. Hamilton
- Department of Psychology, Grant MacEwan University, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
404
|
Ikeda H, Delargy AH, Yokogawa T, Urban JM, Burgess HA, Ono F. Intrinsic properties of larval zebrafish neurons in ethanol. PLoS One 2013; 8:e63318. [PMID: 23658822 PMCID: PMC3643919 DOI: 10.1371/journal.pone.0063318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/31/2013] [Indexed: 11/18/2022] Open
Abstract
The behavioral effects of ethanol have been studied in multiple animal models including zebrafish. Locomotion of zebrafish larvae is resistant to high concentrations of ethanol in bath solution. This resistance has been attributed to a lower systemic concentration of ethanol in zebrafish when compared with bath solution, although the mechanism to maintain such a steep gradient is unclear. Here we examined whether the intrinsic properties of neurons play roles in this resistance. In order to minimize the contribution of metabolism and diffusional barriers, larvae were hemisected and the anterior half immersed in a range of ethanol concentrations thereby ensuring the free access of bath ethanol to the brain. The response to vibrational stimuli of three types of reticulospinal neurons: Mauthner neurons, vestibulospinal neurons, and MiD3 neurons were examined using an intracellular calcium indicator. The intracellular [Ca(2+)] response in MiD3 neurons decreased in 100 mM ethanol, while Mauthner neurons and vestibulospinal neurons required >300 mM ethanol to elicit similar effects. The ethanol effect in Mauthner neurons was reversible following removal of ethanol. Interestingly, activities of MiD3 neurons displayed spontaneous recovery in 300 mM ethanol, suggestive of acute tolerance. Finally, we examined with mechanical vibration the startle response of free-swimming larvae in 300 mM ethanol. Ethanol treatment abolished long latency startle responses, suggesting a functional change in neural processing. These data support the hypothesis that individual neurons in larval zebrafish brains have distinct patterns of response to ethanol dictated by specific molecular targets.
Collapse
Affiliation(s)
- Hiromi Ikeda
- Section on Model Synaptic Systems, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Alison H. Delargy
- Section on Model Synaptic Systems, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Tohei Yokogawa
- Unit on Behavioral Neurogenetics, National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason M. Urban
- Section on Model Synaptic Systems, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Harold A. Burgess
- Unit on Behavioral Neurogenetics, National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fumihito Ono
- Section on Model Synaptic Systems, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
405
|
Stewart AM, Cachat J, Gaikwad S, Robinson KS, Gebhardt M, Kalueff AV. Perspectives on experimental models of serotonin syndrome in zebrafish. Neurochem Int 2013; 62:893-902. [DOI: 10.1016/j.neuint.2013.02.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 02/10/2013] [Accepted: 02/14/2013] [Indexed: 01/07/2023]
|
406
|
Pittman JT, Ichikawa KM. iPhone® applications as versatile video tracking tools to analyze behavior in zebrafish (Danio rerio). Pharmacol Biochem Behav 2013; 106:137-42. [PMID: 23558086 DOI: 10.1016/j.pbb.2013.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/28/2013] [Accepted: 03/23/2013] [Indexed: 11/26/2022]
Abstract
Zebrafish (Danio rerio) are emerging as a promising model organism for experimental studies relevant to biological psychiatry. The objective of this study was to develop a novel video-based movement tracking and analysis system to quantify behavioral changes following psychoactive drug exposure in zebrafish. We assessed the effects of withdrawal from chronic ethanol exposure, and subsequent administration of fluoxetine (Prozac®), buspirone (Buspar®), and diazepam (Valium) using two behavioral paradigms; the Novel Tank Diving Test and the Light/Dark Choice Assay. A video tracking system was developed using two Apple® applications (Apps) to quantify these behaviors. Data from zebrafish exposed to the above treatments are presented in this paper not only to exemplify behavioral alterations associated with chronic exposure, but also more importantly, to validate the video tracking system. Following withdrawal from chronic ethanol exposure, zebrafish exhibited dose/time-dependent anxiogenic effects; including reduced exploration and freezing behavior in the Novel Tank Diving Test, and preference for the dark area for the Light/Dark Choice Assay. In contrast, the above drug treatments had significant anxiolytic effects. We have developed a simple and cost-effective method of measuring zebrafish behavioral responses. The iPhone® Apps outlined in this study offer numerous flexible methods of data acquisition; namely, ease of identification and tracking of multiple animals, tools for visualization of the tracks, and calculation of a range of analysis parameters. Furthermore, the limited amount of time required for interpretation of the video data makes this a powerful high-throughput tool with potential applications for pre-clinical drug development.
Collapse
Affiliation(s)
- Julian T Pittman
- Department of Biological and Environmental Sciences, Troy University, Troy, AL 36083, USA.
| | | |
Collapse
|
407
|
Rod photoreceptors protect from cone degeneration-induced retinal remodeling and restore visual responses in zebrafish. J Neurosci 2013; 33:1804-14. [PMID: 23365220 DOI: 10.1523/jneurosci.2910-12.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Humans are largely dependent upon cone-mediated vision. However, death or dysfunction of rods, the predominant photoreceptor subtype, results in secondary loss of cones, remodeling of retinal circuitry, and blindness. The changes in circuitry may contribute to the vision deficit and undermine attempts at restoring sight. We exploit zebrafish larvae as a genetic model to specifically characterize changes associated with photoreceptor degenerations in a cone-dominated retina. Photoreceptors form synapses with two types of second-order neurons, bipolar cells, and horizontal cells. Using cell-specific reporter gene expression and immunolabeling for postsynaptic glutamate receptors, significant remodeling is observed following cone degeneration in the pde6c(w59) larval retina but not rod degeneration in the Xops:mCFP(q13) line. In adults, rods and cones are present in approximately equal numbers, and in pde6c(w59) mutants glutamate receptor expression and synaptic structures in the outer plexiform layer are preserved, and visual responses are gained in these once blind fish. We propose that the abundance of rods in the adult protects the retina from cone degeneration-induced remodeling. We test this hypothesis by genetically manipulating the number of rods in larvae. We show that an increased number and uniform distribution of rods in lor/tbx2b(p25bbtl) or six7 morpholino-injected larvae protect from pde6c(w59)-induced secondary changes. The observations that remodeling is a common consequence of photoreceptor death across species, and that in zebrafish a small number of surviving photoreceptors afford protection from degeneration-induced changes, provides a model for systematic analysis of factors that slow or even prevent the secondary deteriorations associated with neural degenerative disease.
Collapse
|
408
|
Ariyomo TO, Carter M, Watt PJ. Heritability of Boldness and Aggressiveness in the Zebrafish. Behav Genet 2013; 43:161-7. [DOI: 10.1007/s10519-013-9585-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/15/2013] [Indexed: 12/13/2022]
|
409
|
Saif M, Chatterjee D, Buske C, Gerlai R. Sight of conspecific images induces changes in neurochemistry in zebrafish. Behav Brain Res 2013; 243:294-9. [PMID: 23357085 DOI: 10.1016/j.bbr.2013.01.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 12/19/2022]
Abstract
Zebrafish are gaining popularity in behavioural brain research as this species combines practical simplicity with system complexity. The dopaminergic system has been thoroughly investigated using mammals. Dopamine plays important roles in motor function and reward. Zebrafish have dopamine receptors homologous to mammalian counterparts, and dopamine receptor antagonists as well as alcohol have been shown to exert significant effects on this species as measured using HPLC or behavioural methods. The sight of conspecifics was previously shown to be rewarding in zebrafish but whether this stimulus affects the dopaminergic system has not been studied. Here, we present animated images of zebrafish to the experimental zebrafish subject for varying lengths of time and quantify the amount of dopamine, DOPAC, serotonin and 5HIAA extracted from the subject's brain immediately after the stimulus presentation using HPLC with electrochemical detection. We find conspecific images to induce a robust behavioural response (attraction) in experimental zebrafish. Importantly, dopamine and DOPAC levels significantly increased in response to the presentation of conspecific images but not to scrambled images. Last, serotonin and 5HIAA levels did not significantly change in response to the conspecific images. We conclude that our findings, together with pervious studies, now conclusively demonstrate that the behavioural response induced by the appearance of conspecifics is mediated, at least partly, by the dopaminergic system in zebrafish.
Collapse
Affiliation(s)
- Muhammed Saif
- Department of Psychology, University of Toronto Mississauga, Canada
| | | | | | | |
Collapse
|
410
|
Cachat J, Kyzar EJ, Collins C, Gaikwad S, Green J, Roth A, El-Ounsi M, Davis A, Pham M, Landsman S, Stewart AM, Kalueff AV. Unique and potent effects of acute ibogaine on zebrafish: The developing utility of novel aquatic models for hallucinogenic drug research. Behav Brain Res 2013; 236:258-269. [DOI: 10.1016/j.bbr.2012.08.041] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/23/2012] [Accepted: 08/28/2012] [Indexed: 01/06/2023]
|
411
|
Hutter S, Hettyey A, Penn DJ, Zala SM. Ephemeral Sexual Dichromatism in Zebrafish (Danio rerio). Ethology 2012. [DOI: 10.1111/eth.12027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sophie Hutter
- Konrad Lorenz Institute of Ethology; Department of Integrative Biology and Evolution; University of Veterinary Medicine; Vienna; Austria
| | - Attila Hettyey
- Konrad Lorenz Institute of Ethology; Department of Integrative Biology and Evolution; University of Veterinary Medicine; Vienna; Austria
| | - Dustin J. Penn
- Konrad Lorenz Institute of Ethology; Department of Integrative Biology and Evolution; University of Veterinary Medicine; Vienna; Austria
| | - Sarah M. Zala
- Konrad Lorenz Institute of Ethology; Department of Integrative Biology and Evolution; University of Veterinary Medicine; Vienna; Austria
| |
Collapse
|
412
|
Abstract
The larval zebrafish has emerged asa vertebrate model system amenable to small molecule screens for probing diverse biological pathways. Two large-scale small molecule screens examined the effects of thousands of drugs on larval zebrafish sleep/wake and photomotor response behaviors. Both screens identified hundreds of molecules that altered zebrafish behavior in distinct ways. The behavioral profiles induced by these small molecules enabled the clustering of compounds according to shared phenotypes. This approach identified regulators of sleep/wake behavior and revealed the biological targets for poorly characterized compounds. Behavioral screening for neuroactive small molecules in zebrafish is an attractive complement to in vitro screening efforts, because the complex interactions in the vertebrate brain can only be revealed in vivo.
Collapse
Affiliation(s)
- Jason Rihel
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
413
|
Assessments of the effects of nicotine and ketamine using tyrosine hydroxylase-green fluorescent protein transgenic zebrafish as biosensors. Biosens Bioelectron 2012. [PMID: 23202349 DOI: 10.1016/j.bios.2012.09.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transgenic zebrafish are a common vertebrate model system for the study of addictive behavior. In the present study, plasmid constructs containing green fluorescent protein (GFP) and the promoter of tyrosine hydroxylase (TH), a key synthetic enzyme for catecholamines, were produced. The TH-GFP constructs were microinjected into zebrafish embryonic cells. Three days post-fertilization, GFP began expressing in distinct catecholaminergic areas. The TH-GFP transgenic zebrafish were employed as live biosensors to test the effects of the commonly abused drugs nicotine and ketamine. First, locomotion assays were used to study the general excitatory effects of the drugs. Maximal locomotor activity was obtained after treatment with a high concentration of nicotine (10 μM), but with a much lower concentration of ketamine (0.1 μM). Second, TH protein levels in zebrafish brains were assessed by Western blot. TH protein levels were significantly increased, with maximal protein levels found after treatment with the same drug concentrations that gave maximal locomotor activity. Importantly, analysis of GFP in the zebrafish catecholaminergic areas revealed the same expression patterns as was obtained by Western blot. The present results indicate that increased locomotor activity can be correlated to TH protein expression, as indicated by Western blot and expression of TH-GFP. We have shown that TH-GFP expression is a reliable method to show the effects of drugs on TH expression that may be employed as a novel high-throughput live biosensor for screening drugs of abuse.
Collapse
|
414
|
Capiotti KM, Fazenda L, Nazario LR, Menezes FP, Kist LW, Bogo MR, Da Silva RS, Wyse AT, Bonan CD. Arginine exposure alters ectonucleotidase activities and morphology of zebrafish larvae (Danio rerio). Int J Dev Neurosci 2012; 31:75-81. [PMID: 22995533 DOI: 10.1016/j.ijdevneu.2012.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 07/25/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022] Open
Abstract
Hyperargininemia is an inborn error of metabolism (IEM) characterized by tissue accumulation of arginine (Arg). Mental retardation and other neurological features are common symptoms in hyperargininemic patients. Considering purinergic signaling has a crucial role from the early stages of development and underlying mechanisms of this disease are poorly established, we investigated the effect of Arg administration on locomotor activity, morphological alterations, and extracellular nucleotide hydrolysis in larvae and adult zebrafish. We showed that 0.1 mM Arg was unable to promote changes in locomotor activity. In addition, 7-day-post-fertilization (dpf) larvae treated with Arg demonstrated a decreased body size. Arg exposure (0.1 mM) promoted an increase in ATP, ADP, and AMP hydrolysis when compared to control group. These findings demonstrated that Arg might affect morphological parameters and ectonucleotidase activities in zebrafish larvae, suggesting that purinergic system is a target for neurotoxic effects induced by Arg.
Collapse
Affiliation(s)
- Katiucia Marques Capiotti
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
415
|
Darland T, Mauch JT, Meier EM, Hagan SJ, Dowling JE, Darland DC. Sulpiride, but not SCH23390, modifies cocaine-induced conditioned place preference and expression of tyrosine hydroxylase and elongation factor 1α in zebrafish. Pharmacol Biochem Behav 2012; 103:157-67. [PMID: 22910534 DOI: 10.1016/j.pbb.2012.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/21/2012] [Accepted: 07/31/2012] [Indexed: 01/27/2023]
Abstract
Finding genetic polymorphisms and mutations linked to addictive behavior can provide important targets for pharmaceutical and therapeutic interventions. Forward genetic approaches in model organisms such as zebrafish provide a potentially powerful avenue for finding new target genes. In order to validate this use of zebrafish, the molecular nature of its reward system must be characterized. We have previously reported the use of cocaine-induced conditioned place preference (CPP) as a reliable method for screening mutagenized fish for defects in the reward pathway. Here we test if CPP in zebrafish involves the dopaminergic system by co-treating fish with cocaine and dopaminergic antagonists. Sulpiride, a potent D2 receptor (DR2) antagonist, blocked cocaine-induced CPP, while the D1 receptor (DR1) antagonist SCH23390 had no effect. Acute cocaine exposure also induced a rise in the expression of tyrosine hydroxylase (TH), an important enzyme in dopamine synthesis, and a significant decrease in the expression of elongation factor 1α (EF1α), a housekeeping gene that regulates protein synthesis. Cocaine selectively increased the ratio of TH/EF1α in the telencephalon, but not in other brain regions. The cocaine-induced change in TH/EF1α was blocked by co-treatment with sulpiride, but not SCH23390, correlating closely with the action of these drugs on the CPP behavioral response. Immunohistochemical analysis revealed that the drop in EF1α was selective for the dorsal nucleus of the ventral telencephalic area (Vd), a region believed to be the teleost equivalent of the striatum. Examination of TH mRNA and EF1α transcripts suggests that regulation of expression is post-transcriptional, but this requires further examination. These results highlight important similarities and differences between zebrafish and more traditional mammalian model organisms.
Collapse
Affiliation(s)
- Tristan Darland
- Biology Department, University of North Dakota, United States; Turtle Mountain Community College, United States.
| | | | | | | | | | | |
Collapse
|
416
|
Pereira VM, Bortolotto JW, Kist LW, Azevedo MBD, Fritsch RS, Oliveira RDL, Pereira TCB, Bonan CD, Vianna MR, Bogo MR. Endosulfan exposure inhibits brain AChE activity and impairs swimming performance in adult zebrafish (Danio rerio). Neurotoxicology 2012; 33:469-75. [DOI: 10.1016/j.neuro.2012.03.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/09/2012] [Accepted: 03/11/2012] [Indexed: 11/29/2022]
|
417
|
Silveira TRD, Schneider AC, Hammes TO. Zebrafish: modelo consagrado para estudos de doenças humanas. ACTA ACUST UNITED AC 2012. [DOI: 10.21800/s0009-67252012000200002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
418
|
Stephenson JF, Partridge JC, Whitlock KE. Food and Conspecific Chemical Cues Modify Visual Behavior of Zebrafish, Danio rerio. Zebrafish 2012; 9:68-73. [DOI: 10.1089/zeb.2012.0734] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Jessica F. Stephenson
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- Centro Interdisciplinario de Neurociencia, Facultad de Ciencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Julian C. Partridge
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Kathleen E. Whitlock
- Centro Interdisciplinario de Neurociencia, Facultad de Ciencia, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
419
|
Wilkes L, Owen SF, Readman GD, Sloman KA, Wilson RW. Does structural enrichment for toxicology studies improve zebrafish welfare? Appl Anim Behav Sci 2012. [DOI: 10.1016/j.applanim.2012.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
420
|
Cho H, Lee CJ, Choi J, Hwang J, Lee Y. Anxiolytic effects of an acetylcholinesterase inhibitor, physostigmine, in the adult zebrafish. Anim Cells Syst (Seoul) 2012. [DOI: 10.1080/19768354.2011.642084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
421
|
Rosemberg DB, Braga MM, Rico EP, Loss CM, Córdova SD, Mussulini BHM, Blaser RE, Leite CE, Campos MM, Dias RD, Calcagnotto ME, de Oliveira DL, Souza DO. Behavioral effects of taurine pretreatment in zebrafish acutely exposed to ethanol. Neuropharmacology 2012; 63:613-23. [PMID: 22634362 DOI: 10.1016/j.neuropharm.2012.05.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/12/2012] [Accepted: 05/05/2012] [Indexed: 12/12/2022]
Abstract
Taurine (TAU) is an amino sulfonic acid that plays protective roles against neurochemical impairments induced by ethanol (EtOH). Mounting evidence shows the applicability of zebrafish for evaluating locomotor parameters and anxiety-like behavioral phenotypes after EtOH exposure in a large scale manner. In this study, we assess the effects of TAU pretreatment on the behavior of zebrafish in the open tank after acute 1% EtOH (v/v) exposure (20 and 60 min of duration) and on brain alcohol contents. The exposure for 20 min exerted significant anxiolytic effects, which were prevented by 42, 150, and 400 mg/L TAU. Conversely, the 60-min condition induced depressant/sedative effects, in which the changes on vertical activity were associated to modifications on the exploratory profile. Although all TAU concentrations kept locomotor parameters at basal levels, 150 mg/L TAU, did not prevent the impairment on vertical activity of EtOH[60]. Despite the higher brain EtOH content detected in the 60-min exposure, 42, 150, and 400 mg/L TAU attenuated the increase of alcohol content in EtOH[60] group. In conclusion, our data suggest that both protocols of acute EtOH exposure induce significant changes in the spatio-temporal behavior of zebrafish and that TAU may exert a preventive role by antagonizing the effects induced by EtOH possibly due to its neuromodulatory role and also by decreasing brain EtOH levels. The hormetic dose-response of TAU on vertical exploration suggests a complex interaction between TAU and EtOH in the central nervous system.
Collapse
Affiliation(s)
- Denis B Rosemberg
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
422
|
Measures of anxiety in zebrafish (Danio rerio): dissociation of black/white preference and novel tank test. PLoS One 2012; 7:e36931. [PMID: 22615849 PMCID: PMC3355173 DOI: 10.1371/journal.pone.0036931] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 04/17/2012] [Indexed: 12/03/2022] Open
Abstract
The effects of wall color stimuli on diving, and the effects of depth stimuli on scototaxis, were assessed in zebrafish. Three groups of fish were confined to a black, a white, or a transparent tank, and tested for depth preference. Two groups of fish were confined to a deep or a shallow tank, and tested for black-white preference. As predicted, fish preferred the deep half of a split-tank over the shallow half, and preferred the black half of a black/white tank over the white half. Results indicated that the tank wall color significantly affected depth preference, with the transparent tank producing the strongest depth preference and the black tank producing the weakest preference. Tank depth, however, did not significantly affect color preference. Additionally, wall color significantly affected shuttling and immobility, while depth significantly affected shuttling and thigmotaxis. These results are consistent with previous indications that the diving response and scototaxis may reflect dissociable mechanisms of behavior. We conclude that the two tests are complementary rather than interchangeable, and that further research on the motivational systems underlying behavior in each of the two tests is needed.
Collapse
|
423
|
Baldissarelli LA, Capiotti KM, Bogo MR, Ghisleni G, Bonan CD. Arsenic alters behavioral parameters and brain ectonucleotidases activities in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:566-72. [PMID: 22265774 DOI: 10.1016/j.cbpc.2012.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/08/2012] [Accepted: 01/09/2012] [Indexed: 12/15/2022]
Abstract
Arsenic (As) exposure has been associated with serious chronic health risk to humans including cancer and neurological disturbances. However, there are limited studies about the mechanisms behind its toxicity. In this study, adult zebrafish were exposed to several concentrations of As (0.05, 5, and 15 mg As/L; Na(2)HAsO(4) as As(V)) during 96 h to evaluate the zebrafish locomotor activity, anxiety, and brain extracellular nucleotide hydrolysis. We showed that 5 mg/L As is able to promote significant decrease in the locomotor activity as evaluated by the number of line crossings. In addition, animals treated with 5mg/L As presented an increase in time spent in the lower zone of the tank test, suggesting an anxiogenic effect. Considering that behavioral parameters, such as anxiety and locomotion, might be modulated by the purinergic system, we also evaluated the ectonucleotidase activities in zebrafish brain after a 96-h As exposure. A significant decrease in ATP, ADP, and AMP hydrolysis was observed at 0.05, 5, and 15 mg/L when compared to control group. These findings demonstrated that As might affect behavioral parameters and the ectonucleotidase activities in zebrafish, suggesting this enzyme pathway is a target for neurotoxic effects induced by As.
Collapse
Affiliation(s)
- Luis Antonio Baldissarelli
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
424
|
Blackiston DJ, Levin M. Aversive training methods in Xenopus laevis: general principles. Cold Spring Harb Protoc 2012; 2012:2012/5/pdb.top068338. [PMID: 22550289 DOI: 10.1101/pdb.top068338] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Xenopus laevis is an ideal organism in which to study the mechanisms linking genetics, the embryogenesis of the central nervous system, and the generation of cognitive behavior. Frog embryos facilitate the targeting of many pathways of importance to neuroscience via pharmacological, genetic, and surgical manipulations. A limiting factor for investigations of memory and learning has been the difficulty of eliciting learning in Xenopus. Here, we outline a simple strategy for aversive conditioning (associative learning) in Xenopus tadpoles, and present sample data using a quantitative automated analysis system. We also discuss the factors and variables that must be considered to ensure optimal learning and recall performance, for use as behavioral endpoints in any experiment.
Collapse
Affiliation(s)
- Douglas J Blackiston
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts 02155
| | | |
Collapse
|
425
|
Parker MO, Millington ME, Combe FJ, Brennan CH. Housing conditions differentially affect physiological and behavioural stress responses of zebrafish, as well as the response to anxiolytics. PLoS One 2012; 7:e34992. [PMID: 22509375 PMCID: PMC3324417 DOI: 10.1371/journal.pone.0034992] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/08/2012] [Indexed: 12/15/2022] Open
Abstract
Zebrafish are a widely utilised animal model in developmental genetics, and owing to recent advances in our understanding of zebrafish behaviour, their utility as a comparative model in behavioural neuroscience is beginning to be realised. One widely reported behavioural measure is the novel tank-diving assay, which has been often cited as a test of anxiety and stress reactivity. Despite its wide utilisation, and various validations against anxiolytic drugs, reporting of pre-test housing has been sparse in the literature. As zebrafish are a shoaling species, we predicted that housing environment would affect their stress reactivity and, as such, their response in the tank-diving procedure. In our first experiment, we tested various aspects of housing (large groups, large groups with no contact, paired, visual contact only, olfactory contact only) and found that the tank diving response was mediated by visual contact with conspecifics. We also tested the basal cortisol levels of group and individually housed fish, and found that individually housed individuals have lower basal cortisol levels. In our second experiment we found ethanol appeared to have an anxiolytic effect with individually housed fish but not those that were group housed. In our final experiment, we examined the effects of changing the fishes' water prior to tank diving as an additional acclimation procedure. We found that this had no effect on individually housed fish, but appeared to affect the typical tank diving responses of the group housed individuals. In conclusion, we demonstrate that housing represents an important factor in obtaining reliable data from this methodology, and should be considered by researchers interested in comparative models of anxiety in zebrafish in order to refine their approach and to increase the power in their experiments.
Collapse
Affiliation(s)
- Matthew O. Parker
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Mollie E. Millington
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Fraser J. Combe
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Caroline H. Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
426
|
|
427
|
Savio LEB, Vuaden FC, Piato AL, Bonan CD, Wyse ATS. Behavioral changes induced by long-term proline exposure are reversed by antipsychotics in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36:258-63. [PMID: 22019856 DOI: 10.1016/j.pnpbp.2011.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/23/2011] [Accepted: 10/06/2011] [Indexed: 11/24/2022]
Abstract
Hyperprolinemia is an inherited disorder of proline metabolism and patients affected by this disease may present neurological manifestations, including seizures and cognitive dysfunctions. Moreover, an association between adulthood schizoaffective disorders and moderate hyperprolinemia has been reported. However, the mechanisms underlying these behavioral phenotypes still remain unclear. In the present study, we investigated the effect of proline treatments on behavioral parameters in zebrafish, such as locomotor activity, anxiety, and social interaction. Adult zebrafish (Danio rerio) were exposed to proline (1.5 and 3.0 mM) during 1h or 7 days (short- or long-term treatments, respectively). Short-term proline exposure did not promote significant changes on the behavioral parameters observed. Long-term exposure at 1.5 mM proline significantly increased the number of line crossing (47%), the total distance (29%), and the mean speed (33%) when compared to control group. A significant increase in the time spent in the upper portion of the test tank was also observed after this treatment (91%), which may be interpreted as an indicator of anxiolytic behavior. Proline at 1.5 mM also induced social interaction impairment (78%), when compared to the untreated group after long-term treatment. Moreover, these proline-induced behavioral changes in zebrafish were completely reversed by acute administration of an atypical antipsychotic drug (sulpiride), but not by a typical (haloperidol). These findings demonstrate that proline is able to induce schizophrenia-like symptoms in zebrafish, which reinforce the use of this species as a complementary vertebrate model for studying behavioral phenotypes associated with neurological dysfunctions characteristic of metabolic diseases.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
428
|
Vuaden FC, Savio LEB, Piato AL, Pereira TC, Vianna MR, Bogo MR, Bonan CD, Wyse ATS. Long-term methionine exposure induces memory impairment on inhibitory avoidance task and alters acetylcholinesterase activity and expression in zebrafish (Danio rerio). Neurochem Res 2012; 37:1545-53. [PMID: 22437435 DOI: 10.1007/s11064-012-0749-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 02/14/2012] [Accepted: 03/05/2012] [Indexed: 11/26/2022]
Abstract
Hypermethioninemic patients exhibit a variable degree of neurological dysfunction. However, the mechanisms involved in these alterations have not been completely clarified. Cholinergic system has been implicated in many physiological processes, including cognitive performances, as learning, and memory. Parameters of cholinergic signaling have already been characterized in zebrafish brain. Since zebrafish is a small freshwater teleost which is a vertebrate model for modeling behavioral and functional parameters related to human pathogenesis and for clinical treatment screenings, in the present study we investigated the effects of short- and long-term methionine exposure on cognitive impairment, AChE activity and gene expression in zebrafish. For the studies, animals were exposed at two methionine concentrations (1.5 and 3.0 mM) during 1 h or 7 days (short- or long-term treatments, respectively). We observed a significant increase in AChE activity of zebrafish brain membranes after long-term methionine exposure at 3.0 mM. However, AChE gene expression decreased significantly in both concentrations tested after 7 days of treatment, suggesting that post-translational events are involved in the enhancement of AChE activity. Methionine treatment induces memory deficit in zebrafish after long-term exposure to this amino acid, which could be related, at least in part, with cognitive impairment observed in hypermethioninemia. Therefore, the results here presented raise a new perspective to use the zebrafish as a complementary vertebrate model for studying inborn errors of metabolism, which may help to better understand the pathophysiology of this disease.
Collapse
Affiliation(s)
- Fernanda Cenci Vuaden
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
429
|
Guo S, Wagle M, Mathur P. Toward molecular genetic dissection of neural circuits for emotional and motivational behaviors. Dev Neurobiol 2012; 72:358-65. [DOI: 10.1002/dneu.20927] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
430
|
Animated bird silhouette above the tank: acute alcohol diminishes fear responses in zebrafish. Behav Brain Res 2012; 229:194-201. [PMID: 22266470 DOI: 10.1016/j.bbr.2012.01.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/05/2012] [Accepted: 01/09/2012] [Indexed: 12/28/2022]
Abstract
Alcohol dependence and alcohol abuse represent major unmet medical needs. The zebrafish is considered to be a promising vertebrate species with which the effects of alcohol on brain function and behavior and the mechanisms underlying these effects may be studied. Alcohol is known to induce alterations in motor function as well as fear and anxiety. Here we utilize a recently developed fear paradigm in which we employ an animated (moving) image of a bird silhouette. We measure the effect of acute alcohol administration (dose range employed: 0.00-0.75 vol/vol percentage, bath exposure for 60 min) on the behavioral responses of zebrafish. We test these responses during a pre-stimulus, stimulus and post-stimulus period of the task using both a video-tracking and an observation based quantification method. The fear inducing stimulus was found to decrease the distance of the zebrafish from the bottom of the tank, to increase number of erratic movements, and to increase the number of jumps in alcohol exposed fish (versus control fish). Alcohol attenuated these fear responses in a dose dependent manner. In addition, alcohol decreased general activity at the highest dose, an effect that was independent of the presentation of the stimulus. We discuss the similarities and differences between observation and video-tracking based results and conclude that fear paradigms will be useful in revealing alcohol induced functional changes in the brain of zebrafish.
Collapse
|
431
|
The role of CRH in behavioral responses to acute restraint stress in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36:176-82. [PMID: 21893154 DOI: 10.1016/j.pnpbp.2011.08.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 08/15/2011] [Accepted: 08/22/2011] [Indexed: 01/21/2023]
Abstract
In teleosts, changes in swimming, exploring, general locomotor activity, and anxious state can be a response to stress mediated by the corticotropin-releasing hormone system activation and its effects on glucocorticoid levels. Zebrafish has been widely used to study neuropharmacology and has become a promising animal model to investigate neurobehavioral mechanisms of stress. In this report the animals were submitted to acute restraint stress for different time lengths (15, 60 and 90 min) for further evaluation of behavioral patterns, whole-body cortisol content, and corticotropin-releasing hormone expression. The results demonstrated an increase in the locomotor activity and an alteration in the swimming pattern during a 5-min trial after the acute restraint stress. Interestingly, all groups of fish tested in the novel tank test exhibited signs of anxiety as evaluated by the time spent in the bottom of the tank. Whole-body cortisol content showed a positive correlation with increased behavioral indices of locomotion in zebrafish whereas molecular analysis of corticotropin-releasing hormone showed a late reduction of mRNA expression (90 min). Altogether, we present a model of acute restraint stress in zebrafish, confirmed by elevated cortisol content, as a valid and reliable model to study the biochemical basis of stress behavior, which seems to be accompanied by a negative feedback of corticotropin-release hormone mRNA expression.
Collapse
|
432
|
Norton W, Bally-Cuif L. Unravelling the proximate causes of the aggression-boldness behavioural syndrome in zebrafish. BEHAVIOUR 2012. [DOI: 10.1163/1568539x-00003012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
433
|
Thomas MA, Joshi PP, Klaper RD. Gene-class analysis of expression patterns induced by psychoactive pharmaceutical exposure in fathead minnow (Pimephales promelas) indicates induction of neuronal systems. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:109-20. [PMID: 21684349 PMCID: PMC3219835 DOI: 10.1016/j.cbpc.2011.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 05/20/2011] [Accepted: 05/24/2011] [Indexed: 11/24/2022]
Abstract
Psychoactive pharmaceuticals are among the most frequently prescribed drugs, contributing to persistent measurable concentrations in aquatic systems. Typically, it is assumed that such contaminants have no human health implications because they exist in extremely low concentrations. We exposed juvenile fathead minnows (Pimephales promelas) to three pharmaceuticals, fluoxetine, venlafaxine and carbamazepine, individually and in a mixture, and measured their effect on the induction of gene expression in fish brains using microarray analysis. Gene expression changes were accompanied by behavioral changes and validated by qPCR analysis. Gene Set Enrichment Analysis was used to perform gene-class analysis of gene expression, testing for enrichment of gene sets known to be involved in human neuronal development, regulation and growth. We found significant enrichment of gene sets for each of the treatments, with the largest induction of expression by the mixture treatment. These results suggest that the psychoactive pharmaceuticals are able to alter expression of fish genes associated with development, regulation and differentiation of synapses, neurons and neurotransmitters. The results provide a new perspective for the consideration of potential consequence for human health due to environmental exposure to unmetabolized psychoactive pharmaceuticals.
Collapse
Affiliation(s)
- Michael A Thomas
- Department of Biological Sciences, Idaho State University, Stop 8007, 921 S 8th Ave, Pocatello, ID 83209-8007, USA.
| | | | | |
Collapse
|
434
|
Tegelenbosch RA, Noldus LP, Richardson MK, Ahmad F. Zebrafish embryos and larvae in behavioural assays. BEHAVIOUR 2012. [DOI: 10.1163/1568539x-00003020] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
435
|
Pham M, Raymond J, Hester J, Kyzar E, Gaikwad S, Bruce I, Fryar C, Chanin S, Enriquez J, Bagawandoss S, Zapolsky I, Green J, Stewart AM, Robison BD, Kalueff AV. Assessing Social Behavior Phenotypes in Adult Zebrafish: Shoaling, Social Preference, and Mirror Biting Tests. NEUROMETHODS 2012. [DOI: 10.1007/978-1-61779-597-8_17] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
436
|
Ariyomo TO, Watt PJ. The effect of variation in boldness and aggressiveness on the reproductive success of zebrafish. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2011.10.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
437
|
Stewart A, Gaikwad S, Kyzar E, Green J, Roth A, Kalueff AV. Modeling anxiety using adult zebrafish: a conceptual review. Neuropharmacology 2012; 62:135-43. [PMID: 21843537 PMCID: PMC3195883 DOI: 10.1016/j.neuropharm.2011.07.037] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 11/21/2022]
Abstract
Zebrafish (Danio rerio) are rapidly emerging as a useful animal model in neurobehavioral research. Mounting evidence shows the suitability of zebrafish to model various aspects of anxiety-related states. Here, we evaluate established and novel approaches to uncover the molecular substrates, genetic pathways and neural circuits of anxiety using adult zebrafish. Experimental approaches to modeling anxiety in zebrafish include novelty-based paradigms, pharmacological and genetic manipulations, as well as innovative video-tracking, 3D-reconstructions, bioinformatics-based searchable databases and omics-based tools. Complementing traditional rodent models of anxiety, we provide a conceptual framework for the wider application of zebrafish and other aquatic models in anxiety research. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- Adam Stewart
- Department of Pharmacology and Neuroscience Program, Tulane Neurophenotyping Platform, Zebrafish Neuroscience Research Consortium, Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Siddharth Gaikwad
- Department of Pharmacology and Neuroscience Program, Tulane Neurophenotyping Platform, Zebrafish Neuroscience Research Consortium, Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Evan Kyzar
- Department of Pharmacology and Neuroscience Program, Tulane Neurophenotyping Platform, Zebrafish Neuroscience Research Consortium, Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Jeremy Green
- Department of Pharmacology and Neuroscience Program, Tulane Neurophenotyping Platform, Zebrafish Neuroscience Research Consortium, Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Andrew Roth
- Department of Pharmacology and Neuroscience Program, Tulane Neurophenotyping Platform, Zebrafish Neuroscience Research Consortium, Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Allan V. Kalueff
- Department of Pharmacology and Neuroscience Program, Tulane Neurophenotyping Platform, Zebrafish Neuroscience Research Consortium, Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| |
Collapse
|
438
|
McRobert SP, Kiesel AL, Snekser JL, Ruhl N. Behavioural syndromes and shoaling: connections between aggression, boldness and social behaviour in three different Danios. BEHAVIOUR 2012. [DOI: 10.1163/1568539x-00003015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
439
|
Maximino C, de Oliveira DL, Broock Rosemberg D, de Jesus Oliveira Batista E, Herculano AM, Matos Oliveira KR, Benzecry R, Blaser R. A comparison of the light/dark and novel tank tests in zebrafish. BEHAVIOUR 2012. [DOI: 10.1163/1568539x-00003029] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
440
|
Acute Exposure to Microcystin-Producing Cyanobacterium Microcystis aeruginosa Alters Adult Zebrafish (Danio rerio) Swimming Performance Parameters. J Toxicol 2011; 2011:280304. [PMID: 22253623 PMCID: PMC3255310 DOI: 10.1155/2011/280304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/15/2011] [Accepted: 09/22/2011] [Indexed: 01/22/2023] Open
Abstract
Microcystins (MCs) are toxins produced by cyanobacteria (blue-green algae), primarily Microcystis aeruginosa, forming water blooms worldwide. When an organism is exposed to environmental perturbations, alterations in normal behavioral patterns occur. Behavioral repertoire represents the consequence of a diversity of physiological and biochemical alterations. In this study, we assessed behavioral patterns and whole-body cortisol levels of adult zebrafish (Danio rerio) exposed to cell culture of the microcystin-producing cyanobacterium M. aeruginosa (MC-LR, strain RST9501). MC-LR exposure (100 μg/L) decreased by 63% the distance traveled and increased threefold the immobility time when compared to the control group. Interestingly, no significant alterations in the number of line crossings were found at the same MC-LR concentration and time of exposure. When animals were exposed to 50 and 100 μg/L, MC-LR promoted a significant increase (around 93%) in the time spent in the bottom portion of the tank, suggesting an anxiogenic effect. The results also showed that none of the MC-LR concentrations tested promoted significant alterations in absolute turn angle, path efficiency, social behavior, or whole-body cortisol level. These findings indicate that behavior is susceptible to MC-LR exposure and provide evidence for a better understanding of the ecological consequences of toxic algal blooms.
Collapse
|
441
|
MK-801 alters Na+, K+-ATPase activity and oxidative status in zebrafish brain: reversal by antipsychotic drugs. J Neural Transm (Vienna) 2011; 119:661-7. [DOI: 10.1007/s00702-011-0745-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/20/2011] [Indexed: 01/26/2023]
|
442
|
Ali S, Champagne DL, Richardson MK. Behavioral profiling of zebrafish embryos exposed to a panel of 60 water-soluble compounds. Behav Brain Res 2011; 228:272-83. [PMID: 22138507 DOI: 10.1016/j.bbr.2011.11.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/04/2011] [Accepted: 11/17/2011] [Indexed: 11/17/2022]
Abstract
The zebrafish is a powerful whole animal model which is complementary to in vitro and mammalian models. It has been shown to be applicable to the high-throughput behavioral screening of compound libraries. We have analysed 60 water-soluble toxic compounds covering a range of common drugs, toxins and chemicals, and representing various pharmacological mechanisms. Wild-type zebrafish larvae were cultured individually in defined buffer in 96 well plates. They were exposed for a 96h period starting at 24h post fertilization (hpf). A logarithmic concentration series was used for range-finding, followed by a narrower geometric series for LC(50) determination. LC(50) values were determined at 24h intervals and behavioral testing was carried out on day 5. We used the visual motor response test, in which movement of individual larvae was analysed using automated video-tracking. For all compounds, LC(50) values were found to decrease as the embryo developed. The majority of compounds (57/60) produced an effect in both the basal (lights on) and challenge phases (lights off) of the behavioral assay. These effects were either (i) suppression of locomotor activity (monotonic concentration-response); (ii) stimulation then suppression (biphasic response); (iii) stimulation (monotonic response). We conclude that behavioral assays with zebrafish embryos could be useful for pharmaceutical efficacy and toxicity screening. The precise phenotypic outcome obtained with behavioral assay varies with compound class.
Collapse
Affiliation(s)
- Shaukat Ali
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, Leiden, The Netherlands
| | | | | |
Collapse
|
443
|
Modulation of Fgfr1a signaling in zebrafish reveals a genetic basis for the aggression-boldness syndrome. J Neurosci 2011; 31:13796-807. [PMID: 21957242 DOI: 10.1523/jneurosci.2892-11.2011] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Behavioral syndromes are suites of two or more behaviors that correlate across environmental contexts. The aggression-boldness syndrome links aggression, boldness, and exploratory activity in a novel environment. Although aggression-boldness has been described in many animals, the mechanism linking its behavioral components is not known. Here we show that mutation of the gene encoding fibroblast growth factor receptor 1a (fgfr1a) simultaneously increases aggression, boldness, and exploration in adult zebrafish. We demonstrate that altered Fgf signaling also results in reduced brain histamine levels in mutants. Pharmacological increase of histamine signaling is sufficient to rescue the behavioral phenotype of fgfr1a mutants. Together, we show that a single genetic locus can underlie the aggression-boldness behavioral syndrome. We also identify one of the neurotransmitter pathways that may mediate clustering of these behaviors.
Collapse
|
444
|
Buske C, Gerlai R. Early embryonic ethanol exposure impairs shoaling and the dopaminergic and serotoninergic systems in adult zebrafish. Neurotoxicol Teratol 2011; 33:698-707. [PMID: 21658445 PMCID: PMC3179771 DOI: 10.1016/j.ntt.2011.05.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 05/17/2011] [Accepted: 05/24/2011] [Indexed: 11/16/2022]
Abstract
Fetal alcohol syndrome (FAS) is a devastating disorder accompanied by numerous morphological and behavioral abnormalities. Human FAS has been modeled in laboratory animals including the zebrafish. Recently, embryonic exposure to low doses of ethanol has been shown to impair behavior without any gross morphological alterations in zebrafish. The exposed zebrafish showed reduced responses to animated conspecific images. The effect of embryonic ethanol exposure, however, has not been investigated in a real shoal and the potential mechanisms underlying the behavioral impairment are also unknown. Here we show that a 2h long immersion in 0.25% and 0.50% (vol/vol) alcohol at 24h post fertilization significantly increases the distance among members of freely swimming groups of zebrafish when measured at 70 days post fertilization. We also show that this impaired behavior is accompanied by reduced levels of dopamine, DOPAC, serotonin and 5HIAA as quantified by HPLC from whole brain extracts. Our results demonstrate that even very low concentrations of alcohol applied for a short period of time during the development of zebrafish can impair behavior and brain function. We argue that the observed behavioral impairment is not likely to be due to altered performance capabilities, e.g. motor function or perception, but possibly to social behavior itself. We also argue that our neurochemical data represent the first step towards understanding the mechanisms of this abnormality in zebrafish, which may lead to better modeling of, and ultimately perhaps better therapies for human FAS.
Collapse
Affiliation(s)
- Christine Buske
- Department of Cell & Systems Biology, Neuroscience, University of Toronto
| | - Robert Gerlai
- Department of Cell & Systems Biology, Neuroscience, University of Toronto
- Department of Psychology, University of Toronto, Mississauga
| |
Collapse
|
445
|
Ali S, Champagne DL, Spaink HP, Richardson MK. Zebrafish embryos and larvae: a new generation of disease models and drug screens. ACTA ACUST UNITED AC 2011; 93:115-33. [PMID: 21671352 DOI: 10.1002/bdrc.20206] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Technological innovation has helped the zebrafish embryo gain ground as a disease model and an assay system for drug screening. Here, we review the use of zebrafish embryos and early larvae in applied biomedical research, using selected cases. We look at the use of zebrafish embryos as disease models, taking fetal alcohol syndrome and tuberculosis as examples. We discuss advances in imaging, in culture techniques (including microfluidics), and in drug delivery (including new techniques for the robotic injection of compounds into the egg). The use of zebrafish embryos in early stages of drug safety-screening is discussed. So too are the new behavioral assays that are being adapted from rodent research for use in zebrafish embryos, and which may become relevant in validating the effects of neuroactive compounds such as anxiolytics and antidepressants. Readouts, such as morphological screening and cardiac function, are examined. There are several drawbacks in the zebrafish model. One is its very rapid development, which means that screening with zebrafish is analogous to "screening on a run-away train." Therefore, we argue that zebrafish embryos need to be precisely staged when used in acute assays, so as to ensure a consistent window of developmental exposure. We believe that zebrafish embryo screens can be used in the pre-regulatory phases of drug development, although more validation studies are needed to overcome industry scepticism. Finally, the zebrafish poses no challenge to the position of rodent models: it is complementary to them, especially in early stages of drug research.
Collapse
Affiliation(s)
- Shaukat Ali
- Institute of Biology, Leiden University, Sylvius Laboratory, The Netherlands
| | | | | | | |
Collapse
|
446
|
Luca RM, Gerlai R. In search of optimal fear inducing stimuli: Differential behavioral responses to computer animated images in zebrafish. Behav Brain Res 2011; 226:66-76. [PMID: 21920389 DOI: 10.1016/j.bbr.2011.09.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/30/2011] [Accepted: 09/01/2011] [Indexed: 01/28/2023]
Abstract
Zebrafish has been gaining popularity in behavioral genetics and behavioral neuroscience as this species offers an excellent compromise between system complexity and practical simplicity for mechanistic analyses of brain and behavior function. Recently, a number of studies started to investigate methods with which fear responses may be induced reliably in zebrafish. The ultimate goal of these studies has been to develop zebrafish models of pathological processes and to investigate the mechanisms of fear and to eventually translate the findings to the human clinic. Previously, animated image of a sympatric predator of zebrafish was shown to induce fear responses. Here we expand on this recently gained knowledge and investigate whether other moving images may induce more robust fear responses. The images investigated include the original sympatric predator, the Indian leaf fish, another sympatric predator, the needle fish, a bird silhouette moved on the side or above the tank, an expanding dot mimicking rapid approach of an object shown on the side and from above the tank, as well as non-fear inducing images including a single and a group of zebrafish. Our results indicate that although the sympatric predators do induce some fear responses, the other images, particularly the expanding dot but also the bird silhouette shown from above are more effective. The results also reveal a stimulus dependent motor pattern response repertoire of zebrafish demonstrating that perhaps univariate quantification methods may not be appropriate for uncovering the complexity of fear or anxiety related phenotypical changes in this species.
Collapse
Affiliation(s)
- Ruxandra M Luca
- Department of Psychology, University of Toronto, Mississauga, Ontario L5L 1C6, Canada
| | | |
Collapse
|
447
|
Effects of anxiolytics in zebrafish: Similarities and differences between benzodiazepines, buspirone and ethanol. Pharmacol Biochem Behav 2011; 99:480-6. [DOI: 10.1016/j.pbb.2011.04.021] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/23/2011] [Accepted: 04/27/2011] [Indexed: 01/23/2023]
|
448
|
Patterns of avoidance behaviours in the light/dark preference test in young juvenile zebrafish: A pharmacological study. Behav Brain Res 2011; 222:15-25. [DOI: 10.1016/j.bbr.2011.03.025] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/08/2011] [Accepted: 03/11/2011] [Indexed: 02/07/2023]
|
449
|
Sison M, Gerlai R. Associative learning performance is impaired in zebrafish (Danio rerio) by the NMDA-R antagonist MK-801. Neurobiol Learn Mem 2011; 96:230-7. [PMID: 21596149 PMCID: PMC3148332 DOI: 10.1016/j.nlm.2011.04.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/29/2011] [Accepted: 04/27/2011] [Indexed: 12/17/2022]
Abstract
The zebrafish is gaining popularity in behavioral neuroscience perhaps because of a promise of efficient large scale mutagenesis and drug screens that could identify a substantial number of yet undiscovered molecular players involved in complex traits. Learning and memory are complex functions of the brain and the analysis of their mechanisms may benefit from such large scale zebrafish screens. One bottleneck in this research is the paucity of appropriate behavioral screening paradigms, which may be due to the relatively uncharacterized nature of the behavior of this species. Here we show that zebrafish exhibit good learning performance in a task adapted from the mammalian literature, a plus maze in which zebrafish are required to associate a neutral visual stimulus with the presence of conspecifics, the rewarding unconditioned stimulus. Furthermore, we show that MK-801, a non-competitive NMDA-R antagonist, impairs memory performance in this maze when administered right after training or just before recall but not when given before training at a dose that does not impair motor function, perception or motivation. These results suggest that the plus maze associative learning paradigm has face and construct validity and that zebrafish may become an appropriate and translationally relevant study species for the analysis of the mechanisms of vertebrate, including mammalian, learning and memory.
Collapse
Affiliation(s)
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga
| |
Collapse
|
450
|
Dahlbom SJ, Lagman D, Lundstedt-Enkel K, Sundström LF, Winberg S. Boldness predicts social status in zebrafish (Danio rerio). PLoS One 2011; 6:e23565. [PMID: 21858168 PMCID: PMC3157393 DOI: 10.1371/journal.pone.0023565] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/21/2011] [Indexed: 12/15/2022] Open
Abstract
This study explored if boldness could be used to predict social status. First, boldness was assessed by monitoring individual zebrafish behaviour in (1) an unfamiliar barren environment with no shelter (open field), (2) the same environment when a roof was introduced as a shelter, and (3) when the roof was removed and an unfamiliar object (Lego® brick) was introduced. Next, after a resting period of minimum one week, social status of the fish was determined in a dyadic contest and dominant/subordinate individuals were determined as the winner/loser of two consecutive contests. Multivariate data analyses showed that males were bolder than females and that the behaviours expressed by the fish during the boldness tests could be used to predict which fish would later become dominant and subordinate in the ensuing dyadic contest. We conclude that bold behaviour is positively correlated to dominance in zebrafish and that boldness is not solely a consequence of social dominance.
Collapse
|