401
|
Wu YL, Shen LW, Ding YP, Tanaka Y, Zhang W. Preliminary success in the characterization and management of a sudden breakout of a novel H7N9 influenza A virus. Int J Biol Sci 2014; 10:109-18. [PMID: 24520209 PMCID: PMC3920865 DOI: 10.7150/ijbs.8198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/05/2013] [Indexed: 12/21/2022] Open
Abstract
Influenza has always been one of the major threats to human health. The Spanish influenza in 1918, the pandemic influenza A/H1N1 in 2009, and the avian influenza A/H5N1 have brought about great disasters or losses to mankind. More recently, a novel avian influenza A/H7N9 broke out in China and until December 2, 2013, it had caused 139 cases of infection, including 45 deaths. Its risk and pandemic potential attract worldwide attention. In this article, we summarize epidemiology, virology characteristics, clinical symptoms, diagnosis methods, clinical treatment and preventive measures about the avian influenza A/H7N9 virus infection to provide a reference for a possible next wave of flu outbreak.
Collapse
Affiliation(s)
- Yan-Ling Wu
- 1. Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, 630 Xincheng Road, Hangzhou, 310051, PR China
| | - Li-Wen Shen
- 2. Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China
| | - Yan-Ping Ding
- 1. Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, 630 Xincheng Road, Hangzhou, 310051, PR China
- 2. Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China
| | - Yoshimasa Tanaka
- 3. Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Wen Zhang
- 2. Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China
| |
Collapse
|
402
|
Abstract
The challenge of increasing swine production and a rising number of novel and known swine influenza viruses has prompted a considerable boost in research into how and why pigs have become such significant hosts for influenza viruses. The ecology of influenza A viruses is rather complicated, involving multiple host species and a segmented genome. Wild aquatic birds are the reservoir for the majority of influenza A viruses, but novel influenza viruses were recently identified in bats. Occasionally, influenza A viruses can be transmitted to mammals from avian species and this event could lead to the generation of human pandemic strains. Swine are thought to be "mixing vessels" because they are susceptible to infection with both avian and mammalian influenza viruses; and novel influenza viruses can be generated in pigs by reassortment. At present, it is difficult to predict which viruses might cause a human pandemic. Therefore, both human and veterinary research needs to give more attention to the potential cross-species transmission capacity of influenza A viruses.
Collapse
|
403
|
Herfst S, Imai M, Kawaoka Y, Fouchier RAM. Avian influenza virus transmission to mammals. Curr Top Microbiol Immunol 2014; 385:137-55. [PMID: 25048542 DOI: 10.1007/82_2014_387] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Influenza A viruses cause yearly epidemics and occasional pandemics. In addition, zoonotic influenza A viruses sporadically infect humans and may cause severe respiratory disease and fatalities. Fortunately, most of these viruses do not have the ability to be efficiently spread among humans via aerosols or respiratory droplets (airborne transmission) and to subsequently cause a pandemic. However, adaptation of these zoonotic viruses to humans by mutation or reassortment with human influenza A viruses may result in airborne transmissible viruses with pandemic potential. Although our knowledge of factors that affect mammalian adaptation and transmissibility of influenza viruses is still limited, we are beginning to understand some of the biological traits that drive airborne transmission of influenza viruses among mammals. Increased understanding of the determinants and mechanisms of airborne transmission may aid in assessing the risks posed by avian influenza viruses to human health, and preparedness for such risks. This chapter summarizes recent discoveries on the genetic and phenotypic traits required for avian influenza viruses to become airborne transmissible between mammals.
Collapse
Affiliation(s)
- S Herfst
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
404
|
H7N9 influenza-the laboratory presentations: a letter to editor. Asian Pac J Trop Biomed 2013; 3:584-5. [PMID: 23835531 PMCID: PMC3695587 DOI: 10.1016/s2221-1691(13)60118-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022] Open
|
405
|
Shi X, Zhou W, Huang H, Zhu H, Zhou P, Zhu H, Ju D. Inhibition of the inflammatory cytokine tumor necrosis factor-alpha with etanercept provides protection against lethal H1N1 influenza infection in mice. Crit Care 2013; 17:R301. [PMID: 24373231 PMCID: PMC4057515 DOI: 10.1186/cc13171] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/10/2013] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Factors implicated in influenza-mediated morbidity and mortality include robust cytokine production (cytokine storm), excessive inflammatory infiltrates, and virus-induced tissue destruction. Tumor necrosis factor-alpha (TNF-α) is an important pro-inflammatory cytokine present during influenza infection, but it is unclear whether direct inhibition of TNF-α can elicit protection against influenza infection. METHODS In this study, the commercially available TNF-α inhibitor etanercept was used to inhibit TNF-α induced by lethal A/FM/1/47 (H1N1) influenza virus infection of mice. The effects of TNF-α inhibition on mouse survival, pathologic changes, immune cell infiltration, inflammatory cytokine secretion, Toll-like receptor expression, and activation of the NF-κB (nuclear factor kappa B) signaling pathway were evaluated. RESULTS The intranasal delivery of etanercept provided significant protection against mortality (30% of mice survived up to 14 days after infection) in mice treated with etanercept. In contrast, no survivors were found beyond 6 days in mice treated with saline after lethal challenge with H1N1 influenza virus. It was observed that etanercept significantly reduced inflammatory cell infiltration (for example, macrophages and neutrophils), inflammatory cytokine secretion (for example, interleukin-6, TNF-α, and interferon gamma), and expression of Toll-like receptors (TLR-3, TLR-4, and TLR-7). Etanercept also downregulated and inhibited the cascade proteins of the NF-κB signaling pathway (for example, MyD88, TRIF, NF-κB, and p65), as well as enhanced host control of virus replication. CONCLUSIONS These findings indicate that etanercept, by blocking TNF-α, can significantly downregulate excessive inflammatory immune responses and provide protection against lethal influenza infection, making its use a novel strategy for controlling severe influenza-induced viral pneumonia.
Collapse
Affiliation(s)
- Xunlong Shi
- Department of Biosynthesis, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Wei Zhou
- Department of Chemistry, Fudan University, 220 Han Dan Road, Shanghai 200433, China
| | - Hai Huang
- Department of Biosynthesis, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Hongguang Zhu
- Department of Pathology, Shanghai Medical College, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Pei Zhou
- Department of Biosynthesis, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Haiyan Zhu
- Department of Biosynthesis, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Dianwen Ju
- Department of Biosynthesis, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
406
|
Xu R, de Vries RP, Zhu X, Nycholat CM, McBride R, Yu W, Paulson JC, Wilson IA. Preferential recognition of avian-like receptors in human influenza A H7N9 viruses. Science 2013; 342:1230-5. [PMID: 24311689 DOI: 10.1126/science.1243761] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The 2013 outbreak of avian-origin H7N9 influenza in eastern China has raised concerns about its ability to transmit in the human population. The hemagglutinin glycoprotein of most human H7N9 viruses carries Leu(226), a residue linked to adaptation of H2N2 and H3N2 pandemic viruses to human receptors. However, glycan array analysis of the H7 hemagglutinin reveals negligible binding to humanlike α2-6-linked receptors and strong preference for a subset of avian-like α2-3-linked glycans recognized by all avian H7 viruses. Crystal structures of H7N9 hemagglutinin and six hemagglutinin-glycan complexes have elucidated the structural basis for preferential recognition of avian-like receptors. These findings suggest that the current human H7N9 viruses are poorly adapted for efficient human-to-human transmission.
Collapse
Affiliation(s)
- Rui Xu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
407
|
Pepin KM, Spackman E, Brown JD, Pabilonia KL, Garber LP, Weaver JT, Kennedy DA, Patyk KA, Huyvaert KP, Miller RS, Franklin AB, Pedersen K, Bogich TL, Rohani P, Shriner SA, Webb CT, Riley S. Using quantitative disease dynamics as a tool for guiding response to avian influenza in poultry in the United States of America. Prev Vet Med 2013; 113:376-97. [PMID: 24462191 PMCID: PMC3945821 DOI: 10.1016/j.prevetmed.2013.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/22/2013] [Accepted: 11/24/2013] [Indexed: 02/02/2023]
Abstract
Wild birds are the primary source of genetic diversity for influenza A viruses that eventually emerge in poultry and humans. Much progress has been made in the descriptive ecology of avian influenza viruses (AIVs), but contributions are less evident from quantitative studies (e.g., those including disease dynamic models). Transmission between host species, individuals and flocks has not been measured with sufficient accuracy to allow robust quantitative evaluation of alternate control protocols. We focused on the United States of America (USA) as a case study for determining the state of our quantitative knowledge of potential AIV emergence processes from wild hosts to poultry. We identified priorities for quantitative research that would build on existing tools for responding to AIV in poultry and concluded that the following knowledge gaps can be addressed with current empirical data: (1) quantification of the spatio-temporal relationships between AIV prevalence in wild hosts and poultry populations, (2) understanding how the structure of different poultry sectors impacts within-flock transmission, (3) determining mechanisms and rates of between-farm spread, and (4) validating current policy-decision tools with data. The modeling studies we recommend will improve our mechanistic understanding of potential AIV transmission patterns in USA poultry, leading to improved measures of accuracy and reduced uncertainty when evaluating alternative control strategies.
Collapse
Affiliation(s)
- K M Pepin
- Department of Biology, Colorado State University, Fort Collins, CO, USA; Fogarty International Center, National Institute of Health, Bethesda, MD, USA.
| | - E Spackman
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, GA, USA.
| | - J D Brown
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - K L Pabilonia
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - L P Garber
- Centers for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA.
| | - J T Weaver
- Centers for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA.
| | - D A Kennedy
- Fogarty International Center, National Institute of Health, Bethesda, MD, USA; Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, State College, PA, USA.
| | - K A Patyk
- Centers for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA.
| | - K P Huyvaert
- Warner College of Natural Resources, Colorado State University, Fort Collins, CO, USA.
| | - R S Miller
- Centers for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA.
| | - A B Franklin
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA.
| | - K Pedersen
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA.
| | - T L Bogich
- Fogarty International Center, National Institute of Health, Bethesda, MD, USA; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - P Rohani
- Fogarty International Center, National Institute of Health, Bethesda, MD, USA; Department of Ecology and Evolutionary Biology, Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI, USA.
| | - S A Shriner
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA.
| | - C T Webb
- Department of Biology, Colorado State University, Fort Collins, CO, USA; Fogarty International Center, National Institute of Health, Bethesda, MD, USA.
| | - S Riley
- Fogarty International Center, National Institute of Health, Bethesda, MD, USA; MRC Centre for Outbreak Analysis and Disease Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, UK.
| |
Collapse
|
408
|
Yang P, Pang X, Deng Y, Ma C, Zhang D, Sun Y, Shi W, Lu G, Zhao J, Liu Y, Peng X, Tian Y, Qian H, Chen L, Wang Q. Surveillance for avian influenza A(H7N9), Beijing, China, 2013. Emerg Infect Dis 2013; 19:2041-3. [PMID: 24274700 PMCID: PMC3840857 DOI: 10.3201/eid1912.130983] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During surveillance for pneumonia of unknown etiology and sentinel hospital-based surveillance in Beijing, China, we detected avian influenza A(H7N9) virus infection in 4 persons who had pneumonia, influenza-like illness, or asymptomatic infections. Samples from poultry workers, associated poultry environments, and wild birds suggest that this virus might not be present in Beijing.
Collapse
|
409
|
The N-terminal domain of PA from bat-derived influenza-like virus H17N10 has endonuclease activity. J Virol 2013; 88:1935-41. [PMID: 24284327 DOI: 10.1128/jvi.03270-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza imposes a great burden on society, not only in its seasonal appearance that affects both humans and domesticated animals but also through the constant threat of potential pandemics. Migratory birds are considered to be the reservoir hosts for influenza viruses, but other animals must also be considered. The recently identified influenza-like virus genome, from H17N10 in bats, was shown to be markedly different from genomes of other known influenza viruses, as both its surface glycoproteins hemagglutinin (HA) and neuraminidase (NA) do not have canonical functions. However, no studies on other individual proteins from this particular virus have been reported until now. Here, we describe the structure of the N-terminal domain of PA from H17N10 influenza-like virus at 2.7-Å resolution and show that it has a fold similar to those of homologous PA domains present in more familiar influenza A virus strains. Moreover, we demonstrate that it possesses endonuclease activity and that the histidine residue in the active site is essential for this activity. Although this particular influenza virus subtype is probably not infectious for humans (even its virus state has not been confirmed in bats, as only the genome has been sequenced), reassortment of canonical influenza viruses with certain segments from H17N10 cannot be ruled out at this stage. Therefore, further studies are urgently needed for the sake of influenza prevention and control.
Collapse
|
410
|
Liu W, Yang K, Qi X, Xu K, Ji H, Ai J, Ge A, Wu Y, Li Y, Dai Q, Liang Q, Bao C, Bergquist R, Tang F, Zhu Y. Spatial and temporal analysis of human infection with avian influenza A(H7N9) virus in China, 2013. Euro Surveill 2013; 18. [DOI: 10.2807/1560-7917.es2013.18.47.20640] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Binary file ES_Abstracts_Final_ECDC.txt matches
Collapse
Affiliation(s)
- W Liu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - K Yang
- Department of Schistosomiasis Control, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - X Qi
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - K Xu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - H Ji
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - J Ai
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - A Ge
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Y Wu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Y Li
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Q Dai
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Q Liang
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - C Bao
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | | | - F Tang
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Y Zhu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
411
|
Iwasaki Y, Abe T, Wada K, Wada Y, Ikemura T. A Novel Bioinformatics Strategy to Analyze Microbial Big Sequence Data for Efficient Knowledge Discovery: Batch-Learning Self-Organizing Map (BLSOM). Microorganisms 2013; 1:137-157. [PMID: 27694768 PMCID: PMC5029494 DOI: 10.3390/microorganisms1010137] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 11/24/2022] Open
Abstract
With the remarkable increase of genomic sequence data of microorganisms, novel tools are needed for comprehensive analyses of the big sequence data available. The self-organizing map (SOM) is an effective tool for clustering and visualizing high-dimensional data, such as oligonucleotide composition on one map. By modifying the conventional SOM, we developed batch-learning SOM (BLSOM), which allowed classification of sequence fragments (e.g., 1 kb) according to phylotypes, solely depending on oligonucleotide composition. Metagenomics studies of uncultivable microorganisms in clinical and environmental samples should allow extensive surveys of genes important in life sciences. BLSOM is most suitable for phylogenetic assignment of metagenomic sequences, because fragmental sequences can be clustered according to phylotypes, solely depending on oligonucleotide composition. We first constructed oligonucleotide BLSOMs for all available sequences from genomes of known species, and by mapping metagenomic sequences on these large-scale BLSOMs, we can predict phylotypes of individual metagenomic sequences, revealing a microbial community structure of uncultured microorganisms, including viruses. BLSOM has shown that influenza viruses isolated from humans and birds clearly differ in oligonucleotide composition. Based on this host-dependent oligonucleotide composition, we have proposed strategies for predicting directional changes of virus sequences and for surveilling potentially hazardous strains when introduced into humans from non-human sources.
Collapse
Affiliation(s)
- Yuki Iwasaki
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama-shi, Shiga-ken 526-0829, Japan.
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan.
| | - Takashi Abe
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama-shi, Shiga-ken 526-0829, Japan.
- Department of Information Engineering, Faculty of Engineering, Niigata University, Niigata-ken 950-2181, Japan.
| | - Kennosuke Wada
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama-shi, Shiga-ken 526-0829, Japan.
| | - Yoshiko Wada
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama-shi, Shiga-ken 526-0829, Japan.
- Faculty of Medicine, Shiga University of Medical Science, Shiga-ken 520-2121, Japan.
| | - Toshimichi Ikemura
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama-shi, Shiga-ken 526-0829, Japan.
| |
Collapse
|
412
|
Klausberger M, Wilde M, Palmberger D, Hai R, Albrecht RA, Margine I, Hirsh A, García-Sastre A, Grabherr R, Krammer F. One-shot vaccination with an insect cell-derived low-dose influenza A H7 virus-like particle preparation protects mice against H7N9 challenge. Vaccine 2013; 32:355-62. [PMID: 24262313 PMCID: PMC3906608 DOI: 10.1016/j.vaccine.2013.11.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/04/2013] [Accepted: 11/07/2013] [Indexed: 01/25/2023]
Abstract
Human infections with a novel influenza A H7N9 subtype virus were reported in China recently. The virus caused severe disease with high mortality rates and it raised concerns over its pandemic potential. Here, we assessed in the mouse model protective efficacy of single immunisations with low vaccine doses of insect cell-derived H7 virus-like particles, consisting of hemagglutinin and matrix protein. Vaccinated mice were fully protected and survived a stringent lethal challenge (100 mLD50) with H7N9, even after a single, unadjuvanted, low vaccine dose (0.03 μg). Serum analysis revealed broad reactivity and hemagglutination inhibition activity across a panel of divergent H7 strains. Moreover, we detected significant levels of cross-reactivity to related group 2 hemagglutinins. These data demonstrate that virus-like particle vaccines have the potential to induce broadly protective immunity against the novel H7N9 virus and a variety of other H7 strains.
Collapse
Affiliation(s)
- Miriam Klausberger
- Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Monika Wilde
- Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dieter Palmberger
- Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rong Hai
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Irina Margine
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ariana Hirsh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reingard Grabherr
- Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
413
|
Abstract
Influenza virus infection is a common respiratory pathogen. Emerging of new atypical influenza is usually a big public health threat. H7N9 bird flu is the newest atypical influenza virus infection that has just been reported since early 2013. The emerging of this new disease occurred in China and becomes the present focus for possible worldwide pandemic. In this specific article, the author will discus and describe on epidemiology, symptomatology, pathology, diagnosis, treatment, and prevention of this new bird flu. The literature researching by PubMed and Google is used for data gathering in this collective review.
Collapse
|
414
|
Yin J, Zhu D, Zhang Z, Wang W, Fan J, Men D, Deng J, Wei H, Zhang XE, Cui Z. Imaging of mRNA-protein interactions in live cells using novel mCherry trimolecular fluorescence complementation systems. PLoS One 2013; 8:e80851. [PMID: 24260494 PMCID: PMC3829953 DOI: 10.1371/journal.pone.0080851] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 10/15/2013] [Indexed: 11/18/2022] Open
Abstract
Live cell imaging of mRNA-protein interactions makes it possible to study posttranscriptional processes of cellular and viral gene expression under physiological conditions. In this study, red color mCherry-based trimolecular fluorescence complementation (TriFC) systems were constructed as new tools for visualizing mRNA-protein interaction in living cells using split mCherry fragments and HIV REV-RRE and TAT-TAR peptide-RNA interaction pairs. The new mCherry TriFC systems were successfully used to image RNA-protein interactions such as that between influenza viral protein NS1 and the 5' UTR of influenza viral mRNAs NS, M, and NP. Upon combination of an mCherry TriFC system with a Venus TriFC system, multiple mRNA-protein interactions could be detected simultaneously in the same cells. Then, the new mCherry TriFC system was used for imaging of interactions between influenza A virus mRNAs and some of adapter proteins in cellular TAP nuclear export pathway in live cells. Adapter proteins Aly and UAP56 were found to associate with three kinds of viral mRNAs. Another adapter protein, splicing factor 9G8, only interacted with intron-containing spliced M2 mRNA. Co-immunoprecipitation assays with influenza A virus-infected cells confirmed these interactions. This study provides long-wavelength-spectrum TriFC systems as new tools for visualizing RNA-protein interactions in live cells and help to understand the nuclear export mechanism of influenza A viral mRNAs.
Collapse
Affiliation(s)
- Juan Yin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Duanhao Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Zhiping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jinyu Fan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiaoyu Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Hongping Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xian-En Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
415
|
Di Pasquale S, Falcone E, Knutsson R, Vaccari G, De Medici D, Di Trani L. Development and optimization of a biopreparedness protocol for extracting and detecting avian influenza virus in broiler chicken meat. Biosecur Bioterror 2013; 11 Suppl 1:S235-40. [PMID: 23971811 DOI: 10.1089/bsp.2012.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Detection of avian influenza virus (AIV) in poultry meat is hampered by the lack of an efficient analytical method able to extract and concentrate viral RNA prior to PCR. In this study we developed a method for extracting and detecting AIV from poultry meat by a previously standardized 1-step real-time reverse transcriptase PCR (RRT-PCR) assay. In addition, a new process control, represented by feline calicivirus (FCV), was included in the original protocol, to evaluate all analytical steps from sample preparation to the detection phase. The detection limit was below 1×10(-1) TCID50 of AIV per sample, and the quantification limit corresponded to 1×10(1) TCID50 of AIV per sample. Moreover, the addition of 1×10(2) TCID50/sample of FCV did not affect the quantification and detection limit of the reaction. These results show that the developed assay is suitable for detecting small amounts of AIV in poultry meat. In addition, the developed biopreparedness protocol can be applied to detect AIV in legal or illegal imported broiler chicken meat. The availability of a rapid and sensitive diagnostic method based on molecular identification of AIV in poultry meat provides an important tool in the prevention of AIV circulation.
Collapse
Affiliation(s)
- Simona Di Pasquale
- Simona Di Pasquale is a Technical Assistant; Emiliana Falcone is a Senior Researcher; Gabriele Vaccari is a Researcher; Dario De Medici is a Senior Resaercher; and Livia Di Trani is a Senior Researcher; all at Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità , Rome, Italy. Rickard Knutsson, PhD, is Director of Security Department, National Veterinary Institute (SVA), Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
416
|
Assessing the fitness of distinct clades of influenza A (H9N2) viruses. Emerg Microbes Infect 2013; 2:e75. [PMID: 26038443 PMCID: PMC3924558 DOI: 10.1038/emi.2013.75] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/20/2013] [Accepted: 09/05/2013] [Indexed: 01/17/2023]
Abstract
Influenza A (H9N2) viruses are a genetically diverse population that infects wild and domestic avian species and mammals and contributed the internal gene segments to the A/H5N1 and A/H7N9 viruses associated with lethal human infections. Here we comprehensively assess the potential risk to mammals of a diverse panel of A/H9N2 viruses, representing the major H9N2 clades, using a combination of in vitro assays (e.g., antiviral susceptibility and virus growth in primary differentiated human airway cells) and in vivo assays (e.g., replication, transmission and/or pathogenicity of viruses in ducks, pigs, mice and ferrets). We observed that viruses isolated from humans, A/Hong Kong/1073/1999 and A/Hong Kong/33982/2009, had the highest risk potential. However, the A/swine/Hong Kong/9A-1/1998 and A/chicken/Hong Kong/G9/1997 viruses also displayed several features suggesting a fitness profile adapted to human infection and transmission. The North American avian H9N2 clade virus had the lowest risk profile, and the other viruses tested displayed various levels of fitness across individual assays. In many cases, the known genotypic polymorphisms alone were not sufficient to accurately predict the virus' phenotype. Therefore, we conclude that comprehensive risk analyses based on surveillance of circulating influenza virus strains are necessary to assess the potential for human infection by emerging influenza A viruses.
Collapse
|
417
|
Dudley JP, Mackay IM. Age-specific and sex-specific morbidity and mortality from avian influenza A(H7N9). J Clin Virol 2013; 58:568-70. [PMID: 24091087 PMCID: PMC7108379 DOI: 10.1016/j.jcv.2013.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 11/22/2022]
Abstract
We used data on age and sex for 136 laboratory confirmed human A(H7N9) cases reported as of 11 August 2013 to compare age-specific and sex-specific patterns of morbidity and mortality from the avian influenza A(H7N9) virus with those of the avian influenza A(H5N1) virus. Human A(H7N9) cases exhibit high degrees of age and sex bias: mortality is heavily biased toward males >50 years, no deaths have been reported among individuals <25 years old, and relatively few cases documented among children or adolescents. The proportion of fatal cases (PFC) for human A(H7N9) cases as of 11 August 2013 was 32%, compared to a cumulative PFC for A(H5N1) of 83% in Indonesia and 36% in Egypt. Approximately 75% of cases of all A(H7N9) cases occurred among individuals >45 years old. Morbidity and mortality from A(H7N9) are lowest among individuals between 10 and 29 years, the age group which exhibits the highest cumulative morbidity and case fatality rates from A(H5N1). Although individuals <20 years old comprise nearly 50% of all human A(H5N1) cases, only 7% of all reported A(H7N9) cases and no deaths have been reported among individuals in this age group. Only 4% of A(H7N9) cases occurred among children<5 years old, and only one case from the 10 to 20 year age group. Age- and sex-related differences in morbidity and mortality from emerging zoonotic diseases can provide insights into ecological, economic, and cultural factors that may contribute to the emergence and proliferation of novel zoonotic diseases in human populations.
Collapse
Affiliation(s)
- Joseph P Dudley
- Science Applications International Corporation, 12530 Parklawn Drive, Suite 350, Rockville, MD 20852, USA; Institute of Arctic Biology, University of Alaska Fairbanks, USA; Department of Earth Sciences, University of Alaska Museum, USA.
| | | |
Collapse
|
418
|
Xu W, Sun Z, Liu Q, Xu J, Jiang S, Lu L. PA-356R is a unique signature of the avian influenza A (H7N9) viruses with bird-to-human transmissibility: Potential implication for animal surveillances. J Infect 2013; 67:490-4. [DOI: 10.1016/j.jinf.2013.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/31/2013] [Accepted: 08/03/2013] [Indexed: 11/28/2022]
|
419
|
Characterization of two distinct neuraminidases from avian-origin human-infecting H7N9 influenza viruses. Cell Res 2013; 23:1347-55. [PMID: 24165891 PMCID: PMC3847574 DOI: 10.1038/cr.2013.144] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 12/15/2022] Open
Abstract
An epidemic of an avian-origin H7N9 influenza virus has recently emerged in China, infecting 134 patients of which 45 have died. This is the first time that an influenza virus harboring an N9 serotype neuraminidase (NA) has been known to infect humans. H7N9 viruses are divergent and at least two distinct NAs and hemagglutinins (HAs) have been found, respectively, from clinical isolates. The prototypes of these viruses are A/Anhui/1/2013 and A/Shanghai/1/2013. NAs from these two viruses are distinct as the A/Shanghai/1/2013 NA has an R294K substitution that can confer NA inhibitor oseltamivir resistance. Oseltamivir is by far the most commonly used anti-influenza drug due to its potency and high bioavailability. In this study, we show that an R294K substitution results in multidrug resistance with extreme oseltamivir resistance (over 100 000-fold) using protein- and virus-based assays. To determine the molecular basis for the inhibitor resistance, we solved high-resolution crystal structures of NAs from A/Anhui/1/2013 N9 (R294-containing) and A/Shanghai/1/2013 N9 (K294-containing). R294K substitution results in an unfavorable E276 conformation for oseltamivir binding, and consequently loss of inhibitor carboxylate interactions, which compromises the binding of all classical NA ligands/inhibitors. Moreover, we found that R294K substitution results in reduced NA catalytic efficiency along with lower viral fitness. This helps to explain why K294 has predominantly been found in clinical cases of H7N9 infection under the selective pressure of oseltamivir treatment and not in the dominant human-infecting viruses. This implies that oseltamivir can still be efficiently used in the treatment of H7N9 infections.
Collapse
|
420
|
Lee RTC, Gunalan V, Van TD, Le LT, Eisenhaber F, Maurer-Stroh S. A new piece in the puzzle of the novel avian-origin influenza A (H7N9) virus. Biol Direct 2013; 8:26. [PMID: 24160334 PMCID: PMC4016609 DOI: 10.1186/1745-6150-8-26] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/21/2013] [Indexed: 11/13/2022] Open
Abstract
Reviewers This article was reviewed by Prof Xiufan Liu (nominated by Dr Purificacion Lopez-Garcia) and Prof Sandor Pongor. Using phylogenetic analysis on newly available sequences, we characterize A/chicken/Jiangsu/RD5/2013(H10N9) as currently closest precursor strain for the NA segment in the novel avian-origin H7N9 virus responsible for an outbreak in China. We also show that the internal segments of this precursor strain are closely related to those of the presumed precursor for the HA segment, A/duck/Zhejiang/12/2011(H7N3), which indicates that the sources of both HA and NA donors for the reassortant virus are of regional and not migratory-bird origin and highlights the role of chicken already in the early reassortment events.
Collapse
Affiliation(s)
| | | | | | | | | | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix Building, 138671 Singapore, Singapore.
| |
Collapse
|
421
|
Shi W, Shi Y, Wu Y, Liu D, Gao GF. Origin and molecular characterization of the human-infecting H6N1 influenza virus in Taiwan. Protein Cell 2013; 4:846-53. [PMID: 24136722 DOI: 10.1007/s13238-013-3083-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/22/2013] [Indexed: 12/15/2022] Open
Abstract
In June 2013, the first human H6N1 influenza virus infection was confirmed in Taiwan. However, the origin and molecular characterization of this virus, A/Taiwan/2/2013 (H6N1), have not been well studied thus far. In the present report, we performed phylogenetic and coalescent analyses of this virus and compared its molecular profile/characteristics with other closely related strains. Molecular characterization of H6N1 revealed that it is a typical avian influenza virus of low pathogenicity, which might not replicate and propagate well in the upper airway in mammals. Phylogenetic analysis revealed that the virus clusters with A/chicken/Taiwan/A2837/2013 (H6N1) in seven genes, except PB1. For the PB1 gene, A/Taiwan/2/2013 was clustered with a different H6N1 lineage from A/chicken/Taiwan/ A2837/2013. Although a previous study demonstrated that the PB2, PA, and M genes of A/Taiwan/2/2013 might be derived from the H5N2 viruses, coalescent analyses revealed that these H5N2 viruses were derived from more recent strains than that of the ancestor of A/Taiwan/2/2013. Therefore, we propose that A/Taiwan/2/2013 is a reassortant from different H6N1 lineages circulating in chickens in Taiwan. Furthermore, compared to avian isolates, a single P186L (H3 numbering) substitution in the hemagglutinin H6 of the human isolate might increase the mammalian receptor binding and, hence, this strain's pathogenicity in humans. Overall, human infection with this virus seems an accidental event and is unlikely to cause an influenza pandemic. However, its co-circulation and potential reassortment with other influenza subtypes are still worthy of attention.
Collapse
Affiliation(s)
- Weifeng Shi
- School of Medical Sciences, Taishan Medical College, Taian, 271016, China
| | | | | | | | | |
Collapse
|
422
|
Lam TTY, Wang J, Shen Y, Zhou B, Duan L, Cheung CL, Ma C, Lycett SJ, Leung CYH, Chen X, Li L, Hong W, Chai Y, Zhou L, Liang H, Ou Z, Liu Y, Farooqui A, Kelvin DJ, Poon LLM, Smith DK, Pybus OG, Leung GM, Shu Y, Webster RG, Webby RJ, Peiris JSM, Rambaut A, Zhu H, Guan Y. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature 2013; 502:241-4. [PMID: 23965623 PMCID: PMC3801098 DOI: 10.1038/nature12515] [Citation(s) in RCA: 362] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/01/2013] [Indexed: 02/05/2023]
Abstract
A novel H7N9 influenza A virus first detected in March 2013 has since caused more than 130 human infections in China, resulting in 40 deaths. Preliminary analyses suggest that the virus is a reassortant of H7, N9 and H9N2 avian influenza viruses, and carries some amino acids associated with mammalian receptor binding, raising concerns of a new pandemic. However, neither the source populations of the H7N9 outbreak lineage nor the conditions for its genesis are fully known. Using a combination of active surveillance, screening of virus archives, and evolutionary analyses, here we show that H7 viruses probably transferred from domestic duck to chicken populations in China on at least two independent occasions. We show that the H7 viruses subsequently reassorted with enzootic H9N2 viruses to generate the H7N9 outbreak lineage, and a related previously unrecognized H7N7 lineage. The H7N9 outbreak lineage has spread over a large geographic region and is prevalent in chickens at live poultry markets, which are thought to be the immediate source of human infections. Whether the H7N9 outbreak lineage has, or will, become enzootic in China and neighbouring regions requires further investigation. The discovery here of a related H7N7 influenza virus in chickens that has the ability to infect mammals experimentally, suggests that H7 viruses may pose threats beyond the current outbreak. The continuing prevalence of H7 viruses in poultry could lead to the generation of highly pathogenic variants and further sporadic human infections, with a continued risk of the virus acquiring human-to-human transmissibility.
Collapse
Affiliation(s)
- Tommy Tsan-Yuk Lam
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou 515041, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
423
|
The novel human influenza A(H7N9) virus is naturally adapted to efficient growth in human lung tissue. mBio 2013; 4:e00601-13. [PMID: 24105764 PMCID: PMC3791893 DOI: 10.1128/mbio.00601-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel influenza A virus (IAV) of the H7N9 subtype has been isolated from severely diseased patients with pneumonia and acute respiratory distress syndrome and, apparently, from healthy poultry in March 2013 in Eastern China. We evaluated replication, tropism, and cytokine induction of the A/Anhui/1/2013 (H7N9) virus isolated from a fatal human infection and two low-pathogenic avian H7 subtype viruses in a human lung organ culture system mimicking infection of the lower respiratory tract. The A(H7N9) patient isolate replicated similarly well as a seasonal IAV in explanted human lung tissue, whereas avian H7 subtype viruses propagated poorly. Interestingly, the avian H7 strains provoked a strong antiviral type I interferon (IFN-I) response, whereas the A(H7N9) virus induced only low IFN levels. Nevertheless, all viruses analyzed were detected predominantly in type II pneumocytes, indicating that the A(H7N9) virus does not differ in its cellular tropism from other avian or human influenza viruses. Tissue culture-based studies suggested that the low induction of the IFN-β promoter correlated with an efficient suppression by the viral NS1 protein. These findings demonstrate that the zoonotic A(H7N9) virus is unusually well adapted to efficient propagation in human alveolar tissue, which most likely contributes to the severity of lower respiratory tract disease seen in many patients. Humans are usually not infected by avian influenza A viruses (IAV), but this large group of viruses contributes to the emergence of human pandemic strains. Transmission of virulent avian IAV to humans is therefore an alarming event that requires assessment of the biology as well as pathogenic and pandemic potentials of the viruses in clinically relevant models. Here, we demonstrate that an early virus isolate from the recent A(H7N9) outbreak in Eastern China replicated as efficiently as human-adapted IAV in explanted human lung tissue, whereas avian H7 subtype viruses were unable to propagate. Robust replication of the H7N9 strain correlated with a low induction of antiviral beta interferon (IFN-β), and cell-based studies indicated that this is due to efficient suppression of the IFN response by the viral NS1 protein. Thus, explanted human lung tissue appears to be a useful experimental model to explore the determinants facilitating cross-species transmission of the H7N9 virus to humans.
Collapse
|
424
|
Low pathogenic avian influenza A(H7N9) virus causes high mortality in ferrets upon intratracheal challenge: A model to study intervention strategies. Vaccine 2013; 31:4995-9. [DOI: 10.1016/j.vaccine.2013.06.071] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 06/20/2013] [Indexed: 11/22/2022]
|
425
|
Abstract
Influenza A viruses are a threat to poultry and human health. We investigated evolution of influenza A virus H7 and N9 subtypes in wild and domestic birds. Influenza A(H7N9) virus probably emerged after a long silent circulation in live poultry markets in eastern Asia.
Collapse
|
426
|
Abstract
In February 2013, two patients living in Shanghai were admitted to the Shanghai Fifth Hospital with fever, cough and respiratory tract infection, followed by severe pneumonia, respiratory distress and multiorgan dysfunction(1). While the first patient, an 87-year-old man, did not present a history of exposure to live birds during the preceding 2 weeks, the second patient, a 27-year-old man,was a butcher at a market selling live birds. A 35-year-old female from the Anhui Province of China, the third patient who became infected, visited a chicken market a week before her symptoms started (2,3). All three patients died, and their infections did not appear to be epidemiologically linked (4).
Collapse
Affiliation(s)
- R A Stein
- Biochemistry and Molecular Pharmacology, New York University School of Medicine, 180 Varick Street, Room 643, New York, NY, USA. ,
| |
Collapse
|
427
|
Wu A, Su C, Wang D, Peng Y, Liu M, Hua S, Li T, Gao G, Tang H, Chen J, Liu X, Shu Y, Peng D, Jiang T. Sequential Reassortments Underlie Diverse Influenza H7N9 Genotypes in China. Cell Host Microbe 2013; 14:446-52. [DOI: 10.1016/j.chom.2013.09.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/28/2013] [Accepted: 08/31/2013] [Indexed: 11/28/2022]
|
428
|
Fonville JM, Burke DF, Lewis NS, Katzelnick LC, Russell CA. Quantifying the fitness advantage of polymerase substitutions in Influenza A/H7N9 viruses during adaptation to humans. PLoS One 2013; 8:e76047. [PMID: 24086684 PMCID: PMC3785442 DOI: 10.1371/journal.pone.0076047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 08/22/2013] [Indexed: 01/15/2023] Open
Abstract
Adaptation of zoonotic influenza viruses towards efficient human-to-human transmissibility is a substantial public health concern. The recently emerged A/H7N9 influenza viruses in China provide an opportunity for quantitative studies of host-adaptation, as human-adaptive substitutions in the PB2 gene of the virus have been found in all sequenced human strains, while these substitutions have not been detected in any non-human A/H7N9 sequences. Given the currently available information, this observation suggests that the human-adaptive PB2 substitution might confer a fitness advantage to the virus in these human hosts that allows it to rise to proportions detectable by consensus sequencing over the course of a single human infection. We use a mathematical model of within-host virus evolution to estimate the fitness advantage required for a substitution to reach predominance in a single infection as a function of the duration of infection and the fraction of mutant present in the virus population that initially infects a human. The modeling results provide an estimate of the lower bound for the fitness advantage of this adaptive substitution in the currently sequenced A/H7N9 viruses. This framework can be more generally used to quantitatively estimate fitness advantages of adaptive substitutions based on the within-host prevalence of mutations. Such estimates are critical for models of cross-species transmission and host-adaptation of influenza virus infections.
Collapse
Affiliation(s)
- Judith M. Fonville
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - David F. Burke
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Nicola S. Lewis
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Leah C. Katzelnick
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Colin A. Russell
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
429
|
Fang LQ, Li XL, Liu K, Li YJ, Yao HW, Liang S, Yang Y, Feng ZJ, Gray GC, Cao WC. Mapping spread and risk of avian influenza A (H7N9) in China. Sci Rep 2013; 3:2722. [PMID: 24072008 PMCID: PMC3784030 DOI: 10.1038/srep02722] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/04/2013] [Indexed: 12/26/2022] Open
Abstract
The outbreak of human infections with an emerging avian influenza A (H7N9) virus occurred in China in early 2013. It remains unknown what and how the underlying risk factors were involved in the bird-to-human cross-species transmission. To illustrate the dynamics of viral spread, we created a thematic map displaying the distribution of affected counties and plotted epidemic curves for the three most affected provinces and the whole country. We then collected data of agro-ecological, environmental and meteorological factors at the county level, and used boosted regression tree (BRT) models to examine the relative contribution of each factor and map the probability of occurrence of human H7N9 infection. We found that live poultry markets, human population density, irrigated croplands, built-up land, relative humidity and temperature significantly contributed to the occurrence of human infection with H7N9 virus. The discriminatory ability of the model was up to 97.4%. A map showing the areas with high risk for human H7N9 infection was created based on the model. These findings could be used to inform targeted surveillance and control efforts in both human and animal populations to reduce the risk of future human infections.
Collapse
Affiliation(s)
- Li-Qun Fang
- The State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
430
|
Abstract
Recently, novel H7N9 influenza viruses have caused an unprecedented outbreak in humans. Pigs are an important intermediate host for influenza; thus, we assessed the replication ability of three human H7N9 viruses (A/Anhui/1/2013, A/Shanghai/1/2013, A/Shanghai/2/2013) in swine tissue explants. All viruses tested replicated efficiently in explants from tracheas and bronchi, with limited replication in alveolar cells. Swine respiratory tissue explants can serve as an efficient model for screening replication potential of newly emerging H7N9 viruses.
Collapse
|
431
|
Shi Y, Zhang W, Wang F, Qi J, Wu Y, Song H, Gao F, Bi Y, Zhang Y, Fan Z, Qin C, Sun H, Liu J, Haywood J, Liu W, Gong W, Wang D, Shu Y, Wang Y, Yan J, Gao GF. Structures and Receptor Binding of Hemagglutinins from Human-Infecting H7N9 Influenza Viruses. Science 2013; 342:243-7. [DOI: 10.1126/science.1242917] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
432
|
To KKW, Chan JFW, Chen H, Li L, Yuen KY. The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities. THE LANCET. INFECTIOUS DISEASES 2013; 13:809-21. [PMID: 23969217 PMCID: PMC7158959 DOI: 10.1016/s1473-3099(13)70167-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Infection with either influenza A H5N1 virus in 1997 or avian influenza A H7N9 virus in 2013 caused severe pneumonia that did not respond to typical or atypical antimicrobial treatment, and resulted in high mortality. Both viruses are reassortants with internal genes derived from avian influenza A H9N2 viruses that circulate in Asian poultry. Both viruses have genetic markers of mammalian adaptation in their haemagglutinin and polymerase PB2 subunits, which enhanced binding to human-type receptors and improved replication in mammals, respectively. Hong Kong (affected by H5N1 in 1997) and Shanghai (affected by H7N9 in 2013) are two rapidly flourishing cosmopolitan megacities that were increasing in human population and poultry consumption before the outbreaks. Both cities are located along the avian migratory route at the Pearl River delta and Yangtze River delta. Whether the widespread use of the H5N1 vaccine in east Asia-with suboptimum biosecurity measures in live poultry markets and farms-predisposed to the emergence of H7N9 or other virus subtypes needs further investigation. Why H7N9 seems to be more readily transmitted from poultry to people than H5N1 is still unclear.
Collapse
Affiliation(s)
- Kelvin KW To
- State Key Laboratory for Emerging Infectious Diseases, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jasper FW Chan
- State Key Laboratory for Emerging Infectious Diseases, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
433
|
|
434
|
Wang C, Wang J, Su W, Gao S, Luo J, Zhang M, Xie L, Liu S, Liu X, Chen Y, Jia Y, Zhang H, Ding H, He H. Relationship between domestic and wild birds in live poultry market and a novel human H7N9 virus in China. J Infect Dis 2013; 209:34-7. [PMID: 23990569 DOI: 10.1093/infdis/jit478] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To trace the source of the avian H7N9 viruses, we collected 99 samples from 4 live poultry markets and the family farms of 3 patients in Hangzhou city of Zhejiang province, China. We found that almost all positive samples came from chickens and ducks in live poultry markets. These results strongly suggest that the live poultry markets are the major source of recent human infections with H7N9 in Hangzhou city, Zhejiang province of China. Therefore, control measures are needed, not only in the domestic bird population, but also in the live poultry markets to reduce human H7N9 infection risk.
Collapse
Affiliation(s)
- Chengmin Wang
- National Research Center For Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
435
|
Yang S, Chen Y, Cui D, Yao H, Lou J, Huo Z, Xie G, Yu F, Zheng S, Yang Y, Zhu Y, Lu X, Liu X, Lau SY, Chan JFW, To KKW, Yuen KY, Chen H, Li L. Avian-Origin Influenza A(H7N9) Infection in Influenza A(H7N9)–Affected Areas of China: A Serological Study. J Infect Dis 2013; 209:265-9. [DOI: 10.1093/infdis/jit430] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
436
|
Wiwanitkit V, Shi B, Xia S, Yang GJ, Zhou XN, Liu J. Research priorities in modeling the transmission risks of H7N9 bird flu. Infect Dis Poverty 2013; 2:17. [PMID: 23927386 PMCID: PMC3751567 DOI: 10.1186/2049-9957-2-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/06/2013] [Indexed: 11/10/2022] Open
Abstract
The epidemic of H7N9 bird flu in eastern China in early 2013 has caused much attention from researchers as well as public health workers. The issue on modeling the transmission risks is very interesting topic. In this article, this issue is debated and discussed in order to promote further researches on prediction and prevention of avian influenza viruses supported by better interdisciplinary datasets from the surveillance and response system.
Collapse
|
437
|
Richard M, Schrauwen EJA, de Graaf M, Bestebroer TM, Spronken MIJ, van Boheemen S, de Meulder D, Lexmond P, Linster M, Herfst S, Smith DJ, van den Brand JM, Burke DF, Kuiken T, Rimmelzwaan GF, Osterhaus ADME, Fouchier RAM. Limited airborne transmission of H7N9 influenza A virus between ferrets. Nature 2013; 501:560-3. [PMID: 23925116 PMCID: PMC3819191 DOI: 10.1038/nature12476] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/17/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
438
|
Yiu Lai K, Wing Yiu Ng G, Fai Wong K, Fan Ngai Hung I, Kam Fai Hong J, Fan Cheng F, Kwok Cheung Chan J. Human H7N9 avian influenza virus infection: a review and pandemic risk assessment. Emerg Microbes Infect 2013; 2:e48. [PMID: 26038484 PMCID: PMC3824111 DOI: 10.1038/emi.2013.48] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 12/20/2022]
Abstract
China is undergoing a recent outbreak of a novel H7N9 avian influenza virus (nH7N9) infection that has thus far involved 132 human patients, including 37 deaths. The nH7N9 virus is a reassortant virus originating from the H7N3, H7N9 and H9N2 avian influenza viruses. nH7N9 isolated from humans contains features related to adaptation to humans, including a Q226L mutation in the hemagglutinin cleavage site and E627K and D701N mutations in the PB2 protein. Live poultry markets provide an environment for the emergence, spread and maintenance of nH7N9 as well as for the selection of mutants that facilitate nH7N9 binding to and replication in the human upper respiratory tract. Innate immune suppression conferred by the internal genes of H9N2 may contribute to the virulence of nH7N9. The quail may serve as the intermediate host during the adaptation of avian influenza viruses from domestic waterfowl to gallinaceous poultry, such as chickens and related terrestrial-based species, due to the selection of viral mutants with a short neuraminidase stalk. Infections in chickens, common quails, red-legged partridges and turkeys may select for mutants with human receptor specificity. Infection in Ratitae species may lead to the selection of PB2-E627K and PB2-D701N mutants and the conversion of nH7N9 to a highly pathogenic avian influenza virus.
Collapse
Affiliation(s)
- Kang Yiu Lai
- Department of Intensive Care, Queen Elizabeth Hospital , Hong Kong, China
| | - George Wing Yiu Ng
- Department of Intensive Care, Queen Elizabeth Hospital , Hong Kong, China
| | - Kit Fai Wong
- Department of Pathology, Queen Elizabeth Hospital , Hong Kong, China
| | | | | | - Fanny Fan Cheng
- Department of Medicine, Queen Elizabeth Hospital , Hong Kong, China
| | | |
Collapse
|
439
|
Qi X, Qian YH, Bao CJ, Guo XL, Cui LB, Tang FY, Ji H, Huang Y, Cai PQ, Lu B, Xu K, Shi C, Zhu FC, Zhou MH, Wang H. Probable person to person transmission of novel avian influenza A (H7N9) virus in Eastern China, 2013: epidemiological investigation. BMJ 2013; 347:f4752. [PMID: 23920350 PMCID: PMC3805478 DOI: 10.1136/bmj.f4752] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To determine whether the novel avian influenza H7N9 virus can transmit from person to person and its efficiency. DESIGN Epidemiological investigations conducted after a family cluster of two patients with avian H7N9 in March 2013. SETTING Wuxi, Eastern China. PARTICIPANTS Two patients, their close contacts, and relevant environments. Samples from the patients and environments were collected and tested by real time reverse transcriptase-polymerase chain reaction (rRT-PCR), viral culture, and haemagglutination inhibition assay. Any contacts who became ill had samples tested for avian H7N9 by rRT-PCR. Paired serum samples were obtained from contacts for serological testing by haemagglutination inhibition assays. MAIN OUTCOMES MEASURES Clinical data, history of exposure before the onset of illnesses, and results of laboratory testing of pathogens and further analysis of sequences and phylogenetic tree to isolated strains. RESULTS The index patient became ill five to six days after his last exposure to poultry. The second patient, his daughter aged 32, who provided unprotected bedside care in the hospital, had no known exposure to poultry. She developed symptoms six days after her last contact with her father. Two strains were isolated successfully from the two patients. Genome sequence and analyses of phylogenetic trees showed that both viruses were almost genetically identical. Forty three close contacts of both patients were identified. One had mild illness but had negative results for avian H7N9 by rRT-PCR. All 43 close contacts tested negative for haemagglutination inhibition antibodies specific for avian H7N9. CONCLUSIONS The infection of the daughter probably resulted from contact with her father (the index patient) during unprotected exposure, suggesting that in this cluster the virus was able to transmit from person to person. The transmissibility was limited and non-sustainable.
Collapse
Affiliation(s)
- Xian Qi
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Province Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
440
|
Gao GF, Wu Y. Haunted with and hunting for viruses. SCIENCE CHINA. LIFE SCIENCES 2013; 56:675-7. [PMID: 23917837 PMCID: PMC7089303 DOI: 10.1007/s11427-013-4525-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Indexed: 01/20/2023]
Affiliation(s)
- George Fu Gao
- Chinese Center for Disease Control and Prevention, Beijing, 102206 China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- Research Network of Immunity and Health, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101 China
| | - Ying Wu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
441
|
Dankar SK, Miranda E, Forbes NE, Pelchat M, Tavassoli A, Selman M, Ping J, Jia J, Brown EG. Influenza A/Hong Kong/156/1997(H5N1) virus NS1 gene mutations F103L and M106I both increase IFN antagonism, virulence and cytoplasmic localization but differ in binding to RIG-I and CPSF30. Virol J 2013; 10:243. [PMID: 23886034 PMCID: PMC3733596 DOI: 10.1186/1743-422x-10-243] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genetic basis for avian to mammalian host switching in influenza A virus is largely unknown. The human A/HK/156/1997 (H5N1) virus that transmitted from poultry possesses NS1 gene mutations F103L + M106I that are virulence determinants in the mouse model of pneumonia; however their individual roles have not been determined. The emergent A/Shanghai/patient1/2013(H7N9)-like viruses also possess these mutations which may contribute to their virulence and ability to switch species. METHODS NS1 mutant viruses were constructed by reverse genetics and site directed mutagenesis on human and mouse-adapted backbones. Mouse infections assessed virulence, virus yield, tissue infection, and IFN induction. NS1 protein properties were assessed for subcellular distribution, IFN antagonism (mouse and human), CPSF30 and RIG-I domain binding, host transcription (microarray); and the natural prevalence of 103L and 106I mutants was assessed. RESULTS Each of the F103L and M106I mutations contributes additively to virulence to reduce the lethal dose by >800 and >3,200 fold respectively by mediating alveolar tissue infection with >100 fold increased infectious yields. The 106I NS1 mutant lost CPSF binding but the 103L mutant maintained binding that correlated with an increased general decrease in host gene expression in human but not mouse cells. Each mutation positively modulated the inhibition of IFN induction in mouse cells and activation of the IFN-β promoter in human cells but not in combination in human cells indicating negative epistasis. Each of the F103L and M106I mutations restored a defect in cytoplasmic localization of H5N1 NS1 in mouse cells. Human H1N1 and H3N2 NS1 proteins bound to the CARD, helicase and RD RIG-I domains, whereas the H5N1 NS1 with the same consensus 103F and 106M mutations did not bind these domains, which was totally or partially restored by the M106I or F103L mutations respectively. CONCLUSIONS The F103L and M106I mutations in the H5N1 NS1 protein each increased IFN antagonism and mediated interstitial pneumonia in mice that was associated with increased cytoplasmic localization and altered host factor binding. These mutations may contribute to the ability of previous HPAI H5N1 and recent LPAI H7N9 and H6N1 (NS1-103L+106M) viruses to switch hosts and cause disease in humans.
Collapse
Affiliation(s)
- Samar K Dankar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
442
|
Abstract
Influenza A viruses (IAV) are significant pathogens able to repeatedly switch hosts to infect multiple avian and mammalian species, including humans. The unpredictability of IAV evolution and interspecies movement creates continual public health challenges, such as the emergence of the 2009 pandemic H1N1 virus from swine, as well as pandemic threats from the ongoing H5N1 and the recent H7N9 epizootics. In the last decade there has been increased concern about the “dual use” nature of microbiology, and a set of guidelines covering “dual use research of concern” includes seven categories of potentially problematic scientific experiments. In this Perspective, we consider how in nature IAV continually undergo “dual use experiments” as a matter of evolution and selection, and we conclude that studying these properties of IAV is critical for mitigating and preventing future epidemics and pandemics.
Collapse
|
443
|
Cowling BJ, Jin L, Lau EHY, Liao Q, Wu P, Jiang H, Tsang TK, Zheng J, Fang VJ, Chang Z, Ni MY, Zhang Q, Ip DKM, Yu J, Li Y, Wang L, Tu W, Meng L, Wu JT, Luo H, Li Q, Shu Y, Li Z, Feng Z, Yang W, Wang Y, Leung GM, Yu H. Comparative epidemiology of human infections with avian influenza A H7N9 and H5N1 viruses in China: a population-based study of laboratory-confirmed cases. Lancet 2013; 382:129-37. [PMID: 23803488 PMCID: PMC3777567 DOI: 10.1016/s0140-6736(13)61171-x] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The novel influenza A H7N9 virus emerged recently in mainland China, whereas the influenza A H5N1 virus has infected people in China since 2003. Both infections are thought to be mainly zoonotic. We aimed to compare the epidemiological characteristics of the complete series of laboratory-confirmed cases of both viruses in mainland China so far. METHODS An integrated database was constructed with information about demographic, epidemiological, and clinical variables of laboratory-confirmed cases of H7N9 (130 patients) and H5N1 (43 patients) that were reported to the Chinese Centre for Disease Control and Prevention until May 24, 2013. We described disease occurrence by age, sex, and geography, and estimated key epidemiological variables. We used survival analysis techniques to estimate the following distributions: infection to onset, onset to admission, onset to laboratory confirmation, admission to death, and admission to discharge. FINDINGS The median age of the 130 individuals with confirmed infection with H7N9 was 62 years and of the 43 with H5N1 was 26 years. In urban areas, 74% of cases of both viruses were in men, whereas in rural areas the proportions of the viruses in men were 62% for H7N9 and 33% for H5N1. 75% of patients infected with H7N9 and 71% of those with H5N1 reported recent exposure to poultry. The mean incubation period of H7N9 was 3·1 days and of H5N1 was 3·3 days. On average, 21 contacts were traced for each case of H7N9 in urban areas and 18 in rural areas, compared with 90 and 63 for H5N1. The fatality risk on admission to hospital was 36% (95% CI 26-45) for H7N9 and 70% (56-83%) for H5N1. INTERPRETATION The sex ratios in urban compared with rural cases are consistent with exposure to poultry driving the risk of infection--a higher risk in men was only recorded in urban areas but not in rural areas, and the increased risk for men was of a similar magnitude for H7N9 and H5N1. However, the difference in susceptibility to serious illness with the two different viruses remains unexplained, since most cases of H7N9 were in older adults whereas most cases of H5N1 were in younger people. A limitation of our study is that we compared laboratory-confirmed cases of H7N9 and H5N1 infection, and some infections might not have been ascertained. FUNDING Ministry of Science and Technology, China; Research Fund for the Control of Infectious Disease and University Grants Committee, Hong Kong Special Administrative Region, China; and the US National Institutes of Health.
Collapse
Affiliation(s)
- Benjamin J. Cowling
- Infectious Disease Epidemiology Group, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lianmei Jin
- Public Health Emergency Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Eric H. Y. Lau
- Infectious Disease Epidemiology Group, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Qiaohong Liao
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peng Wu
- Infectious Disease Epidemiology Group, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hui Jiang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tim K. Tsang
- Infectious Disease Epidemiology Group, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jiandong Zheng
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Vicky J. Fang
- Infectious Disease Epidemiology Group, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Zhaorui Chang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Michael Y. Ni
- Infectious Disease Epidemiology Group, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Qian Zhang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dennis K. M. Ip
- Infectious Disease Epidemiology Group, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jianxing Yu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yu Li
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liping Wang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenxiao Tu
- Public Health Emergency Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ling Meng
- Public Health Emergency Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Joseph T. Wu
- Infectious Disease Epidemiology Group, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Huiming Luo
- National Immunization Program, Chinese Center for Disease Control and Prevention Beijing, China
| | - Qun Li
- Public Health Emergency Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission
| | - Zhongjie Li
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zijian Feng
- Public Health Emergency Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weizhong Yang
- Office of the Director, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yu Wang
- Office of the Director, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Gabriel M. Leung
- Infectious Disease Epidemiology Group, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hongjie Yu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
444
|
Mok CKP, Lee HHY, Chan MCW, Sia SF, Lestra M, Nicholls JM, Zhu H, Guan Y, Peiris JMS. Pathogenicity of the novel A/H7N9 influenza virus in mice. mBio 2013; 4:e00362-13. [PMID: 23820393 PMCID: PMC3705449 DOI: 10.1128/mbio.00362-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/10/2013] [Indexed: 11/25/2022] Open
Abstract
UNLABELLED A novel avian-origin influenza A/H7N9 virus infecting humans was first identified in March 2013 and, as of 30 May 2013, has caused 132 human infections leading to 33 deaths. Phylogenetic studies suggest that this virus is a reassortant, with the surface hemagglutinin (HA) and neuraminidase (NA) genes being derived from duck and wild-bird viruses, respectively, while the six "internal gene segments" were derived from poultry H9N2 viruses. Here we determine the pathogenicity of a human A/Shanghai/2/2013 (Sh2/H7N9) virus in healthy adult mice in comparison with that of A/chicken/Hong Kong/HH8/2010 (ck/H9N2) virus, highly pathogenic avian influenza (HPAI) A/Hong Kong/483/1997 (483/H5N1) virus, and a duck influenza A H7N9 virus of different genetic derivation, A/duck/Jiangxi/3286/2009 (dk/H7N9). Intranasal infection of mice with Sh2/H7N9 virus doses of 10(3), 10(4), and 10(5) PFU led to significant weight loss without fatality. This virus was more pathogenic than dk/H7N9 and ck/H9N2 virus, which has six internal gene segments that are genetically similar to Sh2/H7N9. Sh2/H7N9 replicated well in the nasal cavity and lung, but there was no evidence of virus dissemination beyond the respiratory tract. Mice infected with Sh2/H7N9 produced higher levels of proinflammatory cytokines in the lung and serum than did ck/H9N2 and dk/H7N9 but lower levels than 483/H5N1. Cytokine induction was positively correlated with virus load in the lung at early stages of infection. Our results suggest that Sh2/H7N9 virus is able to replicate and cause disease in mice without prior adaptation but is less pathogenic than 483/H5N1 virus. IMPORTANCE An H7N9 virus isolate causing fatal human disease was found to be more pathogenic for mice than other avian H9N2 or H7N9 viruses but less pathogenic than the highly pathogenic avian influenza virus (HPAI) H5N1. Similarly, the ability of Sh2/H7N9 to elicit proinflammatory cytokines in the lung and serum of mice was intermediate to ck/H9N2 and dk/H7N9 on the one hand and HPAI H5N1 on the other. These findings accord with the observed epidemiology in humans, in whom, as with seasonal influenza viruses, H7N9 viruses cause severe disease predominantly in older persons while HPAI H5N1 can cause severe respiratory disease and death in children and young adults.
Collapse
Affiliation(s)
- Chris Ka Pun Mok
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- HKU-Pasteur Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Horace Hok Yeung Lee
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- HKU-Pasteur Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Michael Chi Wai Chan
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Sin Fun Sia
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Maxime Lestra
- HKU-Pasteur Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - John Malcolm Nicholls
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Huachen Zhu
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yi Guan
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | |
Collapse
|
445
|
Zhang L, Zhang Z, Weng Z, Shi W. Substitution rates of the internal genes in the novel avian H7N9 influenza virus. Clin Infect Dis 2013; 57:1213-5. [PMID: 23821733 DOI: 10.1093/cid/cit447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Liangsheng Zhang
- Department of Bioinformatics, School of Life Sciences and Technology
| | | | | | | |
Collapse
|
446
|
Zhang L, Zhang Z, Weng Z. Rapid reassortment of internal genes in avian influenza A(H7N9) virus. Clin Infect Dis 2013; 57:1059-61. [PMID: 23788242 DOI: 10.1093/cid/cit414] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Liangsheng Zhang
- Department of Bioinformatics, School of Life Sciences and Technology
| | | | | |
Collapse
|
447
|
Affiliation(s)
- David M Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
448
|
Tharakaraman K, Jayaraman A, Raman R, Viswanathan K, Stebbins NW, Johnson D, Shriver Z, Sasisekharan V, Sasisekharan R. Glycan receptor binding of the influenza A virus H7N9 hemagglutinin. Cell 2013; 153:1486-93. [PMID: 23746830 PMCID: PMC3746546 DOI: 10.1016/j.cell.2013.05.034] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 05/20/2013] [Accepted: 05/20/2013] [Indexed: 11/15/2022]
Abstract
The advent of H7N9 in early 2013 is of concern for a number of reasons, including its capability to infect humans, the lack of clarity in the etiology of infection, and because the human population does not have pre-existing immunity to the H7 subtype. Earlier sequence analyses of H7N9 hemagglutinin (HA) point to amino acid changes that predicted human receptor binding and impinge on the antigenic characteristics of the HA. Here, we report that the H7N9 HA shows limited binding to human receptors; however, should a single amino acid mutation occur, this would result in structural changes within the receptor binding site that allow for extensive binding to human receptors present in the upper respiratory tract. Furthermore, a subset of the H7N9 HA sequences demarcating coevolving amino acids appears to be in the antigenic regions of H7, which, in turn, could impact effectiveness of the current WHO-recommended prepandemic H7 vaccines.
Collapse
Affiliation(s)
- Kannan Tharakaraman
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Infectious Diseases Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
449
|
Xu W, Lu L, Shen B, Li J, Xu J, Jiang S. Serological investigation of subclinical influenza A(H7H9) infection among healthcare and non-healthcare workers in Zhejiang Province, China. Clin Infect Dis 2013; 57:919-21. [PMID: 23759348 PMCID: PMC7107925 DOI: 10.1093/cid/cit396] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wei Xu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai
- Correspondence: Shibo Jiang, MD, PhD, Shanghai Medical College, Fudan University, 130 Dong An Road, Building 13, Xuhui District, Shanghai 200032, China ()
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai
| | | | - Jun Li
- Taizhou Hospital, Taizhou
| | - Jianqing Xu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai
- Shanghai Public Health Clinical Center, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York
| |
Collapse
|
450
|
Affiliation(s)
- Marc Van Ranst
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium.
| | | |
Collapse
|