401
|
Jakob-Roetne R, Jacobsen H. Alzheimer's disease: from pathology to therapeutic approaches. Angew Chem Int Ed Engl 2009; 48:3030-59. [PMID: 19330877 DOI: 10.1002/anie.200802808] [Citation(s) in RCA: 503] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mind how you go: The current strategies for the development of therapies for Alzheimer's disease are very diverse. Particular attention is given to the search for inhibitors (see picture for two examples) of the proteolytic enzyme beta- and gamma-secretase, which inhibits the cleavage of the amyloid precursor proteins into amyloid beta peptides, from which the disease-defining deposits of plaque in the brains of Alzheimer's patients originates.Research on senile dementia and Alzheimer's disease covers an extremely broad range of scientific activities. At the recent international meeting of the Alzheimer's Association (ICAD 2008, Chicago) more than 2200 individual scientific contributions were presented. The aim of this Review is to give an overview of the field and to outline its main areas, starting from behavioral abnormalities and visible pathological findings and then focusing on the molecular details of the pathology. The "amyloid hypothesis" of Alzheimer's disease is given particular attention, since the majority of the ongoing therapeutic approaches are based on its theoretical framework.
Collapse
Affiliation(s)
- Roland Jakob-Roetne
- F.Hoffmann-La Roche AG, Medicinal Chemistry, Bldg 92/8.10B, 4070 Basel, Switzerland.
| | | |
Collapse
|
402
|
Abstract
The presenilin-dependent gamma-secretase processing of the beta-amyloid precursor protein (betaAPP) conditions the length of the amyloid beta peptides (Abeta) that accumulate in the senile plaques of Alzheimer's disease-affected brains. This, together with an additional presenilin-mediated epsilon-secretase cleavage, generates intracellular betaAPP-derived fragments named amyloid intracellular domains (AICDs) that regulate the transcription of several genes. We establish that presenilins control the transcription of cellular prion protein (PrP(c)) by a gamma-secretase inhibitor-sensitive and AICD-mediated process. We demonstrate that AICD-dependent control of PrP(c) involves the tumor suppressor p53. Thus, p53-deficiency abolishes the AICD-mediated control of PrP(c) transcription. Furthermore, we show that p53 directly binds to the PrP(c) promoter and increases its transactivation. Overall, our study unravels a transcriptional regulation of PrP(c) by the oncogene p53 that is directly driven by presenilin-dependent formation of AICD. Furthermore, it adds support to previous reports linking secretase activities involved in betaAPP metabolism to the physiology of PrP(c).
Collapse
|
403
|
Imamura Y, Watanabe N, Umezawa N, Iwatsubo T, Kato N, Tomita T, Higuchi T. Inhibition of γ-Secretase Activity by Helical β-Peptide Foldamers. J Am Chem Soc 2009; 131:7353-9. [DOI: 10.1021/ja9001458] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuki Imamura
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, and Graduate School of Pharmaceutical Sciences, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, and Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Naoto Watanabe
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, and Graduate School of Pharmaceutical Sciences, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, and Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Naoki Umezawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, and Graduate School of Pharmaceutical Sciences, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, and Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Takeshi Iwatsubo
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, and Graduate School of Pharmaceutical Sciences, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, and Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Nobuki Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, and Graduate School of Pharmaceutical Sciences, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, and Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Taisuke Tomita
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, and Graduate School of Pharmaceutical Sciences, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, and Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Tsunehiko Higuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, and Graduate School of Pharmaceutical Sciences, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, and Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| |
Collapse
|
404
|
Synaptic NMDA receptor activation stimulates alpha-secretase amyloid precursor protein processing and inhibits amyloid-beta production. J Neurosci 2009; 29:4442-60. [PMID: 19357271 DOI: 10.1523/jneurosci.6017-08.2009] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Altered amyloid precursor protein (APP) processing leading to increased production and oligomerization of Abeta may contribute to Alzheimer's disease (AD). Understanding how APP processing is regulated under physiological conditions may provide new insights into AD pathogenesis. Recent reports demonstrate that excitatory neural activity regulates APP metabolism and Abeta levels, although understanding of the molecular mechanisms involved is incomplete. We have investigated whether NMDA receptor activity regulates APP metabolism in primary cultured cortical neurons. We report that a pool of APP is localized to the postsynaptic compartment in cortical neurons and observed partial overlap of APP with both NR1 and PSD-95. NMDA receptor stimulation increased nonamyloidogenic alpha-secretase-mediated APP processing, as measured by a 2.5-fold increase in cellular alpha-C-terminal fragment (C83) levels after glutamate or NMDA treatment. This increase was blocked by the NMDA receptor antagonists d-AP5 and MK801 but not by the AMPA receptor antagonist CNQX or the L-type calcium channel blocker nifedipine, was prevented by chelation of extracellular calcium, and was blocked by the alpha-secretase inhibitor TAPI-1. Cotreatment of cortical neurons with bicuculline and 4-AP, which stimulates glutamate release and activates synaptic NMDA receptors, evoked an MK801-sensitive increase in C83 levels. Furthermore, NMDA receptor stimulation caused a twofold increase in the amount of soluble APP detected in the neuronal culture medium. Finally, NMDA receptor activity inhibited both Abeta1-40 release and Gal4-dependent luciferase activity induced by beta-gamma-secretase-mediated cleavage of an APP-Gal4 fusion protein. Altogether, these data suggest that calcium influx through synaptic NMDA receptors promotes nonamyloidogenic alpha-secretase-mediated APP processing.
Collapse
|
405
|
Garcia-Alloza M, Subramanian M, Thyssen D, Borrelli LA, Fauq A, Das P, Golde TE, Hyman BT, Bacskai BJ. Existing plaques and neuritic abnormalities in APP:PS1 mice are not affected by administration of the gamma-secretase inhibitor LY-411575. Mol Neurodegener 2009; 4:19. [PMID: 19419556 PMCID: PMC2687427 DOI: 10.1186/1750-1326-4-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 05/06/2009] [Indexed: 11/10/2022] Open
Abstract
The gamma-secretase complex is a major therapeutic target for the prevention and treatment of Alzheimer's disease. Previous studies have shown that treatment of young APP mice with specific inhibitors of gamma-secretase prevented formation of new plaques. It has not yet been shown directly whether existing plaques would be affected by gamma-secretase inhibitor treatment. Similarly, alterations in neuronal morphology in the immediate vicinity of plaques represent a plaque-specific neurotoxic effect. Reversal of these alterations is an important endpoint of successful therapy whether or not a treatment affects plaque size. In the present study we used longitudinal imaging in vivo with multiphoton microscopy to study the effects of the orally active gamma-secretase inhibitor LY-411575 in 10-11 month old APP:PS1 mice with established amyloid pathology and neuritic abnormalities. Neurons expressed YFP allowing fluorescent detection of morphology whereas plaques were labelled with methoxy-XO4. The same identified neurites and plaques were followed in weekly imaging sessions in living mice treated daily (5 mg/kg) for 3 weeks with the compound. Although LY-411575 reduced Abeta levels in plasma and brain, it did not have an effect on the size of existing plaques. There was also no effect on the abnormal neuritic curvature near plaques, or the dystrophies in very close proximity to senile plaques. Our results suggest that therapeutics aimed at inhibition of Abeta generation are less effective for reversal of existing plaques than for prevention of new plaque formation and have no effect on the plaque-mediated neuritic abnormalities, at least under these conditions where Abeta production is suppressed but not completely blocked. Therefore, a combination therapy of Abeta suppression with agents that increase clearance of amyloid and/or prevent neurotoxicity might be needed for a more effective treatment in patients with pre-existing pathology.
Collapse
Affiliation(s)
- Monica Garcia-Alloza
- MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
406
|
Jakob-Roetne R, Jacobsen H. Die Alzheimer-Demenz: von der Pathologie zu therapeutischen Ansätzen. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200802808] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
407
|
Loane DJ, Pocivavsek A, Moussa CEH, Thompson R, Matsuoka Y, Faden AI, Rebeck GW, Burns MP. Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury. Nat Med 2009; 15:377-9. [PMID: 19287391 PMCID: PMC2844765 DOI: 10.1038/nm.1940] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 02/18/2009] [Indexed: 02/04/2023]
Abstract
Amyloid-beta (Abeta) peptides, found in Alzheimer's disease brain, accumulate rapidly after traumatic brain injury (TBI) in both humans and animals. Here we show that blocking either beta- or gamma-secretase, enzymes required for production of Abeta from amyloid precursor protein (APP), can ameliorate motor and cognitive deficits and reduce cell loss after experimental TBI in mice. Thus, APP secretases are promising targets for treatment of TBI.
Collapse
Affiliation(s)
- David J Loane
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | | | | | | | | | | | | | | |
Collapse
|
408
|
Blaise R, Mahjoub M, Salvat C, Barbe U, Brou C, Corvol MT, Savouret JF, Rannou F, Berenbaum F, Bausero P. Involvement of the Notch pathway in the regulation of matrix metalloproteinase 13 and the dedifferentiation of articular chondrocytes in murine cartilage. ACTA ACUST UNITED AC 2009; 60:428-39. [PMID: 19180482 DOI: 10.1002/art.24250] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To demonstrate the activation of the Notch signaling pathway during changes in the phenotype of chondrocytes in vitro, and to assess the influence of Notch on the production of chondrocyte markers. METHODS Serial monolayer primary cultures of murine articular chondrocytes (MACs), as a model of chondrocyte dedifferentiation, were prepared. MACs were cultured with or without a Notch inhibitor and transfected with different Notch-expressing vectors. The Notch pathway and chondrocyte marker profiles were assessed by quantitative reverse transcription-polymerase chain reaction, immunoblotting, and immunocytochemistry. RESULTS Successive passages of MACs resulted in a loss of type II collagen and aggrecan (chondrocyte differentiation markers), an increase in type I collagen (dedifferentiation marker), an increase in Notch ligands, and augmented target gene activity. The Notch inhibitor decreased the type II collagen protein content but had no effect on Col2a1 messenger RNA, while transfection with the constitutive active forms of the Notch1 receptor led to a decrease in type II collagen in transfected cells. In assays to investigate the mechanism of type II collagen breakdown, matrix metalloproteinase 13 (MMP-13) synthesis was regulated in a Notch-dependent manner, whereas MMP-2 synthesis was unchanged. CONCLUSION The Notch signaling pathway is associated with decreased type II collagen production during the dedifferentiation of MACs in vitro. This may be correlated with the increase in MMP-13 production linked to activation of Notch.
Collapse
Affiliation(s)
- Régis Blaise
- CNRS, UMR 7079, Paris Universitas Université Pierre-et-Marie-Curie Paris 6, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
409
|
Parvanova I, Epiphanio S, Fauq A, Golde TE, Prudêncio M, Mota MM. A small molecule inhibitor of signal peptide peptidase inhibits Plasmodium development in the liver and decreases malaria severity. PLoS One 2009; 4:e5078. [PMID: 19337374 PMCID: PMC2659798 DOI: 10.1371/journal.pone.0005078] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 03/05/2009] [Indexed: 11/18/2022] Open
Abstract
The liver stage of Plasmodium's life cycle is the first, obligatory step in malaria infection. Decreasing the hepatic burden of Plasmodium infection decreases the severity of disease and constitutes a promising strategy for malaria prophylaxis. The efficacy of the gamma-secretase and signal peptide peptidase inhibitor LY411,575 in targeting Plasmodium liver stages was evaluated both in human hepatoma cell lines and in mouse primary hepatocytes. LY411,575 was found to prevent Plasmodium's normal development in the liver, with an IC50 of approximately 80 nM, without affecting hepatocyte invasion by the parasite. In vivo results with a rodent model of malaria showed that LY411,575 decreases the parasite load in the liver and increases by 55% the resistance of mice to cerebral malaria, one of the most severe malaria-associated syndromes. Our data show that LY411,575 does not exert its effect via the Notch signaling pathway suggesting that it may interfere with Plasmodium development through an inhibition of the parasite's signal peptide peptidase. We therefore propose that selective signal peptide peptidase inhibitors could be potentially used for preventive treatment of malaria in humans.
Collapse
Affiliation(s)
- Iana Parvanova
- Unidade de Malária, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Sabrina Epiphanio
- Unidade de Malária, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Abdul Fauq
- Department of Neuroscience, Mayo Clinic, College of Medicine, Jacksonville, Florida, United States of America
| | - Todd E. Golde
- Department of Neuroscience, Mayo Clinic, College of Medicine, Jacksonville, Florida, United States of America
| | - Miguel Prudêncio
- Unidade de Malária, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Maria M. Mota
- Unidade de Malária, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
410
|
Beta amyloid peptide: from different aggregation forms to the activation of different biochemical pathways. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:877-88. [DOI: 10.1007/s00249-009-0439-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 03/04/2009] [Indexed: 12/13/2022]
|
411
|
Directional Delta and Notch trafficking in Sara endosomes during asymmetric cell division. Nature 2009; 458:1051-5. [PMID: 19295516 DOI: 10.1038/nature07854] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 01/23/2009] [Indexed: 11/08/2022]
Abstract
Endocytosis has a crucial role during Notch signalling after the asymmetric division of fly sensory organ precursors (SOPs): directional signalling is mediated by differential endocytosis of the ligand Delta and the Notch effector Sanpodo in one of the SOP daughters, pIIb. Here we show a new mechanism of directional signalling on the basis of the trafficking of Delta and Notch molecules already internalized in the SOP and subsequently targeted to the other daughter cell, pIIa. Internalized Delta and Notch traffic to an endosome marked by the protein Sara. During SOP mitosis, Sara endosomes containing Notch and Delta move to the central spindle and then to pIIa. Subsequently, in pIIa (but not in pIIb) Notch appears cleaved in Sara endosomes in a gamma-secretase- and Delta internalization-dependent manner, indicating that the release of the intracellular Notch tail to activate Notch target genes has occurred. We thus uncover a new mechanism to bias signalling even before asymmetric endocytosis of Sanpodo and Delta takes place in the daughter cells: already during SOP mitosis, asymmetric targeting of Delta and Notch-containing Sara endosomes will increase Notch signalling in pIIa and decrease it in pIIb.
Collapse
|
412
|
Rezai-Zadeh K, Douglas Shytle R, Bai Y, Tian J, Hou H, Mori T, Zeng J, Obregon D, Town T, Tan J. Flavonoid-mediated presenilin-1 phosphorylation reduces Alzheimer's disease beta-amyloid production. J Cell Mol Med 2009; 13:574-88. [PMID: 18410522 PMCID: PMC2671567 DOI: 10.1111/j.1582-4934.2008.00344.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 04/05/2008] [Indexed: 11/27/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK-3) dysregulation is implicated in the two Alzheimer's disease (AD) pathological hallmarks: beta-amyloid plaques and neurofibrillary tangles. GSK-3 inhibitors may abrogate AD pathology by inhibiting amyloidogenic gamma-secretase cleavage of amyloid precursor protein (APP). Here, we report that the citrus bioflavonoid luteolin reduces amyloid-beta (Abeta) peptide generation in both human 'Swedish' mutant APP transgene-bearing neuron-like cells and primary neurons. We also find that luteolin induces changes consistent with GSK-3 inhibition that (i) decrease amyloidogenic gamma-secretase APP processing, and (ii) promote presenilin-1 (PS1) carboxyl-terminal fragment (CTF) phosphorylation. Importantly, we find GSK-3alpha activity is essential for both PS1 CTF phosphorylation and PS1-APP interaction. As validation of these findings in vivo, we find that luteolin, when applied to the Tg2576 mouse model of AD, decreases soluble Abeta levels, reduces GSK-3 activity, and disrupts PS1-APP association. In addition, we find that Tg2576 mice treated with diosmin, a glycoside of a flavonoid structurally similar to luteolin, display significantly reduced Abeta pathology. We suggest that GSK-3 inhibition is a viable therapeutic approach for AD by impacting PS1 phosphorylation-dependent regulation of amyloidogenesis.
Collapse
Affiliation(s)
- Kavon Rezai-Zadeh
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry & Behavioral Medicine, University of South Florida, Tampa, FL, USA
| | - R Douglas Shytle
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry & Behavioral Medicine, University of South Florida, Tampa, FL, USA
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery University of South Florida, Tampa, FL, USA
| | - Yun Bai
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry & Behavioral Medicine, University of South Florida, Tampa, FL, USA
| | - Jun Tian
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry & Behavioral Medicine, University of South Florida, Tampa, FL, USA
| | - Huayan Hou
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry & Behavioral Medicine, University of South Florida, Tampa, FL, USA
| | - Takashi Mori
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry & Behavioral Medicine, University of South Florida, Tampa, FL, USA
- Institute of Medical Science, Saitama Medical Center/University Kawagoe, Saitama, Japan
| | - Jin Zeng
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry & Behavioral Medicine, University of South Florida, Tampa, FL, USA
| | - Demian Obregon
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry & Behavioral Medicine, University of South Florida, Tampa, FL, USA
| | - Terrence Town
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry & Behavioral Medicine, University of South Florida, Tampa, FL, USA
- Maxine Dunitz Neurosurgical Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jun Tan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry & Behavioral Medicine, University of South Florida, Tampa, FL, USA
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery University of South Florida, Tampa, FL, USA
| |
Collapse
|
413
|
|
414
|
Shideman CR, Reinardy JL, Thayer SA. gamma-Secretase activity modulates store-operated Ca2+ entry into rat sensory neurons. Neurosci Lett 2009; 451:124-8. [PMID: 19114088 PMCID: PMC2634821 DOI: 10.1016/j.neulet.2008.12.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/09/2008] [Accepted: 12/17/2008] [Indexed: 01/24/2023]
Abstract
Presenilin-1 is required for gamma-secretase activity, which participates in Notch receptor processing, the pathogenesis of Alzheimer's disease and the modulation of Ca(2+) signaling. We tested the hypothesis that gamma-secretase proteolytic activity modulates store-operated Ca(2+) entry (SOCE) in rat dorsal root ganglion (DRG) neurons. Depletion of intracellular Ca(2+) stores by blocking the endoplasmic reticulum (ER) Ca(2+) pump with cyclopiazonic acid (CPA) evoked a transient increase in [Ca(2+)](i) but no sustained Ca(2+) influx. However, in cells expressing a dominant negative presenilin-1 mutant (PS1-D257A), gamma-secretase activity was inhibited and treatment with CPA evoked sustained Ca(2+) influx. Similarly, pharmacologic inhibition of gamma-secretase with DAPT for 48h enhanced SOCE. SKF96365, an inhibitor of store-operated channels, blocked SOCE in cells expressing PS1-D257A. Thus, gamma-secretase proteolytic activity regulates a SOCE pathway in sensory neurons.
Collapse
Affiliation(s)
- Charles R Shideman
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455-0217, United States
| | | | | |
Collapse
|
415
|
Shin M, Nagai H, Sheng G. Notch mediates Wnt and BMP signals in the early separation of smooth muscle progenitors and blood/endothelial common progenitors. Development 2009; 136:595-603. [DOI: 10.1242/dev.026906] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During embryonic development in amniotes, the extraembryonic mesoderm,where the earliest hematopoiesis and vasculogenesis take place, also generates smooth muscle cells (SMCs). It is not well understood how the differentiation of SMCs is linked to that of blood (BCs) and endothelial (ECs) cells. Here we show that, in the chick embryo, the SMC lineage is marked by the expression of a bHLH transcription factor, dHand. Notch activity in nascent ventral mesoderm cells promotes SMC progenitor formation and mediates the separation of SMC and BC/EC common progenitors marked by another bHLH factor, Scl. This is achieved by crosstalk with the BMP and Wnt pathways,which are involved in mesoderm ventralization and SMC lineage induction,respectively. Our findings reveal a novel role of the Notch pathway in early ventral mesoderm differentiation, and suggest a stepwise separation among its three main lineages, first between SMC progenitors and BC/EC common progenitors, and then between BCs and ECs.
Collapse
Affiliation(s)
- Masahiro Shin
- RIKEN Center for Developmental Biology, Laboratory for Early Embryogenesis, Kobe, Hyogo 650-0047, Japan
| | - Hiroki Nagai
- RIKEN Center for Developmental Biology, Laboratory for Early Embryogenesis, Kobe, Hyogo 650-0047, Japan
| | - Guojun Sheng
- RIKEN Center for Developmental Biology, Laboratory for Early Embryogenesis, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
416
|
Hancock MK, Kopp L, Bi K. High-Throughput Screening Compatible Cell-Based Assay for Interrogating Activated Notch Signaling. Assay Drug Dev Technol 2009; 7:68-79. [DOI: 10.1089/adt.2008.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
| | | | - Kun Bi
- Invitrogen Corporation, Madison, Wisconsin
| |
Collapse
|
417
|
Trombly DJ, Woodruff TK, Mayo KE. Suppression of Notch signaling in the neonatal mouse ovary decreases primordial follicle formation. Endocrinology 2009; 150:1014-24. [PMID: 18818300 PMCID: PMC2646529 DOI: 10.1210/en.2008-0213] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Notch signaling directs cell fate during embryogenesis by influencing cell proliferation, differentiation, and apoptosis. Notch genes are expressed in the adult mouse ovary, and roles for Notch in regulating folliculogenesis are beginning to emerge from mouse genetic models. We investigated how Notch signaling might influence the formation of primordial follicles. Follicle assembly takes place when germ cell syncytia within the ovary break down and germ cells are encapsulated by pregranulosa cells. In the mouse, this occurs during the first 4-5 d of postnatal life. The expression of Notch family genes in the neonatal mouse ovary was determined through RT-PCR measurements. Jagged1, Notch2, and Hes1 transcripts were the most abundantly expressed ligand, receptor, and target gene, respectively. Jagged1 and Hey2 mRNAs were up-regulated over the period of follicle formation. Localization studies demonstrated that JAGGED1 is expressed in germ cells prior to follicle assembly and in the oocytes of primordial follicles. Pregranulosa cells that surround germ cell nests express HES1. In addition, pregranulosa cells of primordial follicles expressed NOTCH2 and Hey2 mRNA. We used an ex vivo ovary culture system to assess the requirement for Notch signaling during early follicle development. Newborn ovaries cultured in the presence of gamma-secretase inhibitors, compounds that attenuate Notch signaling, had a marked reduction in primordial follicles compared with vehicle-treated ovaries, and there was a corresponding increase in germ cells that remained within nests. These data support a functional role for Notch signaling in regulating primordial follicle formation.
Collapse
Affiliation(s)
- Daniel J Trombly
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
418
|
Daudet N, Gibson R, Shang J, Bernard A, Lewis J, Stone J. Notch regulation of progenitor cell behavior in quiescent and regenerating auditory epithelium of mature birds. Dev Biol 2009; 326:86-100. [PMID: 19013445 PMCID: PMC2660390 DOI: 10.1016/j.ydbio.2008.10.033] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 10/23/2008] [Accepted: 10/24/2008] [Indexed: 12/12/2022]
Abstract
Unlike mammals, birds regenerate auditory hair cells (HCs) after injury. During regeneration, mature non-sensory supporting cells (SCs) leave quiescence and convert into HCs, through non-mitotic or mitotic mechanisms. During embryogenesis, Notch ligands from nascent HCs exert lateral inhibition, restricting HC production. Here, we examined whether Notch signaling (1) is needed in mature birds to maintain the HC/SC pattern in the undamaged auditory epithelium or (2) governs SC behavior once HCs are injured. We show that Notch pathway genes are transcribed in the mature undamaged epithelium, and after HC injury, their transcription is upregulated in the region of highest mitotic activity. In vitro treatment with DAPT, an inhibitor of Notch activity, had no effect on SCs in the undamaged epithelium. Following HC damage, DAPT had no direct effect on SC division. However, after damage, DAPT caused excessive regeneration of HCs at the expense of SCs, through both mitotic and non-mitotic mechanisms. Conversely, overexpression of activated Notch in SCs after damage caused them to maintain their phenotype and inhibited HC regeneration. Therefore, signaling through Notch is not required for SC quiescence in the healthy epithelium or to initiate HC regeneration after damage. Rather, Notch prevents SCs from regenerating excessive HCs after damage.
Collapse
Affiliation(s)
- Nicolas Daudet
- Vertebrate Development Laboratory, Cancer Research UK, London, UK
| | | | | | | | | | | |
Collapse
|
419
|
Waschbüsch D, Born S, Niediek V, Kirchgessner N, Tamboli IY, Walter J, Merkel R, Hoffmann B. Presenilin 1 affects focal adhesion site formation and cell force generation via c-Src transcriptional and posttranslational regulation. J Biol Chem 2009; 284:10138-49. [PMID: 19176482 DOI: 10.1074/jbc.m806825200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Presenilin 1 and 2 (PS) are critical components of the gamma-secretase complex that cleaves type I transmembrane proteins within their transmembrane domains. This process leads to release of proteolytically processed products from cellular membranes and plays an essential role in signal transduction or vital functions as cell adhesion. Here we studied the function of presenilins in cell-matrix interaction of wild-type and PS knock-out mouse embryonic fibroblasts. We found for PS1(-/-) cells an altered morphology with significantly reduced sizes of focal adhesion sites compared with wild type. Cell force analyses on micropatterned elastomer films revealed PS1(-/-) cell forces to be reduced by 50%. Pharmacological inhibition confirmed this function of gamma-secretase in adhesion site and cell force formation. On the regulatory level, PS1 deficiency was associated with strongly decreased phosphotyrosine levels of focal adhesion site-specific proteins. The reduced tyrosine phosphorylation was caused by a down-regulation of c-Src kinase activity primarily at the level of c-Src transcription. The direct regulatory connection between PS1 and c-Src could be identified with ephrinB2 as PS1 target protein. Overexpression of ephrinB2 cytoplasmic domain resulted in its nuclear translocation with increased levels of c-Src and a full complementation of the PS1(-/-) adhesion and phosphorylation phenotype. Cleavage of full-length EB2 and subsequent intracellular domain translocation depended on PS1 as these processes were only found in WT cells. Therefore, we conclude that gamma-secretase is vital for controlling cell adhesion and force formation by transcriptional regulation of c-Src via ephrinB2 cleavage.
Collapse
Affiliation(s)
- Dieter Waschbüsch
- Institute of Bio- and Nanosystems 4: Biomechanics, Research Centre Jülich GmbH, 52425 Jülich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
420
|
Araki W, Kume H, Oda A, Tamaoka A, Kametani F. IGF-1 promotes beta-amyloid production by a secretase-independent mechanism. Biochem Biophys Res Commun 2009; 380:111-4. [PMID: 19167357 DOI: 10.1016/j.bbrc.2009.01.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
Abstract
Beta-amyloid peptide (Abeta) is generated via the sequential proteolysis of beta-amyloid precursor protein (APP) by beta- and gamma-secretases, and plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Here, we sought to clarify the role of insulin-like growth factor-1 (IGF-1), implicated in the AD pathomechanism, in the generation of Abeta. Treatment of neuroblastoma SH-SY5Y cells expressing AD-associated Swedish mutant APP with IGF-1 did not alter cellular levels of APP, but significantly increased those of beta-C-terminal fragment (beta-CTF) and secreted Abeta. IGF-1 also enhanced APP phosphorylation at Thr668. Treatment of beta-CTF-expressing cells with IGF-1 increased the levels of beta-CTF and secreted Abeta. The IGF-1-induced augmentation of beta-CTF was observed in the presence of gamma-secretase inhibitors, but not in cells expressing beta-CTF with a Thr668 to alanine substitution. These results suggest that IGF-1 promotes Abeta production through a secretase-independent mechanism involving APP phosphorylation.
Collapse
Affiliation(s)
- Wataru Araki
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| | | | | | | | | |
Collapse
|
421
|
A helix-to-coil transition at the epsilon-cut site in the transmembrane dimer of the amyloid precursor protein is required for proteolysis. Proc Natl Acad Sci U S A 2009; 106:1421-6. [PMID: 19164538 DOI: 10.1073/pnas.0812261106] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Processing of amyloid precursor protein (APP) by gamma-secretase is the last step in the formation of the Abeta peptides associated Alzheimer's disease. Solid-state NMR spectroscopy is used to establish the structural features of the transmembrane (TM) and juxtamembrane (JM) domains of APP that facilitate proteolysis. Using peptides corresponding to the APP TM and JM regions (residues 618-660), we show that the TM domain forms an alpha-helical homodimer mediated by consecutive GxxxG motifs. We find that the APP TM helix is disrupted at the intracellular membrane boundary near the epsilon-cleavage site. This helix-to-coil transition is required for gamma-secretase processing; mutations that extend the TM alpha-helix inhibit epsilon cleavage, leading to a low production of Abeta peptides and an accumulation of the alpha- and beta-C-terminal fragments. Our data support a progressive cleavage mechanism for APP proteolysis that depends on the helix-to-coil transition at the TM-JM boundary and unraveling of the TM alpha-helix.
Collapse
|
422
|
Volbracht C, Penzkofer S, Mansson D, Christensen KV, Fog K, Schildknecht S, Leist M, Nielsen J. Measurement of cellular beta-site of APP cleaving enzyme 1 activity and its modulation in neuronal assay systems. Anal Biochem 2009; 387:208-20. [PMID: 19454261 DOI: 10.1016/j.ab.2009.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/22/2008] [Accepted: 01/06/2009] [Indexed: 12/22/2022]
Abstract
Amyloid-beta peptide (Abeta), a putatively causative agent of Alzheimer's disease (AD), is proteolytically derived from beta-amyloid precursor protein (APP). Here we describe cellular assays to detect the activity of the key protease beta-site of APP cleaving enzyme 1 (BACE1) based on an artificial reporter construct containing the BACE1 cleavage site of APP. These methods allow identification of inhibitors and indirect modulators of BACE1. In primary neuronal cultures transfected with human APP constructs (huAPP), Abeta production was modified by BACE1 inhibitors similarly to the production of endogenous murine Abeta in wild-type cells and to that of different transgenic neurons. To further improve the assay, we substituted the extracellular domain of APP by secreted alkaline phosphatase (SEAP). SEAP was easily quantified in the cell culture supernatants after cleavage of SEAP-APP by BACE1 or alpha-secretases. To render the assay specific for BACE1, the alpha-secretase cleavage site of SEAP-APP was eliminated either by site-directed mutagenesis or by substituting the transmembrane part of APP by the membrane domain of the erythropoietin receptor (EpoR). The pharmacology of these constructs was characterized in detail in HEK293 cells (human embryonic kidney cell line), and the SEAP-APP-EpoR construct was also introduced into primary murine neurons and there allowed specific measurement of BACE1 activity.
Collapse
|
423
|
Hemming ML, Elias JE, Gygi SP, Selkoe DJ. Proteomic profiling of gamma-secretase substrates and mapping of substrate requirements. PLoS Biol 2009; 6:e257. [PMID: 18942891 PMCID: PMC2570425 DOI: 10.1371/journal.pbio.0060257] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 09/12/2008] [Indexed: 11/18/2022] Open
Abstract
The presenilin/γ-secretase complex, an unusual intramembrane aspartyl protease, plays an essential role in cellular signaling and membrane protein turnover. Its ability to liberate numerous intracellular signaling proteins from the membrane and also mediate the secretion of amyloid-β protein (Aβ) has made modulation of γ-secretase activity a therapeutic goal for cancer and Alzheimer disease. Although the proteolysis of the prototypical substrates Notch and β-amyloid precursor protein (APP) has been intensely studied, the full spectrum of substrates and the determinants that make a transmembrane protein a substrate remain unclear. Using an unbiased approach to substrate identification, we surveyed the proteome of a human cell line for targets of γ-secretase and found a relatively small population of new substrates, all of which are type I transmembrane proteins but have diverse biological roles. By comparing these substrates to type I proteins not regulated by γ-secretase, we determined that besides a short ectodomain, γ-secretase requires permissive transmembrane and cytoplasmic domains to bind and cleave its substrates. In addition, we provide evidence for at least two mechanisms that can target a substrate for γ cleavage: one in which a substrate with a short ectodomain is directly cleaved independent of sheddase association, and a second where a substrate requires ectodomain shedding to instruct subsequent γ-secretase processing. These findings expand our understanding of the mechanisms of substrate selection as well as the diverse cellular processes to which γ-secretase contributes. All cells face the challenge of removing transmembrane proteins from the lipid bilayer for the purpose of signaling or degradation. One molecular solution to this problem is the multiprotein enzyme complex γ-secretase, which is able to hydrolyze several known transmembrane proteins within the hydrophobic lipid environment. Due to its central role in the pathogenesis of Alzheimer disease, modulation of γ-secretase activity has become a therapeutic goal. However, the number and diversity of proteins that can be cleaved by this protease remain unknown, and the attributes that target these proteins to γ-secretase are unclear. In this study, we used an unbiased approach to substrate identification and surveyed the proteome for targets of γ-secretase. Of the thousands of proteins detectable, only a relative few were substrates of γ-secretase, all of which were type I transmembrane proteins. In addition to validating several of these novel substrates, we compared them to other proteins that we identified as nonsubstrates and determined that there are specific domains that can activate or inhibit γ-secretase processing. These findings should advance our understanding of the many cellular processes regulated by γ-secretase and may offer insights into how γ-secretase can be exploited for therapeutic purposes. Using an unbiased quantitative proteomics approach, novel substrate targets for the protease γ-secretase are identified and analyzed to determine which domains enable their cleavage.
Collapse
Affiliation(s)
- Matthew L Hemming
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joshua E Elias
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dennis J Selkoe
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
424
|
Doetzlhofer A, Basch ML, Ohyama T, Gessler M, Groves AK, Segil N. Hey2 regulation by FGF provides a Notch-independent mechanism for maintaining pillar cell fate in the organ of Corti. Dev Cell 2009; 16:58-69. [PMID: 19154718 PMCID: PMC2696015 DOI: 10.1016/j.devcel.2008.11.008] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 10/15/2008] [Accepted: 11/14/2008] [Indexed: 02/06/2023]
Abstract
The organ of Corti, the auditory organ of the inner ear, contains two types of sensory hair cells and at least seven types of supporting cells. Most of these supporting cell types rely on Notch-dependent expression of Hes/Hey transcription factors to maintain the supporting cell fate. Here, we show that Notch signaling is not necessary for the differentiation and maintenance of pillar cell fate, that pillar cells are distinguished by Hey2 expression, and that-unlike other Hes/Hey factors-Hey2 expression is Notch independent. Hey2 is activated by FGF and blocks hair cell differentiation, whereas mutation of Hey2 leaves pillar cells sensitive to the loss of Notch signaling and allows them to differentiate as hair cells. We speculate that co-option of FGF signaling to render Hey2 Notch independent also liberated pillar cells from the need for direct contact with surrounding hair cells, and enabled evolutionary remodeling of the complex cellular mosaic of the inner ear.
Collapse
Affiliation(s)
- Angelika Doetzlhofer
- Gonda Department of Cell and Molecular Biology, House Ear Institute, 2100 West 3 Street, Los Angeles, CA 90057
| | - Martin L. Basch
- Gonda Department of Cell and Molecular Biology, House Ear Institute, 2100 West 3 Street, Los Angeles, CA 90057
| | - Takahiro Ohyama
- Gonda Department of Cell and Molecular Biology, House Ear Institute, 2100 West 3 Street, Los Angeles, CA 90057
| | - Manfred Gessler
- Department of Physiological Chemistry I, University of Würzburg Biocenter, Am Hubland, 97074 Würzburg
| | - Andrew K. Groves
- Gonda Department of Cell and Molecular Biology, House Ear Institute, 2100 West 3 Street, Los Angeles, CA 90057
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Neil Segil
- Gonda Department of Cell and Molecular Biology, House Ear Institute, 2100 West 3 Street, Los Angeles, CA 90057
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
425
|
Wolfe MS. gamma-Secretase in biology and medicine. Semin Cell Dev Biol 2008; 20:219-24. [PMID: 19162210 DOI: 10.1016/j.semcdb.2008.12.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 12/12/2008] [Accepted: 12/22/2008] [Indexed: 12/22/2022]
Abstract
gamma-Secretase is a membrane-embedded proteolytic complex composed of presenilin and three other subunits. The gamma-secretase complex generates the amyloid beta-peptide of Alzheimer's disease but also plays important roles in normal physiology, especially in signaling from the Notch receptor. How this hydrolytic enzyme works in a hydrophobic environment is largely unanswered, but mutagenesis and chemical probes have offered insight. gamma-Secretase is an important therapeutic target, although mechanism-based toxicity presents a serious obstacle. Agents that lower amyloid beta-peptide production while leaving important normal functions of gamma-secretase intact are promising therapeutic leads. Inhibition of Notch signaling by gamma-secretase inhibitors, which is undesirable for the prevention or treatment of Alzheimer's disease, may be beneficial for the treatment of a variety of cancers.
Collapse
Affiliation(s)
- Michael S Wolfe
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115 USA.
| |
Collapse
|
426
|
Abstract
Alzheimer's disease (AD) is a progressive chronic disorder that leads to cognitive decline. Several studies have associated up-regulation of some of the chemokines and/or their receptors with altered APP processing leading to increased production of beta-amyloid protein (Abeta) and AD pathological changes. However, there is no direct evidence to date to determine whether the altered processing of APP results in up-regulation of these receptors or whether the up-regulation of the chemokine receptors causes modulated processing of APP. In the current study, we demonstrate that treatment of the chemokine receptor CXCR2 with agonists leads to enhancement of Abeta production and treatment with antagonists or immunodepletion of CXCR2's endogenous agonists leads to Abeta inhibition. Further, we found that the inhibitory effect of the antagonist of CXCR2 on Abeta40 and Abeta42 is mediated via gamma-secretase, specifically through reduction in expression of presenilin (PS), one of the gamma-secretase components. Also, in vivo chronic treatment with a CXCR2 antagonist blocked Abeta40 and Abeta42 production. Using small interfering RNAs for CXCR2, we further showed that knockdown of CXCR2 in vitro accumulates gamma-secretase substrates C99 and C83 with reduced production of both Abeta40 and Abeta42. Taken together, these findings strongly suggest for the first time that up-regulation of the CXCR2 receptor can be the driving force in increased production of Abeta. Our findings unravel new mechanisms involving the CXCR2 receptor in the pathogenesis of AD and pose it as a potential target for developing novel therapeutics for intervention in this disease. Also, we propose here a new chemical series of interest that can serve as a prototype for drug development.
Collapse
|
427
|
Sato T, Ananda K, Cheng CI, Suh EJ, Narayanan S, Wolfe MS. Distinct pharmacological effects of inhibitors of signal peptide peptidase and gamma-secretase. J Biol Chem 2008; 283:33287-95. [PMID: 18829463 PMCID: PMC2586255 DOI: 10.1074/jbc.m805670200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/30/2008] [Indexed: 11/06/2022] Open
Abstract
Signal peptide peptidase (SPP) and gamma-secretase are intramembrane aspartyl proteases that bear similar active site motifs but with opposite membrane topologies. Both proteases are inhibited by the same aspartyl protease transition-state analogue inhibitors, further evidence that these two enzymes have the same basic cleavage mechanism. Here we report that helical peptide inhibitors designed to mimic SPP substrates and interact with the SPP initial substrate-binding site (the "docking site") inhibit both SPP and gamma-secretase, but with submicromolar potency for SPP. SPP was labeled by helical peptide and transition-state analogue affinity probes but at distinct sites. Nonsteroidal anti-inflammatory drugs, which shift the site of proteolysis by SPP and gamma-secretase, did not affect the labeling of SPP or gamma-secretase by the helical peptide or transition-state analogue probes. On the other hand, another class of previously reported gamma-secretase modulators, naphthyl ketones, inhibited SPP activity as well as selective proteolysis by gamma-secretase. These naphthyl ketones significantly disrupted labeling of SPP by the helical peptide probe but did not block labeling of SPP by the transition-state analogue probe. With respect to gamma-secretase, the naphthyl ketone modulators allowed labeling by the transition-state analogue probe but not the helical peptide probe. Thus, the naphthyl ketones appear to alter the docking sites of both SPP and gamma-secretase. These results indicate that pharmacological effects of the four different classes of inhibitors (transition-state analogues, helical peptides, nonsteroidal anti-inflammatory drugs, and naphthyl ketones) are distinct from each other, and they reveal similarities and differences with how they affect SPP and gamma-secretase.
Collapse
Affiliation(s)
- Toru Sato
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
428
|
Watkins TA, Emery B, Mulinyawe S, Barres BA. Distinct stages of myelination regulated by gamma-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 2008; 60:555-69. [PMID: 19038214 PMCID: PMC2650711 DOI: 10.1016/j.neuron.2008.09.011] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 07/07/2008] [Accepted: 09/04/2008] [Indexed: 11/26/2022]
Abstract
Mechanistic studies of CNS myelination have been hindered by the lack of a rapidly myelinating culture system. Here, we describe a versatile CNS coculture method that allows time-lapse microscopy and molecular analysis of distinct stages of myelination. Employing a culture architecture of reaggregated neurons fosters extension of dense beds of axons from purified retinal ganglion cells. Seeding of oligodendrocyte precursor cells on these axons results in differentiation and ensheathment in as few as 3 days, with generation of compact myelin within 6 days. This technique enabled (1) the demonstration that oligodendrocytes initiate new myelin segments only during a brief window early in their differentiation, (2) identification of a contribution of astrocytes to the rate of myelin wrapping, and (3) molecular dissection of the role of oligodendrocyte gamma-secretase activity in controlling the ensheathment of axons. These insights illustrate the value of this defined system for investigating multiple aspects of CNS myelination.
Collapse
Affiliation(s)
- Trent A Watkins
- Stanford University School of Medicine, Department of Neurobiology, Fairchild Science Building D235, Stanford, CA 94305-5125, USA.
| | | | | | | |
Collapse
|
429
|
Sun D, Li H, Zolkiewska A. The role of Delta-like 1 shedding in muscle cell self-renewal and differentiation. J Cell Sci 2008; 121:3815-23. [PMID: 18957511 PMCID: PMC2636845 DOI: 10.1242/jcs.035493] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Myogenic cells have the ability to adopt two divergent fates upon exit from the cell cycle: differentiation or self-renewal. The Notch signaling pathway is a well-known negative regulator of myogenic differentiation. Using mouse primary myoblasts cultured in vitro or C2C12 myogenic cells, we found that Notch activity is essential for maintaining the expression of Pax7, a transcription factor associated with the self-renewal lineage, in quiescent undifferentiated myoblasts after they exit the cell cycle. Stimulation of the Notch pathway by expression of a constitutively active Notch-1, or co-culture of myogenic cells with CHO cells transfected with Delta like-1 (DLL1), increases the level of Pax7. DLL1, a ligand for Notch receptor, is shed by ADAM metalloproteases in a pool of Pax7+ C2C12 reserve cells, but it remains intact in differentiated myotubes. DLL1 shedding changes the receptor/ligand ratio and modulates the level of Notch signaling. Inhibition of DLL1 cleavage by a soluble, dominant-negative mutant form of ADAM12 leads to elevation of Notch signaling, inhibition of differentiation, and expansion of the pool of self-renewing Pax7+/MyoD- cells. These results suggest that ADAM-mediated shedding of DLL1 in a subset of cells during myogenic differentiation in vitro contributes to downregulation of Notch signaling in neighboring cells and facilitates their progression into differentiation. We propose that the proteolytic processing of DLL1 helps achieve an asymmetry in Notch signaling in initially equivalent myogenic cells and helps sustain the balance between differentiation and self-renewal.
Collapse
Affiliation(s)
| | | | - Anna Zolkiewska
- Department of Biochemistry, Kansas State University, Manhattan, Kansas
| |
Collapse
|
430
|
Yang T, Arslanova D, Gu Y, Augelli-Szafran C, Xia W. Quantification of gamma-secretase modulation differentiates inhibitor compound selectivity between two substrates Notch and amyloid precursor protein. Mol Brain 2008; 1:15. [PMID: 18983676 PMCID: PMC2637266 DOI: 10.1186/1756-6606-1-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 11/04/2008] [Indexed: 11/23/2022] Open
Abstract
Background Deposition of amyloid-β protein (Aβ) is a major pathological hallmark of Alzheimer's disease (AD). Aβ is generated from γ-secretase cleavage of amyloid precursor protein (APP). In addition to APP, γ-secretase also cleaves other type I integral membrane proteins, including the Notch receptor, a key molecule involved in embryonic development. Results To explore selective γ-secretase inhibitors, a combination of five methods was used to systematically determine these inhibitors' profiles on the γ-secretase cleavage of APP and Notch. When two potent γ-secretase inhibitors, compound E (cpd E) and DAPT, were used in a conventional in vitro γ-secretase activity assay, cpd E completely blocked Aβ generation from the cleavage of substrate APP C100, but only had a minor effect on Notch cleavage and NICD generation. Next, cpd E and DAPT were applied to HEK293 cells expressing a truncated Notch substrate NotchΔE. Both cpd E and DAPT were more potent in blocking Aβ generation than NICD generation. Third, a reporter construct was created that carried the NICD targeting promoter with three Su(H) binding sequences followed by the luciferase gene. We found that the inhibition of NICD generation by cpd E and DAPT was consistent with the reduced expression of luciferase gene driven by this Notch targeting promoter. Fourth, levels of "Notch-Aβ-like" (Nβ*) peptide derived from two previously reported chimeric APP with its transmembrane domain or the juxtamembrane portion replaced by the Notch sequence were quantified. Measurement of Nβ* peptides by ELISA confirmed that EC50's of cpd E were much higher for Nβ* than Aβ. Finally, the expression levels of Notch target gene her6 in cpd E or DAPT-treated zebrafish were correlated with the degree of tail curvature due to defective somitogenesis, a well characterized Notch phenotype in zebrafish. Conclusion Our ELISA-based quantification of Aβ and Nβ* in combination with the test in zebrafish provides a novel approach for efficient cell-based screening and in vivo validation of APP selective γ-secretase inhibitors.
Collapse
Affiliation(s)
- Ting Yang
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard University, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
431
|
Abramowski D, Wiederhold KH, Furrer U, Jaton AL, Neuenschwander A, Runser MJ, Danner S, Reichwald J, Ammaturo D, Staab D, Stoeckli M, Rueeger H, Neumann U, Staufenbiel M. Dynamics of Abeta turnover and deposition in different beta-amyloid precursor protein transgenic mouse models following gamma-secretase inhibition. J Pharmacol Exp Ther 2008; 327:411-24. [PMID: 18687920 DOI: 10.1124/jpet.108.140327] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human beta-amyloid precursor protein (APP) transgenic mice are commonly used to test potential therapeutics for Alzheimer's disease. We have characterized the dynamics of beta-amyloid (Abeta) generation and deposition following gamma-secretase inhibition with compound LY-411575 [N(2)-[(2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-N(1)-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl]-L-alaninamide]. Kinetic studies in preplaque mice distinguished a detergent-soluble Abeta pool in brain with rapid turnover (half-lives for Abeta40 and Abeta42 were 0.7 and 1.7 h) and a much more stable, less soluble pool. Abeta in cerebrospinal fluid (CSF) reflected the changes in the soluble brain Abeta pool, whereas plasma Abeta turned over more rapidly. In brain, APP C-terminal fragments (CTF) accumulated differentially. The half-lives for gamma-secretase degradation were estimated as 0.4 and 0.1 h for C99 and C83, respectively. Three different APP transgenic lines responded very similarly to gamma-secretase inhibition regardless of the familial Alzheimer's disease mutations in APP. Amyloid deposition started with Abeta42, whereas Abeta38 and Abeta40 continued to turn over. Chronic gamma-secretase inhibition lowered amyloid plaque formation to a different degree in different brain regions of the same mice. The extent was inversely related to the initial amyloid load in the region analyzed. No evidence for plaque removal below baseline was obtained. gamma-Secretase inhibition led to a redistribution of intracellular Abeta and an elevation of CTFs in neuronal fibers. In CSF, Abeta showed a similar turnover as in preplaque animals demonstrating its suitability as marker of newly generated, soluble Abeta in plaque-bearing brain. This study supports the use of APP transgenic mice as translational models to characterize Abeta-lowering therapeutics.
Collapse
|
432
|
Laras Y, Pietrancosta N, Tomita T, Iwatsubo T, Kraus JL. Synthesis and biological activity of N-substituted spiro[benzoxazepine-piperidine] Aβ-peptide production inhibitors. J Enzyme Inhib Med Chem 2008; 23:996-1001. [DOI: 10.1080/14756360701832706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Y. Laras
- Laboratoire de Chimie Biomoléculaire, IBDM-UMR-6216-CNRS, Faculté des Sciences Luminy, Université de la Méditerranée, Marseille cedex 9, France,
| | - N. Pietrancosta
- Institut de Chimie des Substances Naturelles (ICSN), Gif-sur-Yvette, France, and
| | - T. Tomita
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - T. Iwatsubo
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - J. L. Kraus
- Laboratoire de Chimie Biomoléculaire, IBDM-UMR-6216-CNRS, Faculté des Sciences Luminy, Université de la Méditerranée, Marseille cedex 9, France,
| |
Collapse
|
433
|
Chong M, Liao M, Drapeau P. The vesicular integral protein-like gene is essential for development of a mechanosensory system in zebrafish. Dev Neurobiol 2008; 68:1391-405. [DOI: 10.1002/dneu.20671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
434
|
Aluise CD, Sowell RA, Butterfield DA. Peptides and proteins in plasma and cerebrospinal fluid as biomarkers for the prediction, diagnosis, and monitoring of therapeutic efficacy of Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1782:549-58. [PMID: 18760351 PMCID: PMC2629398 DOI: 10.1016/j.bbadis.2008.07.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/22/2008] [Accepted: 07/24/2008] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) affects millions of persons worldwide. Earlier detection and/or diagnosis of AD would permit earlier intervention, which conceivably could delay progression of this dementing disorder. In order to accomplish this goal, reliable and specific biomarkers are needed. Biomarkers are multidimensional and have the potential to aid in various facets of AD such as diagnostic prediction, assessment of disease stage, discrimination from normally cognitive controls as well as other forms of dementia, and therapeutic efficacy of AD drugs. To date, biomarker research has focused on plasma and cerebrospinal fluid (CSF), two bodily fluids believed to contain the richest source of biomarkers for AD. CSF is the fluid surrounding the central nervous system (CNS), and is the most indicative obtainable fluid of brain pathology. Blood plasma contains proteins that affect brain processes from the periphery, as well as proteins/peptides exported from the brain; this fluid would be ideal for biomarker discovery due to the ease and non-invasive process of sample collection. However, it seems reasonable that biomarker discovery will result in combinations of CSF, plasma, and other fluids such as urine, to serve the aforementioned purposes. This review focuses on proteins and peptides identified from CSF, plasma, and urine that may serve as biomarkers in AD.
Collapse
Affiliation(s)
- Christopher D. Aluise
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | - Renã A. Sowell
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | - D. Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| |
Collapse
|
435
|
Kawaguchi A, Ikawa T, Kasukawa T, Ueda HR, Kurimoto K, Saitou M, Matsuzaki F. Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis. Development 2008; 135:3113-24. [DOI: 10.1242/dev.022616] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cellular diversity of the brain is largely attributed to the spatial and temporal heterogeneity of progenitor cells. In mammalian cerebral development,it has been difficult to determine how heterogeneous the neural progenitor cells are, owing to dynamic changes in their nuclear position and gene expression. To address this issue, we systematically analyzed the cDNA profiles of a large number of single progenitor cells at the mid-embryonic stage in mouse. By cluster analysis and in situ hybridization, we have identified a set of genes that distinguishes between the apical and basal progenitors. Despite their relatively homogeneous global gene expression profiles, the apical progenitors exhibit highly variable expression patterns of Notch signaling components, raising the possibility that this causes the heterogeneous division patterns of these cells. Furthermore, we successfully captured the nascent state of basal progenitor cells. These cells are generated shortly after birth from the division of the apical progenitors, and show strong expression of the major Notch ligand delta-like 1, which soon fades away as the cells migrate in the ventricular zone. We also demonstrated that attenuation of Notch signals immediately induces differentiation of apical progenitors into nascent basal progenitors. Thus, a Notch-dependent feedback loop is likely to be in operation to maintain both progenitor populations.
Collapse
Affiliation(s)
- Ayano Kawaguchi
- Laboratory for Cell Asymmetry, Center for Developmental Biology, RIKEN Kobe Institute, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047,Japan
| | - Tomoko Ikawa
- Laboratory for Cell Asymmetry, Center for Developmental Biology, RIKEN Kobe Institute, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047,Japan
| | - Takeya Kasukawa
- Functional Genomics Unit, Center for Developmental Biology, RIKEN Kobe Institute, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047,Japan
| | - Hiroki R. Ueda
- Functional Genomics Unit, Center for Developmental Biology, RIKEN Kobe Institute, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047,Japan
- Laboratory for Systems Biology, Center for Developmental Biology, RIKEN Kobe Institute, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047,Japan
| | - Kazuki Kurimoto
- Laboratory for Mammalian Germ Cell Biology, Center for Developmental Biology,RIKEN Kobe Institute, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mitinori Saitou
- Laboratory for Mammalian Germ Cell Biology, Center for Developmental Biology,RIKEN Kobe Institute, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, Center for Developmental Biology, RIKEN Kobe Institute, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047,Japan
- CREST, Japan Science and Technology Agency
| |
Collapse
|
436
|
Kanungo J, Zheng YL, Amin ND, Pant HC. The Notch signaling inhibitor DAPT down-regulates cdk5 activity and modulates the distribution of neuronal cytoskeletal proteins. J Neurochem 2008; 106:2236-48. [PMID: 18662245 PMCID: PMC2631422 DOI: 10.1111/j.1471-4159.2008.05551.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Notch signaling is critical for the development of the nervous system. Cyclin-dependent kinase 5 (cdk5) is a neuronal kinase involved in neuronal development and phosphorylates a number of neuronal cytoskeletal proteins. To determine the relationship between Notch and cdk5 signaling, we tested the effects of the Notch inhibitor, N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butyl ester (DAPT) on cdk5 expression, activity and cytoskeletal protein distribution in the rat cortical neurons in primary cultures. Neurons treated with 10 microM DAPT showed attenuated cdk5 activity in spite of an up-regulation of cdk5 protein level, consistent with a phenomenon reported in the cdk5 transgenic mice. Immunoblot and immunofluorescence analyses showed an increased level of cdk5, but not p35. Phospho-tau and phospho-neurofilament showed a shift from axons to cell bodies in DAPT-treated cells. DAPT-induced attenuation of cdk5 activity was restored by over-expression of p35 indicating that it interacted with cdk5 and up-regulated nascent cdk5 activity. p35 over-expression also rescued DAPT-induced translocation of phospho-tau and phospho-neurofilament. Immunoprecipitation followed by immunoblotting demonstrated that DAPT does not disrupt cdk5 and p35 interaction. Moreover, DAPT up-regulated neurogenin that is negatively regulated by Notch, and down-regulated Hes1, a downstream target of Notch, suggesting that Notch signaling in the cortical neurons was disrupted. Semi-quantitative and quantitative RT-PCR analyses confirmed that DAPT up-regulated cdk5 expression at the transcriptional level. These results establish a link between Notch signaling and cdk5 expression regulating neuronal cytoskeletal protein dynamics.
Collapse
Affiliation(s)
- Jyotshnabala Kanungo
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
437
|
|
438
|
Husain MM, Trevino K, Siddique H, McClintock SM. Present and prospective clinical therapeutic regimens for Alzheimer's disease. Neuropsychiatr Dis Treat 2008; 4:765-77. [PMID: 19043521 PMCID: PMC2536544 DOI: 10.2147/ndt.s2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disorder that produces cognitive impairments that increase in severity as the disease progresses. The clinical symptoms are related to the presence of neuritic plaques and neurofibrillary tangles in the cerebral cortex which represent the pathophysiological hallmarks of AD. The debilitating nature of the disease can result in clinical burden for the patient, emotional strain for those that care for patients with Alzheimer's, and significant financial burden to society. The goals of current treatments, such as cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonist, are to reduce the severity or slow the progression of cognitive symptoms. Although these treatments have demonstrated modest clinical benefit, they are unable to prevent, prohibit, or reverse the underlying pathophysiology of AD. Considerable progress has been made toward the development of disease-modifying treatments. Treatments currently under development mainly target the production, aggregation, and removal of existing amyloid beta-peptide aggregates which are believed to instigate the overall development of the neuropathology. Additional strategies that target tau pathology are being studied to promote neural protection against AD pathology. The current research has continued to expand our knowledge toward the development of disease modifying Alzheimer's therapies; however, no specific treatment strategy capable of demonstrating empirical efficacy and safety has yet to emerge.
Collapse
Affiliation(s)
- Mustafa M Husain
- Department of Psychiatry, University of Texas Southwestern Medical Center Dallas, TX, USA
| | | | | | | |
Collapse
|
439
|
Dutta S, Dietrich JE, Westerfield M, Varga ZM. Notch signaling regulates endocrine cell specification in the zebrafish anterior pituitary. Dev Biol 2008; 319:248-57. [PMID: 18534570 PMCID: PMC3178411 DOI: 10.1016/j.ydbio.2008.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 03/20/2008] [Accepted: 04/03/2008] [Indexed: 11/28/2022]
Abstract
The vertebrate pituitary gland is a key endocrine control organ that contains six distinct hormone secreting cell types. In this study, we analyzed the role of direct cell-to-cell Delta-Notch signaling in zebrafish anterior pituitary cell type specification. We demonstrate that initial formation of the anterior pituitary placode is independent of Notch signaling. Later however, loss of Notch signaling in mind bomb (mib) mutant embryos or by DAPT treatment leads to increased numbers of lactotropes and loss of corticotropes in the anterior pars distalis (APD), increased number of thyrotropes and loss of somatotrope cell types in the posterior pars distalis (PPD), and fewer melanotropes in the posterior region of the adenohypophysis, the pars intermedia (PI). Conversely, Notch gain of function leads to the opposite result, loss of lactotrope and thyrotrope cell specification, and an increased number of corticotropes, melanotropes, and gonadotropes in the pituitary. Our results suggest that Notch acts on placodal cells, presumably as a permissive signal, to regulate progenitor cell specification to hormone secreting cell types. We propose that Notch mediated lateral inhibition regulates the relative numbers of specified hormone cell types in the three pituitary subdomains.
Collapse
Affiliation(s)
- Sunit Dutta
- Laboratory of Molecular Genetics, NICHD/NIH, Bethesda, MD 20892,USA
| | - Jens-Erik Dietrich
- Department Cell & Developmental Biology, MPI Molecular Biomedicine, D-48149 Münster, Germany
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Zoltan M. Varga
- Zebrafish International Resource Center, University of Oregon, Eugene, OR 97403-5274, USA
| |
Collapse
|
440
|
The C-terminal PAL motif and transmembrane domain 9 of presenilin 1 are involved in the formation of the catalytic pore of the gamma-secretase. J Neurosci 2008; 28:6264-71. [PMID: 18550769 DOI: 10.1523/jneurosci.1163-08.2008] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gamma-secretase is an unusual membrane-embedded protease, which cleaves the transmembrane domains (TMDs) of type I membrane proteins, including amyloid-beta precursor protein and Notch receptor. We have previously shown the existence of a hydrophilic pore formed by TMD6 and TMD7 of presenilin 1 (PS1), the catalytic subunit of gamma-secretase, within the membrane by the substituted cysteine accessibility method. Here we analyzed the structure of TMD8, TMD9, and the C terminus of PS1, which encompass the conserved PAL motif and the hydrophobic C-terminal tip, both being critical for the catalytic activity and the formation of the gamma-secretase complex. We found that the amino acid residues around the PAL motif and the extracellular/luminal portion of TMD9 are highly water accessible and located in proximity to the catalytic pore. Furthermore, the region starting from the luminal end of TMD9 toward the C terminus forms an amphipathic alpha-helix-like structure that extends along the interface between the membrane and the extracellular milieu. Competition analysis using gamma-secretase inhibitors revealed that the TMD9 is involved in the initial binding of substrates, as well as in the subsequent catalytic process as a subsite. Our results provide mechanistic insights into the role of TMD9 in the formation of the catalytic pore and the substrate entry, crucial to the unusual mode of intramembrane proteolysis by gamma-secretase.
Collapse
|
441
|
Abstract
The 4-kDa amyloid beta-peptide (Abeta) is strongly implicated the pathogenesis of Alzheimer's disease (AD), and this peptide is cut out of the amyloid beta-protein precursor (APP) by the sequential action of beta- and gamma-secretases. gamma-Secretase is a membrane-embedded protease complex that cleaves the transmembrane region of APP to produce Abeta, and this protease is a top target for developing AD therapeutics. A number of inhibitors of the gamma-secretase complex have been identified, including peptidomimetics that block the active site, helical peptides that interact with the initial substrate docking site, and other less peptide-like, more drug-like compounds. To date, one gamma-secretase inhibitor has advanced into late-phase clinical trials for the treatment of AD, but serious concerns remain. The gamma-secretase complex cleaves a number of other substrates, and gamma-secretase inhibitors cause in vivo toxicities by blocking proteolysis of one essential substrate, the Notch receptor. Thus, compounds that modulate gamma-secretase, rather than inhibit it, to selectively alter Abeta production without hindering signal transduction from the Notch receptor would be more ideal. Such modulators have been discovered and advanced, with one compound in late-phase clinical trials, renewing interest in gamma-secretase as a therapeutic target.
Collapse
Affiliation(s)
- Michael S Wolfe
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| |
Collapse
|
442
|
Tammela T, Zarkada G, Wallgard E, Murtomäki A, Suchting S, Wirzenius M, Waltari M, Hellström M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Ylä-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 2008; 454:656-60. [PMID: 18594512 DOI: 10.1038/nature07083] [Citation(s) in RCA: 635] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 05/13/2008] [Indexed: 12/17/2022]
Abstract
Angiogenesis, the growth of new blood vessels from pre-existing vasculature, is a key process in several pathological conditions, including tumour growth and age-related macular degeneration. Vascular endothelial growth factors (VEGFs) stimulate angiogenesis and lymphangiogenesis by activating VEGF receptor (VEGFR) tyrosine kinases in endothelial cells. VEGFR-3 (also known as FLT-4) is present in all endothelia during development, and in the adult it becomes restricted to the lymphatic endothelium. However, VEGFR-3 is upregulated in the microvasculature of tumours and wounds. Here we demonstrate that VEGFR-3 is highly expressed in angiogenic sprouts, and genetic targeting of VEGFR-3 or blocking of VEGFR-3 signalling with monoclonal antibodies results in decreased sprouting, vascular density, vessel branching and endothelial cell proliferation in mouse angiogenesis models. Stimulation of VEGFR-3 augmented VEGF-induced angiogenesis and sustained angiogenesis even in the presence of VEGFR-2 (also known as KDR or FLK-1) inhibitors, whereas antibodies against VEGFR-3 and VEGFR-2 in combination resulted in additive inhibition of angiogenesis and tumour growth. Furthermore, genetic or pharmacological disruption of the Notch signalling pathway led to widespread endothelial VEGFR-3 expression and excessive sprouting, which was inhibited by blocking VEGFR-3 signals. Our results implicate VEGFR-3 as a regulator of vascular network formation. Targeting VEGFR-3 may provide additional efficacy for anti-angiogenic therapies, especially towards vessels that are resistant to VEGF or VEGFR-2 inhibitors.
Collapse
Affiliation(s)
- Tuomas Tammela
- Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Biomedicum Helsinki and the Haartman Institute University of Helsinki, PO Box 63 (Haartmaninkatu 8), 00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
443
|
Burton CR, Meredith JE, Barten DM, Goldstein ME, Krause CM, Kieras CJ, Sisk L, Iben LG, Polson C, Thompson MW, Lin XA, Corsa J, Fiedler T, Pierdomenico M, Cao Y, Roach AH, Cantone JL, Ford MJ, Drexler DM, Olson RE, Yang MG, Bergstrom CP, McElhone KE, Bronson JJ, Macor JE, Blat Y, Grafstrom RH, Stern AM, Seiffert DA, Zaczek R, Albright CF, Toyn JH. The amyloid-beta rise and gamma-secretase inhibitor potency depend on the level of substrate expression. J Biol Chem 2008; 283:22992-3003. [PMID: 18574238 DOI: 10.1074/jbc.m804175200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The amyloid-beta (Abeta) peptide, which likely plays a key role in Alzheimer disease, is derived from the amyloid-beta precursor protein (APP) through consecutive proteolytic cleavages by beta-site APP-cleaving enzyme and gamma-secretase. Unexpectedly gamma-secretase inhibitors can increase the secretion of Abeta peptides under some circumstances. This "Abeta rise" phenomenon, the same inhibitor causing an increase in Abeta at low concentrations but inhibition at higher concentrations, has been widely observed. Here we show that the Abeta rise depends on the beta-secretase-derived C-terminal fragment of APP (betaCTF) or C99 levels with low levels causing rises. In contrast, the N-terminally truncated form of Abeta, known as "p3," formed by alpha-secretase cleavage, did not exhibit a rise. In addition to the Abeta rise, low betaCTF or C99 expression decreased gamma-secretase inhibitor potency. This "potency shift" may be explained by the relatively high enzyme to substrate ratio under conditions of low substrate because increased concentrations of inhibitor would be necessary to affect substrate turnover. Consistent with this hypothesis, gamma-secretase inhibitor radioligand occupancy studies showed that a high level of occupancy was correlated with inhibition of Abeta under conditions of low substrate expression. The Abeta rise was also observed in rat brain after dosing with the gamma-secretase inhibitor BMS-299897. The Abeta rise and potency shift are therefore relevant factors in the development of gamma-secretase inhibitors and can be evaluated using appropriate choices of animal and cell culture models. Hypothetical mechanisms for the Abeta rise, including the "incomplete processing" and endocytic models, are discussed.
Collapse
Affiliation(s)
- Catherine R Burton
- Bristol-Myers Squibb Research and Development, Wallingford, Connecticut 06492, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
444
|
Garofalo AW. Patents targeting γ-secretase inhibition and modulation for the treatment of Alzheimer's disease: 2004 – 2008. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.7.693] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
445
|
Abstract
In Alzheimer's disease (AD), characteristic lesions develop in brain regions that subserve cognitive functions, ultimately leading to dementia. There are now several lesioned or transgenic small-animal models of the disease that model select aspects of cognitive deficits and/or recapitulate many, but not all, of the characteristic pathologic lesions observed in AD. This overview describes the most common approaches used to model AD in rodents, highlights their utility, and discusses some of their deficiencies.
Collapse
|
446
|
Intracellular copper deficiency increases amyloid-beta secretion by diverse mechanisms. Biochem J 2008; 412:141-52. [PMID: 18248325 DOI: 10.1042/bj20080103] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In Alzheimer's disease there is abnormal brain copper distribution, with accumulation of copper in amyloid plaques and a deficiency of copper in neighbouring cells. Excess copper inhibits Abeta (amyloid beta-peptide) production, but the effects of deficiency have not yet been determined. We therefore studied the effects of modulating intracellular copper levels on the processing of APP (amyloid precursor protein) and the production of Abeta. Human fibroblasts genetically disposed to copper accumulation secreted higher levels of sAPP (soluble APP ectodomain)alpha into their medium, whereas fibroblasts genetically manipulated to be profoundly copper deficient secreted predominantly sAPPbeta and produced more amyloidogenic beta-cleaved APP C-termini (C99). The level of Abeta secreted from copper-deficient fibroblasts was however regulated and limited by alpha-secretase cleavage. APP can be processed by both alpha- and beta-secretase, as copper-deficient fibroblasts secreted sAPPbeta exclusively, but produced primarily alpha-cleaved APP C-terminal fragments (C83). Copper deficiency also markedly reduced the steady-state level of APP mRNA whereas the APP protein level remained constant, indicating that copper deficiency may accelerate APP translation. Copper deficiency in human neuroblastoma cells significantly increased the level of Abeta secretion, but did not affect the cleavage of APP. Therefore copper deficiency markedly alters APP metabolism and can elevate Abeta secretion by either influencing APP cleavage or by inhibiting its degradation, with the mechanism dependent on cell type. Overall our results suggest that correcting brain copper imbalance represents a relevant therapeutic target for Alzheimer's disease.
Collapse
|
447
|
Holmberg J, Hansson E, Malewicz M, Sandberg M, Perlmann T, Lendahl U, Muhr J. SoxB1 transcription factors and Notch signaling use distinct mechanisms to regulate proneural gene function and neural progenitor differentiation. Development 2008; 135:1843-51. [DOI: 10.1242/dev.020180] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The preservation of a pool of neural precursors is a prerequisite for proper establishment and maintenance of a functional central nervous system(CNS). Both Notch signaling and SoxB1 transcription factors have been ascribed key roles during this process, but whether these factors use common or distinct mechanisms to control progenitor maintenance is unsettled. Here, we report that the capacity of Notch to maintain neural cells in an undifferentiated state requires the activity of SoxB1 proteins, whereas the mechanism by which SoxB1 block neurogenesis is independent of Notch signaling. A common feature of Notch signaling and SoxB1 proteins is their ability to inhibit the activity of proneural bHLH proteins. Notch represses the transcription of proneural bHLH genes, while SoxB1 proteins block their neurogenic capacity. Moreover, E-proteins act as functional partners of proneural proteins and the suppression of E-protein expression is an important mechanism by which Notch counteracts neurogenesis. Interestingly, in contrast to the Hes-dependent repression of proneural genes, suppression of E-protein occurs in a Hes-independent fashion. Together, these data reveal that Notch signaling and SoxB1 transcription factors use distinct regulatory mechanisms to control proneural protein function and to preserve neural cells as undifferentiated precursors.
Collapse
Affiliation(s)
- Johan Holmberg
- Ludwig Institute for Cancer Research, Karolinska Institute, Box 240, SE-171 77 Stockholm, Sweden
| | - Emil Hansson
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Michal Malewicz
- Ludwig Institute for Cancer Research, Karolinska Institute, Box 240, SE-171 77 Stockholm, Sweden
| | - Magnus Sandberg
- Ludwig Institute for Cancer Research, Karolinska Institute, Box 240, SE-171 77 Stockholm, Sweden
| | - Thomas Perlmann
- Ludwig Institute for Cancer Research, Karolinska Institute, Box 240, SE-171 77 Stockholm, Sweden
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Jonas Muhr
- Ludwig Institute for Cancer Research, Karolinska Institute, Box 240, SE-171 77 Stockholm, Sweden
| |
Collapse
|
448
|
Galichet A, Weibel M, Heizmann CW. Calcium-regulated intramembrane proteolysis of the RAGE receptor. Biochem Biophys Res Commun 2008; 370:1-5. [DOI: 10.1016/j.bbrc.2008.02.163] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 02/27/2008] [Indexed: 11/26/2022]
|
449
|
Chen AC, Selkoe DJ. Response to: Pardossi-Piquard et al., "Presenilin-Dependent Transcriptional Control of the Abeta-Degrading Enzyme Neprilysin by Intracellular Domains of betaAPP and APLP." Neuron 46, 541-554. Neuron 2008; 53:479-83. [PMID: 17296549 DOI: 10.1016/j.neuron.2007.01.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Allen C Chen
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medial School, Boston, MA 02115, USA
| | | |
Collapse
|
450
|
Notch signaling regulates the extent of hair cell regeneration in the zebrafish lateral line. J Neurosci 2008; 28:2261-73. [PMID: 18305259 DOI: 10.1523/jneurosci.4372-07.2008] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mechanosensory hair cells within the zebrafish lateral line spontaneously regenerate after aminoglycoside-induced death. Exposure of 5-d-old larvae to 400 microM neomycin for 1 h results in death of almost all lateral line hair cells. Regeneration of new hair cells is observed by 24 h after neomycin treatment with nearly complete replacement by 72 h. Using bromodeoxyuridine incorporation, we show that the majority of new hair cells are generated from a transient increase in support cell proliferation that occurs between 12 and 21 h after neomycin damage. Additional observations reveal two distinct subsets of proliferating support cells within the neuromasts that differ in position, morphology, and temporal pattern of proliferation in response to neomycin exposure. We hypothesize that proliferative hair cell progenitors are located centrally within the neuromasts, whereas peripheral support cells may have a separate function. Expression of Notch signaling pathway members notch3, deltaA, and atoh1a transcripts are all upregulated within the first 24 h after neomycin treatment, during the time of maximum proliferation of support cells and hair cell progenitor formation. Treatment with a gamma-secretase inhibitor results in excess regenerated hair cells by 48 h after neomycin-induced death but has no effect without previous damage. Excess hair cells result from increased support cell proliferation. These results suggest a model where Notch signaling limits the number of hair cells produced during regeneration by regulating support cell proliferation.
Collapse
|