401
|
Dick A, Provencal N. Central Neuroepigenetic Regulation of the Hypothalamic–Pituitary–Adrenal Axis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:105-127. [DOI: 10.1016/bs.pmbts.2018.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
402
|
Gavery MR, Roberts SB. Epigenetic considerations in aquaculture. PeerJ 2017; 5:e4147. [PMID: 29230373 PMCID: PMC5723431 DOI: 10.7717/peerj.4147] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
Abstract
Epigenetics has attracted considerable attention with respect to its potential value in many areas of agricultural production, particularly under conditions where the environment can be manipulated or natural variation exists. Here we introduce key concepts and definitions of epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNA, review the current understanding of epigenetics in both fish and shellfish, and propose key areas of aquaculture where epigenetics could be applied. The first key area is environmental manipulation, where the intention is to induce an ‘epigenetic memory’ either within or between generations to produce a desired phenotype. The second key area is epigenetic selection, which, alone or combined with genetic selection, may increase the reliability of producing animals with desired phenotypes. Based on aspects of life history and husbandry practices in aquaculture species, the application of epigenetic knowledge could significantly affect the productivity and sustainability of aquaculture practices. Conversely, clarifying the role of epigenetic mechanisms in aquaculture species may upend traditional assumptions about selection practices. Ultimately, there are still many unanswered questions regarding how epigenetic mechanisms might be leveraged in aquaculture.
Collapse
Affiliation(s)
- Mackenzie R Gavery
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Steven B Roberts
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
403
|
The "evolutionary field" hypothesis. Non-Mendelian transgenerational inheritance mediates diversification and evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 134:27-37. [PMID: 29223657 DOI: 10.1016/j.pbiomolbio.2017.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/17/2017] [Accepted: 12/05/2017] [Indexed: 12/23/2022]
Abstract
Epigenetics is increasingly regarded as a potential contributing factor to evolution. Building on apparently unrelated results, here I propose that RNA-containing nanovesicles, predominantly small regulatory RNAs, are released from somatic tissues in the bloodstream, cross the Weismann barrier, reach the epididymis, and are eventually taken up by spermatozoa; henceforth the information is delivered to oocytes at fertilization. In the model, a LINE-1-encoded reverse transcriptase activity, present in spermatozoa and early embryos, plays a key role in amplifying and propagating these RNAs as extrachromosomal structures. It may be conceived that, over generations, the cumulative effects of sperm-delivered RNAs would cross a critical threshold and overcome the buffering capacity of embryos. As a whole, the process can promote the generation of an information-containing platform that drives the reshaping of the embryonic epigenetic landscape with the potential to generate ontogenic changes and redirect the evolutionary trajectory. Over time, evolutionary significant, stably acquired variations could be generated through the process. The interplay between these elements defines the concept of "evolutionary field", a self-consistent, comprehensive information-containing platform and a source of discontinuous evolutionary novelty.
Collapse
|
404
|
Spadafora C. Sperm-Mediated Transgenerational Inheritance. Front Microbiol 2017; 8:2401. [PMID: 29255455 PMCID: PMC5722983 DOI: 10.3389/fmicb.2017.02401] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/20/2017] [Indexed: 11/18/2022] Open
Abstract
Spermatozoa of virtually all species can spontaneously take up exogenous DNA or RNA molecules and internalize them into nuclei. In this article I review evidence for a key role of a reverse transcriptase (RT) activity, encoded by LINE-1 retrotransposons, in the fate of the internalized nucleic acid molecules and their implication in transgenerational inheritance. LINE-1-derived RT, present in sperm heads, can reverse-transcribe the internalized molecules in cDNA copies: exogenous RNA is reverse-transcribed in a one-step reaction, whereas DNA is first transcribed into RNA and subsequently reverse-transcribed. Both RNA and cDNA molecules can be delivered from sperm cells to oocytes at fertilization, further propagated throughout embryogenesis and inherited in a non-Mendelian fashion in tissues of adult animals. The reverse-transcribed sequences are extrachromosomal, low-abundance, and mosaic distributed in tissues of adult individuals, where they are variably expressed. These “retrogenes” are transcriptionally competent and induce novel phenotypic traits in animals. Growing evidence indicate that cancer tissues produce DNA- and RNA-containing exosomes. We recently found that these exosomes are released in the bloodstream and eventually taken up into epididymal spermatozoa, consistent with the emerging view that a transgenerational flow of extrachromosomal RNA connects soma to germline and, further, to next generation embryos. Spermatozoa play a crucial bridging role in this process: they act as collectors of somatic information and as delivering vectors to the next generation. On the whole, this phenomenon is compatible with a Lamarckian-type view and closely resembles Darwinian pangenesis.
Collapse
Affiliation(s)
- Corrado Spadafora
- Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| |
Collapse
|
405
|
Ntostis P, Carter D, Iles D, Huntriss J, Tzetis M, Miller D. Potential sperm contributions to the murine zygote predicted by in silico analysis. Reproduction 2017; 154:777-788. [DOI: 10.1530/rep-17-0097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 09/08/2017] [Accepted: 09/15/2017] [Indexed: 12/17/2022]
Abstract
Paternal contributions to the zygote are thought to extend beyond delivery of the genome and paternal RNAs have been linked to epigenetic transgenerational inheritance in different species. In addition, sperm–egg fusion activates several downstream processes that contribute to zygote formation, including PLC zeta-mediated egg activation and maternal RNA clearance. Since a third of the preimplantation developmental period in the mouse occurs prior to the first cleavage stage, there is ample time for paternal RNAs or their encoded proteins potentially to interact and participate in early zygotic activities. To investigate this possibility, a bespoke next-generation RNA sequencing pipeline was employed for the first time to characterise and compare transcripts obtained from isolated murine sperm, MII eggs and pre-cleavage stage zygotes. Gene network analysis was then employed to identify potential interactions between paternally and maternally derived factors during the murine egg-to-zygote transition involving RNA clearance, protein clearance and post-transcriptional regulation of gene expression. Ourin silicoapproach looked for factors in sperm, eggs and zygotes that could potentially interact co-operatively and synergistically during zygote formation. At least five sperm RNAs (Hdac11,Fbxo2,Map1lc3a,Pcbp4andZfp821) met these requirements for a paternal contribution, which with complementary maternal co-factors suggest a wider potential for extra-genomic paternal involvement in the developing zygote.
Collapse
|
406
|
Trollope AF, Mifsud KR, Saunderson EA, Reul JMHM. Molecular and Epigenetic Mechanisms Underlying Cognitive and Adaptive Responses to Stress. EPIGENOMES 2017; 1:17. [PMID: 31921466 PMCID: PMC6952278 DOI: 10.3390/epigenomes1030017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Consolidation of contextual memories after a stressful encounter is essential for the survival of an organism and in allowing a more appropriate response to be elicited should the perceived threat reoccur. Recent evidence has explored the complex role that epigenetic mechanisms play in the formation of such memories, and the underlying signaling pathways are becoming more apparent. The glucocorticoid receptor (GR) has been shown to play a key role in these events having both genomic and non-genomic actions in the brain. GR has been shown to interact with the extracellular signal-regulated kinase mitogen-activated protein kinase (ERK MAPK) signaling pathway which, in concert, drives epigenetic modifications and chromatin remodeling, resulting in gene induction and memory consolidation. Evidence indicates that stressful events can have an effect on the offspring in utero, and that epigenetic marks altered early in life may persist into adulthood. A new and controversial area of research, however, suggests that epigenetic modifications could be inherited through the germline, a concept known as transgenerational epigenetics. This review explores the role that epigenetic processes play in the central nervous system, specifically in the consolidation of stress-induced memories, the concept of transgenerational epigenetic inheritance, and the potential role of epigenetics in revolutionizing the treatment of stress-related disorders through the emerging field of pharmacoepigenetics and personalized medical treatment.
Collapse
Affiliation(s)
- Alexandra F. Trollope
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
- Department of Anatomy, College of Medicine and Dentistry, James Cook University, Townsville 4811, Australia
| | - Karen R. Mifsud
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Emily A. Saunderson
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Johannes M. H. M. Reul
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| |
Collapse
|
407
|
Madakashira B, Corbett L, Zhang C, Paoli P, Casement JW, Mann J, Sadler KC, Mann DA. Variant Histone H2afv reprograms DNA methylation during early zebrafish development. Epigenetics 2017; 12:811-824. [PMID: 29099280 PMCID: PMC5739095 DOI: 10.1080/15592294.2017.1359382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The DNA methylome is re-patterned during discrete phases of vertebrate development. In zebrafish, there are 2 waves of global DNA demethylation and re-methylation: the first occurs before gastrulation when the parental methylome is changed to the zygotic pattern and the second occurs after formation of the embryonic body axis, during organ specification. The occupancy of the histone variant H2A.Z and regions of DNA methylation are generally anti-correlated, and it has been proposed that H2A.Z restricts the boundaries of highly methylated regions. While many studies have described the dynamics of methylome changes during early zebrafish development, the factors involved in establishing the DNA methylation landscape in zebrafish embryos have not been identified. We test the hypothesis that the zebrafish ortholog of H2A.Z (H2afv) restricts DNA methylation during development. We find that, in control embryos, bulk genome methylation decreases after gastrulation, with a nadir at the bud stage, and peaks during mid-somitogenesis; by 24 hours post -fertilization, total DNA methylation levels return to those detected in gastrula. Early zebrafish embryos depleted of H2afv have significantly more bulk DNA methylation during somitogenesis, suggesting that H2afv limits methylation during this stage of development. H2afv deficient embryos are small, with multisystemic abnormalities. Genetic interaction experiments demonstrate that these phenotypes are suppressed by depletion of DNA methyltransferase 1 (Dnmt1). This work demonstrates that H2afv is essential for global DNA methylation reprogramming during early vertebrate development and that embryonic development requires crosstalk between H2afv and Dnmt1.
Collapse
Affiliation(s)
- Bhavani Madakashira
- a Program in Biology , New York University Abu Dhabi , Abu Dhabi , United Arab Emirates
| | - Laura Corbett
- b Fibrosis Group , Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , NE24HH
| | - Chi Zhang
- a Program in Biology , New York University Abu Dhabi , Abu Dhabi , United Arab Emirates
| | - Pier Paoli
- b Fibrosis Group , Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , NE24HH
| | - John W Casement
- c Bioinformatics Support Unit, Faculty of Medical Sciences , Newcastle University , Newcastle Upon Tyne , NE24HH
| | - Jelena Mann
- b Fibrosis Group , Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , NE24HH
| | - Kirsten C Sadler
- a Program in Biology , New York University Abu Dhabi , Abu Dhabi , United Arab Emirates.,d Department of Medicine/Division of Liver Diseases, Department of Developmental and Regenerative Biology , Icahn School of Medicine at Mount Sinai , New York , New York
| | - Derek A Mann
- b Fibrosis Group , Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , NE24HH
| |
Collapse
|
408
|
Bansal A, Singh TR, Chauhan RS. A novel miRNA analysis framework to analyze differential biological networks. Sci Rep 2017; 7:14604. [PMID: 29097749 PMCID: PMC5668248 DOI: 10.1038/s41598-017-14973-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/19/2017] [Indexed: 01/30/2023] Open
Abstract
For understanding complex biological systems, a systems biology approach, involving both the top-down and bottom-up analyses, is often required. Numerous system components and their connections are best characterised as networks, which are primarily represented as graphs, with several nodes connected at multiple edges. Inefficient network visualisation is a common problem related to transcriptomic and genomic datasets. In this article, we demonstrate an miRNA analysis framework with the help of Jatropha curcas healthy and disease transcriptome datasets, functioning as a pipeline derived from the graph theory universe, and discuss how the network theory, along with gene ontology (GO) analysis, can be used to infer biological properties and other important features of a network. Network profiling, combined with GO, correlation, and co-expression analyses, can aid in efficiently understanding the biological significance of pathways, networks, as well as a studied system. The proposed framework may help experimental and computational biologists to analyse their own data and infer meaningful biological information.
Collapse
Affiliation(s)
- Ankush Bansal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat-, 173234, Solan, H.P., India
| | - Tiratha Raj Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat-, 173234, Solan, H.P., India
| | - Rajinder Singh Chauhan
- Department of Biotechnology, Bennett University- A Times Group Initiative, TechZone II, Greater Noida, 201310, Uttar Pradesh, India.
| |
Collapse
|
409
|
Adamkova K, Yi YJ, Petr J, Zalmanova T, Hoskova K, Jelinkova P, Moravec J, Kralickova M, Sutovsky M, Sutovsky P, Nevoral J. SIRT1-dependent modulation of methylation and acetylation of histone H3 on lysine 9 (H3K9) in the zygotic pronuclei improves porcine embryo development. J Anim Sci Biotechnol 2017; 8:83. [PMID: 29118980 PMCID: PMC5664433 DOI: 10.1186/s40104-017-0214-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022] Open
Abstract
Background The histone code is an established epigenetic regulator of early embryonic development in mammals. The lysine residue K9 of histone H3 (H3K9) is a prime target of SIRT1, a member of NAD+-dependent histone deacetylase family of enzymes targeting both histone and non-histone substrates. At present, little is known about SIRT1-modulation of H3K9 in zygotic pronuclei and its association with the success of preimplantation embryo development. Therefore, we evaluated the effect of SIRT1 activity on H3K9 methylation and acetylation in porcine zygotes and the significance of H3K9 modifications for early embryonic development. Results Our results show that SIRT1 activators resveratrol and BML-278 increased H3K9 methylation and suppressed H3K9 acetylation in both the paternal and maternal pronucleus. Inversely, SIRT1 inhibitors nicotinamide and sirtinol suppressed methylation and increased acetylation of pronuclear H3K9. Evaluation of early embryonic development confirmed positive effect of selective SIRT1 activation on blastocyst formation rate (5.2 ± 2.9% versus 32.9 ± 8.1% in vehicle control and BML-278 group, respectively; P ≤ 0.05). Stimulation of SIRT1 activity coincided with fluorometric signal intensity of ooplasmic ubiquitin ligase MDM2, a known substrate of SIRT1 and known limiting factor of epigenome remodeling. Conclusions We conclude that SIRT1 modulates zygotic histone code, obviously through direct deacetylation and via non-histone targets resulting in increased H3K9me3. These changes in zygotes lead to more successful pre-implantation embryonic development and, indeed, the specific SIRT1 activation due to BML-278 is beneficial for in vitro embryo production and blastocyst achievement.
Collapse
Affiliation(s)
- Katerina Adamkova
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic
| | - Young-Joo Yi
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, 54596 South Korea
| | - Jaroslav Petr
- Institute of Animal Science, 10-Uhrineves, Prague, Czech Republic
| | - Tereza Zalmanova
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic.,Institute of Animal Science, 10-Uhrineves, Prague, Czech Republic
| | - Kristyna Hoskova
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic.,Institute of Animal Science, 10-Uhrineves, Prague, Czech Republic
| | - Pavla Jelinkova
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic
| | - Jiri Moravec
- Proteomic Laboratory, Biomedical Center of Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Milena Kralickova
- Laboratory of Reproductive Medicine of Biomedical Center, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Miriam Sutovsky
- Division of Animal Science, University of Missouri, Columbia, MO USA
| | - Peter Sutovsky
- Division of Animal Science, University of Missouri, Columbia, MO USA.,Departments of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO USA
| | - Jan Nevoral
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic.,Laboratory of Reproductive Medicine of Biomedical Center, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
410
|
Paternal transmission of early life traumatization through epigenetics: Do fathers play a role? Med Hypotheses 2017; 109:59-64. [DOI: 10.1016/j.mehy.2017.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/23/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022]
|
411
|
Wimmer ME, Briand LA, Fant B, Guercio LA, Arreola AC, Schmidt HD, Sidoli S, Han Y, Garcia BA, Pierce RC. Paternal cocaine taking elicits epigenetic remodeling and memory deficits in male progeny. Mol Psychiatry 2017; 22:1641-1650. [PMID: 28220045 PMCID: PMC5568460 DOI: 10.1038/mp.2017.8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
Abstract
Paternal environmental perturbations including exposure to drugs of abuse can produce profound effects on the physiology and behavior of offspring via epigenetic modifications. Here we show that adult drug-naive male offspring of cocaine-exposed sires have memory formation deficits and associated reductions in NMDA receptor-mediated hippocampal synaptic plasticity. Reduced levels of the endogenous NMDA receptor co-agonist d-serine were accompanied by increased expression of the d-serine degrading enzyme d-amino acid oxidase (Dao1) in the hippocampus of cocaine-sired male progeny. Increased Dao1 transcription was associated with enrichment of permissive epigenetic marks on histone proteins in the hippocampus of male cocaine-sired progeny, some of which were enhanced near the Dao1 locus. Finally, hippocampal administration of d-serine reversed both the memory formation and synaptic plasticity deficits. Collectively, these results demonstrate that paternal cocaine exposure produces epigenetic remodeling in the hippocampus leading to NMDA receptor-dependent memory formation and synaptic plasticity impairments only in male progeny, which has significant implications for the male descendants of chronic cocaine users.
Collapse
Affiliation(s)
- ME Wimmer
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - LA Briand
- Department of Psychology and Neuroscience, College of Liberal Arts, Temple University, Philadelphia, PA, USA
| | - B Fant
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - LA Guercio
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - AC Arreola
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - HD Schmidt
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - S Sidoli
- Epigenetic Program, Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Y Han
- Epigenetic Program, Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - BA Garcia
- Epigenetic Program, Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - RC Pierce
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
412
|
Messerlian C, Bellinger D, Mínguez-Alarcón L, Romano ME, Ford JB, Williams PL, Calafat AM, Hauser R, Braun JM. Paternal and maternal preconception urinary phthalate metabolite concentrations and child behavior. ENVIRONMENTAL RESEARCH 2017; 158:720-728. [PMID: 28738300 PMCID: PMC5599166 DOI: 10.1016/j.envres.2017.07.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Prenatal phthalate exposure has been associated with behavioral problems and lower performance on measures of cognitive ability in children. However, the potential effect of phthalate exposure during the sensitive preconception period is unknown. OBJECTIVES To estimate the association of maternal and paternal preconception urinary phthalate metabolite concentrations with child behavior and evaluate potential modification by child sex. METHODS We used data from 166 children (111 singletons, 26 pairs of twins, and 1 set of triplets) born to 134 mothers and 100 fathers participating in a prospective preconception cohort study of subfertile couples from the Massachusetts General Hospital Fertility Center. We estimated mean maternal and paternal preconception exposures by averaging individual phthalate metabolite concentrations in multiple urine samples collected before pregnancy. We assessed children's behavior at 2-9 years of age by parent report using the Behavior Assessment System for Children-2 (BASC-2). We estimated the covariate-adjusted association between individual phthalate metabolite concentrations and the sum of di(2-ethylhexyl) phthalate metabolites (∑ DEHP) and behavior scores, and evaluated differences in associations by child sex using linear regression with Generalized Estimating Equations. Models were further adjusted for prenatal phthalate concentrations in sensitivity analyses. RESULTS Each loge-unit increase in maternal and paternal preconception concentrations of ∑DEHP was associated with a 2.0 (95% CI: - 3.2, - 0.7) and 1.8 (95% CI: - 3.1, - 0.4) point decrease in BASC-2 internalizing behavior scores among all children, respectively. We observed sex-specific associations for some phthalate biomarkers: among boys, maternal monoisobutyl phthalate (MiBP) was positively associated with externalizing behaviors, and paternal MiBP and mono-n-butyl phthalate were positively associated with internalizing behaviors. CONCLUSIONS In this cohort, paternal and maternal preconception concentrations of some phthalate biomarkers were associated with specific aspects of child behavior, even after adjustment for prenatal concentrations. While additional research is warranted to confirm these results, our findings suggest that the preconception period of exposure may be a critical window for offspring neurodevelopment.
Collapse
Affiliation(s)
- Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - David Bellinger
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine, Dartmouth, Lebanon, NH, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health Boston, MA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health Boston, MA, USA; Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| |
Collapse
|
413
|
Brander SM, Biales AD, Connon RE. The Role of Epigenomics in Aquatic Toxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2565-2573. [PMID: 28945943 PMCID: PMC6145079 DOI: 10.1002/etc.3930] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/07/2017] [Accepted: 07/25/2017] [Indexed: 05/24/2023]
Abstract
Over the past decade, the field of molecular biology has rapidly incorporated epigenetic studies to evaluate organism-environment interactions that can result in chronic effects. Such responses arise from early life stage stress, the utilization of genetic information over an individual's life time, and transgenerational inheritance. Knowledge of epigenetic mechanisms provides the potential for a comprehensive evaluation of multigenerational and heritable effects from environmental stressors, such as contaminants. Focused studies have provided a greater understanding of how many responses to environmental stressors are driven by epigenetic modifiers. We discuss the promise of epigenetics and suggest future research directions within the field of aquatic toxicology, with a particular focus on the potential for identifying key heritable marks with consequential impacts at the organism and population levels. Environ Toxicol Chem 2017;36:2565-2573. © 2017 SETAC.
Collapse
Affiliation(s)
- Susanne M Brander
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| | - Adam D Biales
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio
| | - Richard E Connon
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
414
|
Štiavnická M, Abril-Parreño L, Nevoral J, Králíčková M, García-Álvarez O. Non-Invasive Approaches to Epigenetic-Based Sperm Selection. Med Sci Monit 2017; 23:4677-4683. [PMID: 28961228 PMCID: PMC5633068 DOI: 10.12659/msm.904098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since sperm size and form do not necessarily provide information on internal sperm structures, novel sperm markers need to be found in order to conduct assisted reproductive therapies (ART) successfully. Currently, the priority of andrologists is not only to select those sperm able to fertilize the oocyte, but also a high quality of sperm that will guarantee a healthy embryo. Evidence of this shows us the importance of studying sperm intensively on genetic and epigenetic levels, because these could probably be the cause of a percentage of infertility diagnosed as idiopathic. Thus, more attention is being paid to posttranslational modifications as the key for better understanding of the fertilization process and its impact on embryo and offspring. Advances in the discovery of new sperm markers should go hand in hand with finding appropriate techniques for selecting the healthiest sperm, guaranteeing its non-invasiveness. To date, most sperm selection techniques can be harmful to sperm due to centrifugation or staining procedures. Some methods, such as microfluidic techniques, sperm nanopurifications, and Raman spectroscopy, have the potential to make selection gentle to sperm, tracking small abnormalities undetected by methods currently used. The fact that live cells could be analyzed without harmful effects creates the expectation of using them routinely in ART. In this review, we focus on the combination of sperm epigenetic status (modifications) as quality markers, with non-invasive sperm selection methods as novel approaches to improve ART outcomes.
Collapse
Affiliation(s)
- Miriama Štiavnická
- Laboratory of Reproductive Medicine of Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Laura Abril-Parreño
- Laboratory of Reproductive Medicine of Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Nevoral
- Laboratory of Reproductive Medicine of Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Milena Králíčková
- Laboratory of Reproductive Medicine of Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Olga García-Álvarez
- Laboratory of Reproductive Medicine of Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
415
|
Hutcheon K, McLaughlin EA, Stanger SJ, Bernstein IR, Dun MD, Eamens AL, Nixon B. Analysis of the small non-protein-coding RNA profile of mouse spermatozoa reveals specific enrichment of piRNAs within mature spermatozoa. RNA Biol 2017; 14:1776-1790. [PMID: 28816603 DOI: 10.1080/15476286.2017.1356569] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Post-testicular sperm maturation and storage within the epididymis is a key determinant of gamete quality and fertilization competence. Here we demonstrate that mouse spermatozoa possess a complex small non-protein-coding RNA (sRNA) profile, the composition of which is markedly influenced by their epididymal transit. Thus, although microRNAs (miRNAs) are highly represented in the spermatozoa of the proximal epididymis, this sRNA class is largely diminished in mature spermatozoa of the distal epididymis. Coincident with this, a substantial enrichment in Piwi-interacting RNA (piRNA) abundance in cauda spermatozoa was detected. Further, features of cauda piRNAs, including; predominantly 29-31 nts in length; preference for uracil at their 5' terminus; no adenine enrichment at piRNA nt 10, and; predominantly mapping to intergenic regions of the mouse genome, indicate that these piRNAs are generated by the PIWIL1-directed primary piRNA production pathway. Accordingly, PIWIL1 was detected via immunoblotting and mass spectrometry in epididymal spermatozoa. These data provide insight into the complexity and dynamic nature of the sRNA profile of spermatozoa and raise the intriguing prospect that piRNAs are generated in situ in maturing spermatozoa. Such information is of particular interest in view of the potential role for paternal sRNAs in influencing conception, embryo development and intergenerational inheritance.
Collapse
Affiliation(s)
- Kate Hutcheon
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia
| | - Eileen A McLaughlin
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia.,b Priority Research Centre for Reproductive Biology , The University of Newcastle , Callaghan , NSW , Australia.,c School of Biological Sciences , University of Auckland , Auckland , New Zealand
| | - Simone J Stanger
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia.,b Priority Research Centre for Reproductive Biology , The University of Newcastle , Callaghan , NSW , Australia
| | - Ilana R Bernstein
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia.,b Priority Research Centre for Reproductive Biology , The University of Newcastle , Callaghan , NSW , Australia
| | - Matthew D Dun
- d Priority Research Centre for Cancer Research, Innovation and Translation , Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle , Callaghan , NSW , Australia
| | - Andrew L Eamens
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia
| | - Brett Nixon
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia.,b Priority Research Centre for Reproductive Biology , The University of Newcastle , Callaghan , NSW , Australia
| |
Collapse
|
416
|
Involvement of sperm acetylated histones and the nuclear isoform of Glutathione peroxidase 4 in fertilization. J Cell Physiol 2017; 233:3093-3104. [DOI: 10.1002/jcp.26146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/11/2017] [Indexed: 12/30/2022]
|
417
|
Moisiadis VG, Constantinof A, Kostaki A, Szyf M, Matthews SG. Prenatal Glucocorticoid Exposure Modifies Endocrine Function and Behaviour for 3 Generations Following Maternal and Paternal Transmission. Sci Rep 2017; 7:11814. [PMID: 28924262 PMCID: PMC5603559 DOI: 10.1038/s41598-017-11635-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/25/2017] [Indexed: 01/18/2023] Open
Abstract
Fetal exposure to high levels of glucocorticoids programs long-term changes in the physiologic stress response and behaviours. However, it is not known whether effects manifest in subsequent generations of offspring following maternal (MT) or paternal (PT) transmission. We treated pregnant guinea pigs with three courses of saline or synthetic glucocorticoid (sGC) at a clinically relevant dose. Altered cortisol response to stress and behaviours transmitted to juvenile female and male F2 and F3 offspring from both parental lines. Behavioural effects of sGC in F1-F3 PT females associated with altered expression of genes in the prefrontal cortex and hypothalamic paraventricular nucleus (PVN). Exposure to sGC programmed large transgenerational changes in PVN gene expression, including type II diabetes, thermoregulation, and collagen formation gene networks. We demonstrate transgenerational programming to F3 following antenatal sGC. Transmission is sex- and generation-dependent, occurring through both parental lines. Paternal transmission to F3 females strongly implicates epigenetic mechanisms of transmission.
Collapse
Affiliation(s)
- Vasilis G Moisiadis
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Andrea Constantinof
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Alisa Kostaki
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, Sackler Program for Epigenetics & Psychobiology, McGill University, Montreal, QC, H3G1Y6, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada.
- Department of Obstetrics and Gynecology, Toronto, ON, M5S1A8, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, M5S1A8, Canada.
| |
Collapse
|
418
|
MicroRNA Signaling in Embryo Development. BIOLOGY 2017; 6:biology6030034. [PMID: 28906477 PMCID: PMC5617922 DOI: 10.3390/biology6030034] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/03/2017] [Accepted: 09/12/2017] [Indexed: 02/06/2023]
Abstract
Expression of microRNAs (miRNAs) is essential for embryonic development and serves important roles in gametogenesis. miRNAs are secreted into the extracellular environment by the embryo during the preimplantation stage of development. Several cell types secrete miRNAs into biological fluids in the extracellular environment. These fluid-derived miRNAs have been shown to circulate the body. Stable transport is dependent on proper packaging of the miRNAs into extracellular vesicles (EVs), including exosomes. These vesicles, which also contain RNA, DNA and proteins, are on the forefront of research on cell-to-cell communication. Interestingly, EVs have been identified in many reproductive fluids, such as uterine fluid, where their miRNA content is proposed to serve as a mechanism of crosstalk between the mother and conceptus. Here, we review the role of miRNAs in molecular signaling and discuss their transport during early embryo development and implantation.
Collapse
|
419
|
Gapp K, Bohacek J. Epigenetic germline inheritance in mammals: looking to the past to understand the future. GENES BRAIN AND BEHAVIOR 2017; 17:e12407. [PMID: 28782190 DOI: 10.1111/gbb.12407] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/15/2017] [Accepted: 08/03/2017] [Indexed: 12/25/2022]
Abstract
Life experiences can induce epigenetic changes in mammalian germ cells, which can influence the developmental trajectory of the offspring and impact health and disease across generations. While this concept of epigenetic germline inheritance has long been met with skepticism, evidence in support of this route of information transfer is now overwhelming, and some key mechanisms underlying germline transmission of acquired information are emerging. This review focuses specifically on sperm RNAs as causal vectors of inheritance. We examine how they might become altered in the germline, and how different classes of sperm RNAs might interact with other epimodifications in germ cells or in the zygote. We integrate the latest findings with earlier pioneering work in this field, point out major questions and challenges, and suggest how new experiments could address them.
Collapse
Affiliation(s)
- K Gapp
- Gurdon Institute, University of Cambridge, Cambridge, UK.,Wellcome Trust Sanger Institute, Hinxton, UK
| | - J Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Department of Health Sciences and Technology of ETH Zurich, Neuroscience Center Zurich, Switzerland
| |
Collapse
|
420
|
Walker CD, Bath KG, Joels M, Korosi A, Larauche M, Lucassen PJ, Morris MJ, Raineki C, Roth TL, Sullivan RM, Taché Y, Baram TZ. Chronic early life stress induced by limited bedding and nesting (LBN) material in rodents: critical considerations of methodology, outcomes and translational potential. Stress 2017; 20:421-448. [PMID: 28617197 PMCID: PMC5705407 DOI: 10.1080/10253890.2017.1343296] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023] Open
Abstract
The immediate and long-term effects of exposure to early life stress (ELS) have been documented in humans and animal models. Even relatively brief periods of stress during the first 10 days of life in rodents can impact later behavioral regulation and the vulnerability to develop adult pathologies, in particular an impairment of cognitive functions and neurogenesis, but also modified social, emotional, and conditioned fear responses. The development of preclinical models of ELS exposure allows the examination of mechanisms and testing of therapeutic approaches that are not possible in humans. Here, we describe limited bedding and nesting (LBN) procedures, with models that produce altered maternal behavior ranging from fragmentation of care to maltreatment of infants. The purpose of this paper is to discuss important issues related to the implementation of this chronic ELS procedure and to describe some of the most prominent endpoints and consequences, focusing on areas of convergence between laboratories. Effects on the hypothalamic-pituitary adrenal (HPA) axis, gut axis and metabolism are presented in addition to changes in cognitive and emotional functions. Interestingly, recent data have suggested a strong sex difference in some of the reported consequences of the LBN paradigm, with females being more resilient in general than males. As both the chronic and intermittent variants of the LBN procedure have profound consequences on the offspring with minimal external intervention from the investigator, this model is advantageous ecologically and has a large translational potential. In addition to the direct effect of ELS on neurodevelopmental outcomes, exposure to adverse early environments can also have intergenerational impacts on mental health and function in subsequent generation offspring. Thus, advancing our understanding of the effect of ELS on brain and behavioral development is of critical concern for the health and wellbeing of both the current population, and for generations to come.
Collapse
Affiliation(s)
- Claire-Dominique Walker
- Department of Psychiatry, McGill University, Douglas Mental Health University Institute, 6875 Lasalle Blvd, Montreal, QC H4H 1R3, Canada
| | - Kevin G. Bath
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Marian Joels
- Department Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Aniko Korosi
- Brain Plasticity group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Muriel Larauche
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Paul J. Lucassen
- Brain Plasticity group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney 2052, NSW, Australia
| | - Charlis Raineki
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, Department of Child and Adolescent Psychiatry, New York University Langone Medical School, New York, NY 10016, USA
| | - Tania L. Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Regina M. Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, Department of Child and Adolescent Psychiatry, New York University Langone Medical School, New York, NY 10016, USA
| | - Yvette Taché
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Tallie Z. Baram
- Department of Pediatrics, of Anatomy & Neurobiology and of Neurology, University of California-Irvine, Irvine, CA 92697, USA
| |
Collapse
|
421
|
Abstract
Early - intrauterine - environmental factors are linked to the development of cardiovascular disease in later life. Traditionally, these factors are considered to be maternal factors such as maternal under and overnutrition, exposure to toxins, lack of micronutrients, and stress during pregnancy. However, in the recent years, it became obvious that also paternal environmental factors before conception and during sperm development determine the health of the offspring in later life. We will first describe clinical observational studies providing evidence for paternal programming of adulthood diseases in progeny. Next, we describe key animal studies proving this relationship, followed by a detailed analysis of our current understanding of the underlying molecular mechanisms of paternal programming. Alterations of noncoding sperm micro-RNAs, histone acetylation, and targeted as well as global DNA methylation seem to be in particular involved in paternal programming of offspring's diseases in later life.
Collapse
|
422
|
Hehar H, Ma I, Mychasiuk R. Intergenerational Transmission of Paternal Epigenetic Marks: Mechanisms Influencing Susceptibility to Post-Concussion Symptomology in a Rodent Model. Sci Rep 2017; 7:7171. [PMID: 28769086 PMCID: PMC5541091 DOI: 10.1038/s41598-017-07784-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/30/2017] [Indexed: 01/29/2023] Open
Abstract
Epigenetic transmission of phenotypic variance has been linked to paternal experiences prior to conception and during perinatal development. Previous reports indicate that paternal experiences increase phenotypic heterogeneity and may contribute to offspring susceptibility to post-concussive symptomology. This study sought to determine if epigenetic tags, specifically DNA methylation of promoter regions, are transmitted from rodent fathers to their sons. Using MethyLight, promoter methylation of specific genes involved in recovery from concussion and brain plasticity were analyzed in sperm and brain tissue. Promoter methylation in sperm differed based on paternal experience. Differences in methylation were often identified in both the sperm and brain tissue obtained from their sons, demonstrating transmission of epigenetic tags. For certain genes, methylation in the sperm was altered following a concussion suggesting that a history of brain injury may influence paternal transmission of traits. As telomere length is paternally inherited and linked to neurological health, this study examined paternally derived differences in telomere length, in both sperm and brain. Telomere length was consistent between fathers and their sons, and between brain and sperm, with the exception of the older fathers. Older fathers exhibited increased sperm telomere length, which was not evident in sperm or brain of their sons.
Collapse
Affiliation(s)
- Harleen Hehar
- Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Department of Psychology, Calgary, Alberta, Canada
| | - Irene Ma
- Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Department of Psychology, Calgary, Alberta, Canada
| | - Richelle Mychasiuk
- Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Department of Psychology, Calgary, Alberta, Canada.
| |
Collapse
|
423
|
Fullston T, McPherson NO, Zander-Fox D, Lane M. The most common vices of men can damage fertility and the health of the next generation. J Endocrinol 2017; 234:F1-F6. [PMID: 28500085 DOI: 10.1530/joe-16-0382] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/12/2017] [Indexed: 01/23/2023]
Abstract
Animal and human studies demonstrate that acquired paternal traits can impair both a male's fertility and the health of his offspring, including advanced age, smoking, stress, trauma, under-nutrition, infection, toxin exposure, and obesity. Many of these factors lead to similar changes to neurological, behavioural, and/or metabolic functioning in offspring. The molecular mechanisms that both respond to the paternal environment and act to transmit traits to offspring are beginning to emerge. This review focuses on three vices of men (alcohol consumption, overweight/obesity, and tobacco smoking) that damage fertility and pose risks to offspring health. These vices are not only the three most prevalent but are also leading risk factors for death and disability adjusted life years (DALYs) worldwide. Moreover, given that these vices are predominantly self-inflicted, interventions aimed at mitigating their consequences are readily identified.
Collapse
Affiliation(s)
- Tod Fullston
- Discipline of Obstetrics & GynaecologyAdelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Freemason's Foundation Centre for Men's HealthThe University of Adelaide, Adelaide, South Australia, Australia
- Monash IVF GroupMelbourne, Victoria, Australia
| | - Nicole O McPherson
- Discipline of Obstetrics & GynaecologyAdelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Freemason's Foundation Centre for Men's HealthThe University of Adelaide, Adelaide, South Australia, Australia
- Monash IVF GroupMelbourne, Victoria, Australia
| | - Deirdre Zander-Fox
- Discipline of Obstetrics & GynaecologyAdelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Monash IVF GroupMelbourne, Victoria, Australia
| | - Michelle Lane
- Discipline of Obstetrics & GynaecologyAdelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Freemason's Foundation Centre for Men's HealthThe University of Adelaide, Adelaide, South Australia, Australia
- Monash IVF GroupMelbourne, Victoria, Australia
| |
Collapse
|
424
|
Stedman JM, Hallinger KK, Winkler DW, Vitousek MN. Heritable variation in circulating glucocorticoids and endocrine flexibility in a free‐living songbird. J Evol Biol 2017; 30:1724-1735. [DOI: 10.1111/jeb.13135] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 11/28/2022]
Affiliation(s)
- J. M. Stedman
- Department of Biomedical Sciences Cornell University Ithaca NY USA
| | - K. K. Hallinger
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
| | - D. W. Winkler
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Cornell Lab of Ornithology Ithaca NY USA
| | - M. N. Vitousek
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Cornell Lab of Ornithology Ithaca NY USA
| |
Collapse
|
425
|
Johnston WL, Krizus A, Ramani AK, Dunham W, Youn JY, Fraser AG, Gingras AC, Dennis JW. C. elegans SUP-46, an HNRNPM family RNA-binding protein that prevents paternally-mediated epigenetic sterility. BMC Biol 2017; 15:61. [PMID: 28716093 PMCID: PMC5513350 DOI: 10.1186/s12915-017-0398-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/21/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In addition to DNA, gametes contribute epigenetic information in the form of histones and non-coding RNA. Epigenetic programs often respond to stressful environmental conditions and provide a heritable history of ancestral stress that allows for adaptation and propagation of the species. In the nematode C. elegans, defective epigenetic transmission often manifests as progressive germline mortality. We previously isolated sup-46 in a screen for suppressors of the hexosamine pathway gene mutant, gna-2(qa705). In this study, we examine the role of SUP-46 in stress resistance and progressive germline mortality. RESULTS We identified SUP-46 as an HNRNPM family RNA-binding protein, and uncovered a highly novel role for SUP-46 in preventing paternally-mediated progressive germline mortality following mating. Proximity biotinylation profiling of human homologs (HNRNPM, MYEF2) identified proteins of ribonucleoprotein complexes previously shown to contain non-coding RNA. Like HNRNPM and MYEF2, SUP-46 was associated with multiple RNA granules, including stress granules, and also formed granules on active chromatin. SUP-46 depletion disrupted germ RNA granules and caused ectopic sperm, increased sperm transcripts, and chronic heat stress sensitivity. SUP-46 was also required for resistance to acute heat stress, and a conserved "MYEF2" motif was identified that was needed for stress resistance. CONCLUSIONS In mammals, non-coding RNA from the sperm of stressed males has been shown to recapitulate paternal stress phenotypes in the offspring. Our results suggest that HNRNPM family proteins enable stress resistance and paternally-mediated epigenetic transmission that may be conserved across species.
Collapse
Affiliation(s)
- Wendy L. Johnston
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Aldis Krizus
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Arun K. Ramani
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, ON Canada
| | - Wade Dunham
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Ji Young Youn
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Andrew G. Fraser
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- The Donnelly Centre, University of Toronto, Toronto, ON Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - James W. Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| |
Collapse
|
426
|
Abstract
Zebrafish have been extensively used for studying vertebrate development and modeling human diseases such as cancer. In the last two decades, they have also emerged as an important model for developmental toxicology research and, more recently, for studying the developmental origins of health and disease (DOHaD). It is widely recognized that epigenetic mechanisms mediate the persistent effects of exposure to chemicals during sensitive windows of development. There is considerable interest in understanding the epigenetic mechanisms associated with DOHaD using zebrafish as a model system. This review summarizes our current knowledge on the effects of environmental chemicals on DNA methylation, histone modifications and noncoding RNAs in the context of DOHaD, and suggest some key considerations in designing experiments for characterizating the mechanisms of action.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
427
|
Robertson SA, Zhang B, Chan H, Sharkey DJ, Barry SC, Fullston T, Schjenken JE. MicroRNA regulation of immune events at conception. Mol Reprod Dev 2017; 84:914-925. [DOI: 10.1002/mrd.22823] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/21/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Sarah A. Robertson
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | - Bihong Zhang
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | - Honyueng Chan
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | - David J. Sharkey
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | - Simon C. Barry
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | - Tod Fullston
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | - John E. Schjenken
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| |
Collapse
|
428
|
Evans JP, Lymbery RA, Wiid KS, Rahman MM, Gasparini C. Sperm as moderators of environmentally induced paternal effects in a livebearing fish. Biol Lett 2017; 13:rsbl.2017.0087. [PMID: 28404822 DOI: 10.1098/rsbl.2017.0087] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/21/2017] [Indexed: 12/15/2022] Open
Abstract
Until recently, paternal effects-the influence of fathers on their offspring due to environmental factors rather than genes-were largely discarded or assumed to be confined to species exhibiting paternal care. It is now recognized that paternal effects can be transmitted through the ejaculate, but unambiguous evidence for them is scarce, because it is difficult to isolate effects operating via changes to the ejaculate from maternal effects driven by female mate assessment. Here, we use artificial insemination to disentangle mate assessment from fertilization in guppies, and show that paternal effects can be transmitted to offspring exclusively via ejaculates. We show that males fed reduced diets produce poor-quality sperm and that offspring sired by such males (via artificial insemination) exhibit reduced body size at birth. These findings may have important implications for the many mating systems in which environmentally induced changes in ejaculate quality have been reported.
Collapse
Affiliation(s)
- Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Rowan A Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Kyle S Wiid
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Md Moshiur Rahman
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Clelia Gasparini
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
429
|
Paternal spatial training enhances offspring's cognitive performance and synaptic plasticity in wild-type but not improve memory deficit in Alzheimer's mice. Sci Rep 2017; 7:1521. [PMID: 28484240 PMCID: PMC5431522 DOI: 10.1038/s41598-017-01811-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/30/2017] [Indexed: 01/09/2023] Open
Abstract
Recent studies suggest that spatial training can maintain associative memory capacity in Tg2576 mice, but it is not known whether the beneficial effects can be inherited from the trained fathers to their offspring. Here, we exposed male wild-type and male 3XTg Alzheimer disease (AD) mice (3-m old) respectively to spatial training for one week and assessed the transgenerational effects in the F1 offspring when they were grown to 7-m old. We found that the paternal spatial training significantly enhanced progeny’s spatial cognitive performance and synaptic transmission in wild-type mice. Among several synapse- or memory-associated proteins, we observed that the expression level of synaptotagmin 1 (SYT1) was significantly increased in the hippocampus of the paternally trained-offspring. Paternal training increased histone acetylation at the promoter of SYT1 in both fathers’ and the offspring’s hippocampus, and as well as in the fathers’ sperm. Finally, paternal spatial training for one week did not improve memory and synaptic plasticity in 3XTg AD F1 offspring. Our findings suggest paternal spatial training for one week benefits the offspring’s cognitive performance in wild-type mice with the mechanisms involving an enhanced transgenerational histone acetylation at SYT1 promoter.
Collapse
|
430
|
Weber-Stadlbauer U. Epigenetic and transgenerational mechanisms in infection-mediated neurodevelopmental disorders. Transl Psychiatry 2017; 7:e1113. [PMID: 28463237 PMCID: PMC5534947 DOI: 10.1038/tp.2017.78] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/07/2017] [Accepted: 02/23/2017] [Indexed: 02/07/2023] Open
Abstract
Prenatal infection is an environmental risk factor for various brain disorders with neurodevelopmental components, including autism spectrum disorder and schizophrenia. Modeling this association in animals shows that maternal immune activation negatively affects fetal brain development and leads to the emergence of behavioral disturbances later in life. Recent discoveries in these preclinical models suggest that epigenetic modifications may be a critical molecular mechanism by which prenatal immune activation can mediate changes in brain development and functions, even across generations. This review discusses the potential epigenetic mechanisms underlying the effects of prenatal infections, thereby highlighting how infection-mediated epigenetic reprogramming may contribute to the transgenerational transmission of pathological traits. The identification of epigenetic and transgenerational mechanisms in infection-mediated neurodevelopmental disorders appears relevant to brain disorders independently of existing diagnostic classifications and may help identifying complex patterns of transgenerational disease transmission beyond genetic inheritance. The consideration of ancestral infectious histories may be of great clinical interest and may be pivotal for developing new preventive treatment strategies against infection-mediated neurodevelopmental disorders.
Collapse
Affiliation(s)
- U Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| |
Collapse
|
431
|
Asimes A, Torcaso A, Pinceti E, Kim CK, Zeleznik-Le NJ, Pak TR. Adolescent binge-pattern alcohol exposure alters genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve male offspring. Alcohol 2017; 60:179-189. [PMID: 27817987 DOI: 10.1016/j.alcohol.2016.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 12/22/2022]
Abstract
Teenage binge drinking is a major health concern in the United States, with 21% of teenagers reporting binge-pattern drinking behavior in the previous 30 days. Recently, our lab showed that alcohol-naïve offspring of rats exposed to alcohol during adolescence exhibited altered gene expression profiles in the hypothalamus, a brain region involved in stress regulation. We employed Enhanced Reduced Representation Bisulfite Sequencing as an unbiased approach to test the hypothesis that parental exposure to binge-pattern alcohol during adolescence alters DNA methylation profiles in their alcohol-naïve offspring. Wistar rats were administered a repeated binge-ethanol exposure paradigm during early (postnatal day (PND) 37-44) and late (PND 67-74) adolescent development. Animals were mated 24 h after the last ethanol dose and subsequent offspring were produced. Analysis of male PND7 offspring revealed that offspring of alcohol-exposed parents exhibited differential DNA methylation patterns in the hypothalamus. The differentially methylated cytosines (DMCs) were distinct between offspring depending on which parent was exposed to ethanol. Moreover, novel DMCs were observed when both parents were exposed to ethanol and many DMCs from single parent ethanol exposure were not recapitulated with dual parent exposure. We also measured mRNA expression of several differentially methylated genes and some, but not all, showed correlative changes in expression. Importantly, methylation was not a direct predictor of expression levels, underscoring the complexity of transcriptional regulation. Overall, we demonstrate that adolescent binge ethanol exposure causes altered genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve offspring.
Collapse
|
432
|
Rompala GR, Finegersh A, Slater M, Homanics GE. Paternal preconception alcohol exposure imparts intergenerational alcohol-related behaviors to male offspring on a pure C57BL/6J background. Alcohol 2017; 60:169-177. [PMID: 27876231 DOI: 10.1016/j.alcohol.2016.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 12/14/2022]
Abstract
While alcohol use disorder (AUD) is a highly heritable condition, the basis of AUD in families with a history of alcoholism is difficult to explain by genetic variation alone. Emerging evidence suggests that parental experience prior to conception can affect inheritance of complex behaviors in offspring via non-genomic (epigenetic) mechanisms. For instance, male C57BL/6J (B6) mice exposed to chronic intermittent vapor ethanol (CIE) prior to mating with Strain 129S1/SvImJ ethanol-naïve females produce male offspring with reduced ethanol-drinking preference, increased ethanol sensitivity, and increased brain-derived neurotrophic factor (BDNF) expression in the ventral tegmental area (VTA). In the present study, we tested the hypothesis that these intergenerational effects of paternal CIE are reproducible in male offspring on an inbred B6 background. To this end, B6 males were exposed to 6 weeks of CIE (or room air as a control) before mating with ethanol-naïve B6 females to produce ethanol (E)-sired and control (C)-sired male and female offspring. We observed a sex-specific effect, as E-sired males exhibited decreased two-bottle free-choice ethanol-drinking preference, increased sensitivity to the anxiolytic effects of ethanol, and increased VTA BDNF expression; no differences were observed in female offspring. These findings confirm and extend our previous results by demonstrating that the effects of paternal preconception ethanol are reproducible using genetically identical, inbred B6 animals.
Collapse
|
433
|
Epigenetic programming by stress and glucocorticoids along the human lifespan. Mol Psychiatry 2017; 22:640-646. [PMID: 28289275 DOI: 10.1038/mp.2017.35] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/08/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022]
Abstract
Psychosocial stress triggers a set of behavioral, neural, hormonal, and molecular responses that can be a driving force for survival when adaptive and time-limited, but may also contribute to a host of disease states if dysregulated or chronic. The beneficial or detrimental effects of stress are largely mediated by the hypothalamic-pituitary axis, a highly conserved neurohormonal cascade that culminates in systemic secretion of glucocorticoids. Glucocorticoids activate the glucocorticoid receptor, a ubiquitous nuclear receptor that not only causes widespread changes in transcriptional programs, but also induces lasting epigenetic modifications in many target tissues. While the epigenome remains sensitive to stressors throughout life, we propose two key principles that may govern the epigenetics of stress and glucocorticoids along the lifespan: first, the presence of distinct life periods, during which the epigenome shows heightened plasticity to stress exposure, such as in early development and at advanced age; and, second, the potential of stress-induced epigenetic changes to accumulate throughout life both in select chromatin regions and at the genome-wide level. These principles have important clinical and translational implications, and they show striking parallels with the existence of sensitive developmental periods and the cumulative impact of stressful experiences on the development of stress-related phenotypes. We hope that this conceptual mechanistic framework will stimulate fruitful research that aims at unraveling the molecular pathways through which our life stories sculpt genomic function to contribute to complex behavioral and somatic phenotypes.
Collapse
|
434
|
Denhardt DT. Effect of stress on human biology: Epigenetics, adaptation, inheritance, and social significance. J Cell Physiol 2017; 233:1975-1984. [PMID: 28158904 DOI: 10.1002/jcp.25837] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/01/2017] [Indexed: 12/21/2022]
Abstract
I present a brief introduction to epigenetics, focused primarily on methylation of the genome and various regulatory RNAs, modifications of associated histones, and their importance in enabling us to adapt to real and changing environmental, developmental, and social circumstances. Following this is a more extensive overview of how it impacts our inheritance, our entire life (which changes as we age), and how we interact with others. Throughout, I emphasize the critical influence that stress, of many varieties exerts, via epigenetic means, on much of how we live and survive, mostly in the brain. I end with a short section on multigenerational transmission, drugs, and the importance of both social life and early life experiences in the development of adult diseases. There will be nothing about cancer. Although epigenetics is critical in that field, it is a whole different cobweb of complications (some involving stress).
Collapse
Affiliation(s)
- David T Denhardt
- Division of Life Sciences, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
435
|
Hur SSJ, Cropley JE, Suter CM. Paternal epigenetic programming: evolving metabolic disease risk. J Mol Endocrinol 2017; 58:R159-R168. [PMID: 28100703 DOI: 10.1530/jme-16-0236] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/05/2017] [Indexed: 02/03/2023]
Abstract
Parental health or exposures can affect the lifetime health outcomes of offspring, independently of inherited genotypes. Such 'epigenetic' effects occur over a broad range of environmental stressors, including defects in parental metabolism. Although maternal metabolic effects are well documented, it has only recently been established that that there is also an independent paternal contribution to long-term metabolic health. Both paternal undernutrition and overnutrition can induce metabolic phenotypes in immediate offspring, and in some cases, the induced phenotype can affect multiple generations, implying inheritance of an acquired trait. The male lineage transmission of metabolic disease risk in these cases implicates a heritable factor carried by sperm. Sperm-based transmission provides a tractable system to interrogate heritable epigenetic factors influencing metabolism, and as detailed here, animal models of paternal programming have already provided some significant insights. Here, we review the evidence for paternal programming of metabolism in humans and animal models, and the available evidence on potential underlying mechanisms. Programming by paternal metabolism can be observed in multiple species across animal phyla, suggesting that this phenomenon may have a unique evolutionary significance.
Collapse
Affiliation(s)
- Suzy S J Hur
- Victor Chang Cardiac Research InstituteDarlinghurst, New South Wales, Australia
- Faculty of MedicineUniversity of New South Wales, Kensington, New South Wales, Australia
| | - Jennifer E Cropley
- Victor Chang Cardiac Research InstituteDarlinghurst, New South Wales, Australia
- Faculty of MedicineUniversity of New South Wales, Kensington, New South Wales, Australia
| | - Catherine M Suter
- Victor Chang Cardiac Research InstituteDarlinghurst, New South Wales, Australia
- Faculty of MedicineUniversity of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
436
|
Pang TYC, Short AK, Bredy TW, Hannan AJ. Transgenerational paternal transmission of acquired traits: Stress-induced modification of the sperm regulatory transcriptome and offspring phenotypes. Curr Opin Behav Sci 2017; 14:140-147. [PMID: 29270445 PMCID: PMC5734660 DOI: 10.1016/j.cobeha.2017.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In recent years, it has become evident that pre-conceptual exposure of males to various environmental factors induces epigenetic changes in sperm, which can mediate the transmission of acquired traits in their offspring. The most thoroughly examined paternal exposures involve stress and elevated corticosterone, which have been shown to modulate offspring phenotypes in a manner that is relevant to predisposition to brain disorders, and psychiatric illness in particular. Recent seminal studies have demonstrated that key epigenetic information transmitted via the paternal germline involves small non-coding (snc) RNA transcripts such as microRNAs. Following fertilisation, these sncRNAs appear to regulate development so as to modify the phenotype of the offspring. Understanding the mechanisms involved in such transgenerational effects may facilitate future screening of human sperm for 'epigenetic health' and the tailoring of therapeutic interventions according to genetic and epigenetic contributions to illness.
Collapse
Affiliation(s)
- Terence Y C Pang
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia
| | - Annabel K Short
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92617, USA
| | - Timothy W Bredy
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, CA 92617, USA
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
437
|
Capovilla M, Robichon A, Rassoulzadegan M. A new paramutation-like example at the Delta gene of Drosophila. PLoS One 2017; 12:e0172780. [PMID: 28355214 PMCID: PMC5371283 DOI: 10.1371/journal.pone.0172780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 02/09/2017] [Indexed: 11/26/2022] Open
Abstract
The hereditary transmission of a phenotype independent from DNA sequence implies epigenetic effects. Paramutation is a heritable epigenetic phenomenon observed in plants and animals. To investigate paramutation in Drosophila, we used the P{ry+t7.2= PZ}Dl05151 P-element insertion in the Drosophila melanogaster genome that causes a dominant visible phenotype: the presence of characteristic extra-veins in the fly wings. This extra-vein phenotype presents variable expressivity and incomplete penetrance. The insert is a PZ element located 680 bp upstream from the ATG of the Delta (Dl) gene, encoding the Notch ligand involved in wing vein development, and acts as a null allele. In the G2 offspring from a cross between the heterozygous transgenic stock and wild-type flies, we observed the transmission of the extra-vein phenotype to wild-type flies without the transgene, independently of gender and across many generations. This is a “paramutation-like” example in the fly: the heritable transmission of a phenotypic change not linked to a classical genetic mutation. A “paramutagenic” allele in heterozygotes transmits the phenotype of the heterozygotes to the wild-type allele (“paramutant”) in a stable manner through generations. Distinct from paramutation events so far described in Drosophila, here we deal with a dominant effect on a single gene involving variable hereditary signals.
Collapse
Affiliation(s)
- Maria Capovilla
- UMR 1355–7254 INRA/Université Côte d’Azur/CNRS, Institut Sophia Agrobiotech, 400 route des Chappes, Sophia Antipolis, France
- * E-mail:
| | - Alain Robichon
- UMR 1355–7254 INRA/Université Côte d’Azur/CNRS, Institut Sophia Agrobiotech, 400 route des Chappes, Sophia Antipolis, France
| | | |
Collapse
|
438
|
Rosengaus RB, Hays N, Biro C, Kemos J, Zaman M, Murray J, Gezahegn B, Smith W. Pathogen-induced maternal effects result in enhanced immune responsiveness across generations. Ecol Evol 2017; 7:2925-2935. [PMID: 28479992 PMCID: PMC5415515 DOI: 10.1002/ece3.2887] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 01/09/2023] Open
Abstract
Parental investment theory postulates that adults can accurately perceive cues from their surroundings, anticipate the needs of future offspring based on those cues, and selectively allocate nongenetic resources to their progeny. Such context‐dependent parental contributions can result in phenotypically variable offspring. Consistent with these predictions, we show that bacterially exposed Manduca sexta mothers oviposited significantly more variable embryos (as measured by mass, volume, hatching time, and hatching success) relative to naïve and control mothers. By using an in vivo “clearance of infection” assay, we also show that challenged larvae born to heat‐killed‐ or live‐Serratia‐injected mothers, supported lower microbial loads and cleared the infection faster than progeny of control mothers. Our data support the notion that mothers can anticipate the future pathogenic risks and immunological needs of their unborn offspring, providing progeny with enhanced immune protection likely through transgenerational immune priming. Although the inclusion of live Serratia into oocytes does not appear to be the mechanism by which mothers confer protection to their young, other mechanisms, including epigenetic modifications in the progeny due to maternal pathogenic stress, may be at play. The adaptive nature of maternal effects in the face of pathogenic stress provides insights into parental investment, resource allocation, and life‐history theories and highlights the significant role that pathogen‐induced maternal effects play as generators and modulators of evolutionary change.
Collapse
Affiliation(s)
- Rebeca B Rosengaus
- Department of Marine and Environmental Sciences Northeastern University Boston MA USA
| | - Nicole Hays
- Department of Biology Northeastern University Boston MA USA
| | - Colette Biro
- Department of Biology Northeastern University Boston MA USA
| | - James Kemos
- Department of Biology Northeastern University Boston MA USA
| | - Muizz Zaman
- Department of Biology Northeastern University Boston MA USA
| | - Joseph Murray
- Department of Biology Northeastern University Boston MA USA
| | - Bruck Gezahegn
- Department of Biology Northeastern University Boston MA USA
| | - Wendy Smith
- Department of Biology Northeastern University Boston MA USA
| |
Collapse
|
439
|
Weaver ICG, Korgan AC, Lee K, Wheeler RV, Hundert AS, Goguen D. Stress and the Emerging Roles of Chromatin Remodeling in Signal Integration and Stable Transmission of Reversible Phenotypes. Front Behav Neurosci 2017; 11:41. [PMID: 28360846 PMCID: PMC5350110 DOI: 10.3389/fnbeh.2017.00041] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 02/24/2017] [Indexed: 01/02/2023] Open
Abstract
The influence of early life experience and degree of parental-infant attachment on emotional development in children and adolescents has been comprehensively studied. Structural and mechanistic insight into the biological foundation and maintenance of mammalian defensive systems (metabolic, immune, nervous and behavioral) is slowly advancing through the emerging field of developmental molecular (epi)genetics. Initial evidence revealed that differential nurture early in life generates stable differences in offspring hypothalamic-pituitary-adrenal (HPA) regulation, in part, through chromatin remodeling and changes in DNA methylation of specific genes expressed in the brain, revealing physical, biochemical and molecular paths for the epidemiological concept of gene-environment interactions. Herein, a primary molecular mechanism underpinning the early developmental programming and lifelong maintenance of defensive (emotional) responses in the offspring is the alteration of chromatin domains of specific genomic regions from a condensed state (heterochromatin) to a transcriptionally accessible state (euchromatin). Conversely, DNA methylation promotes the formation of heterochromatin, which is essential for gene silencing, genomic integrity and chromosome segregation. Therefore, inter-individual differences in chromatin modifications and DNA methylation marks hold great potential for assessing the impact of both early life experience and effectiveness of intervention programs—from guided psychosocial strategies focused on changing behavior to pharmacological treatments that target chromatin remodeling and DNA methylation enzymes to dietary approaches that alter cellular pools of metabolic intermediates and methyl donors to affect nutrient bioavailability and metabolism. In this review article, we discuss the potential molecular mechanism(s) of gene regulation associated with chromatin modeling and programming of endocrine (e.g., HPA and metabolic or cardiovascular) and behavioral (e.g., fearfulness, vigilance) responses to stress, including alterations in DNA methylation and the role of DNA repair machinery. From parental history (e.g., drugs, housing, illness, nutrition, socialization) to maternal-offspring exchanges of nutrition, microbiota, antibodies and stimulation, the nature of nurture provides not only mechanistic insight into how experiences propagate from external to internal variables, but also identifies a composite therapeutic target, chromatin modeling, for gestational/prenatal stress, adolescent anxiety/depression and adult-onset neuropsychiatric disease.
Collapse
Affiliation(s)
- Ian C G Weaver
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Austin C Korgan
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Kristen Lee
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Ryan V Wheeler
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Amos S Hundert
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Donna Goguen
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| |
Collapse
|
440
|
Sales VM, Ferguson-Smith AC, Patti ME. Epigenetic Mechanisms of Transmission of Metabolic Disease across Generations. Cell Metab 2017; 25:559-571. [PMID: 28273478 PMCID: PMC5404272 DOI: 10.1016/j.cmet.2017.02.016] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Both human and animal studies indicate that environmental exposures experienced during early life can robustly influence risk for adult disease. Moreover, environmental exposures experienced by parents during either intrauterine or postnatal life can also influence the health of their offspring, thus initiating a cycle of disease risk across generations. In this Perspective, we focus on epigenetic mechanisms in germ cells, including DNA methylation, histone modification, and non-coding RNAs, which collectively may provide a non-genetic molecular legacy of prior environmental exposures and influence transcriptional regulation, developmental trajectories, and adult disease risk in offspring.
Collapse
Affiliation(s)
- Vicencia Micheline Sales
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center and Harvard Medical School, One Joslin Place, Sixth Floor, Boston, MA 02215, USA
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Mary-Elizabeth Patti
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center and Harvard Medical School, One Joslin Place, Sixth Floor, Boston, MA 02215, USA.
| |
Collapse
|
441
|
Sharma U, Rando OJ. Metabolic Inputs into the Epigenome. Cell Metab 2017; 25:544-558. [PMID: 28273477 DOI: 10.1016/j.cmet.2017.02.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/14/2016] [Accepted: 01/07/2017] [Indexed: 12/30/2022]
Abstract
A number of molecular pathways play key roles in transmitting information in addition to the genomic sequence-epigenetic information-from one generation to the next. However, so-called epigenetic marks also impact an enormous variety of physiological processes, even under circumstances that do not result in heritable consequences. Perhaps inevitably, the epigenetic regulatory machinery is highly responsive to metabolic cues, as, for example, central metabolites are the substrates for the enzymes that catalyze the deposition of covalent modifications on histones, DNA, and RNA. Interestingly, in addition to the effects that metabolites exert over biological regulation in somatic cells, over the past decade multiple studies have shown that ancestral nutrition can alter the metabolic phenotype of offspring, raising the question of how metabolism regulates the epigenome of germ cells. Here, we review the widespread links between metabolism and epigenetic modifications, both in somatic cells and in the germline.
Collapse
Affiliation(s)
- Upasna Sharma
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
442
|
Wang Y, Liu H, Sun Z. Lamarck rises from his grave: parental environment-induced epigenetic inheritance in model organisms and humans. Biol Rev Camb Philos Soc 2017; 92:2084-2111. [PMID: 28220606 DOI: 10.1111/brv.12322] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 01/12/2017] [Accepted: 01/18/2017] [Indexed: 12/12/2022]
Abstract
Organisms can change their physiological/behavioural traits to adapt and survive in changed environments. However, whether these acquired traits can be inherited across generations through non-genetic alterations has been a topic of debate for over a century. Emerging evidence indicates that both ancestral and parental experiences, including nutrition, environmental toxins, nurturing behaviour, and social stress, can have powerful effects on the physiological, metabolic and cellular functions in an organism. In certain circumstances, these effects can be transmitted across several generations through epigenetic (i.e. non-DNA sequence-based rather than mutational) modifications. In this review, we summarize recent evidence on epigenetic inheritance from parental environment-induced developmental and physiological alterations in nematodes, fruit flies, zebrafish, rodents, and humans. The epigenetic modifications demonstrated to be both susceptible to modulation by environmental cues and heritable, including DNA methylation, histone modification, and small non-coding RNAs, are also summarized. We particularly focus on evidence that parental environment-induced epigenetic alterations are transmitted through both the maternal and paternal germlines and exert sex-specific effects. The thought-provoking data presented here raise fundamental questions about the mechanisms responsible for these phenomena. In particular, the means that define the specificity of the response to parental experience in the gamete epigenome and that direct the establishment of the specific epigenetic change in the developing embryos, as well as in specific tissues in the descendants, remain obscure and require elucidation. More precise epigenetic assessment at both the genome-wide level and single-cell resolution as well as strategies for breeding at relatively sensitive periods of development and manipulation aimed at specific epigenetic modification are imperative for identifying parental environment-induced epigenetic marks across generations. Considering their diverse epigenetic architectures, the conservation and prevalence of the mechanisms underlying epigenetic inheritance in non-mammals require further investigation in mammals. Interpretation of the consequences arising from epigenetic inheritance on organisms and a better understanding of the underlying mechanisms will provide insight into how gene-environment interactions shape developmental processes and physiological functions, which in turn may have wide-ranging implications for human health, and understanding biological adaptation and evolution.
Collapse
Affiliation(s)
- Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Huijie Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
443
|
An Exercise-Only Intervention in Obese Fathers Restores Glucose and Insulin Regulation in Conjunction with the Rescue of Pancreatic Islet Cell Morphology and MicroRNA Expression in Male Offspring. Nutrients 2017; 9:nu9020122. [PMID: 28208792 PMCID: PMC5331553 DOI: 10.3390/nu9020122] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/06/2017] [Indexed: 01/09/2023] Open
Abstract
Paternal obesity programs metabolic syndrome in offspring. Low-impact exercise in obese males improves the metabolic health of female offspring, however whether this occurred in male offspring remained unknown. C57BL/6NHsd (Harlan) mice were fed a control diet (CD; 6% fat, n = 7) or a high-fat diet (HFD; 21% fat, n = 16) for 18 weeks. After 9 weeks, HFD-fed mice either remained sedentary (HH, n = 8) or undertook low–moderate exercise (HE, n = 8) for another 9 weeks. Male offspring were assessed for glucose/insulin tolerance, body composition, plasma lipids, pancreatic islet cell morphology and microRNA expression. Founder HH induced glucose intolerance, insulin insensitivity, and hyperlipidaemia in male offspring (p < 0.05). Metabolic health was fully restored in male offspring by founder exercise to control levels. Founder HH reduced pancreatic β-cell area and islet cell size in male offspring, and altered the expression of 13 pancreatic microRNAs (p < 0.05). Founder HE led to partial restoration of pancreatic islet cell morphology and the expression of two pancreatic microRNAs (let7d-5p, 194-5p) in male offspring. Founder HE reduced male offspring adiposity, increased muscle mass, reduced plasma free fatty acids (FFAs), and further altered pancreatic microRNAs (35 vs. HH; 32 vs. CD) (p < 0.05). Low-impact exercise in obese fathers prior to conception, without dietary change, may be a viable intervention strategy to reduce the ill-effects of obesity-induced paternal programming in male offspring.
Collapse
|
444
|
Martin JH, Bromfield EG, Aitken RJ, Nixon B. Biochemical alterations in the oocyte in support of early embryonic development. Cell Mol Life Sci 2017; 74:469-485. [PMID: 27604868 PMCID: PMC11107538 DOI: 10.1007/s00018-016-2356-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/28/2016] [Accepted: 09/01/2016] [Indexed: 01/01/2023]
Abstract
Notwithstanding the enormous reproductive potential encapsulated within a mature mammalian oocyte, these cells present only a limited window for fertilization before defaulting to an apoptotic cascade known as post-ovulatory oocyte aging. The only cell with the capacity to rescue this potential is the fertilizing spermatozoon. Indeed, the union of these cells sets in train a remarkable series of events that endows the oocyte with the capacity to divide and differentiate into the trillions of cells that comprise a new individual. Traditional paradigms hold that, beyond the initial stimulation of fluctuating calcium (Ca2+) required for oocyte activation, the fertilizing spermatozoon plays limited additional roles in the early embryo. While this model has now been drawn into question in view of the recent discovery that spermatozoa deliver developmentally important classes of small noncoding RNAs and other epigenetic modulators to oocytes during fertilization, it is nevertheless apparent that the primary responsibility for oocyte activation rests with a modest store of maternally derived proteins and mRNA accumulated during oogenesis. It is, therefore, not surprising that widespread post-translational modifications, in particular phosphorylation, hold a central role in endowing these proteins with sufficient functional diversity to initiate embryonic development. Indeed, proteins targeted for such modifications have been linked to oocyte activation, recruitment of maternal mRNAs, DNA repair and resumption of the cell cycle. This review, therefore, seeks to explore the intimate relationship between Ca2+ release and the suite of molecular modifications that sweep through the oocyte to ensure the successful union of the parental germlines and ensure embryogenic fidelity.
Collapse
Affiliation(s)
- Jacinta H Martin
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| | - Elizabeth G Bromfield
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - R John Aitken
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Brett Nixon
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
445
|
Vassoler FM, Oliver DJ, Wyse C, Blau A, Shtutman M, Turner JR, Byrnes EM. Transgenerational attenuation of opioid self-administration as a consequence of adolescent morphine exposure. Neuropharmacology 2017; 113:271-280. [PMID: 27729240 PMCID: PMC5248554 DOI: 10.1016/j.neuropharm.2016.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/29/2016] [Accepted: 10/07/2016] [Indexed: 01/13/2023]
Abstract
The United States is in the midst of an opiate epidemic, with abuse of prescription and illegal opioids increasing steadily over the past decade. While it is clear that there is a genetic component to opioid addiction, there is a significant portion of heritability that cannot be explained by genetics alone. The current study was designed to test the hypothesis that maternal exposure to opioids prior to pregnancy alters abuse liability in subsequent generations. Female adolescent Sprague Dawley rats were administered morphine at increasing doses (5-25 mg/kg, s.c.) or saline for 10 days (P30-39). During adulthood, animals were bred with drug-naïve colony males. Male and female adult offspring (F1 animals) were tested for morphine self-administration acquisition, progressive ratio, extinction, and reinstatement at three doses of morphine (0.25, 0.75, 1.25 mg/kg/infusion). Grandoffspring (F2 animals, from the maternal line) were also examined. Additionally, gene expression changes within the nucleus accumbens were examined with RNA deep sequencing (PacBio) and qPCR. There were dose- and sex-dependent effects on all phases of the self-administration paradigm that indicate decreased morphine reinforcement and attenuated relapse-like behavior. Additionally, genes related to synaptic plasticity, as well as myelin basic protein (MBP), were dysregulated. Some, but not all, effects persisted into the subsequent (F2) generation. The results demonstrate that even limited opioid exposure during adolescence can have lasting effects across multiple generations, which has implications for mechanisms of the transmission of drug abuse liability in humans.
Collapse
Affiliation(s)
- Fair M Vassoler
- Cummings School at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA.
| | - David J Oliver
- University of South Carolina College of Pharmacy, 773 Sumter St, Columbia, SC 29208, USA
| | - Cristina Wyse
- Cummings School at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Ashley Blau
- Cummings School at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Michael Shtutman
- University of South Carolina College of Pharmacy, 773 Sumter St, Columbia, SC 29208, USA
| | - Jill R Turner
- University of South Carolina College of Pharmacy, 773 Sumter St, Columbia, SC 29208, USA
| | - Elizabeth M Byrnes
- Cummings School at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| |
Collapse
|
446
|
Leroux S, Gourichon D, Leterrier C, Labrune Y, Coustham V, Rivière S, Zerjal T, Coville JL, Morisson M, Minvielle F, Pitel F. Embryonic environment and transgenerational effects in quail. Genet Sel Evol 2017; 49:14. [PMID: 28125975 PMCID: PMC5270212 DOI: 10.1186/s12711-017-0292-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 01/19/2017] [Indexed: 12/27/2022] Open
Abstract
Background Environmental exposures, for instance to chemicals, are known to impact plant and animal phenotypes on the long term, sometimes across several generations. Such transgenerational phenotypes were shown to be promoted by epigenetic alterations such as DNA methylation, an epigenetic mark involved in the regulation of gene expression. However, it is yet unknown whether transgenerational epigenetic inheritance of altered phenotypes exists in birds. The purpose of this study was to develop an avian model to investigate whether changes to the embryonic environment had a transgenerational effect that could alter the phenotypes of third-generation offspring. Given its impact on the mammalian epigenome and the reproductive system in birds, genistein was used as an environment stressor. Results We compared several third-generation phenotypes of two quail “epilines”, which were obtained from genistein-injected eggs (Epi+) or from untreated eggs (Epi−) from the same founders. A “mirrored” crossing strategy was used to minimize between-line genetic variability by maintaining similar ancestor contributions across generations in each line. Three generations after genistein treatment, a significant difference in the sexual maturity of the females, which, after three generations, could not be attributed to direct maternal effects, was observed between the lines, with Epi+ females starting to lay eggs later. Adult body weight was significantly affected by genistein treatment applied in a previous generation, and a significant interaction between line and sex was observed for body weight at 3 weeks. Behavioral traits, such as evaluating the birds’ reaction to social isolation, were also significantly affected by genistein treatment. Yet, global methylation analyses revealed no significant difference between the epilines. Conclusions These findings demonstrate that embryonic environment affects the phenotype of offspring three generations later in quail. While one cannot rule out the existence of some initial genetic variability between the lines, the mirrored animal design should have minimized its effects, and thus, the observed differences in animals of the third generation may be attributed, at least partly, to transgenerational epigenetic phenomena. Electronic supplementary material The online version of this article (doi:10.1186/s12711-017-0292-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophie Leroux
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31326, Castanet Tolosan, France
| | | | - Christine Leterrier
- UMR INRA PRC, 37380, Nouzilly, France.,CNRS, 37380, Nouzilly, France.,UFR Tours, 37380, Nouzilly, France.,IFCE, 37380, Nouzilly, France
| | - Yann Labrune
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31326, Castanet Tolosan, France
| | | | | | - Tatiana Zerjal
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jean-Luc Coville
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Mireille Morisson
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Francis Minvielle
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Frédérique Pitel
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31326, Castanet Tolosan, France.
| |
Collapse
|
447
|
Sharma A. Transgenerational epigenetics: Integrating soma to germline communication with gametic inheritance. Mech Ageing Dev 2017; 163:15-22. [PMID: 28093237 DOI: 10.1016/j.mad.2016.12.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/28/2022]
Abstract
Evidence supporting germline mediated epigenetic inheritance of environmentally induced traits has increasingly emerged over the past several years. Although the mechanisms underlying this inheritance remain unclear, recent findings suggest that parental gamete-borne epigenetic factors, particularly RNAs, affect post-fertilization and developmental gene regulation, ultimately leading to phenotypic appearance in the offspring. Complex processes involving gene expression and epigenetic regulation are considered to perpetuate across generations. In addition to transfer of germline factors, epigenetic inheritance via gametes also requires a mechanism whereby the information pertaining to the induced traits is communicated from soma to germline. Despite violating a century-old view in biology, this communication seems to play a role in transmission of environmental effects across generations. Circulating RNAs, especially those associated with extracellular vesicles like exosomes, are emerging as promising candidates that can transmit gene regulatory information in this direction. Cumulatively, these new observations provide a basis to integrate epigenetic inheritance. With significant implications in health, disease and ageing, the latter appears poised to revolutionize biology.
Collapse
Affiliation(s)
- Abhay Sharma
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Sukhdev Vihar, Mathura Road, New Delhi, 110025, India.
| |
Collapse
|
448
|
Fathers Matter: Why It's Time to Consider the Impact of Paternal Environmental Exposures on Children's Health. CURR EPIDEMIOL REP 2017; 4:46-55. [PMID: 28848695 DOI: 10.1007/s40471-017-0098-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Despite accumulating evidence from experimental animal studies showing that paternal environmental exposures induce genetic and epigenetic alterations in sperm which in turn increase the risk of adverse health outcomes in offspring, there is limited epidemiological data on the effects of human paternal preconception exposures on children's health. We summarize animal and human studies showing that paternal preconception environmental exposures influence offspring health. We discuss specific approaches and designs for human studies to investigate the health effects of paternal preconception exposures, the specific challenges these studies may face, and how we might address them. RECENT FINDINGS In animal studies, paternal preconception diet, stress, and chemical exposures have been associated with offspring health and these effects are mediated by epigenetic modifications transmitted through sperm DNA, histones, and RNA. Most epidemiological studies have examined paternal preconception occupational exposures and their effect on the risk of birth defects and childhood cancer; few have examined the effects of low-level general population exposure to environmental toxicants. While the design and execution of epidemiological studies of paternal preconception exposures face challenges, particularly with regard to selection bias and recruitment, we believe these are tractable and that preconception studies are feasible. SUMMARY New or augmented prospective cohort studies would be the optimal method to address the critical knowledge gaps on the effect of paternal preconception exposures on prevalent childhood health outcomes. Determining if this period of life represents a window of heightened vulnerability would improve our understanding of modifiable risk factors for children's health and wellbeing.
Collapse
|
449
|
Shi J, Zhang X, Liu Y, Chen Q. Epigenetic information in gametes: Gaming from before fertilization: Comment on "Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition" by Qian Wang et al. Phys Life Rev 2017; 20:146-149. [PMID: 28089374 DOI: 10.1016/j.plrev.2017.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Junchao Shi
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89512, USA
| | - Xudong Zhang
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89512, USA
| | - Ying Liu
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89512, USA
| | - Qi Chen
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89512, USA.
| |
Collapse
|
450
|
Hodes GE, Walker DM, Labonté B, Nestler EJ, Russo SJ. Understanding the epigenetic basis of sex differences in depression. J Neurosci Res 2017; 95:692-702. [PMID: 27870456 PMCID: PMC5130105 DOI: 10.1002/jnr.23876] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 12/27/2022]
Abstract
Epigenetics refers to potentially heritable processes that can mediate both lasting and transient changes in gene expression in the absence of genome sequence alterations. The field of epigenetics has introduced a novel understanding of the mechanisms through which the environment can shape an individual and potentially its offspring. This Mini-Review examines the current literature exploring the role of epigenetics in the development of mood disorders such as depression. Depression is twofold more common in females, yet the majority of preclinical research has been conducted exclusively in male subjects. Here we discuss what is known about sex differences in epigenetic regulation and function and how this may contribute to the etiology and onset of mood disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Georgia E. Hodes
- Fishberg Department of Neuroscience and Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Deena M. Walker
- Fishberg Department of Neuroscience and Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Benoit Labonté
- Fishberg Department of Neuroscience and Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Eric J. Nestler
- Fishberg Department of Neuroscience and Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Scott J. Russo
- Fishberg Department of Neuroscience and Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|