401
|
Sarchione A, Marchand A, Taymans JM, Chartier-Harlin MC. Alpha-Synuclein and Lipids: The Elephant in the Room? Cells 2021; 10:2452. [PMID: 34572099 PMCID: PMC8467310 DOI: 10.3390/cells10092452] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022] Open
Abstract
Since the initial identification of alpha-synuclein (α-syn) at the synapse, numerous studies demonstrated that α-syn is a key player in the etiology of Parkinson's disease (PD) and other synucleinopathies. Recent advances underline interactions between α-syn and lipids that also participate in α-syn misfolding and aggregation. In addition, increasing evidence demonstrates that α-syn plays a major role in different steps of synaptic exocytosis. Thus, we reviewed literature showing (1) the interplay among α-syn, lipids, and lipid membranes; (2) advances of α-syn synaptic functions in exocytosis. These data underscore a fundamental role of α-syn/lipid interplay that also contributes to synaptic defects in PD. The importance of lipids in PD is further highlighted by data showing the impact of α-syn on lipid metabolism, modulation of α-syn levels by lipids, as well as the identification of genetic determinants involved in lipid homeostasis associated with α-syn pathologies. While questions still remain, these recent developments open the way to new therapeutic strategies for PD and related disorders including some based on modulating synaptic functions.
Collapse
Affiliation(s)
| | | | | | - Marie-Christine Chartier-Harlin
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172—LilNCog—Lille Neuroscience and Cognition, F-59000 Lille, France; (A.S.); (A.M.); (J.-M.T.)
| |
Collapse
|
402
|
Teixeira M, Sheta R, Idi W, Oueslati A. Alpha-Synuclein and the Endolysosomal System in Parkinson's Disease: Guilty by Association. Biomolecules 2021; 11:biom11091333. [PMID: 34572546 PMCID: PMC8472725 DOI: 10.3390/biom11091333] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Abnormal accumulation of the protein α- synuclein (α-syn) into proteinaceous inclusions called Lewy bodies (LB) is the neuropathological hallmark of Parkinson's disease (PD) and related disorders. Interestingly, a growing body of evidence suggests that LB are also composed of other cellular components such as cellular membrane fragments and vesicular structures, suggesting that dysfunction of the endolysosomal system might also play a role in LB formation and neuronal degeneration. Yet the link between α-syn aggregation and the endolysosomal system disruption is not fully elucidated. In this review, we discuss the potential interaction between α-syn and the endolysosomal system and its impact on PD pathogenesis. We propose that the accumulation of monomeric and aggregated α-syn disrupt vesicles trafficking, docking, and recycling, leading to the impairment of the endolysosomal system, notably the autophagy-lysosomal degradation pathway. Reciprocally, PD-linked mutations in key endosomal/lysosomal machinery genes (LRRK2, GBA, ATP13A2) also contribute to increasing α-syn aggregation and LB formation. Altogether, these observations suggest a potential synergistic role of α-syn and the endolysosomal system in PD pathogenesis and represent a viable target for the development of disease-modifying treatment for PD and related disorders.
Collapse
Affiliation(s)
- Maxime Teixeira
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC G1V 4G2, Canada; (M.T.); (R.S.); (W.I.)
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Razan Sheta
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC G1V 4G2, Canada; (M.T.); (R.S.); (W.I.)
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Walid Idi
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC G1V 4G2, Canada; (M.T.); (R.S.); (W.I.)
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Abid Oueslati
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC G1V 4G2, Canada; (M.T.); (R.S.); (W.I.)
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
403
|
Mroczek K, Fernando S, Fisher PR, Annesley SJ. Interactions and Cytotoxicity of Human Neurodegeneration- Associated Proteins Tau and α-Synuclein in the Simple Model Dictyostelium discoideum. Front Cell Dev Biol 2021; 9:741662. [PMID: 34552934 PMCID: PMC8450459 DOI: 10.3389/fcell.2021.741662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
The abnormal accumulation of the tau protein into aggregates is a hallmark in neurodegenerative diseases collectively known as tauopathies. In normal conditions, tau binds off and on microtubules aiding in their assembly and stability dependent on the phosphorylation state of the protein. In disease-affected neurons, hyperphosphorylation leads to the accumulation of the tau protein into aggregates, mainly neurofibrillary tangles (NFT) which have been seen to colocalise with other protein aggregates in neurodegeneration. One such protein is α-synuclein, the main constituent of Lewy bodies (LB), a hallmark of Parkinson's disease (PD). In many neurodegenerative diseases, including PD, the colocalisation of tau and α-synuclein has been observed, suggesting possible interactions between the two proteins. To explore the cytotoxicity and interactions between these two proteins, we expressed full length human tau and α-synuclein in Dictyostelium discoideum alone, and in combination. We show that tau is phosphorylated in D. discoideum and colocalises closely (within 40 nm) with tubulin throughout the cytoplasm of the cell as well as with α-synuclein at the cortex. Expressing wild type α-synuclein alone caused inhibited growth on bacterial lawns, phagocytosis and intracellular Legionella proliferation rates, but activated mitochondrial respiration and non-mitochondrial oxygen consumption. The expression of tau alone impaired multicellular morphogenesis, axenic growth and phototaxis, while enhancing intracellular Legionella proliferation. Direct respirometric assays showed that tau impairs mitochondrial ATP synthesis and increased the "proton leak," while having no impact on respiratory complex I or II function. In most cases depending on the phenotype, the coexpression of tau and α-synuclein exacerbated (phototaxis, fruiting body morphology), or reversed (phagocytosis, growth on plates, mitochondrial respiratory function, Legionella proliferation) the defects caused by either tau or α-synuclein expressed individually. Proteomics data revealed distinct patterns of dysregulation in strains ectopically expressing tau or α-synuclein or both, but down regulation of expression of cytoskeletal proteins was apparent in all three groups and most evident in the strain expressing both proteins. These results indicate that tau and α-synuclein exhibit different but overlapping patterns of intracellular localisation, that they individually exert distinct but overlapping patterns of cytotoxic effects and that they interact, probably physically in the cell cortex as well as directly or indirectly in affecting some phenotypes. The results show the efficacy of using D. discoideum as a model to study the interaction of proteins involved in neurodegeneration.
Collapse
Affiliation(s)
| | | | | | - Sarah J. Annesley
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
404
|
Nabi F, Khan RH. Lewy Body Pathology: From Amyloidosis to Vesicle Trafficking. Protein Pept Lett 2021; 28:1203-1204. [PMID: 34477500 DOI: 10.2174/0929866528666210903160048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/22/2022]
Affiliation(s)
- Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| |
Collapse
|
405
|
Bastien J, Menon S, Messa M, Nyfeler B. Molecular targets and approaches to restore autophagy and lysosomal capacity in neurodegenerative disorders. Mol Aspects Med 2021; 82:101018. [PMID: 34489092 DOI: 10.1016/j.mam.2021.101018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 01/18/2023]
Abstract
Autophagy is a catabolic process that promotes cellular fitness by clearing aggregated protein species, pathogens and damaged organelles through lysosomal degradation. The autophagic process is particularly important in the nervous system where post-mitotic neurons rely heavily on protein and organelle quality control in order to maintain cellular health throughout the lifetime of the organism. Alterations of autophagy and lysosomal function are hallmarks of various neurodegenerative disorders. In this review, we conceptualize some of the mechanistic and genetic evidence pointing towards autophagy and lysosomal dysfunction as a causal driver of neurodegeneration. Furthermore, we discuss rate-limiting pathway nodes and potential approaches to restore pathway activity, from autophagy initiation, cargo sequestration to lysosomal capacity.
Collapse
Affiliation(s)
- Julie Bastien
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Suchithra Menon
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Mirko Messa
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Beat Nyfeler
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| |
Collapse
|
406
|
Rahman MH, Bajgai J, Fadriquela A, Sharma S, Trinh TT, Akter R, Jeong YJ, Goh SH, Kim CS, Lee KJ. Therapeutic Potential of Natural Products in Treating Neurodegenerative Disorders and Their Future Prospects and Challenges. Molecules 2021; 26:5327. [PMID: 34500759 PMCID: PMC8433718 DOI: 10.3390/molecules26175327] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022] Open
Abstract
Natural products derived from plants, as well as their bioactive compounds, have been extensively studied in recent years for their therapeutic potential in a variety of neurodegenerative diseases (NDs), including Alzheimer's (AD), Huntington's (HD), and Parkinson's (PD) disease. These diseases are characterized by progressive dysfunction and loss of neuronal structure and function. There has been little progress in designing efficient treatments, despite impressive breakthroughs in our understanding of NDs. In the prevention and therapy of NDs, the use of natural products may provide great potential opportunities; however, many clinical issues have emerged regarding their use, primarily based on the lack of scientific support or proof of their effectiveness and patient safety. Since neurodegeneration is associated with a myriad of pathological processes, targeting multi-mechanisms of action and neuroprotection approaches that include preventing cell death and restoring the function of damaged neurons should be employed. In the treatment of NDs, including AD and PD, natural products have emerged as potential neuroprotective agents. This current review will highlight the therapeutic potential of numerous natural products and their bioactive compounds thatexert neuroprotective effects on the pathologies of NDs.
Collapse
Affiliation(s)
- Md. Habibur Rahman
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Johny Bajgai
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Ailyn Fadriquela
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea;
| | - Subham Sharma
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Thuy Thi Trinh
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Rokeya Akter
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Yun Ju Jeong
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Seong Hoon Goh
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Cheol-Su Kim
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Kyu-Jae Lee
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| |
Collapse
|
407
|
Li H, Wu S, Ma X, Li X, Cheng T, Chen Z, Wu J, Lv L, Li L, Xu L, Wang W, Hu Y, Jiang H, Yin Y, Qiu Z, Hu X. Co-editing PINK1 and DJ-1 Genes Via Adeno-Associated Virus-Delivered CRISPR/Cas9 System in Adult Monkey Brain Elicits Classical Parkinsonian Phenotype. Neurosci Bull 2021; 37:1271-1288. [PMID: 34165772 PMCID: PMC8423927 DOI: 10.1007/s12264-021-00732-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Whether direct manipulation of Parkinson's disease (PD) risk genes in the adult monkey brain can elicit a Parkinsonian phenotype remains an unsolved issue. Here, we used an adeno-associated virus serotype 9 (AAV9)-delivered CRISPR/Cas9 system to directly co-edit PINK1 and DJ-1 genes in the substantia nigras (SNs) of two monkey groups: an old group and a middle-aged group. After the operation, the old group exhibited all the classic PD symptoms, including bradykinesia, tremor, and postural instability, accompanied by key pathological hallmarks of PD, such as severe nigral dopaminergic neuron loss (>64%) and evident α-synuclein pathology in the gene-edited SN. In contrast, the phenotype of their middle-aged counterparts, which also showed clear PD symptoms and pathological hallmarks, were less severe. In addition to the higher final total PD scores and more severe pathological changes, the old group were also more susceptible to gene editing by showing a faster process of PD progression. These results suggested that both genetic and aging factors played important roles in the development of PD in the monkeys. Taken together, this system can effectively develop a large number of genetically-edited PD monkeys in a short time (6-10 months), and thus provides a practical transgenic monkey model for future PD studies.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
| | - Shihao Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xia Ma
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xiao Li
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tianlin Cheng
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhifang Chen
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
| | - Longbao Lv
- National Resource Center for Non-human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, 650107, Kunming, China
| | - Ling Li
- Diagnostic Radiology Department, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
| | - Liqi Xu
- Ultrasound diagnosis Department, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
| | - Wenchao Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
| | - Yingzhou Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
| | - Haisong Jiang
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yong Yin
- Department of Rehabilitation Medicine, The Second People's Hospital of Yunnan Province, Kunming, 650021, China.
| | - Zilong Qiu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200433, China.
| | - Xintian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- National Resource Center for Non-human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, 650107, Kunming, China.
| |
Collapse
|
408
|
Moors TE, Maat CA, Niedieker D, Mona D, Petersen D, Timmermans-Huisman E, Kole J, El-Mashtoly SF, Spycher L, Zago W, Barbour R, Mundigl O, Kaluza K, Huber S, Hug MN, Kremer T, Ritter M, Dziadek S, Geurts JJG, Gerwert K, Britschgi M, van de Berg WDJ. The subcellular arrangement of alpha-synuclein proteoforms in the Parkinson's disease brain as revealed by multicolor STED microscopy. Acta Neuropathol 2021; 142:423-448. [PMID: 34115198 PMCID: PMC8357756 DOI: 10.1007/s00401-021-02329-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022]
Abstract
Various post-translationally modified (PTM) proteoforms of alpha-synuclein (aSyn)-including C-terminally truncated (CTT) and Serine 129 phosphorylated (Ser129-p) aSyn-accumulate in Lewy bodies (LBs) in different regions of the Parkinson's disease (PD) brain. Insight into the distribution of these proteoforms within LBs and subcellular compartments may aid in understanding the orchestration of Lewy pathology in PD. We applied epitope-specific antibodies against CTT and Ser129-p aSyn proteoforms and different aSyn domains in immunohistochemical multiple labelings on post-mortem brain tissue from PD patients and non-neurological, aged controls, which were scanned using high-resolution 3D multicolor confocal and stimulated emission depletion (STED) microscopy. Our multiple labeling setup highlighted a consistent onion skin-type 3D architecture in mature nigral LBs in which an intricate and structured-appearing framework of Ser129-p aSyn and cytoskeletal elements encapsulates a core enriched in CTT aSyn species. By label-free CARS microscopy we found that enrichments of proteins and lipids were mainly localized to the central portion of nigral aSyn-immunopositive (aSyn+) inclusions. Outside LBs, we observed that 122CTT aSyn+ punctae localized at mitochondrial membranes in the cytoplasm of neurons in PD and control brains, suggesting a physiological role for 122CTT aSyn outside of LBs. In contrast, very limited to no Ser129-p aSyn immunoreactivity was observed in brains of non-neurological controls, while the alignment of Ser129-p aSyn in a neuronal cytoplasmic network was characteristic for brains with (incidental) LB disease. Interestingly, Ser129-p aSyn+ network profiles were not only observed in neurons containing LBs but also in neurons without LBs particularly in donors at early disease stage, pointing towards a possible subcellular pathological phenotype preceding LB formation. Together, our high-resolution and 3D multicolor microscopy observations in the post-mortem human brain provide insights into potential mechanisms underlying a regulated LB morphogenesis.
Collapse
|
409
|
Alpha-Synuclein PET Tracer Development-An Overview about Current Efforts. Pharmaceuticals (Basel) 2021; 14:ph14090847. [PMID: 34577548 PMCID: PMC8466155 DOI: 10.3390/ph14090847] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases such as Parkinson’s disease (PD) are manifested by inclusion bodies of alpha-synuclein (α-syn) also called α-synucleinopathies. Detection of these inclusions is thus far only possible by histological examination of postmortem brain tissue. The possibility of non-invasively detecting α-syn will therefore provide valuable insights into the disease progression of α-synucleinopathies. In particular, α-syn imaging can quantify changes in monomeric, oligomeric, and fibrillic α-syn over time and improve early diagnosis of various α-synucleinopathies or monitor treatment progress. Positron emission tomography (PET) is a non-invasive in vivo imaging technique that can quantify target expression and drug occupancies when a suitable tracer exists. As such, novel α-syn PET tracers are highly sought after. The development of an α-syn PET tracer faces several challenges. For example, the low abundance of α-syn within the brain necessitates the development of a high-affinity ligand. Moreover, α-syn depositions are, in contrast to amyloid proteins, predominantly localized intracellularly, limiting their accessibility. Furthermore, another challenge is the ligand selectivity over structurally similar amyloids such as amyloid-beta or tau, which are often co-localized with α-syn pathology. The lack of a defined crystal structure of α-syn has also hindered rational drug and tracer design efforts. Our objective for this review is to provide a comprehensive overview of current efforts in the development of selective α-syn PET tracers.
Collapse
|
410
|
Gordevicius J, Li P, Marshall LL, Killinger BA, Lang S, Ensink E, Kuhn NC, Cui W, Maroof N, Lauria R, Rueb C, Siebourg-Polster J, Maliver P, Lamp J, Vega I, Manfredsson FP, Britschgi M, Labrie V. Epigenetic inactivation of the autophagy-lysosomal system in appendix in Parkinson's disease. Nat Commun 2021; 12:5134. [PMID: 34446734 PMCID: PMC8390554 DOI: 10.1038/s41467-021-25474-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal tract may be a site of origin for α-synuclein pathology in idiopathic Parkinson's disease (PD). Disruption of the autophagy-lysosome pathway (ALP) may contribute to α-synuclein aggregation. Here we examined epigenetic alterations in the ALP in the appendix by deep sequencing DNA methylation at 521 ALP genes. We identified aberrant methylation at 928 cytosines affecting 326 ALP genes in the appendix of individuals with PD and widespread hypermethylation that is also seen in the brain of individuals with PD. In mice, we find that DNA methylation changes at ALP genes induced by chronic gut inflammation are greatly exacerbated by α-synuclein pathology. DNA methylation changes at ALP genes induced by synucleinopathy are associated with the ALP abnormalities observed in the appendix of individuals with PD specifically involving lysosomal genes. Our work identifies epigenetic dysregulation of the ALP which may suggest a potential mechanism for accumulation of α-synuclein pathology in idiopathic PD.
Collapse
Affiliation(s)
- Juozas Gordevicius
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Peipei Li
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Lee L Marshall
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Bryan A Killinger
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Graduate College, Rush University Medical Center, Chicago, IL, USA
| | - Sean Lang
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Elizabeth Ensink
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Nathan C Kuhn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Wei Cui
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Nazia Maroof
- Roche Pharma Research and Early Development, Neuroscience Discovery, Roche Innovation Center, Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Roberta Lauria
- Roche Pharma Research and Early Development, Neuroscience Discovery, Roche Innovation Center, Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Christina Rueb
- Roche Pharma Research and Early Development, Neuroscience Discovery, Roche Innovation Center, Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Juliane Siebourg-Polster
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Pierre Maliver
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jared Lamp
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Integrated Mass Spectrometry Unit, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Irving Vega
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Integrated Mass Spectrometry Unit, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Fredric P Manfredsson
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Markus Britschgi
- Roche Pharma Research and Early Development, Neuroscience Discovery, Roche Innovation Center, Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Viviane Labrie
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
411
|
Burtscher J, Syed MMK, Keller MA, Lashuel HA, Millet GP. Fatal attraction - The role of hypoxia when alpha-synuclein gets intimate with mitochondria. Neurobiol Aging 2021; 107:128-141. [PMID: 34428721 DOI: 10.1016/j.neurobiolaging.2021.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022]
Abstract
Alpha-synuclein aggregation and mitochondrial dysfunction are main pathological hallmarks of Parkinson's disease (PD) and several other neurodegenerative diseases, collectively known as synucleinopathies. However, increasing evidence suggests that they may not be sufficient to cause PD. Here we propose the role of hypoxia as a missing link that connects the complex interplay between alpha-synuclein biochemistry and pathology, mitochondrial dysfunctions and neurodegeneration in PD. We review the partly conflicting literature on alpha-synuclein binding to membranes and mitochondria and its impact on mitochondrial functions. From there, we focus on adverse changes in cellular environments, revolving around hypoxic stress, that may trigger or facilitate PD progression. Inter-dependent structural re-arrangements of mitochondrial membranes, including increased cytoplasmic exposure of mitochondrial cardiolipins and changes in alpha-synuclein localization and conformation are discussed consequences of such conditions. Enhancing cellular resilience could be an integral part of future combination-based therapies of PD. This may be achieved by boosting the capacity of cellular and specifically mitochondrial processes to regulate and adapt to altered proteostasis, redox, and inflammatory conditions and by inducing protective molecular and tissue re-modelling.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland; Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Muhammed Muazzam Kamil Syed
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
412
|
Kayed R, Dettmer U, Lesné SE. Soluble endogenous oligomeric α-synuclein species in neurodegenerative diseases: Expression, spreading, and cross-talk. JOURNAL OF PARKINSON'S DISEASE 2021; 10:791-818. [PMID: 32508330 PMCID: PMC7458533 DOI: 10.3233/jpd-201965] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is growing recognition in the field of neurodegenerative diseases that mixed proteinopathies are occurring at greater frequency than originally thought. This is particularly true for three amyloid proteins defining most of these neurological disorders, amyloid-beta (Aβ), tau, and alpha-synuclein (αSyn). The co-existence and often co-localization of aggregated forms of these proteins has led to the emergence of concepts positing molecular interactions and cross-seeding between Aβ, tau, and αSyn aggregates. Amongst this trio, αSyn has received particular attention in this context during recent years due to its ability to modulate Aβ and tau aggregation in vivo, to interact at a molecular level with Aβ and tau in vivo and to cross-seed tau in mice. Here we provide a comprehensive, critical, and accessible review about the expression, role and nature of endogenous soluble αSyn oligomers because of recent developments in the understanding of αSyn multimerization, misfolding, aggregation, cross-talk, spreading and cross-seeding in neurodegenerative disorders, including Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, Alzheimer's disease, and Huntington's disease. We will also discuss our current understanding about the relative toxicity of endogenous αSyn oligomers in vivo and in vitro, and introduce potential opportunities to counter their deleterious effects.
Collapse
Affiliation(s)
- Rakez Kayed
- Departments of Neurology & Neuroscience & Cell Biology & Anatomy, University of Texas Medical Branch Galveston, Galveston, TX, USA,George and Cynthia Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Galveston, Galveston, TX, USA
| | - Ulf Dettmer
- Department of Neurology, Harvard Medical School, Boston, MA, USA,Ann Romney Center for Neurologic Diseases, Harvard Medical School, Boston, MA, USA
| | - Sylvain E. Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA,Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA,Correspondence to: Sylvain E. Lesné, PhD, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN 55414, USA. Tel.: +1 612 626 8341; E-mail: ; Website: https://lesnelab.org
| |
Collapse
|
413
|
Ishimoto T, Yamakado H. Membranes and Organelle in Lewy Bodies: The Mastermind or the Bystander? Mov Disord 2021; 36:2026. [PMID: 34402543 DOI: 10.1002/mds.28747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Hodaka Yamakado
- Department of Neurology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
414
|
Abstract
Lipid droplets (LDs) are endoplasmic reticulum-derived organelles that consist of a core of neutral lipids encircled by a phospholipid monolayer decorated with proteins. As hubs of cellular lipid and energy metabolism, LDs are inherently involved in the etiology of prevalent metabolic diseases such as obesity and nonalcoholic fatty liver disease. The functions of LDs are regulated by a unique set of associated proteins, the LD proteome, which includes integral membrane and peripheral proteins. These proteins control key activities of LDs such as triacylglycerol synthesis and breakdown, nutrient sensing and signal integration, and interactions with other organelles. Here we review the mechanisms that regulate the composition of the LD proteome, such as pathways that mediate selective and bulk LD protein degradation and potential connections between LDs and cellular protein quality control.
Collapse
Affiliation(s)
- Melissa A Roberts
- Department of Molecular and Cell Biology and Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA;
| | - James A Olzmann
- Department of Molecular and Cell Biology and Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA; .,Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
415
|
SCD Inhibition Protects from α-Synuclein-Induced Neurotoxicity But Is Toxic to Early Neuron Cultures. eNeuro 2021; 8:ENEURO.0166-21.2021. [PMID: 34301719 PMCID: PMC8387157 DOI: 10.1523/eneuro.0166-21.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022] Open
Abstract
Here, we report the independent discovery and validation of stearoyl-CoA desaturase (SCD) as a modulator of α-synuclein (αSyn)-induced pathology and toxicity in cell-based Parkinson’s disease (PD) models. We identified SCD as top altered gene from transcriptional profiling in primary neurons exogenously expressing αSyn with the amplified familial PD mutation 3K. Thus, we sought to further explore SCD as a therapeutic target in neurodegeneration. We report that SCD inhibitors are toxic to early human and rat neuron cultures while displaying minimal toxicity to late cultures. The fatty acid product of SCD, oleic acid (OLA), fully rescues this toxicity in early cultures, suggesting on-target toxicity. Furthermore, SCD inhibition rescues αSyn 3K-induced toxicity in late primary neurons. We also confirm that SCD inhibitors reduce formation of αSyn accumulations, while OLA increases these accumulations in an αSyn 3K neuroblastoma model. However, we identify a caveat with this model where αSyn 3K levels can be suppressed by high SCD inhibitor concentrations, obscuring true effect size. Further, we show that both SCD1 or SCD5 knock-down reduce αSyn 3K accumulations and toxicity, making both a putative drug target. Overall, we confirm key findings of published data on SCD inhibition and its benefits in αSyn accumulation and stress models. The differential neurotoxicity induced by SCD inhibition based on neuron culture age must be accounted for when researching SCD in neuron models and has potential clinical implications. Lastly, our gene profiling studies also revealed novel putative genes connected to αSyn neurotoxicity that are worth further study.
Collapse
|
416
|
Wild-type GBA1 increases the α-synuclein tetramer-monomer ratio, reduces lipid-rich aggregates, and attenuates motor and cognitive deficits in mice. Proc Natl Acad Sci U S A 2021; 118:2103425118. [PMID: 34326260 PMCID: PMC8346893 DOI: 10.1073/pnas.2103425118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mechanisms responsible for brain α-synuclein (αS) dyshomeostasis, caused by Gaucher’s GBA1 mutations that increase Parkinson’s disease (PD) risk, are largely unknown. We previously showed that abrogating physiological αS tetramers by a familial PD-E46K–amplified 3K mutation produces PD-like syndrome in mice and that treatment with stearoyl-CoA desaturase inhibitors increased a portion of the αS tetramers, benefitting the motor phenotypes. Here, we show that—similar to previous findings in GBA1-mutant PD culture—GCase elevation prolonged the stabilization of wild-type and 3K mutant αS tetramers in wtGBA1–transduced mouse brains, improving lysosomal integrity and motor and cognitive phenotypes. These data help elucidating lipid modulators that impact the αS physiological state in vivo and the development of PD therapeutic approaches. Loss-of-function mutations in acid beta-glucosidase 1 (GBA1) are among the strongest genetic risk factors for Lewy body disorders such as Parkinson’s disease (PD) and Lewy body dementia (DLB). Altered lipid metabolism in PD patient–derived neurons, carrying either GBA1 or PD αS mutations, can shift the physiological α-synuclein (αS) tetramer–monomer (T:M) equilibrium toward aggregation-prone monomers. A resultant increase in pSer129+ αS monomers provides a likely building block for αS aggregates. 3K αS mice, representing a neuropathological amplification of the E46K PD–causing mutation, have decreased αS T:M ratios and vesicle-rich αS+ aggregates in neurons, accompanied by a striking PD-like motor syndrome. We asked whether enhancing glucocerebrosidase (GCase) expression could benefit αS dyshomeostasis by delivering an adeno-associated virus (AAV)–human wild-type (wt) GBA1 vector into the brains of 3K neonates. Intracerebroventricular AAV-wtGBA1 at postnatal day 1 resulted in prominent forebrain neuronal GCase expression, sustained through 6 mo. GBA1 attenuated behavioral deficits both in working memory and fine motor performance tasks. Furthermore, wtGBA1 increased αS solubility and the T:M ratio in both 3K-GBA mice and control littermates and reduced pS129+ and lipid-rich aggregates in 3K-GBA. We observed GCase distribution in more finely dispersed lysosomes, in which there was increased GCase activity, lysosomal cathepsin D and B maturation, decreased perilipin-stabilized lipid droplets, and a normalized TFEB translocation to the nucleus, all indicative of improved lysosomal function and lipid turnover. Therefore, a prolonged increase of the αS T:M ratio by elevating GCase activity reduced the lipid- and vesicle-rich aggregates and ameliorated PD-like phenotypes in mice, further supporting lipid modulating therapies in PD.
Collapse
|
417
|
Mitroshina EV, Savyuk MO, Ponimaskin E, Vedunova MV. Hypoxia-Inducible Factor (HIF) in Ischemic Stroke and Neurodegenerative Disease. Front Cell Dev Biol 2021; 9:703084. [PMID: 34395432 PMCID: PMC8355741 DOI: 10.3389/fcell.2021.703084] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023] Open
Abstract
Hypoxia is one of the most common pathological conditions, which can be induced by multiple events, including ischemic injury, trauma, inflammation, tumors, etc. The body's adaptation to hypoxia is a highly important phenomenon in both health and disease. Most cellular responses to hypoxia are associated with a family of transcription factors called hypoxia-inducible factors (HIFs), which induce the expression of a wide range of genes that help cells adapt to a hypoxic environment. Basic mechanisms of adaptation to hypoxia, and particularly HIF functions, have being extensively studied over recent decades, leading to the 2019 Nobel Prize in Physiology or Medicine. Based on their pivotal physiological importance, HIFs are attracting increasing attention as a new potential target for treating a large number of hypoxia-associated diseases. Most of the experimental work related to HIFs has focused on roles in the liver and kidney. However, increasing evidence clearly demonstrates that HIF-based responses represent an universal adaptation mechanism in all tissue types, including the central nervous system (CNS). In the CNS, HIFs are critically involved in the regulation of neurogenesis, nerve cell differentiation, and neuronal apoptosis. In this mini-review, we provide an overview of the complex role of HIF-1 in the adaptation of neurons and glia cells to hypoxia, with a focus on its potential involvement into various neuronal pathologies and on its possible role as a novel therapeutic target.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Department of Neurotechnologe, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Maria O. Savyuk
- Department of Neurotechnologe, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Evgeni Ponimaskin
- Department of Neurotechnologe, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
- Department of Cellular Neurophysiology, Hannover Medical School, Hanover, Germany
| | - Maria V. Vedunova
- Department of Neurotechnologe, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
418
|
Oliveira LMA, Gasser T, Edwards R, Zweckstetter M, Melki R, Stefanis L, Lashuel HA, Sulzer D, Vekrellis K, Halliday GM, Tomlinson JJ, Schlossmacher M, Jensen PH, Schulze-Hentrich J, Riess O, Hirst WD, El-Agnaf O, Mollenhauer B, Lansbury P, Outeiro TF. Alpha-synuclein research: defining strategic moves in the battle against Parkinson's disease. NPJ Parkinsons Dis 2021; 7:65. [PMID: 34312398 PMCID: PMC8313662 DOI: 10.1038/s41531-021-00203-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
With the advent of the genetic era in Parkinson's disease (PD) research in 1997, α-synuclein was identified as an important player in a complex neurodegenerative disease that affects >10 million people worldwide. PD has been estimated to have an economic impact of $51.9 billion in the US alone. Since the initial association with PD, hundreds of researchers have contributed to elucidating the functions of α-synuclein in normal and pathological states, and these remain critical areas for continued research. With this position paper the authors strive to achieve two goals: first, to succinctly summarize the critical features that define α-synuclein's varied roles, as they are known today; and second, to identify the most pressing knowledge gaps and delineate a multipronged strategy for future research with the goal of enabling therapies to stop or slow disease progression in PD.
Collapse
Affiliation(s)
- Luis M A Oliveira
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA.
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Robert Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, CA, USA
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ronald Melki
- Institut François Jacob, MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Leonidas Stefanis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- First Department of Neurology, Medical School of the National and Kapodistrian University of Athens, Athens, Greece
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Faculty of Life Sciences, EPFL, Lausanne, Switzerland
| | - David Sulzer
- Department of Psychiatry, Neurology, Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Kostas Vekrellis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Glenda M Halliday
- University of Sydney, Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, Sydney, NSW, Australia
| | - Julianna J Tomlinson
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Michael Schlossmacher
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
| | - Poul Henning Jensen
- Aarhus University, Department of Biomedicine & DANDRITE, Danish Research Institute of Translational Neuroscience, Aarhus, Denmark
| | - Julia Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, Cambridge, MA, USA
| | - Omar El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | | | - Tiago F Outeiro
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.
- Max Planck Institute for Experimental Medicine, Göttingen, Germany.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
| |
Collapse
|
419
|
Parkinson's Disease-Related Genes and Lipid Alteration. Int J Mol Sci 2021; 22:ijms22147630. [PMID: 34299248 PMCID: PMC8305702 DOI: 10.3390/ijms22147630] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s disease (PD) is a complex and progressive neurodegenerative disorder with a prevalence of approximately 0.5–1% among those aged 65–70 years. Although most of its clinical manifestations are due to a loss of dopaminergic neurons, the PD etiology is largely unknown. PD is caused by a combination of genetic and environmental factors, and the exact interplay between genes and the environment is still debated. Several biological processes have been implicated in PD, including mitochondrial or lysosomal dysfunctions, alteration in protein clearance, and neuroinflammation, but a common molecular mechanism connecting the different cellular alterations remains incompletely understood. Accumulating evidence underlines a significant role of lipids in the pathological pathways leading to PD. Beside the well-described lipid alteration in idiopathic PD, this review summarizes the several lipid alterations observed in experimental models expressing PD-related genes and suggests a possible scenario in relationship to the molecular mechanisms of neuronal toxicity. PD could be considered a lipid-induced proteinopathy, where alteration in lipid composition or metabolism could induce protein alteration—for instance, alpha-synuclein accumulation—and finally neuronal death.
Collapse
|
420
|
Macías-García D, Periñán MT, Muñoz-Delgado L, Jimenez-Jaraba MV, Labrador-Espinosa MÁ, Jesús S, Buiza-Rueda D, Méndez-Del Barrio C, Adarmes-Gómez A, Gómez-Garre P, Mir P. Serum lipid profile among sporadic and familial forms of Parkinson's disease. NPJ Parkinsons Dis 2021; 7:59. [PMID: 34272400 PMCID: PMC8285472 DOI: 10.1038/s41531-021-00206-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Brain cholesterol metabolism has been described as altered in Parkinson's disease (PD) patients. Serum lipid levels have been widely studied in PD with controversial results among different populations and age groups. The present study is aimed at determining if the serum lipid profile could be influenced by the genetic background of PD patients. We included 403 PD patients (342 sporadic PD patients, 30 GBA-associated PD patients, and 31 LRRK2-associated PD patients) and 654 healthy controls (HCs). Total cholesterol, HDL, LDL, and triglycerides were measured in peripheral blood. Analysis of covariance adjusting for sex and age (ANCOVA) and post hoc tests were applied to determine the differences within lipid profiles among the groups. Multivariate ANCOVA revealed significant differences among the groups within cholesterol and LDL levels. GBA-associated PD patients had significantly lower levels of total cholesterol and LDL compared to LRRK2-associated PD patients and HCs. The different serum cholesterol levels in GBA-associated PD might be related to diverse pathogenic mechanisms. Our results support the hypothesis of lipid metabolism disruption as one of the main PD pathogenic mechanisms in patients with GBA-associated PD. Further studies would be necessary to explore their clinical implications.
Collapse
Grants
- PI14/01823, PI16/01575, PI18/01898, PI19/01576 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- CM18/00142 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- PI-0471-2013, PE-0210-2018, PI-0459-2018, PE-0186-2019 Consejería de Salud, Junta de Andalucía (Ministry of Health, Andalusian Regional Government)
- B-0007-2019 Consejería de Salud, Junta de Andalucía (Ministry of Health, Andalusian Regional Government)
- FPU16/05061 Ministerio de Educación, Cultura y Deporte (Ministry of Education, Culture and Sports, Spain)
- Spanish Ministry of Science and Innovation [RTC2019-007150-1]
Collapse
Affiliation(s)
- Daniel Macías-García
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - María Teresa Periñán
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laura Muñoz-Delgado
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - María Valle Jimenez-Jaraba
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Miguel Ángel Labrador-Espinosa
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Medicina Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Dolores Buiza-Rueda
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carlota Méndez-Del Barrio
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Astrid Adarmes-Gómez
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pilar Gómez-Garre
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Pablo Mir
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Departamento de Medicina Facultad de Medicina, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
421
|
Bell R, Vendruscolo M. Modulation of the Interactions Between α-Synuclein and Lipid Membranes by Post-translational Modifications. Front Neurol 2021; 12:661117. [PMID: 34335440 PMCID: PMC8319954 DOI: 10.3389/fneur.2021.661117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease is characterised by the presence in brain tissue of aberrant inclusions known as Lewy bodies and Lewy neurites, which are deposits composed by α-synuclein and a variety of other cellular components, including in particular lipid membranes. The dysregulation of the balance between lipid homeostasis and α-synuclein homeostasis is therefore likely to be closely involved in the onset and progression of Parkinson's disease and related synucleinopathies. As our understanding of this balance is increasing, we describe recent advances in the characterisation of the role of post-translational modifications in modulating the interactions of α-synuclein with lipid membranes. We then discuss the impact of these advances on the development of novel diagnostic and therapeutic tools for synucleinopathies.
Collapse
Affiliation(s)
| | - Michele Vendruscolo
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
422
|
Kim TE, Newman AJ, Imberdis T, Brontesi L, Tripathi A, Ramalingam N, Fanning S, Selkoe D, Dettmer U. Excess membrane binding of monomeric alpha-, beta-, and gamma-synuclein is invariably associated with inclusion formation and toxicity. Hum Mol Genet 2021; 30:2332-2346. [PMID: 34254125 PMCID: PMC8600006 DOI: 10.1093/hmg/ddab188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 11/27/2022] Open
Abstract
α-Synuclein (αS) has been well-documented to play a role in human synucleinopathies such as Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). First, the lesions found in PD/DLB brains—Lewy bodies and Lewy neurites—are rich in aggregated αS. Second, genetic evidence links missense mutations and increased αS expression to familial forms of PD/DLB. Third, toxicity and cellular stress can be caused by αS under certain experimental conditions. In contrast, the homologs β-synuclein (βS) and γ-synuclein (γS) are not typically found in Lewy bodies/neurites, have not been clearly linked to brain diseases and have been largely non-toxic in experimental settings. In αS, the so-called non-amyloid-β component of plaques (NAC) domain, constituting amino acids 61–95, has been identified to be critical for aggregation in vitro. This domain is partially absent in βS and only incompletely conserved in γS, which could explain why both homologs do not cause disease. However, αS in vitro aggregation and cellular toxicity have not been firmly linked experimentally, and it has been proposed that excess αS membrane binding is sufficient to induce neurotoxicity. Indeed, recent characterizations of Lewy bodies have highlighted the accumulation of lipids and membranous organelles, raising the possibility that βS and γS could also become neurotoxic if they were more prone to membrane/lipid binding. Here, we increased βS and γS membrane affinity by strategic point mutations and demonstrate that these proteins behave like membrane-associated monomers, are cytotoxic and form round cytoplasmic inclusions that can be prevented by inhibiting stearoyl-CoA desaturase.
Collapse
Affiliation(s)
- Tae-Eun Kim
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Andrew J Newman
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Thibaut Imberdis
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Lisa Brontesi
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Arati Tripathi
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Saranna Fanning
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Dennis Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
423
|
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by degeneration of the substantia nigra pars compacta and by accumulation of α-synuclein in Lewy bodies. PD is caused by a combination of environmental factors and genetic variants. These variants range from highly penetrant Mendelian alleles to alleles that only modestly increase disease risk. Here, we review what is known about the genetics of PD. We also describe how PD genetics have solidified the role of endosomal, lysosomal, and mitochondrial dysfunction in PD pathophysiology. Finally, we highlight how all three pathways are affected by α-synuclein and how this knowledge may be harnessed for the development of disease-modifying therapeutics.
Collapse
Affiliation(s)
- Gabriel E Vázquez-Vélez
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA.,Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA; .,Howard Hughes Medical Institute, Houston, Texas 77030, USA
| |
Collapse
|
424
|
Li W, Fu Y, Halliday GM, Sue CM. PARK Genes Link Mitochondrial Dysfunction and Alpha-Synuclein Pathology in Sporadic Parkinson's Disease. Front Cell Dev Biol 2021; 9:612476. [PMID: 34295884 PMCID: PMC8291125 DOI: 10.3389/fcell.2021.612476] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/10/2021] [Indexed: 11/28/2022] Open
Abstract
Parkinson’s disease (PD) is an age-related neurodegenerative disorder affecting millions of people worldwide. The disease is characterized by the progressive loss of dopaminergic neurons and spread of Lewy pathology (α-synuclein aggregates) in the brain but the pathogenesis remains elusive. PD presents substantial clinical and genetic variability. Although its complex etiology and pathogenesis has hampered the breakthrough in targeting disease modification, recent genetic tools advanced our approaches. As such, mitochondrial dysfunction has been identified as a major pathogenic hub for both familial and sporadic PD. In this review, we summarize the effect of mutations in 11 PARK genes (SNCA, PRKN, PINK1, DJ-1, LRRK2, ATP13A2, PLA2G6, FBXO7, VPS35, CHCHD2, and VPS13C) on mitochondrial function as well as their relevance in the formation of Lewy pathology. Overall, these genes play key roles in mitochondrial homeostatic control (biogenesis and mitophagy) and functions (e.g., energy production and oxidative stress), which may crosstalk with the autophagy pathway, induce proinflammatory immune responses, and increase oxidative stress that facilitate the aggregation of α-synuclein. Thus, rectifying mitochondrial dysregulation represents a promising therapeutic approach for neuroprotection in PD.
Collapse
Affiliation(s)
- Wen Li
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - YuHong Fu
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Carolyn M Sue
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
425
|
Gentzel RC, Toolan D, Jinn S, Schachter JB, Ma L, Kahle PJ, Smith SM, Marcus JN. Intracranial administration of alpha-synuclein fibrils in A30P-synuclein transgenic mice causes robust synucleinopathy and microglial induction. Neurobiol Aging 2021; 106:12-25. [PMID: 34225000 DOI: 10.1016/j.neurobiolaging.2021.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/12/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022]
Abstract
Synucleinopathies are neurodegenerative disorders involving pathological alpha-synuclein (αSyn) protein, including dementia with Lewy bodies, multiple system atrophy and Parkinson's disease (PD). Current in vivo models of synucleinopathy include transgenic mice overexpressing αSyn variants and methods based on administration of aggregated, exogenous αSyn. Combining these techniques offers the ability to study consequences of introducing pathological αSyn into primed neuronal environments likely to develop synucleinopathy. Herein, we characterize the impacts pre-formed fibrils (PFFs) of recombinant, human αSyn have in mice overexpressing human A30P αSyn, a mutation associated with autosomal dominant PD. A30P mouse brain contains detergent insoluble αSyn biochemically similar to PD brain, and these mice develop Lewy-like synucleinopathy with age. Administration of PFFs in A30P mice resulted in regionally-specific accumulations of phosphorylated synuclein, microglial induction and a motor phenotype that differed from PFF-induced effects in wildtype mice. Surprisingly, PFF-induced losses of tyrosine hydroxylase were similar in A30P and wildtype mice. Thus, the PFF-A30P model recapitulates key aspects of synucleinopathy with induction of microglia, creating an appropriate system for evaluating neurodegenerative therapeutics.
Collapse
Affiliation(s)
- Renee C Gentzel
- Neuroscience Discovery, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Dawn Toolan
- Neuroscience Discovery, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Sarah Jinn
- Neuroscience Discovery, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Joel B Schachter
- Neuroscience Discovery, Merck & Co., Inc., Kenilworth, NJ, USA; Currently at Takeda Pharmaceutics, Inc., San Diego, CA, USA
| | - Lei Ma
- Neuroscience Discovery, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Philipp J Kahle
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and, German Center for Neurodegenerative Diseases, University of Tübingen, Germany
| | - Sean M Smith
- Neuroscience Discovery, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jacob N Marcus
- Neuroscience Discovery, Merck & Co., Inc., Kenilworth, NJ, USA.
| |
Collapse
|
426
|
Mori F, Miki Y, Tanji K, Kon T, Tomiyama M, Kakita A, Wakabayashi K. Role of VAPB and vesicular profiles in α-synuclein aggregates in multiple system atrophy. Brain Pathol 2021; 31:e13001. [PMID: 34196429 PMCID: PMC8549028 DOI: 10.1111/bpa.13001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/21/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
The pathological hallmark of multiple system atrophy (MSA) is fibrillary aggregates of α‐synuclein (α‐Syn) in the cytoplasm and nucleus of both oligodendrocytes and neurons. In neurons, α‐Syn localizes to the cytosolic and membrane compartments, including the synaptic vesicles, mitochondria, and endoplasmic reticulum (ER). α‐Syn binds to vesicle‐associated membrane protein‐binding protein B (VAPB) in the ER membrane. Overexpression of wild‐type and familial Parkinson's disease mutant α‐Syn perturbs the association between the ER and mitochondria, leading to ER stress and ultimately neurodegeneration. We examined brains from MSA patients (n = 7) and control subjects (n = 5) using immunohistochemistry and immunoelectron microscopy with antibodies against VAPB and phosphorylated α‐Syn. In controls, the cytoplasm of neurons and glial cells was positive for VAPB, whereas in MSA lesions VAPB immunoreactivity was decreased. The proportion of VAPB‐negative neurons in the pontine nucleus was significantly higher in MSA (13.6%) than in controls (0.6%). The incidence of cytoplasmic inclusions in VAPB‐negative neurons was significantly higher (42.2%) than that in VAPB‐positive neurons (3.6%); 67.2% of inclusion‐bearing oligodendrocytes and 51.1% of inclusion‐containing neurons were negative for VAPB. Immunoelectron microscopy revealed that α‐Syn and VAPB were localized to granulofilamentous structures in the cytoplasm of oligodendrocytes and neurons. Many vesicular structures labeled with anti‐α‐Syn were also observed within the granulofilamentous structures in the cytoplasm and nucleus of both oligodendrocytes and neurons. These findings suggest that, in MSA, reduction of VAPB is involved in the disease process and that vesicular structures are associated with inclusion formation.
Collapse
Affiliation(s)
- Fumiaki Mori
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuo Miki
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kunikazu Tanji
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoya Kon
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
427
|
Altered conformation of α-synuclein drives dysfunction of synaptic vesicles in a synaptosomal model of Parkinson's disease. Cell Rep 2021; 36:109333. [PMID: 34233191 PMCID: PMC8552450 DOI: 10.1016/j.celrep.2021.109333] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/30/2020] [Accepted: 06/10/2021] [Indexed: 11/23/2022] Open
Abstract
While misfolding of alpha-synuclein (αSyn) is central to the pathogenesis of Parkinson's disease (PD), fundamental questions about its structure and function at the synapse remain unanswered. We examine synaptosomes from non-transgenic and transgenic mice expressing wild-type human αSyn, the E46K fPD-causing mutation, or an amplified form of E46K ("3K"). Synaptosomes from mice expressing the 3K mutant show reduced Ca2+-dependent vesicle exocytosis, altered synaptic vesicle ultrastructure, decreased SNARE complexes, and abnormal levels of certain synaptic proteins. With our intra-synaptosomal nuclear magnetic resonance (NMR) method, we reveal that WT αSyn participates in heterogeneous interactions with synaptic components dependent on endogenous αSyn and synaptosomal integrity. The 3K mutation markedly alters these interactions. The synaptic microenvironment is necessary for αSyn to reach its native conformations and establish a physiological interaction network. Its inability to populate diverse conformational ensembles likely represents an early step in αSyn dysfunction that contributes to the synaptotoxicity observed in synucleinopathies.
Collapse
|
428
|
Root J, Merino P, Nuckols A, Johnson M, Kukar T. Lysosome dysfunction as a cause of neurodegenerative diseases: Lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2021; 154:105360. [PMID: 33812000 PMCID: PMC8113138 DOI: 10.1016/j.nbd.2021.105360] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are fatal neurodegenerative disorders that are thought to exist on a clinical and pathological spectrum. FTD and ALS are linked by shared genetic causes (e.g. C9orf72 hexanucleotide repeat expansions) and neuropathology, such as inclusions of ubiquitinated, misfolded proteins (e.g. TAR DNA-binding protein 43; TDP-43) in the CNS. Furthermore, some genes that cause FTD or ALS when mutated encode proteins that localize to the lysosome or modulate endosome-lysosome function, including lysosomal fusion, cargo trafficking, lysosomal acidification, autophagy, or TFEB activity. In this review, we summarize evidence that lysosomal dysfunction, caused by genetic mutations (e.g. C9orf72, GRN, MAPT, TMEM106B) or toxic-gain of function (e.g. aggregation of TDP-43 or tau), is an important pathogenic disease mechanism in FTD and ALS. Further studies into the normal function of many of these proteins are required and will help uncover the mechanisms that cause lysosomal dysfunction in FTD and ALS. Mutations or polymorphisms in genes that encode proteins important for endosome-lysosome function also occur in other age-dependent neurodegenerative diseases, including Alzheimer's (e.g. APOE, PSEN1, APP) and Parkinson's (e.g. GBA, LRRK2, ATP13A2) disease. A more complete understanding of the common and unique features of lysosome dysfunction across the spectrum of neurodegeneration will help guide the development of therapies for these devastating diseases.
Collapse
Affiliation(s)
- Jessica Root
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Paola Merino
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Austin Nuckols
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Michelle Johnson
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia; Department of Neurology, Emory University, School of Medicine, Atlanta 30322, Georgia.
| |
Collapse
|
429
|
Singh A, Dawson TM, Kulkarni S. Neurodegenerative disorders and gut-brain interactions. J Clin Invest 2021; 131:e143775. [PMID: 34196307 DOI: 10.1172/jci143775] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders (NDs) affect essential functions not only in the CNS, but also cause persistent gut dysfunctions, suggesting that they have an impact on both CNS and gut-innervating neurons. Although the CNS biology of NDs continues to be well studied, how gut-innervating neurons, including those that connect the gut to the brain, are affected by or involved in the etiology of these debilitating and progressive disorders has been understudied. Studies in recent years have shown how CNS and gut biology, aided by the gut-brain connecting neurons, modulate each other's functions. These studies underscore the importance of exploring the gut-innervating and gut-brain connecting neurons of the CNS and gut function in health, as well as the etiology and progression of dysfunction in NDs. In this Review, we discuss our current understanding of how the various gut-innervating neurons and gut physiology are involved in the etiology of NDs, including Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis, to cause progressive CNS and persistent gut dysfunction.
Collapse
Affiliation(s)
- Alpana Singh
- Center for Neurogastroenterology, Division of Gastroenterology and Hepatology, Department of Medicine
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering.,Department of Neurology.,Solomon H. Snyder Department of Neuroscience, and.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - Subhash Kulkarni
- Center for Neurogastroenterology, Division of Gastroenterology and Hepatology, Department of Medicine
| |
Collapse
|
430
|
Grochowska MM, Carreras Mascaro A, Boumeester V, Natale D, Breedveld GJ, Geut H, van Cappellen WA, Boon AJW, Kievit AJA, Sammler E, Parchi P, Cortelli P, Alessi DR, van de Berg WDJ, Bonifati V, Mandemakers W. LRP10 interacts with SORL1 in the intracellular vesicle trafficking pathway in non-neuronal brain cells and localises to Lewy bodies in Parkinson's disease and dementia with Lewy bodies. Acta Neuropathol 2021; 142:117-137. [PMID: 33913039 PMCID: PMC8217053 DOI: 10.1007/s00401-021-02313-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/30/2022]
Abstract
Loss-of-function variants in the low-density lipoprotein receptor-related protein 10 (LRP10) gene have been associated with autosomal-dominant Parkinson's disease (PD), PD dementia, and dementia with Lewy bodies (DLB). Moreover, LRP10 variants have been found in individuals diagnosed with progressive supranuclear palsy and amyotrophic lateral sclerosis. Despite this genetic evidence, little is known about the expression and function of LRP10 protein in the human brain under physiological or pathological conditions. To better understand how LRP10 variants lead to neurodegeneration, we first performed an in-depth characterisation of LRP10 expression in post-mortem brains and human-induced pluripotent stem cell (iPSC)-derived astrocytes and neurons from control subjects. In adult human brain, LRP10 is mainly expressed in astrocytes and neurovasculature but undetectable in neurons. Similarly, LRP10 is highly expressed in iPSC-derived astrocytes but cannot be observed in iPSC-derived neurons. In astrocytes, LRP10 is present at trans-Golgi network, plasma membrane, retromer, and early endosomes. Interestingly, LRP10 also partially co-localises and interacts with sortilin-related receptor 1 (SORL1). Furthermore, although LRP10 expression and localisation in the substantia nigra of most idiopathic PD and DLB patients and LRP10 variant carriers diagnosed with PD or DLB appeared unchanged compared to control subjects, significantly enlarged LRP10-positive vesicles were detected in a patient carrying the LRP10 p.Arg235Cys variant. Last, LRP10 was detected in Lewy bodies (LB) at late maturation stages in brains from idiopathic PD and DLB patients and in LRP10 variant carriers. In conclusion, high LRP10 expression in non-neuronal cells and undetectable levels in neurons of control subjects indicate that LRP10-mediated pathogenicity is initiated via cell non-autonomous mechanisms, potentially involving the interaction of LRP10 with SORL1 in vesicle trafficking pathways. Together with the specific pattern of LRP10 incorporation into mature LBs, these data support an important mechanistic role for disturbed vesicle trafficking and loss of LRP10 function in neurodegenerative diseases.
Collapse
Affiliation(s)
- Martyna M Grochowska
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Ana Carreras Mascaro
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Valerie Boumeester
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Domenico Natale
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Hanneke Geut
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Wiggert A van Cappellen
- Erasmus Optical Imaging Centre (OIC), Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Agnita J W Boon
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Anneke J A Kievit
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Esther Sammler
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Department of Neurology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK
| | - Piero Parchi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto di Scienze Neurologiche di Bologna, Via Altura 3, 40139, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Pietro Cortelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto di Scienze Neurologiche di Bologna, Via Altura 3, 40139, Bologna, Italy
- Dipartimento di Scienze Biomediche e NeuroMotorie (DIBINEM), Alma Mater Studiorum-University of Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Dario R Alessi
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
431
|
Potent inhibitors of toxic alpha-synuclein identified via cellular time-resolved FRET biosensors. NPJ Parkinsons Dis 2021; 7:52. [PMID: 34183676 PMCID: PMC8238948 DOI: 10.1038/s41531-021-00195-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
We have developed a high-throughput drug discovery platform, measuring fluorescence resonance energy transfer (FRET) with fluorescent alpha-synuclein (αSN) biosensors, to detect spontaneous pre-fibrillar oligomers in living cells. Our two αSN FRET biosensors provide complementary insight into αSN oligomerization and conformation in order to improve the success of drug discovery campaigns for the treatment of Parkinson's disease. We measure FRET by fluorescence lifetime, rather than traditional fluorescence intensity, providing a structural readout with greater resolution and precision. This facilitates identification of compounds that cause subtle but significant conformational changes in the ensemble of oligomeric states that are easily missed using intensity-based FRET. We screened a 1280-compound small-molecule library and identified 21 compounds that changed the lifetime by >5 SD. Two of these compounds have nanomolar potency in protecting SH-SY5Y cells from αSN-induced death, providing a nearly tenfold improvement over known inhibitors. We tested the efficacy of several compounds in a primary mouse neuron assay of αSN pathology (phosphorylation of mouse αSN pre-formed fibrils) and show rescue of pathology for two of them. These hits were further characterized with biophysical and biochemical assays to explore potential mechanisms of action. In vitro αSN oligomerization, single-molecule FRET, and protein-observed fluorine NMR experiments demonstrate that these compounds modulate αSN oligomers but not monomers. Subsequent aggregation assays further show that these compounds also deter or block αSN fibril assembly.
Collapse
|
432
|
Moon SP, Balana AT, Pratt MR. Consequences of post-translational modifications on amyloid proteins as revealed by protein semisynthesis. Curr Opin Chem Biol 2021; 64:76-89. [PMID: 34175787 DOI: 10.1016/j.cbpa.2021.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/21/2021] [Accepted: 05/09/2021] [Indexed: 12/17/2022]
Abstract
Alterations to the global levels of certain types of post-translational modifications (PTMs) are commonly observed in neurodegenerative diseases. The net influence of these PTM changes to the progression of these diseases can be deduced from cellular and animal studies. However, at the molecular level, how one PTM influences a given protein is not uniform and cannot be easily generalized from systemic observations, thus requiring protein-specific interrogations. Given that protein aggregation is a shared pathological hallmark in neurodegeneration, it is important to understand how these PTMs affect the behavior of amyloid-forming proteins. For this purpose, protein semisynthesis techniques, largely via native chemical and expressed protein ligation, have been widely used. These approaches have thus far led to our increased understanding of the site-specific consequences of certain PTMs to amyloidogenic proteins' endogenous function, their propensity for aggregation, and the structural variations these PTMs induce toward the aggregates formed.
Collapse
Affiliation(s)
- Stuart P Moon
- Departments of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Aaron T Balana
- Departments of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Matthew R Pratt
- Departments of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA; Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
433
|
Lashuel HA. Rethinking protein aggregation and drug discovery in neurodegenerative diseases: Why we need to embrace complexity? Curr Opin Chem Biol 2021; 64:67-75. [PMID: 34174698 DOI: 10.1016/j.cbpa.2021.05.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 12/19/2022]
Abstract
More than a century has passed since pathological protein aggregates were first identified in the brains of patients with neurodegenerative diseases (NDDs). Yet, we still do not have effective therapies to treat or slow the progression of these devastating diseases or diagnostics for early detection and monitoring disease progression. Herein, I reflect on recent findings that are challenging traditional views about the composition, ultrastructural properties, and diversity of protein pathologies in the brain, their mechanisms of formation and how we investigate and model pathological aggregation processes in the laboratory today. This article is an invitation to embrace the complexity of proteinopathies as an essential step to understanding the molecular mechanisms underpinning NDDs and to advance translational research and drug discovery in NDDs.
Collapse
Affiliation(s)
- Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
434
|
Hoppe SO, Uzunoğlu G, Nussbaum-Krammer C. α-Synuclein Strains: Does Amyloid Conformation Explain the Heterogeneity of Synucleinopathies? Biomolecules 2021; 11:931. [PMID: 34201558 PMCID: PMC8301881 DOI: 10.3390/biom11070931] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
Synucleinopathies are a heterogeneous group of neurodegenerative diseases with amyloid deposits that contain the α-synuclein (SNCA/α-Syn) protein as a common hallmark. It is astonishing that aggregates of a single protein are able to give rise to a whole range of different disease manifestations. The prion strain hypothesis offers a possible explanation for this conundrum. According to this hypothesis, a single protein sequence is able to misfold into distinct amyloid structures that can cause different pathologies. In fact, a growing body of evidence suggests that conformationally distinct α-Syn assemblies might be the causative agents behind different synucleinopathies. In this review, we provide an overview of research on the strain hypothesis as it applies to synucleinopathies and discuss the potential implications for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
| | | | - Carmen Nussbaum-Krammer
- Center for Molecular Biology, Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany; (S.O.H.); (G.U.)
| |
Collapse
|
435
|
Lee D, Jung WH, Lee S, Yu ES, Lee T, Kim JH, Song HS, Lee KH, Lee S, Han SK, Choi MC, Ahn DJ, Ryu YS, Kim C. Ionic contrast across a lipid membrane for Debye length extension: towards an ultimate bioelectronic transducer. Nat Commun 2021; 12:3741. [PMID: 34145296 PMCID: PMC8213817 DOI: 10.1038/s41467-021-24122-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/03/2021] [Indexed: 11/09/2022] Open
Abstract
Despite technological advances in biomolecule detections, evaluation of molecular interactions via potentiometric devices under ion-enriched solutions has remained a long-standing problem. To avoid severe performance degradation of bioelectronics by ionic screening effects, we cover probe surfaces of field effect transistors with a single film of the supported lipid bilayer, and realize respectable potentiometric signals from receptor-ligand bindings irrespective of ionic strength of bulky solutions by placing an ion-free water layer underneath the supported lipid bilayer. High-energy X-ray reflectometry together with the circuit analysis and molecular dynamics simulation discovered biochemical findings that effective electrical signals dominantly originated from the sub-nanoscale conformational change of lipids in the course of receptor-ligand bindings. Beyond thorough analysis on the underlying mechanism at the molecular level, the proposed supported lipid bilayer-field effect transistor platform ensures the world-record level of sensitivity in molecular detection with excellent reproducibility regardless of molecular charges and environmental ionic conditions.
Collapse
Affiliation(s)
- Donggeun Lee
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Department of Electrical & Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Woo Hyuk Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Suho Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Eui-Sang Yu
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Taikjin Lee
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jae Hun Kim
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Hyun Seok Song
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kwan Hyi Lee
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Seok Lee
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Sang-Kook Han
- Department of Electrical & Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Myung Chul Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Dong June Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea. .,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.
| | - Yong-Sang Ryu
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea. .,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.
| | - Chulki Kim
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea.
| |
Collapse
|
436
|
Narayanasamy KK, Stojic A, Li Y, Sass S, Hesse MR, Deussner-Helfmann NS, Dietz MS, Kuner T, Klevanski M, Heilemann M. Visualizing Synaptic Multi-Protein Patterns of Neuronal Tissue With DNA-Assisted Single-Molecule Localization Microscopy. Front Synaptic Neurosci 2021; 13:671288. [PMID: 34220481 PMCID: PMC8247585 DOI: 10.3389/fnsyn.2021.671288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/25/2021] [Indexed: 02/04/2023] Open
Abstract
The development of super-resolution microscopy (SRM) has widened our understanding of biomolecular structure and function in biological materials. Imaging multiple targets within a single area would elucidate their spatial localization relative to the cell matrix and neighboring biomolecules, revealing multi-protein macromolecular structures and their functional co-dependencies. SRM methods are, however, limited to the number of suitable fluorophores that can be imaged during a single acquisition as well as the loss of antigens during antibody washing and restaining for organic dye multiplexing. We report the visualization of multiple protein targets within the pre- and postsynapse in 350–400 nm thick neuronal tissue sections using DNA-assisted single-molecule localization microscopy (SMLM). In a single labeling step, antibodies conjugated with short DNA oligonucleotides visualized multiple targets by sequential exchange of fluorophore-labeled complementary oligonucleotides present in the imaging buffer. This approach avoids potential effects on structural integrity when using multiple rounds of immunolabeling and eliminates chromatic aberration, because all targets are imaged using a single excitation laser wavelength. This method proved robust for multi-target imaging in semi-thin tissue sections with a lateral resolution better than 25 nm, paving the way toward structural cell biology with single-molecule SRM.
Collapse
Affiliation(s)
- Kaarjel K Narayanasamy
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.,Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Aleksandar Stojic
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Yunqing Li
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Steffen Sass
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Marina R Hesse
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Nina S Deussner-Helfmann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Marina S Dietz
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Maja Klevanski
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Mike Heilemann
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.,Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
437
|
Abstract
Parkinson's disease is a recognisable clinical syndrome with a range of causes and clinical presentations. Parkinson's disease represents a fast-growing neurodegenerative condition; the rising prevalence worldwide resembles the many characteristics typically observed during a pandemic, except for an infectious cause. In most populations, 3-5% of Parkinson's disease is explained by genetic causes linked to known Parkinson's disease genes, thus representing monogenic Parkinson's disease, whereas 90 genetic risk variants collectively explain 16-36% of the heritable risk of non-monogenic Parkinson's disease. Additional causal associations include having a relative with Parkinson's disease or tremor, constipation, and being a non-smoker, each at least doubling the risk of Parkinson's disease. The diagnosis is clinically based; ancillary testing is reserved for people with an atypical presentation. Current criteria define Parkinson's disease as the presence of bradykinesia combined with either rest tremor, rigidity, or both. However, the clinical presentation is multifaceted and includes many non-motor symptoms. Prognostic counselling is guided by awareness of disease subtypes. Clinically manifest Parkinson's disease is preceded by a potentially long prodromal period. Presently, establishment of prodromal symptoms has no clinical implications other than symptom suppression, although recognition of prodromal parkinsonism will probably have consequences when disease-modifying treatments become available. Treatment goals vary from person to person, emphasising the need for personalised management. There is no reason to postpone symptomatic treatment in people developing disability due to Parkinson's disease. Levodopa is the most common medication used as first-line therapy. Optimal management should start at diagnosis and requires a multidisciplinary team approach, including a growing repertoire of non-pharmacological interventions. At present, no therapy can slow down or arrest the progression of Parkinson's disease, but informed by new insights in genetic causes and mechanisms of neuronal death, several promising strategies are being tested for disease-modifying potential. With the perspective of people with Parkinson's disease as a so-called red thread throughout this Seminar, we will show how personalised management of Parkinson's disease can be optimised.
Collapse
Affiliation(s)
- Bastiaan R Bloem
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Centre of Expertise for Parkinson and Movement Disorders, Nijmegen, Netherlands.
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Christine Klein
- Institute of Neurogenetics and Department of Neurology, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
438
|
Hoffmann C, Sansevrino R, Morabito G, Logan C, Vabulas RM, Ulusoy A, Ganzella M, Milovanovic D. Synapsin Condensates Recruit alpha-Synuclein. J Mol Biol 2021; 433:166961. [PMID: 33774037 DOI: 10.1016/j.jmb.2021.166961] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/07/2021] [Accepted: 03/19/2021] [Indexed: 12/24/2022]
Abstract
Neurotransmission relies on the tight spatial and temporal regulation of the synaptic vesicle (SV) cycle. Nerve terminals contain hundreds of SVs that form tight clusters. These clusters represent a distinct liquid phase in which one component of the phase are SVs and the other synapsin 1, a highly abundant synaptic protein. Another major family of disordered proteins at the presynapse includes synucleins, most notably α-synuclein. The precise physiological role of α-synuclein in synaptic physiology remains elusive, albeit its role has been implicated in nearly all steps of the SV cycle. To determine the effect of α-synuclein on the synapsin phase, we employ the reconstitution approach using natively purified SVs from rat brains and the heterologous cell system to generate synapsin condensates. We demonstrate that synapsin condensates recruit α-synuclein, and while enriched into these synapsin condensates, α-synuclein still maintains its high mobility. The presence of SVs enhances the rate of synapsin/α-synuclein condensation, suggesting that SVs act as catalyzers for the formation of synapsin condensates. Notably, at physiological salt and protein concentrations, α-synuclein alone is not able to cluster isolated SVs. Excess of α-synuclein disrupts the kinetics of synapsin/SV condensate formation, indicating that the molar ratio between synapsin and α-synuclein is important in assembling the functional condensates of SVs. Understanding the molecular mechanism of α-synuclein interactions at the nerve terminals is crucial for clarifying the pathogenesis of synucleinopathies, where α-synuclein, synaptic proteins and lipid organelles all accumulate as insoluble intracellular inclusions.
Collapse
Affiliation(s)
- Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Roberto Sansevrino
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Giuseppe Morabito
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Chinyere Logan
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - R Martin Vabulas
- Charité - Universitätsmedizin Berlin, Institute of Biochemistry, 10117 Berlin, Germany
| | - Ayse Ulusoy
- Laboratory of Neuroprotective Mechanisms, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Marcelo Ganzella
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany.
| |
Collapse
|
439
|
Lashuel HA, Novello S. Lewy body-associated proteins: victims, instigators, or innocent bystanders? The case of AIMP2 and alpha-synuclein. Neurobiol Dis 2021; 156:105417. [PMID: 34102275 DOI: 10.1016/j.nbd.2021.105417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/21/2023] Open
Abstract
Lewy bodies (LBs), one of the neuropathological defining hallmarks of Parkinson's disease (PD), are composed of a complex mixture of alpha-synuclein (aSyn) filaments and hundreds of proteins, lipids, and membranous organelles. However, these proteins' role in aSyn aggregation and the biogenesis of LBs remains poorly understood. Previous studies have focused on investigating the role of these proteins as modifiers of aSyn aggregation, inclusion formation, and toxicity; very often, one protein at a time. In a recent study, Ham et al. suggest that one of these proteins, aminoacyl tRNA synthase complex-interacting multifunctional protein 2 (AIMP2), plays a primary role in the initiation of aSyn aggregation and is essential for aSyn inclusion formation and toxicity in cells and several models of synucleinopathies (Ham et al., 2020). Based on in vitro aggregation studies, they proposed a model in which AIMP2 self-associates to form amyloid-like aggregates that interact with monomeric aSyn and catalyze/seed the formation of aSyn fibrils and, eventually, LB-like inclusions. Herein, we present a critical analysis of their results and conclusions, review previous studies on AIMP2 aggregation, and reexamine the role of AIMP2 in regulating aSyn inclusion formation and clearance and aSyn-induced neurodegeneration in Parkinson's disease. We conclude by presenting lesson learned and recommendations on experimental factors and approaches that should be considered in future studies aimed at investigating the potential of targeting LBs-associated proteins, including AIMP2, for developing therapies to treat PD and other synucleinopathies.
Collapse
Affiliation(s)
- Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Salvatore Novello
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
440
|
Ren H, Zhai W, Lu X, Wang G. The Cross-Links of Endoplasmic Reticulum Stress, Autophagy, and Neurodegeneration in Parkinson's Disease. Front Aging Neurosci 2021; 13:691881. [PMID: 34168552 PMCID: PMC8218021 DOI: 10.3389/fnagi.2021.691881] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, and it is characterized by the selective loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc), as well as the presence of intracellular inclusions with α-synuclein as the main component in surviving DA neurons. Emerging evidence suggests that the imbalance of proteostasis is a key pathogenic factor for PD. Endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and autophagy, two major pathways for maintaining proteostasis, play important roles in PD pathology and are considered as attractive therapeutic targets for PD treatment. However, although ER stress/UPR and autophagy appear to be independent cellular processes, they are closely related to each other. In this review, we focused on the roles and molecular cross-links between ER stress/UPR and autophagy in PD pathology. We systematically reviewed and summarized the most recent advances in regulation of ER stress/UPR and autophagy, and their cross-linking mechanisms. We also reviewed and discussed the mechanisms of the coexisting ER stress/UPR activation and dysregulated autophagy in the lesion regions of PD patients, and the underlying roles and molecular crosslinks between ER stress/UPR activation and the dysregulated autophagy in DA neurodegeneration induced by PD-associated genetic factors and PD-related neurotoxins. Finally, we indicate that the combined regulation of ER stress/UPR and autophagy would be a more effective treatment for PD rather than regulating one of these conditions alone.
Collapse
Affiliation(s)
- Haigang Ren
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Wanqing Zhai
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China
| | - Xiaojun Lu
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China
| | - Guanghui Wang
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
441
|
Kuebler L, Buss S, Leonov A, Ryazanov S, Schmidt F, Maurer A, Weckbecker D, Landau AM, Lillethorup TP, Bleher D, Saw RS, Pichler BJ, Griesinger C, Giese A, Herfert K. [ 11C]MODAG-001-towards a PET tracer targeting α-synuclein aggregates. Eur J Nucl Med Mol Imaging 2021; 48:1759-1772. [PMID: 33369690 PMCID: PMC8113290 DOI: 10.1007/s00259-020-05133-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Deposition of misfolded alpha-synuclein (αSYN) aggregates in the human brain is one of the major hallmarks of synucleinopathies. However, a target-specific tracer to detect pathological aggregates of αSYN remains lacking. Here, we report the development of a positron emission tomography (PET) tracer based on anle138b, a compound shown to have therapeutic activity in animal models of neurodegenerative diseases. METHODS Specificity and selectivity of [3H]MODAG-001 were tested in in vitro binding assays using recombinant fibrils. After carbon-11 radiolabeling, the pharmacokinetic and metabolic profile was determined in mice. Specific binding was quantified in rats, inoculated with αSYN fibrils and using in vitro autoradiography in human brain sections of Lewy body dementia (LBD) cases provided by the Neurobiobank Munich (NBM). RESULTS [3H]MODAG-001 revealed a very high affinity towards pure αSYN fibrils (Kd = 0.6 ± 0.1 nM) and only a moderate affinity to hTau46 fibrils (Kd = 19 ± 6.4 nM) as well as amyloid-β1-42 fibrils (Kd = 20 ± 10 nM). [11C]MODAG-001 showed an excellent ability to penetrate the mouse brain. Metabolic degradation was present, but the stability of the parent compound improved after selective deuteration of the precursor. (d3)-[11C]MODAG-001 binding was confirmed in fibril-inoculated rat striata using in vivo PET imaging. In vitro autoradiography showed no detectable binding to aggregated αSYN in human brain sections of LBD cases, most likely, because of the low abundance of aggregated αSYN against background protein. CONCLUSION MODAG-001 provides a promising lead structure for future compound development as it combines a high affinity and good selectivity in fibril-binding assays with suitable pharmacokinetics and biodistribution properties.
Collapse
Affiliation(s)
- Laura Kuebler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Röntgenweg 13, 72076, Tübingen, Germany
| | - Sabrina Buss
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Röntgenweg 13, 72076, Tübingen, Germany
| | - Andrei Leonov
- MODAG GmbH, Mikroforum Ring 3, 55234, Wendelsheim, Germany
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Sergey Ryazanov
- MODAG GmbH, Mikroforum Ring 3, 55234, Wendelsheim, Germany
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Felix Schmidt
- MODAG GmbH, Mikroforum Ring 3, 55234, Wendelsheim, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Röntgenweg 13, 72076, Tübingen, Germany
| | | | - Anne M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Norrebrogade 44, 8000, Aarhus, Denmark
- Department of Nuclear Medicine and PET-Centre, Aarhus University, Palle Juul-Jensens 165, J109, 8200, Aarhus, Denmark
| | - Thea P Lillethorup
- Department of Nuclear Medicine and PET-Centre, Aarhus University, Palle Juul-Jensens 165, J109, 8200, Aarhus, Denmark
| | - Daniel Bleher
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Röntgenweg 13, 72076, Tübingen, Germany
| | - Ran Sing Saw
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Röntgenweg 13, 72076, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Röntgenweg 13, 72076, Tübingen, Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.
- University Göttingen, Cluster of Excellence Multiscale Bioimaging Molecular Machines, 37077, Göttingen, Germany.
| | - Armin Giese
- MODAG GmbH, Mikroforum Ring 3, 55234, Wendelsheim, Germany.
| | - Kristina Herfert
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Röntgenweg 13, 72076, Tübingen, Germany.
| |
Collapse
|
442
|
Naser AFA, Aziz WM, Ahmed YR, Khalil WKB, Hamed MAA. Parkinsonism-like disease induced by rotenone in rats: Treatment role of curcumin, dopamine agonist and adenosine A2A receptor antagonist. Curr Aging Sci 2021; 15:65-76. [PMID: 34042043 DOI: 10.2174/1874609814666210526115740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Parkinsonism is a neurodegenerative disorder that affects elderly people worldwide. METHODS Curcumin, adenosine A2AR antagonist (ZM241385) and Sinemet® (L-dopa) were evaluated against Parkinson's disease (PD) induced by rotenone in rats and comparativelyrelatively compared with our previous study on mice model. RESULTS Rats injected with rotenone showed severe alterations in adenosine A2A receptor gene expression, oxidative stress markers, inflammatory mediator, energetic indices, apoptotic marker and DNA fragmentation levels as compare with the control group. Treatments with curcumin, ZM241385, and Sinemet® restored all the selected parameters. The brain histopathological features of cerebellum regions confirmed our results. By comparing our results with the previous results on mice, we noticed that mice respond to rotenone toxicity and treatments more than rats regarding to behavioral observation, A2AR gene expression, neurotransmitter levels, inflammatory mediator and apoptotic markers, while rats showed higher response to treatments regarding to oxidative stress and energetic indices. CONCLUSION Curcumin succeeded to attenuate the severe effects of Parkinson's disease in rat model and can be consider as a potential dietary supplement. Adenosine A2AR antagonist has almost the same pattern of improvement as Sinemet® and may be considered as a promising therapy against PD. By comparing the role of animal species in response to PD symptoms and treatments, our previous report on mice explore the response of mice to rotenone toxicity than rats, while rats showed higher response to treatments. Therefore, no animal model can perfectly recapitulate all the pathologies of PD.
Collapse
Affiliation(s)
| | - Wessam Magdi Aziz
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Yomna Rashad Ahmed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | | | | |
Collapse
|
443
|
Dou T, Zhou L, Kurouski D. Unravelling the Structural Organization of Individual α-Synuclein Oligomers Grown in the Presence of Phospholipids. J Phys Chem Lett 2021; 12:4407-4414. [PMID: 33945282 DOI: 10.1021/acs.jpclett.1c00820] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Parkinson's disease (PD) is a severe neurological disorder that affects more than 1 million people in the U.S. alone. A hallmark of PD is the formation of intracellular α-synuclein (α-Syn) protein aggregates called Lewy bodies (LBs). Although this protein does not have a particular localization in the central neural system, α-Syn aggregates are primarily found in certain areas of the midbrain, hypothalamus, and thalamus. Microscopic analysis of LBs reveals fragments of lipid-rich membranes, organelles, and vesicles. These and other pieces of experimental evidence suggest that α-Syn aggregation can be triggered by lipids. In this study, we used atomic force microscope infrared spectroscopy (AFM-IR) to investigate the structural organization of individual α-Syn oligomers grown in the presence of two different phospholipids vesicles. AFM-IR is a modern optical nanoscopy technique that has single-molecule sensitivity and subdiffraction spatial resolution. Our results show that α-Syn oligomers grown in the presence of phosphatidylcholine have a distinctly different structure than oligomers grown in the presence of phosphatidylserine. We infer that this occurs because of specific charges adopted by lipids, which in turn governs protein aggregation. We also found that the protein to phospholipid ratio has a substantial impact on the structure of α-Syn oligomers. These findings demonstrate that α-Syn is far more complex than expected from the perspective of the structural organization of oligomeric species.
Collapse
|
444
|
Valderhaug VD, Heiney K, Ramstad OH, Bråthen G, Kuan WL, Nichele S, Sandvig A, Sandvig I. Early functional changes associated with alpha-synuclein proteinopathy in engineered human neural networks. Am J Physiol Cell Physiol 2021; 320:C1141-C1152. [PMID: 33950697 DOI: 10.1152/ajpcell.00413.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A patterned spread of proteinopathy represents a common characteristic of many neurodegenerative diseases. In Parkinson's disease (PD), misfolded forms of α-synuclein proteins accumulate in hallmark pathological inclusions termed Lewy bodies and Lewy neurites. Such protein aggregates seem to affect selectively vulnerable neuronal populations in the substantia nigra and to propagate within interconnected neuronal networks. Research findings suggest that these proteinopathic inclusions are present at very early time points in disease development, even before clear behavioral symptoms of dysfunction arise. In this study, we investigate the early pathophysiology developing after induced formation of such PD-related α-synuclein inclusions in a physiologically relevant in vitro setup using engineered human neural networks. We monitor the neural network activity using multielectrode arrays (MEAs) for a period of 3 wk following proteinopathy induction to identify associated changes in network function, with a special emphasis on the measure of network criticality. Self-organized criticality represents the critical point between resilience against perturbation and adaptational flexibility, which appears to be a functional trait in self-organizing neural networks, both in vitro and in vivo. We show that although developing pathology at early onset is not clearly manifest in standard measurements of network function, it may be discerned by investigating differences in network criticality states.
Collapse
Affiliation(s)
- Vibeke D Valderhaug
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kristine Heiney
- Department of Computer Science, Faculty of Technology, Art and Design, Oslo Metropolitan University (OsloMet), Oslo, Norway
| | - Ola Huse Ramstad
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Geir Bråthen
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Wei-Li Kuan
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Stefano Nichele
- Department of Computer Science, Faculty of Technology, Art and Design, Oslo Metropolitan University (OsloMet), Oslo, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olav's Hospital, Trondheim, Norway.,Department of Clinical Neurosciences, Umeå University Hospital, Umeå, Sweden.,Department of Rehabilitation Medicine, Umeå University Hospital, Umeå, Sweden.,Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden.,Clinical Sciences, Umeå University, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
445
|
Liang Z, Currais A, Soriano-Castell D, Schubert D, Maher P. Natural products targeting mitochondria: emerging therapeutics for age-associated neurological disorders. Pharmacol Ther 2021; 221:107749. [PMID: 33227325 PMCID: PMC8084865 DOI: 10.1016/j.pharmthera.2020.107749] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
Mitochondria are the primary source of energy production in the brain thereby supporting most of its activity. However, mitochondria become inefficient and dysfunctional with age and to a greater extent in neurological disorders. Thus, mitochondria represent an emerging drug target for many age-associated neurological disorders. This review summarizes recent advances (covering from 2010 to May 2020) in the use of natural products from plant, animal, and microbial sources as potential neuroprotective agents to restore mitochondrial function. Natural products from diverse classes of chemical structures are discussed and organized according to their mechanism of action on mitochondria in terms of modulation of biogenesis, dynamics, bioenergetics, calcium homeostasis, and membrane potential, as well as inhibition of the oxytosis/ferroptosis pathway. This analysis emphasizes the significant value of natural products for mitochondrial pharmacology as well as the opportunities and challenges for the discovery and development of future neurotherapeutics.
Collapse
Affiliation(s)
- Zhibin Liang
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States; The Paul F. Glenn Center for Biology of Aging Research, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States.
| | - Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - David Soriano-Castell
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - David Schubert
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States; The Paul F. Glenn Center for Biology of Aging Research, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States.
| |
Collapse
|
446
|
Antonschmidt L, Dervişoğlu R, Sant V, Tekwani Movellan K, Mey I, Riedel D, Steinem C, Becker S, Andreas LB, Griesinger C. Insights into the molecular mechanism of amyloid filament formation: Segmental folding of α-synuclein on lipid membranes. SCIENCE ADVANCES 2021; 7:7/20/eabg2174. [PMID: 33990334 PMCID: PMC8121418 DOI: 10.1126/sciadv.abg2174] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/25/2021] [Indexed: 05/15/2023]
Abstract
Recent advances in the structural biology of disease-relevant α-synuclein fibrils have revealed a variety of structures, yet little is known about the process of fibril aggregate formation. Characterization of intermediate species that form during aggregation is crucial; however, this has proven very challenging because of their transient nature, heterogeneity, and low population. Here, we investigate the aggregation of α-synuclein bound to negatively charged phospholipid small unilamellar vesicles. Through a combination of kinetic and structural studies, we identify key time points in the aggregation process that enable targeted isolation of prefibrillar and early fibrillar intermediates. By using solid-state nuclear magnetic resonance, we show the gradual buildup of structural features in an α-synuclein fibril filament, revealing a segmental folding process. We identify distinct membrane-binding domains in α-synuclein aggregates, and the combined data are used to present a comprehensive mechanism of the folding of α-synuclein on lipid membranes.
Collapse
Affiliation(s)
- Leif Antonschmidt
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Rıza Dervişoğlu
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Vrinda Sant
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
| | - Kumar Tekwani Movellan
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ingo Mey
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
- Biomolecular Chemistry Group, Max-Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Christian Griesinger
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
447
|
García‐Sanz P, M.F.G. Aerts J, Moratalla R. The Role of Cholesterol in α-Synuclein and Lewy Body Pathology in GBA1 Parkinson's Disease. Mov Disord 2021; 36:1070-1085. [PMID: 33219714 PMCID: PMC8247417 DOI: 10.1002/mds.28396] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease where dopaminergic neurons in the substantia nigra are lost, resulting in a decrease in striatal dopamine and, consequently, motor control. Dopaminergic degeneration is associated with the appearance of Lewy bodies, which contain membrane structures and proteins, including α-synuclein (α-Syn), in surviving neurons. PD displays a multifactorial pathology and develops from interactions between multiple elements, such as age, environmental conditions, and genetics. Mutations in the GBA1 gene represent one of the major genetic risk factors for PD. This gene encodes an essential lysosomal enzyme called β-glucocerebrosidase (GCase), which is responsible for degrading the glycolipid glucocerebroside into glucose and ceramide. GCase can generate glucosylated cholesterol via transglucosylation and can also degrade the sterol glucoside. Although the molecular mechanisms that predispose an individual to neurodegeneration remain unknown, the role of cholesterol in PD pathology deserves consideration. Disturbed cellular cholesterol metabolism, as reflected by accumulation of lysosomal cholesterol in GBA1-associated PD cellular models, could contribute to changes in lipid rafts, which are necessary for synaptic localization and vesicle cycling and modulation of synaptic integrity. α-Syn has been implicated in the regulation of neuronal cholesterol, and cholesterol facilitates interactions between α-Syn oligomers. In this review, we integrate the results of previous studies and describe the cholesterol landscape in cellular homeostasis and neuronal function. We discuss its implication in α-Syn and Lewy body pathophysiological mechanisms underlying PD, focusing on the role of GCase and cholesterol. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Patricia García‐Sanz
- Instituto Cajal, CSICMadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasInstituto de Salud Carlos IIIMadridSpain
| | - Johannes M.F.G. Aerts
- Medical Biochemistry, Leiden Institute of Chemistry, Leiden UniversityFaculty of ScienceLeidenthe Netherlands
| | - Rosario Moratalla
- Instituto Cajal, CSICMadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasInstituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
448
|
Lenka A, Lamotte G, Goldstein DS. Cardiac 18F-Dopamine PET Distinguishes PD with Orthostatic Hypotension from Parkinsonian MSA. Mov Disord Clin Pract 2021; 8:582-586. [PMID: 33981791 PMCID: PMC8088110 DOI: 10.1002/mdc3.13190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Parkinson's disease with orthostatic hypotension (PD + OH) can be difficult to distinguish clinically from the parkinsonian form of multiple system atrophy (MSA-P). Previous studies examined cardiac sympathetic neuroimaging to differentiate PD from MSA but without focusing specifically on PD + OH versus MSA-P, which often is the relevant differential diagnostic issue. OBJECTIVE To investigate the utility of cardiac sympathetic neuroimaging by 18F-dopamine positron emission tomographic (PET) scanning for separating PD + OH from MSA-P. METHODS Cardiac 18F-dopamine PET data were analyzed from 50 PD + OH and 68 MSA-P patients evaluated at the NIH Clinical Center from 1990 to 2020. Noradrenergic deficiency was defined by interventricular septal 18F-dopamine-derived radioactivity <6000 nCi-kg/cc-mCi in the 5' frame with mid-point 8' after initiation of 3' tracer injection. RESULTS 18F-Dopamine PET separated the PD + OH from the MSA-P group with a sensitivity of 92% and specificity of 96%. CONCLUSION Cardiac 18F-dopamine PET scanning efficiently distinguishes PD + OH from MSA-P.
Collapse
Affiliation(s)
- Abhishek Lenka
- Department of NeurologyMedstar Georgetown University HospitalWashington, DCUSA
- Autonomic Medicine Section, National Institute of Neurological Disorders and Stroke (NINDS)National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Guillaume Lamotte
- Autonomic Medicine Section, National Institute of Neurological Disorders and Stroke (NINDS)National Institutes of Health (NIH)BethesdaMarylandUSA
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | - David S. Goldstein
- Autonomic Medicine Section, National Institute of Neurological Disorders and Stroke (NINDS)National Institutes of Health (NIH)BethesdaMarylandUSA
| |
Collapse
|
449
|
Fernández-Irigoyen J, Cartas-Cejudo P, Iruarrizaga-Lejarreta M, Santamaría E. Alteration in the Cerebrospinal Fluid Lipidome in Parkinson's Disease: A Post-Mortem Pilot Study. Biomedicines 2021; 9:491. [PMID: 33946950 PMCID: PMC8146703 DOI: 10.3390/biomedicines9050491] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Lipid metabolism is clearly associated to Parkinson's disease (PD). Although lipid homeostasis has been widely studied in multiple animal and cellular models, as well as in blood derived from PD individuals, the cerebrospinal fluid (CSF) lipidomic profile in PD remains largely unexplored. In this study, we characterized the post-mortem CSF lipidomic imbalance between neurologically intact controls (n = 10) and PD subjects (n = 20). The combination of dual extraction with ultra-performance liquid chromatography-electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC-ESI-qToF-MS/MS) allowed for the monitoring of 257 lipid species across all samples. Complementary multivariate and univariate data analysis identified that glycerolipids (mono-, di-, and triacylglycerides), saturated and mono/polyunsaturated fatty acids, primary fatty amides, glycerophospholipids (phosphatidylcholines, phosphatidylethanolamines), sphingolipids (ceramides, sphingomyelins), N-acylethanolamines and sterol lipids (cholesteryl esters, steroids) were significantly increased in the CSF of PD compared to the control group. Interestingly, CSF lipid dyshomeostasis differed depending on neuropathological staging and disease duration. These results, despite the limitation of being obtained in a small population, suggest extensive CSF lipid remodeling in PD, shedding new light on the deployment of CSF lipidomics as a promising tool to identify potential lipid markers as well as discriminatory lipid species between PD and other atypical parkinsonisms.
Collapse
Affiliation(s)
- Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (J.F.-I.); (P.C.-C.)
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (J.F.-I.); (P.C.-C.)
| | | | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (J.F.-I.); (P.C.-C.)
| |
Collapse
|
450
|
Bortolozzi A, Manashirov S, Chen A, Artigas F. Oligonucleotides as therapeutic tools for brain disorders: Focus on major depressive disorder and Parkinson's disease. Pharmacol Ther 2021; 227:107873. [PMID: 33915178 DOI: 10.1016/j.pharmthera.2021.107873] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/05/2021] [Indexed: 12/25/2022]
Abstract
Remarkable advances in understanding the role of RNA in health and disease have expanded considerably in the last decade. RNA is becoming an increasingly important target for therapeutic intervention; therefore, it is critical to develop strategies for therapeutic modulation of RNA function. Oligonucleotides, including antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA mimic (miRNA), and anti-microRNA (antagomir) are perhaps the most direct therapeutic strategies for addressing RNA. Among other mechanisms, most oligonucleotide designs involve the formation of a hybrid with RNA that promotes its degradation by activation of endogenous enzymes such as RNase-H (e.g., ASO) or the RISC complex (e.g. RNA interference - RNAi for siRNA and miRNA). However, the use of oligonucleotides for the treatment of brain disorders is seriously compromised by two main limitations: i) how to deliver oligonucleotides to the brain compartment, avoiding the action of peripheral RNAses? and once there, ii) how to target specific neuronal populations? We review the main molecular pathways in major depressive disorder (MDD) and Parkinson's disease (PD), and discuss the challenges associated with the development of novel oligonucleotide therapeutics. We pay special attention to the use of conjugated ligand-oligonucleotide approach in which the oligonucleotide sequence is covalently bound to monoamine transporter inhibitors (e.g. sertraline, reboxetine, indatraline). This strategy allows their selective accumulation in the monoamine neurons of mice and monkeys after their intranasal or intracerebroventricular administration, evoking preclinical changes predictive of a clinical therapeutic action after knocking-down disease-related genes. In addition, recent advances in oligonucleotide therapeutic clinical trials are also reviewed.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain.
| | - Sharon Manashirov
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain; miCure Therapeutics LTD., Tel-Aviv, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Francesc Artigas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| |
Collapse
|