401
|
Systemic Autoinflammatory Diseases: A Growing Family of Disorders of Overlapping Immune Dysfunction. Rheum Dis Clin North Am 2021; 48:371-395. [PMID: 34798958 DOI: 10.1016/j.rdc.2021.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Systemic autoinflammatory diseases (SAIDs) are characterized by unprovoked exaggerated inflammation on a continuum from benign recurrent oral ulceration to life-threatening strokes or amyloidosis, with renal failure as a potential sequela. The ability to discriminate these diagnoses rests on the genetic and mechanistic defect of each disorder, considering potential overlapping autoinflammation, autoimmunity, and immune deficiency. A comprehensive and strategic genetic investigation influences management as well as the consequential expected prognoses in these subsets of rare diseases. The ever-expanding therapeutic armamentarium reflects international collaborations, which will hasten genetic discovery and consensus-driven treatment.
Collapse
|
402
|
Liang J, Hong Z, Sun B, Guo Z, Wang C, Zhu J. The Alternatively Spliced Isoforms of Key Molecules in the cGAS-STING Signaling Pathway. Front Immunol 2021; 12:771744. [PMID: 34868032 PMCID: PMC8636596 DOI: 10.3389/fimmu.2021.771744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023] Open
Abstract
Alternative splicing of pre-mRNA increases transcriptome and proteome diversity by generating distinct isoforms that encode functionally diverse proteins, thus affecting many biological processes, including innate immunity. cGAS-STING signaling pathway, whose key molecules also undergo alternative splicing, plays a crucial role in regulating innate immunity. Protein isoforms of key components in the cGAS-STING-TBK1-IRF3 axis have been detected in a variety of species. A chain of evidence showed that these protein isoforms exhibit distinct functions compared to their normal counterparts. The mentioned isoforms act as positive or negative modulators in interferon response via distinct mechanisms. Particularly, we highlight that alternative splicing serves a vital function for the host to avoid the overactivation of the cGAS-STING signaling pathway and that viruses can utilize alternative splicing to resist antiviral response by the host. These findings could provide insights for potential alternative splicing-targeting therapeutic applications.
Collapse
Affiliation(s)
- Jiaqian Liang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ze Hong
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Boyue Sun
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Zhaoxi Guo
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Juanjuan Zhu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
403
|
Ji W, Zhang L, Xu X, Liu X. ALG2 regulates type I interferon responses by inhibiting STING trafficking. J Cell Sci 2021; 134:273719. [PMID: 34787301 DOI: 10.1242/jcs.259060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Stimulator of IFN genes (STING), an endoplasmic reticulum (ER) signaling adaptor, is essential for the type I interferon response to cytosolic dsDNA. The translocation from the ER to perinuclear vesicles following binding cGAMP is a critical step for STING to activate downstream signaling molecules, which lead to the production of interferon and pro-inflammatory cytokines. Here we found that apoptosis-linked gene 2 (ALG2) suppressed STING signaling induced by either HSV-1 infection or cGAMP presence. Knockout of ALG2 markedly facilitated the expression of type I interferons upon cGAMP treatment or HSV-1 infection in THP-1 monocytes. Mechanistically, ALG2 associated with the C-terminal tail (CTT) of STING and inhibited its trafficking from ER to perinuclear region. Furthermore, the ability of ALG2 to coordinate calcium was crucial for its regulation of STING trafficking and DNA-induced innate immune responses. This work suggests that ALG2 is involved in DNA-induced innate immune responses by regulating STING trafficking.
Collapse
Affiliation(s)
- Wangsheng Ji
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Lianfei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoyu Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
404
|
Krusche M, Kallinich T. [Autoinflammation-differences between children and adults]. Z Rheumatol 2021; 81:45-54. [PMID: 34762171 DOI: 10.1007/s00393-021-01115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2021] [Indexed: 10/19/2022]
Abstract
Autoinflammatory diseases present as multisystemic inflammation and often manifest in early childhood. In contrast, in a few diseases, e.g., the recently described VEXAS (vacuoles, E1 enzyme, X‑linked, autoinflammatory, somatic) syndrome, the first symptoms occur exclusively in adulthood. This article describes how the phenotypic expression and severity of individual autoinflammatory diseases differ depending on age. Furthermore, differences in the development of organ damage in children and adults are pointed out. In addition to the hereditary periodic fever syndromes, the clinical picture of deficiency of adenosine deaminase 2, the interferonopathies, periodic fever, aphthous stomatitis, pharyngitis, and adenitis syndrome as well as VEXAS and Schnitzler syndromes are highlighted.
Collapse
Affiliation(s)
- Martin Krusche
- Rheumatologie und entzündliche Systemerkrankungen, III. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Tilmann Kallinich
- Klinik für Pädiatrie mit Schwerpunkt Pneumologie, Immunologie und Intensivmedizin, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Deutschland. .,SozialpädiatischesZentrum, Charité - Universitätsmedizin Berlin, Berlin, Deutschland. .,Berlin Institute of Health, Berlin, Deutschland. .,Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Deutschland.
| |
Collapse
|
405
|
Chen X, He W, Sun M, Yan Y, Pang Y, Chai G. STING inhibition accelerates the bone healing process while enhancing type H vessel formation. FASEB J 2021; 35:e21964. [PMID: 34694030 DOI: 10.1096/fj.202100069rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
The stimulator of interferon genes (STING), one of the critical factors of innate immunity, is indicated to be closely related to angiogenesis. This study examined STING's role in angiogenesis and the formation of type H vessels, a specific subtype of bone vessels that regulates bone healing. Different concentrations of 2',3'-cGAMP, and H-151 or C-176 were applied to activate or inhibit STING, respectively. Human umbilical vein endothelial cells were used to examine the effect of STING on angiogenesis in vitro; cell viability, cell migration, and quantitative real-time polymerase chain reactions were performed. Also, the metatarsal experiment was applied as ex vivo proof. Bone fracture or defect mice models were used to examine the effect of STING in vivo; the bone healing process was evaluated by radiography weekly and by μCT on the 14th day after surgery. The formation of type H vessels (CD31hi Emcnhi endothelial cells) and osteogenesis (OCN-positive cells) was assessed using the cryosection and paraffin section. STING activation inhibited angiogenesis both in vitro and ex vivo and slowed down the bone healing process in vivo. Histological analysis showed an increased callus formation, fewer type H vessels, and almost no callus mineralization in the STING activation group compared to the control group. By contrast, H-151 (a hsSTING inhibitor) promoted angiogenesis at a low dose. Moreover, inhibition of mmSTING by C-176 enhanced type H vessels' formation, implying osteogenesis promotion in bone healing (higher bone volume density and more OCN-positive cells). Our data suggested that STING inhibition accelerates the bone healing process while enhancing type H vessel formation.
Collapse
Affiliation(s)
- Xiaojun Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Wenxin He
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mengzhe Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yingjie Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yichuan Pang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gang Chai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
406
|
Rood JE, Behrens EM. Inherited Autoinflammatory Syndromes. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:227-249. [PMID: 34699263 DOI: 10.1146/annurev-pathmechdis-030121-041528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autoinflammation describes a collection of diverse diseases caused by indiscriminate activation of the immune system in an antigen-independent manner. The rapid advancement of genetic diagnostics has allowed for the identification of a wide array of monogenic causes of autoinflammation. While the clinical picture of these syndromes is diverse, it is possible to thematically group many of these diseases under broad categories that provide insight into the mechanisms of disease and therapeutic possibilities. This review covers archetypical examples of inherited autoinflammatory diseases in five major categories: inflammasomopathy, interferonopathy, unfolded protein/cellular stress response, relopathy, and uncategorized. This framework can suggest where future work is needed to identify other genetic causes of autoinflammation, what types of diagnostics need to be developed to care for this patient population, and which options might be considered for novel therapeutic targeting. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Julia E Rood
- Division of Rheumatology, Children's Hospital of Philadelphia, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Edward M Behrens
- Division of Rheumatology, Children's Hospital of Philadelphia, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
407
|
Song K, Wu Y, Fu B, Wang L, Hao W, Hua F, Sun Y, Dorf ME, Li S. Leaked Mitochondrial C1QBP Inhibits Activation of the DNA Sensor cGAS. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2155-2166. [PMID: 34526378 PMCID: PMC8492507 DOI: 10.4049/jimmunol.2100392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/16/2021] [Indexed: 01/04/2023]
Abstract
Cytosolic DNA from pathogens activates the DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) that produces the second messenger, cGAMP. cGAMP triggers a signal cascade leading to type I IFN expression. Host DNA is normally restricted in the cellular compartments of the nucleus and mitochondria. Recent studies have shown that DNA virus infection triggers mitochondrial stress, leading to the release of mitochondrial DNA to the cytosol and activation of cGAS; however, the regulatory mechanism of mitochondrial DNA-mediated cGAS activation is not well elucidated. In this study, we analyzed cGAS protein interactome in mouse RAW264.7 macrophages and found that cGAS interacted with C1QBP. C1QBP predominantly localized in the mitochondria and leaked into the cytosol during DNA virus infection. The leaked C1QBP bound the NTase domain of cGAS and inhibited cGAS enzymatic activity in cells and in vitro. Overexpression of the cytosolic form of C1QBP inhibited cytosolic DNA-elicited innate immune responses and promoted HSV-1 infection. By contrast, deficiency of C1QBP led to the elevated innate immune responses and impaired HSV-1 infection. Taken together, our study suggests that C1QBP is a novel cGAS inhibitor hidden in the mitochondria.
Collapse
Affiliation(s)
- Kun Song
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA; and
| | - Yakun Wu
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA; and
| | - Bishi Fu
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Lingyan Wang
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA; and
| | - Wenzhuo Hao
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA; and
| | - Fang Hua
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA; and
| | - Yiwen Sun
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA; and
| | - Martin E Dorf
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA; and
| |
Collapse
|
408
|
Horneff G, Schütz C, Rösen-Wolff A. [Autoinflammation-A clinical and genetic challenge]. Z Rheumatol 2021; 80:953-965. [PMID: 34636972 DOI: 10.1007/s00393-021-01076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 11/24/2022]
Abstract
In the last two decades clinical rheumatological practice has been confronted with a steadily increasing number of autoinflammatory diseases, the immunological pathomechanisms of which have been elucidated and in part can be clinically well classified. Whereas targeted genetic diagnostics previously served to confirm a clinically suspected diagnosis, genetic sequencing technology has much improved and enables a new diagnostic approach via high-throughput sequencing, e.g., panel sequencing, whole exome and whole genome sequencing. Thus, the decision to make a diagnosis clinically and/or genetically, has become a daily challenge. This article contrasts the clinical, immunological and genetic aspects of autoinflammatory diseases.
Collapse
Affiliation(s)
- Gerd Horneff
- Zentrum für Allgemeine Pädiatrie und Neonatologie, Asklepios Klinik Sankt Augustin, Arnold Janssen Str. 29, 53757, Sankt Augustin, Deutschland. .,Zentrum für Kinder- und Jugendmedizin, Universität Köln, Köln, Deutschland.
| | - Catharina Schütz
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Deutschland
| | - Angela Rösen-Wolff
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Deutschland
| |
Collapse
|
409
|
Cannon L, Wu EY. Recent Advances in Pediatric Vasculitis. Rheum Dis Clin North Am 2021; 47:781-796. [PMID: 34635304 DOI: 10.1016/j.rdc.2021.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This article provides an overview of the clinical presentation and diagnosis of select pediatric primary systemic vasculitides. Important advances in understanding the pathogenesis of these rare diseases also are discussed and efforts to harmonize treatment through consensus-based guidelines and multicenter and international collaborations highlighted.
Collapse
Affiliation(s)
- Laura Cannon
- Division of Pediatric Rheumatology, Department of Pediatrics, Duke University, 2301 Erwin Road, DUMC Box 3212, Durham, NC 27710, USA
| | - Eveline Y Wu
- Division of Pediatric Rheumatology, Department of Pediatrics, The University of North Carolina Chapel Hill, 030 MacNider Hall, CB #7231, Chapel Hill, NC 27599, USA; Division of Allergy/Immunology, Department of Pediatrics, The University of North Carolina Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
410
|
Masumoto J, Zhou W, Morikawa S, Hosokawa S, Taguchi H, Yamamoto T, Kurata M, Kaneko N. Molecular biology of autoinflammatory diseases. Inflamm Regen 2021; 41:33. [PMID: 34635190 PMCID: PMC8507398 DOI: 10.1186/s41232-021-00181-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
The long battle between humans and various physical, chemical, and biological insults that cause cell injury (e.g., products of tissue damage, metabolites, and/or infections) have led to the evolution of various adaptive responses. These responses are triggered by recognition of damage-associated molecular patterns (DAMPs) and/or pathogen-associated molecular patterns (PAMPs), usually by cells of the innate immune system. DAMPs and PAMPs are recognized by pattern recognition receptors (PRRs) expressed by innate immune cells; this recognition triggers inflammation. Autoinflammatory diseases are strongly associated with dysregulation of PRR interactomes, which include inflammasomes, NF-κB-activating signalosomes, type I interferon-inducing signalosomes, and immuno-proteasome; disruptions of regulation of these interactomes leads to inflammasomopathies, relopathies, interferonopathies, and proteasome-associated autoinflammatory syndromes, respectively. In this review, we discuss the currently accepted molecular mechanisms underlying several autoinflammatory diseases.
Collapse
Affiliation(s)
- Junya Masumoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan.
| | - Wei Zhou
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Shinnosuke Morikawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Sho Hosokawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Haruka Taguchi
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Toshihiro Yamamoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Mie Kurata
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Naoe Kaneko
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
411
|
Frumholtz L, Bouaziz JD, Battistella M, Hadjadj J, Chocron R, Bengoufa D, Le Buanec H, Barnabei L, Meynier S, Schwartz O, Grzelak L, Smith N, Charbit B, Duffy D, Yatim N, Calugareanu A, Philippe A, Guerin CL, Joly B, Siguret V, Jaume L, Bachelez H, Bagot M, Rieux-Laucat F, Maylin S, Legoff J, Delaugerre C, Gendron N, Smadja DM, Cassius C. Type I interferon response and vascular alteration in chilblain-like lesions during the COVID-19 outbreak. Br J Dermatol 2021; 185:1176-1185. [PMID: 34611893 PMCID: PMC8652826 DOI: 10.1111/bjd.20707] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2021] [Indexed: 12/14/2022]
Abstract
Background The outbreak of chilblain‐like lesions (CLL) during the COVID‐19 pandemic has been reported extensively, potentially related to SARS‐CoV‐2 infection, yet its underlying pathophysiology is unclear. Objectives To study skin and blood endothelial and immune system activation in CLL in comparison with healthy controls and seasonal chilblains (SC), defined as cold‐induced sporadic chilblains occurring during 2015 and 2019 with exclusion of chilblain lupus. Methods This observational study was conducted during 9–16 April 2020 at Saint‐Louis Hospital, Paris, France. All patients referred with CLL seen during this period of the COVID‐19 pandemic were included in this study. We excluded patients with a history of chilblains or chilblain lupus. Fifty patients were included. Results Histological patterns were similar and transcriptomic signatures overlapped in both the CLL and SC groups, with type I interferon polarization and a cytotoxic–natural killer gene signature. CLL were characterized by higher IgA tissue deposition and more significant transcriptomic activation of complement and angiogenesis factors compared with SC. We observed in CLL a systemic immune response associated with IgA antineutrophil cytoplasmic antibodies in 73% of patients, and elevated type I interferon blood signature in comparison with healthy controls. Finally, using blood biomarkers related to endothelial dysfunction and activation, and to angiogenesis or endothelial progenitor cell mobilization, we confirmed endothelial dysfunction in CLL. Conclusions Our findings support an activation loop in the skin in CLL associated with endothelial alteration and immune infiltration of cytotoxic and type I IFN‐polarized cells leading to clinical manifestations.
Collapse
Affiliation(s)
- L Frumholtz
- Dermatology Department, AP-HP, Hôpital Saint-Louis, F-75010, Paris, France
| | - J-D Bouaziz
- Dermatology Department, AP-HP, Hôpital Saint-Louis, F-75010, Paris, France.,Université de Paris, Human Immunology Pathophysiology Immunotherapy, INSERM U976, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - M Battistella
- Université de Paris, Human Immunology Pathophysiology Immunotherapy, INSERM U976, Institut de Recherche Saint-Louis, F-75010, Paris, France.,Pathology Department, AP-HP, Hôpital Saint-Louis, F-75010, Paris, France
| | - J Hadjadj
- Université de Paris, Imagine Institute, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM U1163, F-75015, Paris, France.,Department of Internal Medicine, National Reference Centre for Rare Systemic Autoimmune Diseases, AP-HP, Hôpital Cochin, F-75014, Paris, France
| | - R Chocron
- Université de Paris, PARCC, INSERM, F-75006, Paris, France.,Emergency Department, AP-HP, Georges Pompidou European Hospital, F-75015, Paris, France
| | - D Bengoufa
- Immunobiology Department, AP-HP, Hôpital Saint-Louis, F-75010, Paris, France
| | - H Le Buanec
- Université de Paris, Human Immunology Pathophysiology Immunotherapy, INSERM U976, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - L Barnabei
- Université de Paris, Imagine Institute, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM U1163, F-75015, Paris, France
| | - S Meynier
- Université de Paris, Imagine Institute, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM U1163, F-75015, Paris, France
| | - O Schwartz
- Institut Pasteur, Virus and Immunity Unit, F-75015, Paris, France
| | - L Grzelak
- Institut Pasteur, Virus and Immunity Unit, F-75015, Paris, France
| | - N Smith
- Institut Pasteur, Translational Immunology Lab, F-75015, Paris, France
| | - B Charbit
- Institut Pasteur, Cytometry and Biomarkers UTechS, CRT, F-75015, Paris, France
| | - D Duffy
- Institut Pasteur, Translational Immunology Lab, F-75015, Paris, France.,Institut Pasteur, Cytometry and Biomarkers UTechS, CRT, F-75015, Paris, France
| | - N Yatim
- Dermatology Department, AP-HP, Hôpital Saint-Louis, F-75010, Paris, France.,Institut Pasteur, Translational Immunology Lab, F-75015, Paris, France
| | - A Calugareanu
- Dermatology Department, AP-HP, Hôpital Saint-Louis, F-75010, Paris, France.,Université de Paris, Human Immunology Pathophysiology Immunotherapy, INSERM U976, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - A Philippe
- Institut Pasteur, Cytometry and Biomarkers UTechS, CRT, F-75015, Paris, France
| | - C L Guerin
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, F-75006, Paris, France.,Institut Curie, Cytometry Platform, F-75006, Paris, France
| | - B Joly
- Biological Haematology Department, AP-HP, Hôpital Lariboisière, F-75010, Paris, France.,Université de Paris, EA3518, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - V Siguret
- Biological Haematology Department, AP-HP, Hôpital Lariboisière, F-75010, Paris, France.,Université de Paris, INSERM UMR S1140, F-75010, Paris, France
| | - L Jaume
- Dermatology Department, AP-HP, Hôpital Saint-Louis, F-75010, Paris, France
| | - H Bachelez
- Dermatology Department, AP-HP, Hôpital Saint-Louis, F-75010, Paris, France.,Université de Paris, Imagine Institute, Laboratory of Genetics of Skin Diseases, INSERM U1163, F-75015, Paris, France
| | - M Bagot
- Dermatology Department, AP-HP, Hôpital Saint-Louis, F-75010, Paris, France.,Université de Paris, Human Immunology Pathophysiology Immunotherapy, INSERM U976, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - F Rieux-Laucat
- Université de Paris, Imagine Institute, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM U1163, F-75015, Paris, France
| | - S Maylin
- Virology Department, AP-HP, Hôpital Saint-Louis, F-75010, Paris, France
| | - J Legoff
- Virology Department, AP-HP, Hôpital Saint-Louis, F-75010, Paris, France.,Université de Paris, Team Insight, INSERM U976, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - C Delaugerre
- Virology Department, AP-HP, Hôpital Saint-Louis, F-75010, Paris, France
| | - N Gendron
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, F-75006, Paris, France.,Hematology Department and Biosurgical Research Lab (Carpentier Foundation), Assistance Publique Hôpitaux de Paris-Centre Université de Paris (APHP-CUP), F-75015, Paris, France
| | - D M Smadja
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, F-75006, Paris, France.,Hematology Department and Biosurgical Research Lab (Carpentier Foundation), Assistance Publique Hôpitaux de Paris-Centre Université de Paris (APHP-CUP), F-75015, Paris, France
| | - C Cassius
- Dermatology Department, AP-HP, Hôpital Saint-Louis, F-75010, Paris, France.,Université de Paris, Human Immunology Pathophysiology Immunotherapy, INSERM U976, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | | |
Collapse
|
412
|
Cooray S, Henderson R, Solebo AL, Ancliffe P, Eleftheriou D, Brogan PA. Retinal vasculopathy in STING-associated vasculitis of infancy (SAVI). Rheumatology (Oxford) 2021; 60:e351-e353. [PMID: 33764368 DOI: 10.1093/rheumatology/keab297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/08/2021] [Accepted: 03/21/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Samantha Cooray
- Infection, Inflammation and Rheumatology Section, University College London Great Ormond Street Institute of Child Health
| | - Robert Henderson
- Opthalmology Department, Great Ormond Street Hospital for Children's NHS Trust
| | - Ameenat Lola Solebo
- Population, Policy and Practice Research and Teaching Department, University College London Great Ormond Street Institute of Child Health
| | - Phil Ancliffe
- Department of Haematology and Oncology, Great Ormond Street for Children's NHS Trust, London, UK
| | - Despina Eleftheriou
- Infection, Inflammation and Rheumatology Section, University College London Great Ormond Street Institute of Child Health
| | - Paul A Brogan
- Infection, Inflammation and Rheumatology Section, University College London Great Ormond Street Institute of Child Health
| |
Collapse
|
413
|
Gallucci S, Meka S, Gamero AM. Abnormalities of the type I interferon signaling pathway in lupus autoimmunity. Cytokine 2021; 146:155633. [PMID: 34340046 PMCID: PMC8475157 DOI: 10.1016/j.cyto.2021.155633] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
Type I interferons (IFNs), mostly IFNα and IFNβ, and the type I IFN Signature are important in the pathogenesis of Systemic Lupus Erythematosus (SLE), an autoimmune chronic condition linked to inflammation. Both IFNα and IFNβ trigger a signaling cascade that, through the activation of JAK1, TYK2, STAT1 and STAT2, initiates gene transcription of IFN stimulated genes (ISGs). Noteworthy, other STAT family members and IFN Responsive Factors (IRFs) can also contribute to the activation of the IFN response. Aberrant type I IFN signaling, therefore, can exacerbate SLE by deregulated homeostasis leading to unnecessary persistence of the biological effects of type I IFNs. The etiopathogenesis of SLE is partially known and considered multifactorial. Family-based and genome wide association studies (GWAS) have identified genetic and transcriptional abnormalities in key molecules directly involved in the type I IFN signaling pathway, namely TYK2, STAT1 and STAT4, and IRF5. Gain-of-function mutations that heighten IFNα/β production, which in turn maintains type I IFN signaling, are found in other pathologies like the interferonopathies. However, the distinctive characteristics have yet to be determined. Signaling molecules activated in response to type I IFNs are upregulated in immune cell subsets and affected tissues of SLE patients. Moreover, Type I IFNs induce chromatin remodeling leading to a state permissive to transcription, and SLE patients have increased global and gene-specific epigenetic modifications, such as hypomethylation of DNA and histone acetylation. Epigenome wide association studies (EWAS) highlight important differences between SLE patients and healthy controls in Interferon Stimulated Genes (ISGs). The combination of environmental and genetic factors may stimulate type I IFN signaling transiently and produce long-lasting detrimental effects through epigenetic alterations. Substantial evidence for the pathogenic role of type I IFNs in SLE advocates the clinical use of neutralizing anti-type I IFN receptor antibodies as a therapeutic strategy, with clinical studies already showing promising results. Current and future clinical trials will determine whether drugs targeting molecules of the type I IFN signaling pathway, like non-selective JAK inhibitors or specific TYK2 inhibitors, may benefit people living with lupus.
Collapse
Affiliation(s)
- Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| | - Sowmya Meka
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ana M Gamero
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
414
|
Abstract
The innate immunity works as a defence bullwark that safeguards healthy tissues with the power of detecting infectious agents in the human body: errors in the context of innate immunity identify autoinflammatory disorders (AIDs), which arise as bouts of aberrant inflammation with little or no involvement of T and B cells and neither recognized infections, nor associated autoimmune phenomena. Hereditary AIDs tend to have a pediatric-onset heralded by stereotyped inflammatory symptoms and fever, while AIDs without an ascertained cause, such as systemic juvenile idiopathic arthritis, derive from the interaction of genetic factors with environmental noxae and are unevenly defined. A dysregulated inflammasome activation promotes the best-known family of AIDs, as well as several degenerative and metabolic disorders, but also nuclear factor κB- and interferon-mediated conditions have been framed as AIDs: the zenith of inflammatory flares marks different phenotypes, but diagnosis may go unnoticed until adulthood due to downplayed symptoms and complex kaleidoscopic presentations. This review summarizes the main AIDs encountered in childhood with special emphasis on the clinical stigmata that may help establish a correct framework and blueprints to empower young scientists in the recognition of AIDs. The description focuses inflammasomopathies as paradigms of interleukinopathies, nuclear factor-κB -related disorders and interferonopathies. The challenges in the management of AIDs during childhood have been recently boosted by numerous therapeutic options derived from genomically-based approaches, which have led to identify targeted biologic agents as rationalized treatments and achieve more tangible perspectives of disease control.
Collapse
Affiliation(s)
- Raffaele Manna
- Department of Internal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Rare Diseases and Periodic Fevers Research Centre, Università Cattolica Sacro Cuore, Largo A. Gemelli no. 8, 00168, Rome, Italy.
- Rare Diseases and Periodic Fevers Research Centre, Università Cattolica Sacro Cuore, Rome, Italy.
| | - Donato Rigante
- Rare Diseases and Periodic Fevers Research Centre, Università Cattolica Sacro Cuore, Rome, Italy
- Department of Life Sciences and Public Health, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
415
|
Hou P, Lin Y, Li Z, Lu R, Wang Y, Tian T, Jia P, Zhang X, Cao L, Zhou Z, Li C, Gu J, Guo D. Autophagy receptor CCDC50 tunes the STING-mediated interferon response in viral infections and autoimmune diseases. Cell Mol Immunol 2021; 18:2358-2371. [PMID: 34453126 PMCID: PMC8484562 DOI: 10.1038/s41423-021-00758-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
DNA sensing and timely activation of interferon (IFN)-mediated innate immunity are crucial for the defense against DNA virus infections and the clearance of abnormal cells. However, overactivation of immune responses may lead to tissue damage and autoimmune diseases; therefore, these processes must be intricately regulated. STING is the key adaptor protein, which is activated by cyclic GMP-AMP, the second messenger derived from cGAS-mediated DNA sensing. Here, we report that CCDC50, a newly identified autophagy receptor, tunes STING-directed type I IFN signaling activity by delivering K63-polyubiquitinated STING to autolysosomes for degradation. Knockout of CCDC50 significantly increases herpes simplex virus 1 (HSV-1)- or DNA ligand-induced production of type I IFN and proinflammatory cytokines. Ccdc50-deficient mice show increased production of IFN, decreased viral replication, reduced cell infiltration, and improved survival rates compared with their wild-type littermates when challenged with HSV-1. Remarkably, the expression of CCDC50 is downregulated in systemic lupus erythematosus (SLE), a chronic autoimmune disease. CCDC50 levels are negatively correlated with IFN signaling pathway activation and disease severity in human SLE patients. CCDC50 deficiency potentiates the cGAS-STING-mediated immune response triggered by SLE serum. Thus, our findings reveal the critical role of CCDC50 in the immune regulation of viral infections and autoimmune diseases and provide insights into the therapeutic implications of CCDC50 manipulation.
Collapse
Affiliation(s)
- Panpan Hou
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yuxin Lin
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zibo Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Ruiqing Lu
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yicheng Wang
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Tian Tian
- The Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Penghui Jia
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Xi Zhang
- Division of Rheumatology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liu Cao
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhongwei Zhou
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Chunmei Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Jieruo Gu
- Division of Rheumatology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Deyin Guo
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
416
|
Chen R, Du J, Zhu H, Ling Q. The role of cGAS-STING signalling in liver diseases. JHEP Rep 2021; 3:100324. [PMID: 34381984 PMCID: PMC8340306 DOI: 10.1016/j.jhepr.2021.100324] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/20/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
The recently identified novel cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) activates the downstream adaptor protein stimulator of interferon genes (STING) by catalysing the synthesis of cyclic GMP-AMP. This in turn initiates an innate immune response through the release of various cytokines, including type I interferon. Foreign DNA (microbial infection) or endogenous DNA (nuclear or mitochondrial leakage) can serve as cGAS ligands and lead to the activation of cGAS-STING signalling. Therefore, the cGAS-STING pathway plays essential roles in infectious diseases, sterile inflammation, tumours, and autoimmune diseases. In addition, cGAS-STING signalling affects the progression of liver inflammation through other mechanisms, such as autophagy and metabolism. In this review, we summarise recent advances in our understanding of the role of cGAS-STING signalling in the innate immune modulation of different liver diseases. Furthermore, we discuss the therapeutic potential of targeting the cGAS-STING pathway in the treatment of liver diseases.
Collapse
Key Words
- AIM2, absent in melanoma 2
- ALD, alcohol-related liver disease
- APCs, antigen-presenting cells
- CDNs, cyclic dinucleotides
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- ER, endoplasmic reticulum
- GVHD, graft-versus-host disease
- HCC, hepatocellular carcinoma
- HSCs, hepatic stellate cells
- IFN-I, type I interferon
- IL, interleukin
- IRF3, interferon regulatory factor 3
- IRI, ischaemia refusion injury
- KCs, Kupffer cells
- LSECs, liver sinusoidal endothelial cells
- MHC, major histocompatibility complex
- NAFLD, non-alcoholic fatty liver disease
- NK cells, natural killer cells
- NPCs, non-parenchymal cells
- PAMPs, pathogen-associated molecular patterns
- PD-1, programmed cell death protein-1
- PD-L1, programmed cell death protein ligand-1
- PPRs, pattern recognition receptors
- SAVI, STING-associated vasculopathy with onset in infancy
- STING, stimulator of interferon genes
- TBK1, TANK-binding kinase 1
- TGF-β1, transforming growth factor-β1
- TLR, Toll-like receptor
- TNF, tumour necrosis factor
- XRCC, X-ray repair cross complementing
- aHSCT, allogeneic haematopoietic stem cell transplantation
- cGAMP, cyclic guanosine monophosphate-adenosine monophosphate
- cGAS, cyclic guanosine monophosphate-adenosine monophosphate synthase
- cGAS-STING signalling
- dsDNA, double-strand DNA
- hepatocellular carcinoma
- innate immune response
- liver injury
- mTOR, mammalian target of rapamycin
- mtDNA, mitochondrial DNA
- nonalcoholic fatty liver disease
- siRNA, small interfering RNA
- ssRNA, single-stranded RNA
- viral hepatitis
Collapse
Affiliation(s)
- Ruihan Chen
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiamin Du
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qi Ling
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
417
|
Abstract
Innate immunity is regulated by a broad set of evolutionary conserved receptors to finely probe the local environment and maintain host integrity. Besides pathogen recognition through conserved motifs, several of these receptors also sense aberrant or misplaced self-molecules as a sign of perturbed homeostasis. Among them, self-nucleic acid sensing by the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway alerts on the presence of both exogenous and endogenous DNA in the cytoplasm. We review recent literature demonstrating that self-nucleic acid detection through the STING pathway is central to numerous processes, from cell physiology to sterile injury, auto-immunity and cancer. We address the role of STING in autoimmune diseases linked to dysfunctional DNAse or related to mutations in DNA sensing pathways. We expose the role of the cGAS/STING pathway in inflammatory diseases, neurodegenerative conditions and cancer. Connections between STING in various cell processes including autophagy and cell death are developed. Finally, we review proposed mechanisms to explain the sources of cytoplasmic DNA.
Collapse
Affiliation(s)
| | - Nicolas Riteau
- Experimental and Molecular Immunology and Neurogenetics Laboratory (INEM), Centre National de la Recherche Scientifique (CNRS), UMR7355 and University of Orleans, Orleans, France
| |
Collapse
|
418
|
Chen K, Lai C, Su Y, Bao WD, Yang LN, Xu PP, Zhu LQ. cGAS-STING-mediated IFN-I response in host defense and neuro-inflammatory diseases. Curr Neuropharmacol 2021; 20:362-371. [PMID: 34561985 PMCID: PMC9413793 DOI: 10.2174/1570159x19666210924110144] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022] Open
Abstract
The presence of foreign or misplaced nucleic acids is a danger signal that triggers innate immune responses through activating cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) and binding to its downstream signaling effector stimulator of interferon genes (STING). Then the cGAS-STING pathway activation links nucleic acid sensing to immune responses and pathogenic entities clearance. However, overactivation of this signaling pathway leads to fatal immune disorders and contributes to the progression of many human inflammatory diseases. Therefore, optimal activation of this pathway is crucial for the elimination of invading pathogens and the maintenance of immune homeostasis. In this review, we will summarize its fundamental roles in initiating host defense against invading pathogens and discuss its pathogenic roles in multiple neuro-inflammatory diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Kai Chen
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuan Lai
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yin Su
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Dai Bao
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liu Nan Yang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping-Ping Xu
- Endoscopy Center, Wuhan Children's Hospital , Tongji Medical College, Huazhong University of Science and Technology, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
419
|
Hadjadj J, Frémond ML, Neven B. Emerging Place of JAK Inhibitors in the Treatment of Inborn Errors of Immunity. Front Immunol 2021; 12:717388. [PMID: 34603291 PMCID: PMC8484879 DOI: 10.3389/fimmu.2021.717388] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/25/2021] [Indexed: 12/27/2022] Open
Abstract
Among inborn errors of immunity (IEIs), some conditions are characterized by inflammation and autoimmunity at the front line and are particularly challenging to treat. Monogenic diseases associated with gain-of-function mutations in genes critical for cytokine signaling through the JAK-STAT pathway belong to this group. These conditions represent good candidates for treatment with JAK inhibitors. Type I interferonopathies, a group of recently identified monogenic auto-inflammatory diseases characterized by excessive secretion of type I IFN, are also good candidates with growing experiences reported in the literature. However, many questions remain regarding the choice of the drug, the dose (in particular in children), the efficacy on the various manifestations, the monitoring of the treatment, and the management of potent side effects in particular in patients with infectious susceptibility. This review will summarize the current experiences reported and will highlight the unmet needs.
Collapse
Affiliation(s)
- Jérôme Hadjadj
- Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Hôpital Cochin, APHP-Centre Université de Paris (CUP), Paris, France
- Université de Paris, Institut Imagine, INSERMU1163, Laboratory of Immunogenetics of Pediatric Autoimmuninity, Paris, France
| | - Marie-Louise Frémond
- Pediatric Hematology-Immunology and Rheumatology Department, APHP-Centre Université de Paris (CUP), Necker Hospital, Paris, France
- Université de Paris, Institut Imagine, Laboratory of Neurogenetics and Neuroinflammation, Paris, France
| | - Bénédicte Neven
- Université de Paris, Institut Imagine, INSERMU1163, Laboratory of Immunogenetics of Pediatric Autoimmuninity, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Department, APHP-Centre Université de Paris (CUP), Necker Hospital, Paris, France
| |
Collapse
|
420
|
Hu H, Keat K. Myeloperoxidase and associated lung disease: Review of the latest developments. Int J Rheum Dis 2021; 24:1460-1466. [PMID: 34498802 DOI: 10.1111/1756-185x.14213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022]
Abstract
Myeloperoxidase (MPO) anti-neutrophil cytoplasmic antibodies (ANCA) are often detected in association with a variety of lung pathologies, the most common being interstitial lung disease (ILD). A growing cohort of patients are being diagnosed with MPO-ANCA in the context of ILD without ANCA-associated vasculitis. Clinically and radiologically, there is little to differentiate this cohort from MPO-ANCA-negative ILD patients; however, the pathophysiology is likely different and different treatments are likely required. We present here a brief summary of the proposed pathophysiology of MPO-ANCA-positive ILD, and a more detailed review of the latest evidence on management, including monitoring for development of ANCA-associated vasculitis, immunosuppression, anti-fibrotics, and novel agents that have yet to be trialled in human experiments.
Collapse
Affiliation(s)
- Hannah Hu
- Department of Immunology, Campbelltown Hospital, Sydney, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - Karuna Keat
- Department of Immunology, Campbelltown Hospital, Sydney, New South Wales, Australia.,Western Sydney University, Sydney, New South Wales, Australia
| |
Collapse
|
421
|
Zhang Y, Qin Z, Sun W, Chu F, Zhou F. Function of Protein S-Palmitoylation in Immunity and Immune-Related Diseases. Front Immunol 2021; 12:661202. [PMID: 34557182 PMCID: PMC8453015 DOI: 10.3389/fimmu.2021.661202] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/23/2021] [Indexed: 02/04/2023] Open
Abstract
Protein S-palmitoylation is a covalent and reversible lipid modification that specifically targets cysteine residues within many eukaryotic proteins. In mammalian cells, the ubiquitous palmitoyltransferases (PATs) and serine hydrolases, including acyl protein thioesterases (APTs), catalyze the addition and removal of palmitate, respectively. The attachment of palmitoyl groups alters the membrane affinity of the substrate protein changing its subcellular localization, stability, and protein-protein interactions. Forty years of research has led to the understanding of the role of protein palmitoylation in significantly regulating protein function in a variety of biological processes. Recent global profiling of immune cells has identified a large body of S-palmitoylated immunity-associated proteins. Localization of many immune molecules to the cellular membrane is required for the proper activation of innate and adaptive immune signaling. Emerging evidence has unveiled the crucial roles that palmitoylation plays to immune function, especially in partitioning immune signaling proteins to the membrane as well as to lipid rafts. More importantly, aberrant PAT activity and fluctuations in palmitoylation levels are strongly correlated with human immunologic diseases, such as sensory incompetence or over-response to pathogens. Therefore, targeting palmitoylation is a novel therapeutic approach for treating human immunologic diseases. In this review, we discuss the role that palmitoylation plays in both immunity and immunologic diseases as well as the significant potential of targeting palmitoylation in disease treatment.
Collapse
|
422
|
Baris AM, Fraile-Bethencourt E, Anand S. Nucleic Acid Sensing in the Tumor Vasculature. Cancers (Basel) 2021; 13:4452. [PMID: 34503262 PMCID: PMC8431390 DOI: 10.3390/cancers13174452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
Endothelial cells form a powerful interface between tissues and immune cells. In fact, one of the underappreciated roles of endothelial cells is to orchestrate immune attention to specific sites. Tumor endothelial cells have a unique ability to dampen immune responses and thereby maintain an immunosuppressive microenvironment. Recent approaches to trigger immune responses in cancers have focused on activating nucleic acid sensors, such as cGAS-STING, in combination with immunotherapies. In this review, we present a case for targeting nucleic acid-sensing pathways within the tumor vasculature to invigorate tumor-immune responses. We introduce two specific nucleic acid sensors-the DNA sensor TREX1 and the RNA sensor RIG-I-and discuss their functional roles in the vasculature. Finally, we present perspectives on how these nucleic acid sensors in the tumor endothelium can be targeted in an antiangiogenic and immune activation context. We believe understanding the role of nucleic acid-sensing in the tumor vasculature can enhance our ability to design more effective therapies targeting the tumor microenvironment by co-opting both vascular and immune cell types.
Collapse
Affiliation(s)
- Adrian M. Baris
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.M.B.); (E.F.-B.)
| | - Eugenia Fraile-Bethencourt
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.M.B.); (E.F.-B.)
| | - Sudarshan Anand
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.M.B.); (E.F.-B.)
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
423
|
Regulation of cGAS-STING pathway - Implications for systemic lupus erythematosus. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2021; 2:173-184. [PMID: 36465073 PMCID: PMC9524788 DOI: 10.2478/rir-2021-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/07/2021] [Indexed: 12/22/2022]
Abstract
Abstract
Type I interferon (IFN-I) is implicated in the pathogenesis of systemic lupus erythematosus (SLE) and the closely associated monogenic autoinflammatory disorders termed the “interferonopathies.” Recently, the cytosolic DNA sensor cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) and its downstream signaling adaptor stimulator of interferon genes (STING) have been identified as having important, if not central, roles in driving IFN-I expression in response to self-DNA. This review highlights the many ways in which this pathway is regulated in order to prevent self-DNA recognition and underlines the importance of maintaining tight control in order to prevent autoimmune disease. We will discuss the murine and human studies that have implicated the cGAS-STING pathway as being an important contributor to breakdown in tolerance in SLE and highlight the potential therapeutic application of this knowledge for the treatment of SLE.
Collapse
|
424
|
Crow YJ, Neven B, Frémond ML. JAK inhibition in the type I interferonopathies. J Allergy Clin Immunol 2021; 148:991-993. [PMID: 34375617 DOI: 10.1016/j.jaci.2021.07.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, United Kingdom; University of Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Paris, France.
| | - Bénédicte Neven
- University of Paris, Paris, France; Pediatric Hematology-Immunology and Rheumatology Department, Hôpital Necker-Enfants Malades, AP-HP Centre Université de Paris, Paris, France; INSERM UMR 1163, Laboratory of Immunogenetics of Pediatric Autoimmunity, Imagine Institute, Paris, France
| | - Marie-Louise Frémond
- University of Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Paris, France; Pediatric Hematology-Immunology and Rheumatology Department, Hôpital Necker-Enfants Malades, AP-HP Centre Université de Paris, Paris, France
| |
Collapse
|
425
|
Anastasiou M, Newton GA, Kaur K, Carrillo-Salinas FJ, Smolgovsky SA, Bayer AL, Ilyukha V, Sharma S, Poltorak A, Luscinskas FW, Alcaide P. Endothelial STING controls T cell transmigration in an IFNI-dependent manner. JCI Insight 2021; 6:e149346. [PMID: 34156982 PMCID: PMC8410041 DOI: 10.1172/jci.insight.149346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
The stimulator of IFN genes (STING) protein senses cyclic dinucleotides released in response to double-stranded DNA and functions as an adaptor molecule for type I IFN (IFNI) signaling by activating IFNI-stimulated genes (ISG). We found impaired T cell infiltration into the peritoneum in response to TNF-α in global and EC-specific STING-/- mice and discovered that T cell transendothelial migration (TEM) across mouse and human endothelial cells (EC) deficient in STING was strikingly reduced compared with control EC, whereas T cell adhesion was not impaired. STING-/- T cells showed no defect in TEM or adhesion to EC, or immobilized endothelial cell-expressed molecules ICAM1 and VCAM1, compared with WT T cells. Mechanistically, CXCL10, an ISG and a chemoattractant for T cells, was dramatically reduced in TNF-α-stimulated STING-/- EC, and genetic loss or pharmacologic antagonisms of IFNI receptor (IFNAR) pathway reduced T cell TEM. Our data demonstrate a central role for EC-STING during T cell TEM that is dependent on the ISG CXCL10 and on IFNI/IFNAR signaling.
Collapse
Affiliation(s)
- Marina Anastasiou
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Department of Internal Medicine, University of Crete Medical School, Crete, Greece
| | - Gail A. Newton
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Kuljeet Kaur
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | - Sasha A. Smolgovsky
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Tufts Graduate School for Biomedical Sciences Immunology Program, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Abraham L. Bayer
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Tufts Graduate School for Biomedical Sciences Immunology Program, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Vladimir Ilyukha
- Petrozavodsk State University, Petrozavodsk, Republic of Karelia, Russia
| | - Shruti Sharma
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Tufts Graduate School for Biomedical Sciences Immunology Program, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alexander Poltorak
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Tufts Graduate School for Biomedical Sciences Immunology Program, Tufts University School of Medicine, Boston, Massachusetts, USA.,Petrozavodsk State University, Petrozavodsk, Republic of Karelia, Russia
| | - Francis W. Luscinskas
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Tufts Graduate School for Biomedical Sciences Immunology Program, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
426
|
Serrano Nájera G, Narganes Carlón D, Crowther DJ. TrendyGenes, a computational pipeline for the detection of literature trends in academia and drug discovery. Sci Rep 2021; 11:15747. [PMID: 34344904 PMCID: PMC8333311 DOI: 10.1038/s41598-021-94897-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Target identification and prioritisation are prominent first steps in modern drug discovery. Traditionally, individual scientists have used their expertise to manually interpret scientific literature and prioritise opportunities. However, increasing publication rates and the wider routine coverage of human genes by omic-scale research make it difficult to maintain meaningful overviews from which to identify promising new trends. Here we propose an automated yet flexible pipeline that identifies trends in the scientific corpus which align with the specific interests of a researcher and facilitate an initial prioritisation of opportunities. Using a procedure based on co-citation networks and machine learning, genes and diseases are first parsed from PubMed articles using a novel named entity recognition system together with publication date and supporting information. Then recurrent neural networks are trained to predict the publication dynamics of all human genes. For a user-defined therapeutic focus, genes generating more publications or citations are identified as high-interest targets. We also used topic detection routines to help understand why a gene is trendy and implement a system to propose the most prominent review articles for a potential target. This TrendyGenes pipeline detects emerging targets and pathways and provides a new way to explore the literature for individual researchers, pharmaceutical companies and funding agencies.
Collapse
Affiliation(s)
- Guillermo Serrano Nájera
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - David Narganes Carlón
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Division of Population Health and Genomics, Ninewells Hospital, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
- Exscientia Ltd, Dundee One, River Court, 5 West Victoria Dock Road, Dundee, DD1 3JT, UK
| | - Daniel J Crowther
- Exscientia Ltd, Dundee One, River Court, 5 West Victoria Dock Road, Dundee, DD1 3JT, UK.
| |
Collapse
|
427
|
Rech L, Rainer PP. The Innate Immune cGAS-STING-Pathway in Cardiovascular Diseases - A Mini Review. Front Cardiovasc Med 2021; 8:715903. [PMID: 34381828 PMCID: PMC8349977 DOI: 10.3389/fcvm.2021.715903] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation plays a central role in cardiovascular diseases (CVD). One pathway under investigation is the innate immune DNA sensor cyclic GMP-AMP synthase (cGAS) and its downstream receptor stimulator of interferon genes (STING). cGAS-STING upregulates type I interferons in response to pathogens. Recent studies show that also self-DNA may activate cGAS-STING, for instance, DNA released from nuclei or mitochondria during obesity or myocardial infarction. Here, we focus on emerging evidence describing the interaction of cGAS-STING with cardiovascular risk factors and disease. We also touch on translational therapeutic opportunities and potential further investigations.
Collapse
Affiliation(s)
- Lavinia Rech
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Peter P Rainer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,BioTechMed Graz, Graz, Austria
| |
Collapse
|
428
|
Hong Z, Ma T, Liu X, Wang C. cGAS-STING pathway: post-translational modifications and functions in sterile inflammatory diseases. FEBS J 2021; 289:6187-6208. [PMID: 34310043 DOI: 10.1111/febs.16137] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
Cytoplasmic microbial and host aberrant DNAs act as danger signals and trigger host immune responses. Upon recognition, the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) catalyzes the production of a second messenger 2'3'-cGAMP, which activates endoplasmic reticulum (ER)-associated stimulator of interferon (IFN) genes (STING) and ultimately leads to the induction of type I IFNs and inflammatory genes that collectively initiate host immune defense against microbial invasion. Inappropriate activation or suppression of this signaling pathway has been implicated in the development of some autoimmune diseases, sterile inflammation, and cancers. In this review, we describe how the activity of cGAS and STING is regulated by host post-translational modifications and summarize the recent advances of cell-specific cGAS-STING activation and its association in sterile inflammatory diseases. We also discuss key outstanding questions in the field, including how our knowledge of cGAS-STING pathway could be translated into clinical applications.
Collapse
Affiliation(s)
- Ze Hong
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Tianchi Ma
- Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xing Liu
- Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
429
|
Fukuda D, Pham PT, Sata M. Emerging Roles of the Innate Immune System Regulated by DNA Sensors in the Development of Vascular and Metabolic Diseases. J Atheroscler Thromb 2021; 29:297-307. [PMID: 34248111 PMCID: PMC8894111 DOI: 10.5551/jat.rv17059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sterile chronic inflammation causes cardiometabolic disorders; however, the mechanisms are not fully understood. Previous studies have demonstrated the degradation of cells/tissues in the vasculature and metabolic organs in lifestyle-associated diseases, such as diabetes and hyperlipidemia, suggesting the release and/or accumulation of nucleic acids from damaged cells. DNA is indispensable for life; however, DNA fragments, especially those from pathogens, strongly induce inflammation by the activation of DNA sensors. Growing evidence suggests that DNA-sensing mechanisms, which are normally involved in self-defense against pathogens as the innate immune system, are associated with the progression of inflammatory diseases in response to endogenous DNA fragments. There are several types of DNA sensors in our bodies. Toll-like receptor 9 (TLR9)—one of the most studied DNA sensors—recognizes DNA fragments in endosome. In addition, stimulator of interferon genes (STING), which has recently been extensively investigated, recognizes cyclic GMP-AMP (cGAMP) generated from DNA fragments in the cytosol. Both TLR9 and STING are known to play pivotal roles in host defense as the innate immune system. However, recent studies have indicated that the activation of these DNA sensors in immune cells, such as macrophages, promotes inflammation leading to the development of vascular and metabolic diseases associated with lifestyle. In this review, we discuss recent advances in determining the roles of DNA sensors in these disease contexts. Revealing a novel mechanism of sterile chronic inflammation regulated by DNA sensors might facilitate clinical interventions for these health conditions.
Collapse
Affiliation(s)
- Daiju Fukuda
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Phuong Tran Pham
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| |
Collapse
|
430
|
Pham PT, Fukuda D, Nishimoto S, Kim-Kaneyama JR, Lei XF, Takahashi Y, Sato T, Tanaka K, Suto K, Kawabata Y, Yamaguchi K, Yagi S, Kusunose K, Yamada H, Soeki T, Wakatsuki T, Shimada K, Kanematsu Y, Takagi Y, Shimabukuro M, Setou M, Barber GN, Sata M. STING, a cytosolic DNA sensor, plays a critical role in atherogenesis: a link between innate immunity and chronic inflammation caused by lifestyle-related diseases. Eur Heart J 2021; 42:4336-4348. [PMID: 34226923 DOI: 10.1093/eurheartj/ehab249] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/02/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022] Open
Abstract
AIMS Lifestyle-related diseases promote atherosclerosis, a chronic inflammatory disease; however, the molecular mechanism remains largely unknown. Endogenous DNA fragments released under over-nutrient condition provoke sterile inflammation through the recognition by DNA sensors. Here, we investigated the role of stimulator of interferon genes (STING), a cytosolic DNA sensor, in atherogenesis. METHODS AND RESULTS Apolipoprotein E-deficient (Apoe-/-) mice fed a western-type diet (WTD), a hypercholesterolaemic mouse model, showed higher STING expression and markers for DNA damage such as γH2AX, p53, and single-stranded DNA (ssDNA) accumulation in macrophages in the aorta compared with wild-type (WT) mice. The level of cGAMP, a STING agonist, in the aorta was higher in Apoe-/- mice. Genetic deletion of Sting in Apoe-/- mice reduced atherosclerotic lesions in the aortic arch, lipid, and macrophage accumulation in plaques, and inflammatory molecule expression in the aorta compared with the control. Pharmacological blockade of STING using a specific inhibitor, C-176, ameliorated atherogenesis in Apoe-/- mice. In contrast, bone marrow-specific STING expression in Apoe-/- mice stimulated atherogenesis. Expression or deletion of STING did not affect metabolic parameters and blood pressure. In vitro studies revealed that STING activation by cGAMP or mitochondrial DNA accelerated inflammatory molecule expression (e.g. TNF-α or IFN-β) in mouse and human macrophages. Activation of nuclear factor-κB and TANK binding kinase 1 was involved in STING-associated vascular inflammation and macrophage activation. Furthermore, human atherosclerotic lesions in the carotid arteries expressed STING and cGAMP. CONCLUSION Stimulator of interferon genes stimulates pro-inflammatory activation of macrophages, leading to the development of atherosclerosis. Stimulator of interferon genes signalling may serve as a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Phuong Tran Pham
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-Cho, Tokushima 770-8503, Japan.,Department of Cardio-Diabetes Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Sachiko Nishimoto
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-Cho, Tokushima 770-8503, Japan.,Faculty of Clinical Nutrition and Dietetics, Konan Women's University, 6-2-23, Morikita-machi, Higashinada-ku, Kobe 658-0001, Japan
| | - Joo-Ri Kim-Kaneyama
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Xiao-Feng Lei
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yutaka Takahashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.,Preppers, Co., Ltd, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Tokyo 140-001, Japan
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kimie Tanaka
- Division for Health Service Promotion, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kumiko Suto
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Yutaka Kawabata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Koji Yamaguchi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Kenya Kusunose
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Hirotsugu Yamada
- Department of Community Medicine for Cardiology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Takeshi Soeki
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Tetsuzo Wakatsuki
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Kenji Shimada
- Department of Neurosurgery, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Yasuhisa Kanematsu
- Department of Neurosurgery, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Yasushi Takagi
- Department of Neurosurgery, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Michio Shimabukuro
- Department of Cardio-Diabetes Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-Cho, Tokushima 770-8503, Japan.,Department of Diabetes, Endocrinology and Metabolism, School of Medicine, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Glen N Barber
- Department of Cell Biology, University of Miami Miller School of Medicine, 1550 NW 10th Avenue, PAP 5th floor Miami, Florida 33136, USA
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-Cho, Tokushima 770-8503, Japan
| |
Collapse
|
431
|
de Oliveira Mann CC, Hornung V. Molecular mechanisms of nonself nucleic acid recognition by the innate immune system. Eur J Immunol 2021; 51:1897-1910. [PMID: 34138462 DOI: 10.1002/eji.202049116] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/13/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022]
Abstract
Nucleic acids (NAs) represent one of the most important classes of molecules recognized by the innate immune system. However, NAs are not limited to pathogens, but are also present within the host. As such, the immune system has evolved an elaborate set of pathogen recognition receptors (PRRs) that employ various strategies to recognize distinct types of NAs, while reliably distinguishing between self and nonself. The here-employed strategies encompass the positioning of NA-sensing PRRs in certain subcellular compartments that potentially come in contact with pathogens but not host NAs, the existence of counterregulatory measures that keep endogenous NAs below a certain threshold, and also the specific identification of certain nonself patterns. Here, we review recent advances in the molecular mechanisms of NA recognition by TLRs, RLRs, and the cGAS-STING axis. We highlight the differences in NA-PRR interfaces that confer specificity and selectivity toward an NA ligand, as well as the NA-dependent induced conformational changes required for signal transduction.
Collapse
Affiliation(s)
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
432
|
Liu Q, Wu J, Zhang X, Li X, Wu X, Zhao Y, Ren J. Circulating mitochondrial DNA-triggered autophagy dysfunction via STING underlies sepsis-related acute lung injury. Cell Death Dis 2021; 12:673. [PMID: 34218252 PMCID: PMC8254453 DOI: 10.1038/s41419-021-03961-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023]
Abstract
The STING pathway and its induction of autophagy initiate a potent immune defense response upon the recognition of pathogenic DNA. However, this protective response is minimal, as STING activation worsens organ damage, and abnormal autophagy is observed during progressive sepsis. Whether and how the STING pathway affects autophagic flux during sepsis-induced acute lung injury (sALI) are currently unknown. Here, we demonstrate that the level of circulating mtDNA and degree of STING activation are increased in sALI patients. Furthermore, STING activation was found to play a pivotal role in mtDNA-mediated lung injury by evoking an inflammatory storm and disturbing autophagy. Mechanistically, STING activation interferes with lysosomal acidification in an interferon (IFN)-dependent manner without affecting autophagosome biogenesis or fusion, aggravating sepsis. Induction of autophagy or STING deficiency alleviated lung injury. These findings provide new insights into the role of STING in the regulatory mechanisms behind extrapulmonary sALI.
Collapse
Affiliation(s)
- Qinjie Liu
- Research Institute of General Surgery, Jinling Hospital, Medical school of Nanjing University, Nanjing, China
| | - Jie Wu
- Department of General Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Xufei Zhang
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuanheng Li
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Nanjing, China.
| | - Yun Zhao
- Department of General Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Medical school of Nanjing University, Nanjing, China.
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China.
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, China.
- Research Institute of General Surgery, Jinling Hospital, Nanjing, China.
| |
Collapse
|
433
|
Magg T, Okano T, Koenig LM, Boehmer DFR, Schwartz SL, Inoue K, Heimall J, Licciardi F, Ley-Zaporozhan J, Ferdman RM, Caballero-Oteyza A, Park EN, Calderon BM, Dey D, Kanegane H, Cho K, Montin D, Reiter K, Griese M, Albert MH, Rohlfs M, Gray P, Walz C, Conn GL, Sullivan KE, Klein C, Morio T, Hauck F. Heterozygous OAS1 gain-of-function variants cause an autoinflammatory immunodeficiency. Sci Immunol 2021; 6:eabf9564. [PMID: 34145065 PMCID: PMC8392508 DOI: 10.1126/sciimmunol.abf9564] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
Analysis of autoinflammatory and immunodeficiency disorders elucidates human immunity and fosters the development of targeted therapies. Oligoadenylate synthetase 1 is a type I interferon-induced, intracellular double-stranded RNA (dsRNA) sensor that generates 2'-5'-oligoadenylate to activate ribonuclease L (RNase L) as a means of antiviral defense. We identified four de novo heterozygous OAS1 gain-of-function variants in six patients with a polymorphic autoinflammatory immunodeficiency characterized by recurrent fever, dermatitis, inflammatory bowel disease, pulmonary alveolar proteinosis, and hypogammaglobulinemia. To establish causality, we applied genetic, molecular dynamics simulation, biochemical, and cellular functional analyses in heterologous, autologous, and inducible pluripotent stem cell-derived macrophages and/or monocytes and B cells. We found that upon interferon-induced expression, OAS1 variant proteins displayed dsRNA-independent activity, which resulted in RNase L-mediated RNA cleavage, transcriptomic alteration, translational arrest, and dysfunction and apoptosis of monocytes, macrophages, and B cells. RNase L inhibition with curcumin modulated and allogeneic hematopoietic cell transplantation cured the disorder. Together, these data suggest that human OAS1 is a regulator of interferon-induced hyperinflammatory monocyte, macrophage, and B cell pathophysiology.
Collapse
Affiliation(s)
- Thomas Magg
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Lars M Koenig
- Division of Clinical Pharmacology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel F R Boehmer
- Division of Clinical Pharmacology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Samantha L Schwartz
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
| | - Kento Inoue
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Jennifer Heimall
- Department of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Francesco Licciardi
- Department of Pediatric and Public Health Sciences, University of Torino, Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Julia Ley-Zaporozhan
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ronald M Ferdman
- Division of Clinical Immunology and Allergy, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Andrés Caballero-Oteyza
- Centre for Chronic Immunodeficiency (CCI) and Institute for Immunodeficiency (IFI), University Hospital Freiburg, Freiburg, Germany
| | - Esther N Park
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Brenda M Calderon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazutoshi Cho
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Hokkaido, Japan
| | - Davide Montin
- Department of Pediatric and Public Health Sciences, University of Torino, Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Karl Reiter
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias Griese
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Lung Research (DZL), Munich, Germany
| | - Michael H Albert
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Meino Rohlfs
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paul Gray
- Department of Immunology and Infectious Disease, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Christoph Walz
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
| | - Kathleen E Sullivan
- Department of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
- Munich Centre for Rare Diseases (M-ZSE), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
- German Centre for Infection Research (DZIF), Munich, Germany
- Munich Centre for Rare Diseases (M-ZSE), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
434
|
Fan C, Su H, Liao Z, Su J, Yang C, Zhang Y, Su J. Teleost-Specific MxG, a Traitor in the Mx Family, Negatively Regulates Antiviral Responses by Targeting IPS-1 for Proteasomal Degradation and STING for Lysosomal Degradation. THE JOURNAL OF IMMUNOLOGY 2021; 207:281-295. [PMID: 34135063 DOI: 10.4049/jimmunol.2000555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 04/29/2021] [Indexed: 11/19/2022]
Abstract
IFN-β promoter stimulator-1 (IPS-1)- and stimulator of IFN genes (STING)-mediated type I IFNs play a critical role in antiviral responses. Myxovirus resistance (Mx) proteins are pivotal components of the antiviral effectors induced by IFNs in many species. An unprecedented expansion of Mx genes has occurred in fish. However, the functions and mechanisms of Mx family members remain largely unknown in fish. In this study, we found that grass carp (Ctenopharyngodon idella) MxG, a teleost-specific Mx protein, is induced by IFNs and viruses, and it negatively regulates both IPS-1- and STING-mediated antiviral responses to facilitate grass carp reovirus, spring viremia of carp virus, and cyprinid herpesvirus-2 replication. MxG binds and degrades IPS-1 via the proteasomal pathway and STING through the lysosomal pathway, thereby negatively regulating IFN1 antiviral responses and NF-κB proinflammatory cytokines. MxG also suppresses the phosphorylation of STING IFN regulatory factor 3/7, and it subsequently downregulates IFN1 and NF-κB1 at the promoter, transcription, and protein levels. GTPase and GTPase effector domains of MxG contribute to the negative regulatory function. On the contrary, MxG knockdown weakens virus replication and cytopathic effect. Therefore, MxG can be an ISG molecule induced by IFNs and viruses, and degrade IPS-1 and STING proteins in a negative feedback manner to maintain homeostasis and avoid excessive immune responses after virus infection. To our knowledge, this is the first identification of a negative regulator in the Mx family, and our findings clarify a novel mechanism by which the IFN response is regulated.
Collapse
Affiliation(s)
- Chengjian Fan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hang Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhiwei Liao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Juanjuan Su
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; and
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongan Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China; .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
435
|
Monogenic Autoinflammatory Diseases: State of the Art and Future Perspectives. Int J Mol Sci 2021; 22:ijms22126360. [PMID: 34198614 PMCID: PMC8232320 DOI: 10.3390/ijms22126360] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Systemic autoinflammatory diseases are a heterogeneous family of disorders characterized by a dysregulation of the innate immune system, in which sterile inflammation primarily develops through antigen-independent hyperactivation of immune pathways. In most cases, they have a strong genetic background, with mutations in single genes involved in inflammation. Therefore, they can derive from different pathogenic mechanisms at any level, such as dysregulated inflammasome-mediated production of cytokines, intracellular stress, defective regulatory pathways, altered protein folding, enhanced NF-kappaB signalling, ubiquitination disorders, interferon pathway upregulation and complement activation. Since the discover of pathogenic mutations of the pyrin-encoding gene MEFV in Familial Mediterranean Fever, more than 50 monogenic autoinflammatory diseases have been discovered thanks to the advances in genetic sequencing: the advent of new genetic analysis techniques and the discovery of genes involved in autoinflammatory diseases have allowed a better understanding of the underlying innate immunologic pathways and pathogenetic mechanisms, thus opening new perspectives in targeted therapies. Moreover, this field of research has become of great interest, since more than a hundred clinical trials for autoinflammatory diseases are currently active or recently concluded, allowing us to hope for considerable acquisitions for the next few years. General paediatricians need to be aware of the importance of this group of diseases and they should consider autoinflammatory diseases in patients with clinical hallmarks, in order to guide further examinations and refer the patient to a specialist rheumatologist. Here we resume the pathogenesis, clinical aspects and diagnosis of the most important autoinflammatory diseases in children.
Collapse
|
436
|
Abstract
Type I interferons (IFN-Is) are a very important group of cytokines that are produced by innate immune cells but also act on adaptive immune cells. IFN-Is possess antiviral, antitumor, and anti-proliferative effects, as well are associated with the initiation and maintenance of autoimmune disorders. Studies have shown that aberrantly expressed IFN-Is and/or type I IFN-inducible gene signatures in the serum or tissues of patients with autoimmune disorders are linked to their pathogenesis, clinical manifestations, and disease activity. Type I interferonopathies with mutations in genes impacting the type I IFN signaling pathway have shown symptoms and characteristics similar to those of systemic lupus erythematosus (SLE). Furthermore, both interventions in animal models and clinical trials of therapies targeting the type I IFN signaling pathway have shown efficacy in the treatment of autoimmune diseases. Our review aims to summarize the functions and targeted therapies (as well as clinical trials) of IFN-Is in both adult and pediatric autoimmune diseases, such as SLE, pediatric SLE (pSLE), rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), juvenile dermatomyositis (JDM), Sjögren syndrome (SjS), and systemic sclerosis (SSc), discussing the potential abnormal regulation of transcription factors and epigenetic modifications and providing a potential mechanism for pathogenesis and therapeutic strategies for future clinical use.
Collapse
|
437
|
Abstract
Introduction: Innate immunity is armed with interferons (IFNs) that link innate immunity to adaptive immunity to generate long-term and protective immune responses against invading pathogens and tumors. However, regulation of IFN production is crucial because chronic IFN responses can have deleterious effects on both antitumor and antimicrobial immunity in addition to provoking autoinflammatory or autoimmune conditions.Areas covered: Here, we focus on the accumulated evidence on antimicrobial and antitumor activities of type I and II IFNs. We first summarize the intracellular and intercellular mechanisms regulating IFN production and signaling. Then, we discuss the mechanisms modulating the dual nature of IFNs for both antitumor and antimicrobial immune responses. Finally, we review the detrimental role of IFNs for induction of autoinflammation and autoimmunity.Expert opinion: The current evidence suggests that the dual role of IFNs for antimicrobial and antitumor immunity is dependent not only on the timing, administration route, and dose of IFNs but also on the type of pathogen/tumor. Therefore, we think that combinatorial therapies involving IFN-inducing adjuvants and immune-checkpoint blockers may offer therapeutic potential, especially for cancer, whereas infectious, autoinflammatory or autoimmune diseases require fine adjustment of timing, dose, and route of the administration for candidate IFN-based vaccines or immunotherapies.
Collapse
Affiliation(s)
- Burcu Temizoz
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, the University of Tokyo (IMSUT), Tokyo, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, the University of Tokyo (IMSUT), Tokyo, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan.,Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NBIOHN), Osaka, Japan
| |
Collapse
|
438
|
Histologic Patterns and Clues to Autoinflammatory Diseases in Children: What a Cutaneous Biopsy Can Tell Us. Dermatopathology (Basel) 2021; 8:202-220. [PMID: 34201078 PMCID: PMC8293050 DOI: 10.3390/dermatopathology8020026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Autoinflammation is defined by aberrant, antigen-independent activation of the innate immune signaling pathways. This leads to increased, pro-inflammatory cytokine expression and subsequent inflammation. In contrast, autoimmune and allergic diseases are antigen-directed immune responses from activation of the adaptive immune system. The innate and adaptive immune signaling pathways are closely interconnected. The group of 'complex multigenic diseases' are a result of mutual dysregulation of both the autoinflammatory and autoimmune physiologic components. In contrast, monogenic autoinflammatory syndromes (MAIS) result from single mutations and are exclusively autoinflammatory in their pathogenesis. Studying the clinical and histopathological findings for the various MAIS explains the phenotypical correlates of their specific mutations. This review aims to group the histopathologic clues for autoinflammation into three recognizable patterns. The presence of these histologic patterns in a pediatric patient with recurrent fevers and systemic inflammation should raise suspicion of an autoinflammatory component in MAIS, or, more frequently, in a complex multigenic disease. The three major histopathological patterns seen in autoinflammation are as follows: (i) the 'neutrophilic' pattern, seen in urticarial neutrophilic dermatosis, pustular psoriasis, aseptic neutrophilic folliculitis, and Sweet's syndrome; (ii) the 'vasculitic' pattern seen in small vessel-vasculitis (including hypersensitivity/leukocytoclastic vasculitis, thrombosing microangiopathy and lymphocytic vasculitis), and intermediate-sized vessel vasculitis, mimicking polyarteritis nodosa; and (iii) the 'granulomatous' pattern. Beyond these three patterns, there are additional histopathologic clues, which are detailed below. It is important for a dermatopathologist to recognize the patterns of autoinflammation, so that a diagnosis of MAIS or complex multigenic diseases may be obtained. Finally, careful histopathologic analyses could contribute to a better understanding of the various clinical manifestations of autoinflammation.
Collapse
|
439
|
Shmuel-Galia L, Humphries F, Lei X, Ceglia S, Wilson R, Jiang Z, Ketelut-Carneiro N, Foley SE, Pechhold S, Houghton J, Muneeruddin K, Shaffer SA, McCormick BA, Reboldi A, Ward D, Marshak-Rothstein A, Fitzgerald KA. Dysbiosis exacerbates colitis by promoting ubiquitination and accumulation of the innate immune adaptor STING in myeloid cells. Immunity 2021; 54:1137-1153.e8. [PMID: 34051146 PMCID: PMC8237382 DOI: 10.1016/j.immuni.2021.05.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/26/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022]
Abstract
Alterations in the cGAS-STING DNA-sensing pathway affect intestinal homeostasis. We sought to delineate the functional role of STING in intestinal inflammation. Increased STING expression was a feature of intestinal inflammation in mice with colitis and in humans afflicted with inflammatory bowel disease. Mice bearing an allele rendering STING constitutively active exhibited spontaneous colitis and dysbiosis, as well as progressive chronic intestinal inflammation and fibrosis. Bone marrow chimera experiments revealed STING accumulation in intestinal macrophages and monocytes as the initial driver of inflammation. Depletion of Gram-negative bacteria prevented STING accumulation in these cells and alleviated intestinal inflammation. STING accumulation occurred at the protein rather than transcript level, suggesting post-translational stabilization. We found that STING was ubiquitinated in myeloid cells, and this K63-linked ubiquitination could be elicited by bacterial products, including cyclic di-GMP. Our findings suggest a positive feedback loop wherein dysbiosis foments the accumulation of STING in intestinal myeloid cells, driving intestinal inflammation.
Collapse
Affiliation(s)
- Liraz Shmuel-Galia
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Fiachra Humphries
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xuqiu Lei
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Simona Ceglia
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ruth Wilson
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Zhaozhao Jiang
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Natalia Ketelut-Carneiro
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sage E Foley
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA; Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Susanne Pechhold
- Flow Cytometry core facility, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - JeanMarie Houghton
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Khaja Muneeruddin
- Department of Biochemistry and molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Mass spectrometry facility, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Scott A Shaffer
- Department of Biochemistry and molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Mass spectrometry facility, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Beth A McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA; Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Doyle Ward
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA; Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ann Marshak-Rothstein
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
440
|
Takahashi K, Niki T, Ogawa E, Fumika K, Nishioka Y, Sawa M, Arai H, Mukai K, Taguchi T. A cell-free assay implicates a role of sphingomyelin and cholesterol in STING phosphorylation. Sci Rep 2021; 11:11996. [PMID: 34099821 PMCID: PMC8184970 DOI: 10.1038/s41598-021-91562-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
Stimulator of interferon genes (STING) is essential for the type I interferon response induced by microbial DNA from virus or self-DNA from mitochondria/nuclei. In response to emergence of such DNAs in the cytosol, STING translocates from the endoplasmic reticulum to the Golgi, and activates TANK-binding kinase 1 (TBK1) at the trans-Golgi network (TGN). Activated TBK1 then phosphorylates STING at Ser365, generating an interferon regulatory factor 3-docking site on STING. How this reaction proceeds specifically at the TGN remains poorly understood. Here we report a cell-free reaction in which endogenous STING is phosphorylated by TBK1. The reaction utilizes microsomal membrane fraction prepared from TBK1-knockout cells and recombinant TBK1. We observed agonist-, TBK1-, “ER-to-Golgi” traffic-, and palmitoylation-dependent phosphorylation of STING at Ser365, mirroring the nature of STING phosphorylation in vivo. Treating the microsomal membrane fraction with sphingomyelinase or methyl-β-cyclodextrin, an agent to extract cholesterol from membranes, suppressed the phosphorylation of STING by TBK1. Given the enrichment of sphingomyelin and cholesterol in the TGN, these results may provide the molecular basis underlying the specific phosphorylation reaction of STING at the TGN.
Collapse
Affiliation(s)
- Kanoko Takahashi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takahiro Niki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan.,RIKEN Center for Brain Science, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
| | - Emari Ogawa
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Kiku Fumika
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yu Nishioka
- Research and Development, Carna Biosciences, Inc., Kobe, Japan
| | - Masaaki Sawa
- Research and Development, Carna Biosciences, Inc., Kobe, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Kojiro Mukai
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | - Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
441
|
Abstract
cGAS (cytosolic DNA sensor cyclic AMP-GMP synthase)-STING (stimulator of interferon genes) signaling is critical for sensing cytosolic DNA to initiate host immune responses against invading pathogens and cancer. However, inappropriate activation of STING signaling causes severe and often fatal autoimmune or autoinflammatory diseases. Hence, STING is an attractive drug target for the treatment of STING-driven autoimmune and inflammatory disorders. Therefore, there is a need to identify lead compounds that effectively inhibit human STING for further drug development. Here, we identified and characterized a STING-specific inhibitor SN-011 with high efficiency, specificity, and safety, paving the way for therapeutically manipulating STING-mediated clinical diseases. Cytosolic DNA activates cGAS (cytosolic DNA sensor cyclic AMP-GMP synthase)-STING (stimulator of interferon genes) signaling, which triggers interferon and inflammatory responses that help defend against microbial infection and cancer. However, aberrant cytosolic self-DNA in Aicardi–Goutière’s syndrome and constituently active gain-of-function mutations in STING in STING-associated vasculopathy with onset in infancy (SAVI) patients lead to excessive type I interferons and proinflammatory cytokines, which cause difficult-to-treat and sometimes fatal autoimmune disease. Here, in silico docking identified a potent STING antagonist SN-011 that binds with higher affinity to the cyclic dinucleotide (CDN)-binding pocket of STING than endogenous 2′3′-cGAMP. SN-011 locks STING in an open inactive conformation, which inhibits interferon and inflammatory cytokine induction activated by 2′3′-cGAMP, herpes simplex virus type 1 infection, Trex1 deficiency, overexpression of cGAS-STING, or SAVI STING mutants. In Trex1−/− mice, SN-011 was well tolerated, strongly inhibited hallmarks of inflammation and autoimmunity disease, and prevented death. Thus, a specific STING inhibitor that binds to the STING CDN-binding pocket is a promising lead compound for STING-driven disease.
Collapse
|
442
|
Kivanc D, Dasdemir S. The relationship between defects in DNA repair genes and autoinflammatory diseases. Rheumatol Int 2021; 42:1-13. [PMID: 34091703 DOI: 10.1007/s00296-021-04906-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/29/2021] [Indexed: 01/11/2023]
Abstract
Tissue inflammation and damage with the abnormal and overactivation of innate immune system results with the development of a hereditary disease group of autoinflammatory diseases. Multiple numbers of DNA damage develop with the continuous exposure to endogenous and exogenous genotoxic effects, and these damages are repaired through the DNA damage response governed by the genes involved in the DNA repair mechanisms, and proteins of these genes. Studies showed that DNA damage might trigger the innate immune response through nuclear DNA accumulation in the cytoplasm, and through chronic DNA damage response which signals itself and/or by micronucleus. The aim of the present review is to identify the effect of mutation that occurred in DNA repair genes on development of DNA damage response and autoinflammatory diseases.
Collapse
Affiliation(s)
- Demet Kivanc
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Selcuk Dasdemir
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
443
|
Ochfeld E, Curran ML, Chiarella SE, Ardalan K, Khojah A. A Case Report of SAVI Mimicking Early-Onset ANCA Vasculitis. J Clin Immunol 2021; 41:1652-1655. [PMID: 34089458 DOI: 10.1007/s10875-021-01072-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/20/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Elisa Ochfeld
- Pediatric Allergy-Immunology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Box #60, Chicago, IL, 60611, USA. .,Division of Allergy- Immunology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Megan L Curran
- Section of Rheumatology, Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Kaveh Ardalan
- Division of Pediatric Rheumatology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.,Division of Rheumatology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Departments of Pediatrics and Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amer Khojah
- Pediatric Allergy-Immunology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Box #60, Chicago, IL, 60611, USA.,Division of Allergy- Immunology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
444
|
STING Gain-of-Function Disrupts Lymph Node Organogenesis and Innate Lymphoid Cell Development in Mice. Cell Rep 2021; 31:107771. [PMID: 32553167 DOI: 10.1016/j.celrep.2020.107771] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/31/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
STING gain-of-function causes autoimmunity and immunodeficiency in mice and STING-associated vasculopathy with onset in infancy (SAVI) in humans. Here, we report that STING gain-of-function in mice prevents development of lymph nodes and Peyer's patches. We show that the absence of secondary lymphoid organs is associated with diminished numbers of innate lymphoid cells (ILCs), including lymphoid tissue inducer (LTi) cells. Although wild-type (WT) α4β7+ progenitors differentiate efficiently into LTi cells, STING gain-of-function progenitors do not. Furthermore, STING gain-of-function impairs development of all types of ILCs. Patients with STING gain-of-function mutations have fewer ILCs, although they still have lymph nodes. In mice, expression of the STING mutant in RORγT-positive lineages prevents development of lymph nodes and reduces numbers of LTi cells. RORγT lineage-specific expression of STING gain-of-function also causes lung disease. Since RORγT is expressed exclusively in LTi cells during fetal development, our findings suggest that STING gain-of-function prevents lymph node organogenesis by reducing LTi cell numbers in mice.
Collapse
|
445
|
Schwartz DM, Kitakule MM, Dizon BL, Gutierrez-Huerta C, Blackstone SA, Burma AM, Son A, Deuitch N, Rosenzweig S, Komarow H, Stone DL, Jones A, Nehrebecky M, Hoffmann P, Romeo T, de Jesus AA, Alehashemi S, Garg M, Torreggiani S, Montealegre Sanchez GA, Honer K, Souto Adeva G, Barron KS, Aksentijevich I, Ombrello AK, Goldbach-Mansky R, Kastner DL, Milner JD, Frischmeyer-Guerrerio P. Systematic evaluation of nine monogenic autoinflammatory diseases reveals common and disease-specific correlations with allergy-associated features. Ann Rheum Dis 2021; 80:788-795. [PMID: 33619160 PMCID: PMC8380268 DOI: 10.1136/annrheumdis-2020-219137] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/13/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Monogenic autoinflammatory diseases (AID) are caused by mutations in innate immune genes. The effects of these mutations on allergic inflammation are unknown. OBJECTIVES We investigated allergic, immunological and clinical phenotypes in FMF (familial Mediterranean fever), CAPS (cryopyrin-associated periodic syndrome), TRAPS (tumour necrosis factor receptor-associated periodic syndrome), HIDS (hyper-IgD syndrome), PAPA (pyogenic arthritis, pyoderma gangrenosum and acne), DADA2 (deficiency of adenosine deaminase 2), HA20 (haploinsufficiency of A20), CANDLE (chronic atypical neutrophilic dermatosis, lipodystrophy, elevated temperature) and SAVI (STING-associated vasculopathy of infancy). METHODS In this cross-sectional study, clinical data were assessed in 425 patients with AID using questionnaires and chart reviews. Comparator data were obtained from public databases. Peripheral blood mononuclear cells obtained from 55 patients were stimulated and CD4+ cytokine production assessed. RESULTS Clinical laboratory features of Type 2 immunity were elevated in CAPS but reduced in most AID, particularly DADA2. Physician-diagnosed allergic diseases were prevalent in multiple AID, including CAPS and DADA2. T helper 2 (Th2) cells were expanded in CAPS, TRAPS and HIDS; Th9 cells were expanded in HA20. CONCLUSIONS CAPS is characterised by an enhanced Type 2 signature, whereas FMF and CANDLE are associated with reduced Type 2 responses. DADA2 is associated with reduced Type 2 responses but a high rate of physician-diagnosed allergy. Therefore, NLRP3-driven autoinflammation may promote Type 2 immunity, whereas AID like DADA2 may manifest clinical phenotypes that masquerade as allergic disorders. Further investigations are needed to determine the contribution of autoinflammation to allergic clinical and immunological phenotypes, to improve the treatment of patients with AID.
Collapse
Affiliation(s)
- Daniella Muallem Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Moses M Kitakule
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Brian Lp Dizon
- NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Sarah A Blackstone
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Aarohan M Burma
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Aran Son
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Natalie Deuitch
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Sofia Rosenzweig
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Hirsh Komarow
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Deborah L Stone
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Anne Jones
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Michele Nehrebecky
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Patrycja Hoffmann
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Tina Romeo
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Adriana Almeida de Jesus
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Sara Alehashemi
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Megha Garg
- Rheumatology, Rochester Regional Health System, Rochester, New York, USA
| | - Sofia Torreggiani
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Gina A Montealegre Sanchez
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Katelin Honer
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Gema Souto Adeva
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Karyl S Barron
- NIAID, National Institutes of Health, Bethesda, Maryland, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Amanda K Ombrello
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Joshua D Milner
- Division of Pediatric Allergy, Immunology and Rheumatology, Columbia University, New York, New York, USA
| | | |
Collapse
|
446
|
Gómez-Arias PJ, Gómez-García F, Hernández-Parada J, Montilla-López AM, Ruano J, Parra-Peralbo E. Efficacy and Safety of Janus Kinase Inhibitors in Type I Interferon-Mediated Monogenic Autoinflammatory Disorders: A Scoping Review. Dermatol Ther (Heidelb) 2021; 11:733-750. [PMID: 33856640 PMCID: PMC8163936 DOI: 10.1007/s13555-021-00517-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 12/03/2022] Open
Abstract
IMPORTANCE Type I interferon (IFN)-mediated monogenic autoinflammatory disorders (interferonopathies) are childhood-onset rare multisystemic diseases with limited treatment options. The Janus kinase (JAK) inhibitors are promising potential therapeutic candidates for immune-mediated chronic inflammatory skin diseases. OBJECTIVE To review the use of JAK inhibitors to improve decision-making when treating interferonopathies with cutaneous manifestations. EVIDENCE REVIEW The MEDLINE, EMBASE, CINAHL, Scopus, and Web of Science databases were searched for studies that used JAK protein inhibitors to treat IFN-related monogenic diseases with cutaneous manifestations in humans. The search results are reported using the scoping review approach. FINDINGS Seventeen open-label studies assessing the efficacy of ruxolitinib, baricitinib, or tofacitinib reported variable responses in patients with chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) and related syndromes, stimulator of IFN genes [STING]-associated vasculopathy with onset in infancy (SAVI), familial chilblain lupus (FCh-L), gain-of-function mutations of STAT1 (GOF-STAT1), or Aicardi-Goutiéres syndrome. JAK inhibitors improved clinical and analytical parameters and decreased flare numbers, plasma inflammatory markers, and expression of IFN-stimulated genes. BK viremia and upper respiratory infections were the most frequent and severe adverse events. Significant heterogeneity in efficacy assessment methods and poor reporting of safety events were detected. CONCLUSIONS AND RELEVANCE Evidence of the use of JAK inhibitors in patients with interpheronopathies is scarce and of low methodological quality. Future clinical trials should use validated scales and report drug safety in a more accurate way.
Collapse
Affiliation(s)
- Pedro Jesús Gómez-Arias
- Inflammatory Immune-Mediated Chronic Skin Diseases' Laboratory, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital-University of Cordoba, Menendez Pidal Ave, 14004, Córdoba, Spain
- Department of Dermatology, Reina Sofia University Hospital, Menendez Pidal Ave, 14004, Córdoba, Spain
| | - Francisco Gómez-García
- Inflammatory Immune-Mediated Chronic Skin Diseases' Laboratory, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital-University of Cordoba, Menendez Pidal Ave, 14004, Córdoba, Spain
- Department of Dermatology, Reina Sofia University Hospital, Menendez Pidal Ave, 14004, Córdoba, Spain
| | - Jorge Hernández-Parada
- Department of Pharmacology, Reina Sofia University Hospital, Menendez Pidal Ave, 14004, Córdoba, Spain
| | - Ana María Montilla-López
- Inflammatory Immune-Mediated Chronic Skin Diseases' Laboratory, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital-University of Cordoba, Menendez Pidal Ave, 14004, Córdoba, Spain
| | - Juan Ruano
- Inflammatory Immune-Mediated Chronic Skin Diseases' Laboratory, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital-University of Cordoba, Menendez Pidal Ave, 14004, Córdoba, Spain.
- Department of Dermatology, Reina Sofia University Hospital, Menendez Pidal Ave, 14004, Córdoba, Spain.
| | - Esmeralda Parra-Peralbo
- Faculty of Biomedical Science and Health, European University, Calle Tajo, s/n, Villaviciosa de Odón, 28670, Madrid, Spain
| |
Collapse
|
447
|
Amouzegar A, Chelvanambi M, Filderman JN, Storkus WJ, Luke JJ. STING Agonists as Cancer Therapeutics. Cancers (Basel) 2021; 13:2695. [PMID: 34070756 PMCID: PMC8198217 DOI: 10.3390/cancers13112695] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 01/10/2023] Open
Abstract
The interrogation of intrinsic and adaptive resistance to cancer immunotherapy has identified lack of antigen presentation and type I interferon signaling as biomarkers of non-T-cell-inflamed tumors and clinical progression. A myriad of pre-clinical studies have implicated the cGAS/stimulator of interferon genes (STING) pathway, a cytosolic DNA-sensing pathway that drives activation of type I interferons and other inflammatory cytokines, in the host immune response against tumors. The STING pathway is also increasingly understood to have other anti-tumor functions such as modulation of the vasculature and augmentation of adaptive immunity via the support of tertiary lymphoid structure development. Many natural and synthetic STING agonists have entered clinical development with the first generation of intra-tumor delivered cyclic dinucleotides demonstrating safety but only modest systemic activity. The development of more potent and selective STING agonists as well as novel delivery systems that would allow for sustained inflammation in the tumor microenvironment could potentially augment response rates to current immunotherapy approaches and overcome acquired resistance. In this review, we will focus on the latest developments in STING-targeted therapies and provide an update on the clinical development and application of STING agonists administered alone, or in combination with immune checkpoint blockade or other approaches.
Collapse
Affiliation(s)
- Afsaneh Amouzegar
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Manoj Chelvanambi
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.C.); (J.N.F.); (W.J.S.)
| | - Jessica N. Filderman
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.C.); (J.N.F.); (W.J.S.)
| | - Walter J. Storkus
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.C.); (J.N.F.); (W.J.S.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Jason J. Luke
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
448
|
Aksentijevich I, Schnappauf O. Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases. Nat Rev Rheumatol 2021; 17:405-425. [PMID: 34035534 DOI: 10.1038/s41584-021-00614-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
Monogenic autoinflammatory diseases are a group of rheumatologic disorders caused by dysregulation in the innate immune system. The molecular mechanisms of these disorders are linked to defects in inflammasome-mediated, NF-κB-mediated or interferon-mediated inflammatory signalling pathways, cytokine receptors, the actin cytoskeleton, proteasome complexes and various enzymes. As with other human disorders, disease-causing variants in a single gene can present with variable expressivity and incomplete penetrance. In some cases, pathogenic variants in the same gene can be inherited either in a recessive or dominant manner and can cause distinct and seemingly unrelated phenotypes, although they have a unifying biochemical mechanism. With an enhanced understanding of protein structure and functionality of protein domains, genotype-phenotype correlations are beginning to be unravelled. Many of the mutated proteins are primarily expressed in haematopoietic cells, and their malfunction leads to systemic inflammation. Disease presentation is also defined by a specific effect of the mutant protein in a particular cell type and, therefore, the resulting phenotype might be more deleterious in one tissue than in another. Many patients present with the expanded immunological disease continuum that includes autoinflammation, immunodeficiency, autoimmunity and atopy, which necessitate genetic testing.
Collapse
Affiliation(s)
- Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Oskar Schnappauf
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
449
|
Tesser A, Pin A, Mencaroni E, Gulino V, Tommasini A. Vasculitis, Autoimmunity, and Cytokines: How the Immune System Can Harm the Brain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5585. [PMID: 34073717 PMCID: PMC8197198 DOI: 10.3390/ijerph18115585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
More and more findings suggest that neurological disorders could have an immunopathological cause. Thus, immune-targeted therapies are increasingly proposed in neurology (even if often controversial), as anakinra, inhibiting IL-1 for febrile inflammatory illnesses, and JAK inhibitors for anti-interferons treatment. Precision medicine in neurology could be fostered by a better understanding of the disease machinery, to develop a rational use of immuno-modulators in clinical trials. In this review, we focus on monogenic disorders with neurological hyper-inflammation/autoimmunity as simplified "models" to correlate immune pathology and targeted treatments. The study of monogenic models yields great advantages for the elucidation of the pathogenic mechanisms that can be reproduced in cellular/animal models, overcoming the limitations of biological samples to study. Moreover, monogenic disorders provide a unique tool to study the mechanisms of neuroinflammatory and autoimmune brain damage, in all their manifestations. The insight of clinical, pathological, and therapeutic aspects of the considered monogenic models can impact knowledge about brain inflammation and can provide useful hints to better understand and cure some neurologic multifactorial disorders.
Collapse
Affiliation(s)
- Alessandra Tesser
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (A.T.); (A.T.)
| | - Alessia Pin
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (A.T.); (A.T.)
| | - Elisabetta Mencaroni
- Department of Pediatrics, Ospedale Santa Maria Misericordia, 06123 Perugia, Italy;
| | - Virginia Gulino
- Family Pediatrician, Valnerina District, UslUmbria2, 06046 Norcia, Italy;
| | - Alberto Tommasini
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (A.T.); (A.T.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
450
|
Constanzo J, Faget J, Ursino C, Badie C, Pouget JP. Radiation-Induced Immunity and Toxicities: The Versatility of the cGAS-STING Pathway. Front Immunol 2021; 12:680503. [PMID: 34079557 PMCID: PMC8165314 DOI: 10.3389/fimmu.2021.680503] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
In the past decade, radiation therapy (RT) entered the era of personalized medicine, following the striking improvements in radiation delivery and treatment planning optimization, and in the understanding of the cancer response, including the immunological response. The next challenge is to identify the optimal radiation regimen(s) to induce a clinically relevant anti-tumor immunity response. Organs at risks and the tumor microenvironment (e.g. endothelial cells, macrophages and fibroblasts) often limit the radiation regimen effects due to adverse toxicities. Here, we reviewed how RT can modulate the immune response involved in the tumor control and side effects associated with inflammatory processes. Moreover, we discussed the versatile roles of tumor microenvironment components during RT, how the innate immune sensing of RT-induced genotoxicity, through the cGAS-STING pathway, might link the anti-tumor immune response, radiation-induced necrosis and radiation-induced fibrosis, and how a better understanding of the switch between favorable and deleterious events might help to define innovative approaches to increase RT benefits in patients with cancer.
Collapse
Affiliation(s)
- Julie Constanzo
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Julien Faget
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Chiara Ursino
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical & Environmental Hazards Public Health England Chilton, Didcot, United Kingdom
| | - Jean-Pierre Pouget
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|