401
|
Petit F, Arnoult D, Viollet L, Estaquier J. Intrinsic and extrinsic pathways signaling during HIV-1 mediated cell death. Biochimie 2003; 85:795-811. [PMID: 14585547 DOI: 10.1016/j.biochi.2003.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Infection with human immunodeficiency virus (HIV) is characterized by the gradual depletion of CD4+ T lymphocytes. The incorporation of the concept of apoptosis as a rationale to explain progressive T cell depletion has led to growing research in this field during the last 10 years. In parallel, the biochemical pathways implicated in programmed cell death have been extensively studied. Thus, the influence of mitochondrial control in the two major apoptotic pathways-the extrinsic and intrinsic pathways-is now well admitted. In this review, we summarized our current knowledge of the different pathways involved in the death of T cells in the course of HIV infection.
Collapse
Affiliation(s)
- Frédéric Petit
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, 28, rue du Dr Roux, 75724 Paris cedex 15, France
| | | | | | | |
Collapse
|
402
|
Burke MA, Hutter D, Reshamwala RP, Knepper JE. Cathepsin L plays an active role in involution of the mouse mammary gland. Dev Dyn 2003; 227:315-22. [PMID: 12815617 DOI: 10.1002/dvdy.10313] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Involution of the mammary gland after weaning occurs in two stages. The first stage is reversible, whereas the second stage is characterized by the irreversible collapse of the alveolar structure. A differential display analysis using cDNAs from tissues obtained at various times after forced weaning of pups identified cathepsin L as up-regulated during early involution. Levels of cathepsin L mRNA were dramatically increased within 24 hr after weaning. Cathepsin L protein detected by immunoblot was also increased during involution, reaching near maximal levels by 36 hr after weaning. In situ immunohistochemistry detected pronounced cathepsin L protein in the cytoplasm and cell periphery. Mice treated with a specific inhibitor of cathepsin L exhibited substantially reduced numbers of apoptotic cells at times up to 72 hr after weaning when compared with untreated animals. The cathepsin L inhibitor did not alter levels of cathepsin L detected in immunoblots or influence molecular weight of the cathepsin L species detected. These data suggest that cathepsin L plays a regulatory role early in the process of mammary gland involution.
Collapse
Affiliation(s)
- Michael A Burke
- Department of Biology, Villanova University, Villanova, Pennsylvania 19085, USA
| | | | | | | |
Collapse
|
403
|
Welss T, Sun J, Irving JA, Blum R, Smith AI, Whisstock JC, Pike RN, von Mikecz A, Ruzicka T, Bird PI, Abts HF. Hurpin is a selective inhibitor of lysosomal cathepsin L and protects keratinocytes from ultraviolet-induced apoptosis. Biochemistry 2003; 42:7381-9. [PMID: 12809493 DOI: 10.1021/bi027307q] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hurpin (headpin/PI13/serpinB13) is an intracellular, differentially spliced member of the serpin superfamily that has been linked to differentiation and apoptosis of human keratinocytes. It is transiently downregulated by UV light and overexpressed in psoriatic skin lesions. Although it has all of the features of an inhibitory serpin, a productive interaction between hurpin and a proteinase has not yet been reported. Here we demonstrate that hurpin is a potent and selective inhibitor of the archetypal lysosomal cysteine proteinase cathepsin L (catL). Recombinant hurpin inhibits human catL with a stoichiometry of inhibition (SI) of 1.7 and a rate constant k(assoc) of (4.6 +/- 0.14) x 10(5) M(-1) s(-1). It inefficiently inhibits catV and does not inhibit papain, catB, or catK. To investigate the inhibitory mechanism, we determined the P1-P1' bond in the reactive center loop cleaved by catL ((356)Thr-(357)Ser) and expressed variants in which the proximal hinge, P1 residue, or differentially spliced CD loop was mutated. The results of assays using these proteins suggest that inhibition of catL by hurpin occurs via the conventional serpin inhibitory mechanism and that the CD loop plays no role in the process. Finally, it was found that the majority of hurpin is cytosolic and that its overexpression in human keratinocytes confers resistance to UV-induced apoptosis. Given that lysosomal disruption, release of catL, and catL-mediated caspase activation are known to occur in response to cellular stress, we propose that a physiological role of hurpin is to protect epithelial cells from ectopic catL.
Collapse
Affiliation(s)
- Thomas Welss
- Department of Dermatology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
404
|
Boya P, Gonzalez-Polo RA, Poncet D, Andreau K, Vieira HLA, Roumier T, Perfettini JL, Kroemer G. Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene 2003; 22:3927-36. [PMID: 12813466 DOI: 10.1038/sj.onc.1206622] [Citation(s) in RCA: 307] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydroxychloroquine (HCQ) is a lysosomotropic amine with cytotoxic properties. Here, we show that HCQ induces signs of lysosomal membrane permeabilization (LMP), such as the decrease in the lysosomal pH gradient and the release of cathepsin B from the lysosomal lumen, followed by signs of apoptosis including caspase activation, phosphatidylserine exposure, and chromatin condensation with DNA loss. HCQ also induces mitochondrial membrane permeabilization (MMP), as indicated by the insertion of Bax into mitochondrial membranes, the conformational activation of Bax within mitochondria, the release of cytochrome c from mitochondria, and the loss of the mitochondrial transmembrane potential. To determine the molecular order among these events, we introduced inhibitors of LMP (bafilomycin A(1)), MMP (Bcl-X(L), wild-type Bcl-2, mitochondrion-targeted Bcl-2, or viral mitochondrial inhibitor of apoptosis from cytomegalovirus), and caspases (Z-VAD.fmk) into the system. Our data indicate that caspase-independent MMP is rate-limiting for LMP-mediated caspase activation. Mouse embryonic fibroblasts lacking the expression of both Bax and Bak are resistant against hydroxychloroquine-induced apoptosis. Such Bax(-/-) Bak(-/-) cells manifest normal LMP, yet fail to undergo MMP and subsequent cell death. The data reported herein indicate that LMP does not suffice to trigger caspase activation and that Bax/Bak-dependent MMP is a critical step of LMP-induced cell death.
Collapse
Affiliation(s)
- Patricia Boya
- Centre National de la Recherche Scientifique, UMR 8125, Institut Gustave Roussy, Pavillon de Recherche 1, 39 rue Camille-Desmoulins, F-94805 Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
405
|
Madge LA, Li JH, Choi J, Pober JS. Inhibition of phosphatidylinositol 3-kinase sensitizes vascular endothelial cells to cytokine-initiated cathepsin-dependent apoptosis. J Biol Chem 2003; 278:21295-306. [PMID: 12663669 DOI: 10.1074/jbc.m212837200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the presence of cycloheximide, tumor necrosis factor or interleukin-1 initiates caspase activation, loss of mitochondrial membrane potential (DeltaPsi), DNA degradation, and nuclear condensation and fragmentation characteristic of apoptotic cell death in human vascular endothelial cells (EC). Inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002, but not inhibition of Akt by dominant-negative mutation, also sensitizes EC to cytokine-initiated apoptosis. Cytokine-initiated caspase activation is slower and comparatively less with LY294002 than with cycloheximide. Cycloheximide but not LY294002 decreases expression of c-FLIP (cellular FLICE inhibitory protein), an inhibitor of caspase-8 activation. The caspase inhibitor zVADfmk completely blocks caspase activation, DNA degradation, and nuclear fragmentation in both cases but only prevents loss of DeltaPsi and cell death for cytokine plus cycloheximide treatment. In contrast, overexpression of Bcl-2 protects EC treated with cytokine plus LY294002 but not EC treated with cytokine plus cycloheximide. The cathepsin B inhibitor CA-074-Me prevents loss of DeltaPsi, caspase activation, and cell death for EC treated with cytokine plus LY294002 but has no effect on EC treated with cytokine plus cycloheximide. Cathepsin B translocates from lysosomes to cytosol following treatment with LY294002 prior to the activation of caspases. These results suggest that inhibition of PI3K allows cytokines to activate a cathepsin-dependent, mitochondrial death pathway in which caspase activation is secondary, is not inhibited by c-FLIP, and is not essential for cell death.
Collapse
Affiliation(s)
- Lisa A Madge
- Interdepartmental Program in Vascular Biology and Transplantation, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
406
|
van Eijk M, van Noorden CJF, de Groot C. Proteinases and their inhibitors in the immune system. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 222:197-236. [PMID: 12503850 DOI: 10.1016/s0074-7696(02)22015-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The most important roles of proteinases in the immune system are found in apoptosis and major histocompatibility complex (MHC) class II-mediated antigen presentation. A variety of cysteine proteinases, serine proteinases, and aspartic proteinases as well as their inhibitors are involved in the regulation of apoptosis in neutrophils, monocytes, and dendritic cells, in selection of specific B and T lymphocytes, and in killing of target cells by cytotoxic T cells and natural killer cells. In antigen presentation, endocytosed antigens are digested into antigenic peptides by both aspartic and cysteine proteinases. In parallel, MHC class II molecules are processed by aspartic and cysteine proteinases to degrade the invariant chain that occupies the peptide-binding site. Proteinase activity in these processes is highly regulated, particularly by posttranslational activation and the balance between active proteinases and specific endogenous inhibitors such as cystatins, thyropins, and serpins. This article discusses the regulation of proteolytic processes in apoptosis and antigen presentation in immune cells and the consequences of therapeutic interference in the balance of proteinases and their inhibitors.
Collapse
Affiliation(s)
- Marco van Eijk
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
407
|
Yu Z, Li W, Brunk UT. 3-Aminopropanal is a lysosomotropic aldehyde that causes oxidative stress and apoptosis by rupturing lysosomes. APMIS 2003; 111:643-52. [PMID: 12969020 DOI: 10.1034/j.1600-0463.2003.1110607.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
During cerebral ischemia and following trauma, potent cytotoxic polyamine-derived aminoaldehydes form, diffuse, and damage adjacent tissues not directly subjected to the initial insult. One such aldehyde is 3-aminopropanal (3-AP). The mechanisms by which such a small aldehydic compound is excessively cytotoxic have been unclear until recently when we showed that 3-AP, having the structure of a weak lysosomotropic base, concentrates within the acidic vacuolar compartment and causes lysosomal rupture that, in turn, induces caspase activation and apoptotic cell death. Here, using cultured J774 cells and 3-AP as a way to selectively burst lysosomes, we show that moderate lysosomal rupture induces a transient wave of oxidative stress. The start of this oxidative stress period is concomitant with a short period of enhanced mitochondrial membrane potential that later fades and is replaced by a decreased potential before the oxidative stress diminishes. The result of the study suggests that oxidative stress, which has often been described during apoptosis induced by agonists other than oxidative stress per se, may be a consequence of lysosomal rupture with direct and/or indirect effects on mitochondrial respiration and electron transport causing a period of passing enhanced formation of reactive oxygen species.
Collapse
Affiliation(s)
- Zhengquan Yu
- Divisions of Pathology II and Neurosurgery, Linköping University, Linköping, Sweden
| | | | | |
Collapse
|
408
|
Lohmüller T, Wenzler D, Hagemann S, Kiess W, Peters C, Dandekar T, Reinheckel T. Toward computer-based cleavage site prediction of cysteine endopeptidases. Biol Chem 2003; 384:899-909. [PMID: 12887057 DOI: 10.1515/bc.2003.101] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Identification of relevant substrates is essential for elucidation of in vivo functions of peptidases. The recent availability of the complete genome sequences of many eukaryotic organisms holds the promise of identifying specific peptidase substrates by systematic proteome analyses in combination with computer-based screening of genome databases. Currently available proteomics and bioinformatics tools are not sufficient for reliable endopeptidase substrate predictions. To address these shortcomings the bioinformatics tool 'PEPS' (Prediction of Endopeptidase Substrates) has been developed and is presented here. PEPS uses individual rule-based endopeptidase cleavage site scoring matrices (CSSM). The efficiency of PEPS in predicting putative caspase 3, cathepsin B and cathepsin L cleavage sites is demonstrated in comparison to established algorithms. Mortalin, a member of the heat shock protein family HSP70, was identified by PEPS as a putative cathepsin L substrate. Comparative proteome analyses of cathepsin L-deficient and wild-type mouse fibroblasts showed that mortalin is enriched in the absence of cathepsin L. These results indicate that CSSM/PEPS can correctly predict relevant peptidase substrates.
Collapse
Affiliation(s)
- Tobias Lohmüller
- Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs-Universität, Breisacherstr. 66, D-79106 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
409
|
Turk B, Fritz H. Vito Turk--30 years of research on cysteine proteases and their inhibitors. Biol Chem 2003; 384:833-6. [PMID: 12887049 DOI: 10.1515/bc.2003.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
410
|
Boya P, Andreau K, Poncet D, Zamzami N, Perfettini JL, Metivier D, Ojcius DM, Jäättelä M, Kroemer G. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med 2003; 197:1323-34. [PMID: 12756268 PMCID: PMC2193790 DOI: 10.1084/jem.20021952] [Citation(s) in RCA: 358] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A number of diseases are due to lysosomal destabilization, which results in damaging cell loss. To investigate the mechanisms of lysosomal cell death, we characterized the cytotoxic action of two widely used quinolone antibiotics: ciprofloxacin (CPX) or norfloxacin (NFX). CPX or NFX plus UV light (NFX*) induce lysosomal membrane permeabilization (LMP), as detected by the release of cathepsins from lysosomes. Inhibition of the lysosomal accumulation of CPX or NFX suppresses their capacity to induce LMP and to kill cells. CPX- or NFX-triggered LMP results in caspase-independent cell death, with hallmarks of apoptosis such as chromatin condensation and phosphatidylserine exposure on the plasma membrane. LMP triggers mitochondrial membrane permeabilization (MMP), as detected by the release of cytochrome c. Both CPX and NFX* cause Bax and Bak to adopt their apoptotic conformation and to insert into mitochondrial membranes. Bax-/- Bak-/- double knockout cells fail to undergo MMP and cell death in response to CPX- or NFX-induced LMP. The single knockout of Bax or Bak (but not Bid) or the transfection-enforced expression of mitochondrion-targeted (but not endoplasmic reticulum-targeted) Bcl-2 conferred protection against CPX (but not NFX*)-induced MMP and death. Altogether, our data indicate that mitochondria are indispensable for cell death initiated by lysosomal destabilization.
Collapse
Affiliation(s)
- Patricia Boya
- Centre National de la Recherche Scientifique, UMR 8125, Institut Gustave Roussy, Pavillon de Recherche 1, 39 rue Camille-Desmoulins, F-94805 Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
411
|
Persson HL, Yu Z, Tirosh O, Eaton JW, Brunk UT. Prevention of oxidant-induced cell death by lysosomotropic iron chelators. Free Radic Biol Med 2003; 34:1295-305. [PMID: 12726917 DOI: 10.1016/s0891-5849(03)00106-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intralysosomal iron powerfully synergizes oxidant-induced cellular damage. The iron chelator, desferrioxamine (DFO), protects cultured cells against oxidant challenge but pharmacologically effective concentrations of this drug cannot readily be achieved in vivo. DFO localizes almost exclusively within the lysosomes following endocytic uptake, suggesting that truly lysosomotropic chelators might be even more effective. We hypothesized that an amine derivative of alpha-lipoamide (LM), 5-[1,2] dithiolan-3-yl-pentanoic acid (2-dimethylamino-ethyl)-amide (alpha-lipoic acid-plus [LAP]; pKa = 8.0), would concentrate via proton trapping within lysosomes, and that the vicinal thiols of the reduced form of this agent would interact with intralysosomal iron, preventing oxidant-mediated cell damage. Using a thiol-reactive fluorochrome, we find that reduced LAP does accumulate within the lysosomes of cultured J774 cells. Furthermore, LAP is approximately 1000 and 5000 times more effective than LM and DFO, respectively, in protecting lysosomes against oxidant-induced rupture and in preventing ensuing apoptotic cell death. Suppression of lysosomal accumulation of LAP (by ammonium-mediated lysosomal alkalinization) blocks these protective effects. Electron paramagnetic resonance reveals that the intracellular generation of hydroxyl radical following addition of hydrogen peroxide to J774 cells is totally eliminated by pretreatment with either DFO (1 mM) or LAP (0.2 microM) whereas LM (200 microM) is much less effective.
Collapse
Affiliation(s)
- Hans L Persson
- Division of Pathology II, Faculty of Health Sciences, University of Linköping, Linköping, Sweden.
| | | | | | | | | |
Collapse
|
412
|
Yi X, Yin XM, Dong Z. Inhibition of Bid-induced apoptosis by Bcl-2. tBid insertion, Bax translocation, and Bax/Bak oligomerization suppressed. J Biol Chem 2003; 278:16992-9. [PMID: 12624108 DOI: 10.1074/jbc.m300039200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bcl-2 family proteins are important regulators of apoptosis. They can be pro-apoptotic (e.g. Bid, Bax, and Bak) or anti-apoptotic (e.g. Bcl-2 and Bcl-x(L)). The current study examined Bid-induced apoptosis and its inhibition by Bcl-2. Transfection of Bid led to apoptosis in HeLa cells. In these cells, Bid was processed into active forms of truncated Bid or tBid. Following processing, tBid translocated to the membrane-bound organellar fraction. Bcl-2 co-transfection inhibited Bid-induced apoptosis but did not prevent Bid processing or tBid translocation. On the other hand, Bcl-2 blocked the release of mitochondrial cytochrome c in Bid-transfected cells, suggesting actions at the mitochondrial level. Alkaline treatment stripped off tBid from the membrane-bound organellar fraction of Bid plus Bcl-2-co-transfected cells, but not from cells transfected with only Bid, suggesting inhibition of tBid insertion into mitochondrial membranes by Bcl-2. Bcl-2 also prevented Bid-induced Bax translocation from cytosol to the membrane-bound organellar fraction. Finally, Bcl-2 diminished Bid-induced oligomerization of Bax and Bak within the membrane-bound organellar fraction, shown by cross-linking experiments. In conclusion, Bcl-2 inhibited Bid-induced apoptosis at the mitochondrial level by blocking cytochrome c release, without suppressing Bid processing or activation. Critical steps blocked by Bcl-2 included tBid insertion, Bax translocation, and Bax/Bak oligomerization in the mitochondrial membranes.
Collapse
Affiliation(s)
- Xiaolan Yi
- Department of Anatomy and Cell Biology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
413
|
van Gurp M, Festjens N, van Loo G, Saelens X, Vandenabeele P. Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Commun 2003; 304:487-97. [PMID: 12729583 DOI: 10.1016/s0006-291x(03)00621-1] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Apoptosis is a form of programmed cell death important in the development and tissue homeostasis of multicellular organisms. Mitochondria have, next to their function in respiration, an important role in the apoptotic-signaling pathway. Malfunctioning at any level of the cell is eventually translated in the release of apoptogenic factors from the mitochondrial intermembrane space resulting in the organized demise of the cell. Some of these factors, such as AIF and endonuclease G, appear to be highly conserved during evolution. Other factors, like cytochrome c, have gained their apoptogenic function later during evolution. In this review, we focus on the role of cytochrome c, AIF, endonuclease G, Smac/DIABLO, Omi/HtrA2, Acyl-CoA-binding protein, and polypyrimidine tract-binding protein in the initiation and modulation of cell death in different model organisms. These mitochondrial factors may contribute to both caspase-dependent and caspase-independent processes in apoptotic cell death.
Collapse
Affiliation(s)
- Maria van Gurp
- Molecular Signaling and Cell Death Unit, Department of Molecular Biomedical Research, VIB and Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
414
|
Degli Esposti M, Ferry G, Masdehors P, Boutin JA, Hickman JA, Dive C. Post-translational modification of Bid has differential effects on its susceptibility to cleavage by caspase 8 or caspase 3. J Biol Chem 2003; 278:15749-57. [PMID: 12598529 DOI: 10.1074/jbc.m209208200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bid is instrumental in death receptor-mediated apoptosis where it is cleaved by caspase 8 at aspartate 60 and aspartate 75 to generate truncated Bid (tBID) forms that facilitate release of mitochondrial cytochrome c. Bid is also cleaved at these sites by caspase 3 that is activated downstream of cytochrome c release after diverse apoptotic stimuli. In this context, tBid may amplify the apoptotic process. Bid is phosphorylated in vitro by casein kinases that regulate its cleavage by caspase 8 (Desagher, S., Osen-Sand, A., Montessuit, S., Magnenat, E., Vilbois, F., Hochmann, A., Journot, L. Antonsson, A., and Martinou, J.-C. (2001) Mol. Cell 8, 601-611). Using a Bid decapeptide substrate, we observed that phosphorylation at threonine 59 inhibited cleavage by caspase 8. This was also seen when recombinant Bid (rBid) and Bid isolated from murine kidney were incubated with casein kinase II. However, there were differences in the susceptibility of rBid and isolated Bid to cleavage by caspases 3 and 8. Caspase 8 cleaved rBid to generate two C-terminal products, p15 and p13 tBid, but produced only p15 tBid from isolated Bid. Contrary to rBid, isolated Bid was resistant to cleavage by caspase 3, yet was readily cleaved within the cytosolic milieu. Our data suggest that one or more distinct cellular mechanisms regulate Bid cleavage by caspases 8 and 3 in situ.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Cancer Research UK Cellular and Molecular Pharmacology Group, School of Biological Sciences, University of Manchester, Stopford Bldg., Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
415
|
Abstract
T lymphocyte death is essential for proper function of the immune system. During the decline of an immune response, most of the activated T cells die. Cell death is also responsible for eliminating autoreactive lymphocytes. Although recent studies have focused on caspase-dependent apoptotic signals, much evidence now shows that caspase- independent, necrotic cell death pathways are as important. An understanding of the molecular control of these alternative pathways is beginning to emerge. Damage of organelles including mitochondria, endoplasmic reticulum or lysozymes, leading to an increase in calcium and reactive oxygen species and the release of effector proteins, is frequently involved in caspase-independent cell death.
Collapse
Affiliation(s)
- Marja Jäättelä
- Apoptosis Laboratory, Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
416
|
Li W, Yuan XM, Ivanova S, Tracey KJ, Eaton JW, Brunk UT. 3-Aminopropanal, formed during cerebral ischaemia, is a potent lysosomotropic neurotoxin. Biochem J 2003; 371:429-36. [PMID: 12513695 PMCID: PMC1223282 DOI: 10.1042/bj20021520] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Revised: 11/29/2002] [Accepted: 01/06/2003] [Indexed: 11/17/2022]
Abstract
Cytotoxic polyamine-derived amino aldehydes, formed during cerebral ischaemia, damage adjacent tissue (the so-called 'penumbra') not subject to the initial ischaemic insult. One such product is 3-aminopropanal (3-AP), a potent cytotoxin that accumulates in ischaemic brain, although the precise mechanisms responsible for its formation are still unclear. More relevant to the present investigations, the mechanisms by which such a small aldehydic compound might be cytotoxic are also not known, but we hypothesized that 3-AP, having the structure of a weak lysosomotropic base, might concentrate within lysosomes, making these organelles a probable focus of initial toxicity. Indeed, 3-AP leads to lysosomal rupture of D384 glioma cells, a process which clearly precedes caspase activation and apoptotic cell death. Immunohistochemistry reveals that 3-AP concentrates in the lysosomal compartment and prevention of this accumulation by the lysosomotropic base ammonia, NH(3), protects against 3-AP cytotoxicity by increasing lysosomal pH. A thiol compound, N-(2-mercaptopropionyl)glycine, reacts with and neutralizes 3-AP and significantly inhibits cytoxocity. Both amino and aldehyde functions of 3-AP are necessary for toxicity: the amino group confers lysosomotropism and the aldehyde is important for additional, presently unknown, reactions. We conclude that 3-AP exerts its toxic effects by accumulating intralysosomally, causing rupture of these organelles and releasing lysosomal enzymes which initiate caspase activation and apoptosis (or necrosis if the lysosomal rupture is extensive). These results may have implications for the development of new therapeutics designed to lessen secondary damage arising from focal cerebral ischaemia.
Collapse
Affiliation(s)
- Wei Li
- Division of Pathology II, Linköping University Hospital, Sweden.
| | | | | | | | | | | |
Collapse
|
417
|
Abstract
There is accumulating evidence that intracellular and extracellular proteases of microglia contribute to various events in the central nervous system (CNS) through both nonspecific and limited proteolysis. Cathepsin E and cathepsin S, endosomal/lysosomal proteases, have been shown to play important roles in the major histocompatibility complex (MHC) class II-mediated antigen presentation of microglia by processing of exogenous antigens and degradation of the invariant chain associated with MHC class II molecules, respectively. Some members of cathepsins are also involved in neuronal death after secreted from microglia and clearance of phagocytosed amyloid- beta peptides. Tissue-type plasminogen activator, a serine protease, secreted from microglia participates in neuronal death, enhancement of N-methyl-D-aspartate receptor-mediated neuronal responses, and activation of microglia via either proteolytic or nonproteolytic activity. Calpain, a calcium-dependent cysteine protease, has been shown to play a pivotal role in the pathogenesis of multiple sclerosis by degrading myelin proteins extracellulary. Furthermore, matrix metalloproteases secreted from microglia also receive great attention as mediators of inflammation and tissue degradation through processing of pro-inflammatory cytokines and damage to the blood-brain barrier. The growing knowledge about proteolytic events mediated by microglial proteases will not only contribute to better understanding of microglial functions in the CNS but also may aid in the development of protease inhibitors as novel neuroprotective agents.
Collapse
Affiliation(s)
- Hiroshi Nakanishi
- Laboratory of Oral Aging Science, Faculty of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
418
|
Sarig R, Zaltsman Y, Marcellus RC, Flavell R, Mak TW, Gross A. BID-D59A is a potent inducer of apoptosis in primary embryonic fibroblasts. J Biol Chem 2003; 278:10707-15. [PMID: 12519725 DOI: 10.1074/jbc.m210296200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proapoptotic activity of BID seems to solely depend upon its cleavage to truncated tBID. Here we demonstrate that expression of a caspase-8 non-cleavable (nc) BID-D59A mutant or expression of wild type (wt) BID induces apoptosis in Bid -/-, caspase-8 -/-, and wt primary MEFs. Western blot analysis indicated that no cleavage products appeared in cells expressing ncBID. ncBID was as effective as wtBID in inducing cytochrome c release, caspase activation, and apoptosis. ncBID and wtBID (nc/wtBID) were much less effective than tBID in localizing to mitochondria and in inducing cytochrome c release, but only slightly less effective in inducing apoptosis. Studies with Apaf-1- and caspase-9-deficient primary MEFs indicated that both proteins were essential for nc/wtBID and for tBID-induced apoptosis. Most importantly, expression of non-apoptotic levels of either ncBID or wtBID in Bid -/- MEFs induced a similar and significant enhancement in apoptosis in response to a variety of death signals, which was accompanied by enhanced localization of BID to mitochondria and cytochrome c release. Thus, these results implicate full-length BID as an active player in the mitochondria during apoptosis.
Collapse
Affiliation(s)
- Rachel Sarig
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
419
|
Ogier-Denis E, Codogno P. Autophagy: a barrier or an adaptive response to cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1603:113-28. [PMID: 12618311 DOI: 10.1016/s0304-419x(03)00004-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Macroautophagy or autophagy is a degradative pathway terminating in the lysosomal compartment after the formation of a cytoplasmic vacuole that engulfs macromolecules and organelles. The recent discovery of the molecular controls of autophagy that are common to eukaryotic cells from yeast to human suggests that the role of autophagy in cell functioning is far beyond its nonselective degradative capacity. The involvement of proteins with properties of tumor suppressor and oncogenic properties at different steps of the pathway implies that autophagy must be considered in tumor progression. Autophagy as a stress response mechanism protects cancer cells from low nutrient supply or therapeutic insults. Autophagy is also involved in the elimination of cancer cells by triggering a non-apoptotic cell death program, suggesting a negative role in tumor development. These two aspects of autophagy will be discussed in this review.
Collapse
Affiliation(s)
- Eric Ogier-Denis
- INSERM U504 Glycobiologie et Signalisation cellulaire, Institut André Lwoff, 16 avenue Paul-Vaillant-Couturier, 94807 Villejuif Cedex, France
| | | |
Collapse
|
420
|
Clerk A, Cole SM, Cullingford TE, Harrison JG, Jormakka M, Valks DM. Regulation of cardiac myocyte cell death. Pharmacol Ther 2003; 97:223-61. [PMID: 12576135 DOI: 10.1016/s0163-7258(02)00339-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiac myocyte death, whether through necrotic or apoptotic mechanisms, is a contributing factor to many cardiac pathologies. Although necrosis and apoptosis are the widely accepted forms of cell death, they may utilize the same cell death machinery. The environment within the cell probably dictates the final outcome, producing a spectrum of response between the two extremes. This review examines the probable mechanisms involved in myocyte death. Caspases, the generally accepted executioners of apoptosis, are significant in executing cardiac myocyte death, but other proteases (e.g., calpains, cathepsins) also promote cell death, and these are discussed. The two principal cell death pathways (death receptor- and mitochondrial-mediated) are described in relation to the emerging structural information for the principal proteins, and they are discussed relative to current understanding of myocyte cell death mechanisms. Whereas the mitochondrial pathway is probably a significant factor in myocyte death in both acute and chronic phases of myocardial diseases, the death receptor pathway may prove significant in the longer term. The Bcl-2 family of proteins are key regulators of the mitochondrial death pathway. These proteins are described and their possible functions are discussed. The commitment to cell death is also influenced by protein kinase cascades that are activated in the cell. Whereas certain pathways are cytoprotective (e.g., phosphatidylinositol 3'-kinase), the roles of other kinases are less clear. Since myocyte death is implicated in a number of cardiac pathologies, attenuation of the death pathways may prove important in ameliorating such disease states, and possible therapeutic strategies are explored.
Collapse
Affiliation(s)
- Angela Clerk
- NHLI Division (Cardiac Medicine Section), Faculty of Medicine, Imperial College of Science, Technology and Medicine, Flower's Building, Armstrong Road, South Kensington, London SW7 2AZ, UK.
| | | | | | | | | | | |
Collapse
|
421
|
Ditaranto-Desimone K, Saito M, Tekirian TL, Saito M, Berg M, Dubowchik G, Soreghan B, Thomas S, Marks N, Yang AJ. Neuronal endosomal/lysosomal membrane destabilization activates caspases and induces abnormal accumulation of the lipid secondary messenger ceramide. Brain Res Bull 2003; 59:523-31. [PMID: 12576150 DOI: 10.1016/s0361-9230(02)00948-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Impairment of endosomal/lysosomal functions are reported as some of the earliest changes in several age-related neurological disorders such as Alzheimer's disease. Dysregulation of the lysosomal system is also accompanied by the accumulation of age-associated pigments and several recent reports have indicated that this age-related lipofuscin accumulation can sensitize cells to oxidative stress and apoptotic cell death. In this study, we have established and evaluated an in vitro age-related pathology paradigm that models lipofuscin accumulation. Our model consists of the treatment of cultured primary mouse neurons with lysosomotropic detergents. We have observed that one of the earliest biochemical changes associated with lysosomotropic detergent-induced membrane instability is a loss of the endosomal/lysosomal proton gradient integrity, followed by an activation of sphingomyelin hydrolysis and ceramide accumulation within enlarged endosomal/lysosomal vesicles. In addition, we demonstrate that ceramide accumulation correlates with the activation of proximal procaspases-8 and -9 as well as distal caspase-3, prior to the appearance of cell death. Taken together, we propose that disturbances of the endosomal/lysosomal system, in addition to the activation of the sphingomyelinase hydrolysis cycle, play essential roles in the course of post-mitotic neuronal aging. The abnormal accumulation of undigested lipids and proteins within dysfunctional endosomal/lysosomal vesicle populations during the process of pathological aging may serve as triggers of the cell death programs that are associated with downstream neurodegeneration.
Collapse
|
422
|
Müntener K, Zwicky R, Csucs G, Baici A. The alternative use of exons 2 and 3 in cathepsin B mRNA controls enzyme trafficking and triggers nuclear fragmentation in human cells. Histochem Cell Biol 2003; 119:93-101. [PMID: 12610728 DOI: 10.1007/s00418-002-0487-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2002] [Indexed: 11/28/2022]
Abstract
Pathological overexpression and trafficking of the cysteine peptidase cathepsin B depend in part on the composition of its mRNA. To investigate the roles of the alternatively spliced exons 2 and 3 in the 5'-untranslated region of cathepsin B mRNA we produced constructs of cathepsin B fused to green fluorescent protein. Expression and trafficking of the fluorescent chimeric products was followed in living human immortalized chondrocytes and HeLa cells. Although synthesized at different rates, proteins encoded by the full transcript and by that missing exon 2 followed a classic route, with the endosomal-lysosomal compartment as the final target. The point-mutated variant missing the glycosylation site for lysosomal targeting followed the secretory pathway. A truncated form of cathepsin B lacking the signal peptide and part of the propeptide, and encoded by the construct missing exons 2 and 3, was neither found in the Golgi apparatus nor in vesicles, but rather in the cytoplasm as patches associated with membranous and short fibrillar elements. This particular form of truncated cathepsin B produced nuclear damage and shrinking of the trans Golgi network and of the acidic compartment. The C-terminal, six-amino acid-long propeptide of cathepsin B did not exhibit a discernible role in protein trafficking.
Collapse
Affiliation(s)
- Kathrin Müntener
- Institute of Biochemistry, University of Zurich, Winterthurerstrasse 190, Switzerland
| | | | | | | |
Collapse
|
423
|
Levicar N, Dewey RA, Daley E, Bates TE, Davies D, Kos J, Pilkington GJ, Lah TT. Selective suppression of cathepsin L by antisense cDNA impairs human brain tumor cell invasion in vitro and promotes apoptosis. Cancer Gene Ther 2003; 10:141-51. [PMID: 12536203 DOI: 10.1038/sj.cgt.7700546] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2002] [Indexed: 11/08/2022]
Abstract
Invasion and metastasis of certain tumors are accompanied by increased mRNA protein levels and enzymatic activity of cathepsin L. Cathepsin L has also been suggested to play a role in the proteolytic cascades associated with apoptosis. To investigate the role of cathepsin L in brain tumor invasion and apoptosis, the human glioma cell line, IPTP, was stably transfected with full-length antisense and sense cDNA of cathepsin L. Down-regulation of cathepsin L by antisense cDNA significantly impaired (up to 70%) glioma cell invasion in vitro and markedly increased glioma cell apoptosis induced by staurosporine. Compared to control and parental cell lines, antisense down-regulation of cathepsin L was associated with an earlier induction of caspase-3 activity. Up-regulation of cathepsin L activity by sense cDNA was associated with reduced apoptosis and later induction of caspase-3 activity. Moreover, down-regulation of cathepsin L lowered the expression of antiapoptotic protein Bcl-2, whereas up-regulation increased the expression of Bcl-2, indicating that cathepsin L acts upstream of caspase-3. These data show that cathepsin L is an important protein mediating the malignancy of gliomas and its inhibition may diminish their invasion and lead to increased tumor cell apoptosis by reducing apoptotic threshold.
Collapse
Affiliation(s)
- Natasa Levicar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
424
|
Boatright KM, Renatus M, Scott FL, Sperandio S, Shin H, Pedersen IM, Ricci JE, Edris WA, Sutherlin DP, Green DR, Salvesen GS. A unified model for apical caspase activation. Mol Cell 2003; 11:529-41. [PMID: 12620239 DOI: 10.1016/s1097-2765(03)00051-0] [Citation(s) in RCA: 662] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Apoptosis is orchestrated by the concerted action of caspases, activated in a minimal two-step proteolytic cascade. Existing data suggests that apical caspases are activated by adaptor-mediated clustering of inactive zymogens. However, the mechanism by which apical caspases achieve catalytic competence in their recruitment/activation complexes remains unresolved. We explain that proximity-induced activation of apical caspases is attributable to dimerization. Internal proteolysis does not activate these apical caspases but is a secondary event resulting in partial stabilization of activated dimers. Activation of caspases-8 and -9 occurs by dimerization that is fully recapitulated in vitro by kosmotropes, salts with the ability to stabilize the structure of proteins. Further, single amino acid substitutions at the dimer interface abrogate the activity of caspases-8 and -9 introduced into recipient mammalian cells. We propose a unified caspase activation hypothesis whereby apical caspases are activated by dimerization of monomeric zymogens.
Collapse
Affiliation(s)
- Kelly M Boatright
- The Program in Apoptosis and Cell Death Research, Burnham Institute, 10901 North Torrey Pines Road, University of California, San Diego, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
425
|
Liou AKF, Clark RS, Henshall DC, Yin XM, Chen J. To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. Prog Neurobiol 2003; 69:103-42. [PMID: 12684068 DOI: 10.1016/s0301-0082(03)00005-4] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After a severe episode of ischemia, traumatic brain injury (TBI) or epilepsy, it is typical to find necrotic cell death within the injury core. In addition, a substantial number of neurons in regions surrounding the injury core have been observed to die via the programmed cell death (PCD) pathways due to secondary effects derived from the various types of insults. Apart from the cell loss in the injury core, cell death in regions surrounding the injury core may also contribute to significant losses in neurological functions. In fact, it is the injured neurons in these regions around the injury core that treatments are targeting to preserve. In this review, we present our cumulated understanding of stress-activated signaling pathways and apoptotic pathways in the research areas of ischemic injury, TBI and epilepsy and that gathered from concerted research efforts in oncology and other diseases. However, it is obvious that our understanding of these pathways in the context of acute brain injury is at its infancy stage and merits further investigation. Hopefully, this added research effort will provide a more detailed knowledge from which better therapeutic strategies can be developed to treat these acute brain injuries.
Collapse
Affiliation(s)
- Anthony K F Liou
- Department of Neurology, University of Pittsburgh School of Medicine, S526 Biomedical Science Tower, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
426
|
Piacenza L, Peluffo G, Radi R. L-arginine metabolism in Trypanosoma cruzi in the regulation of programmed cell death. Methods Enzymol 2003; 359:286-302. [PMID: 12481581 DOI: 10.1016/s0076-6879(02)59193-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Lucía Piacenza
- Department of Biochemistry, Universidad de la República, 11800 Montevideo, Uruguay
| | | | | |
Collapse
|
427
|
Thorburn J, Bender LM, Morgan MJ, Thorburn A. Caspase- and serine protease-dependent apoptosis by the death domain of FADD in normal epithelial cells. Mol Biol Cell 2003; 14:67-77. [PMID: 12529427 PMCID: PMC140228 DOI: 10.1091/mbc.e02-04-0207] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The adapter protein FADD consists of two protein interaction domains: a death domain and a death effector domain. The death domain binds to activated death receptors such as Fas, whereas the death effector domain binds to procaspase 8. An FADD mutant, which consists of only the death domain (FADD-DD), inhibits death receptor-induced apoptosis. FADD-DD can also activate a mechanistically distinct, cell type-specific apoptotic pathway that kills normal but not cancerous prostate epithelial cells. Here, we show that this apoptosis occurs through activation of caspases 9, 3, 6, and 7 and a serine protease. Simultaneous inhibition of caspases and serine proteases prevents FADD-DD-induced death. Inhibition of either pathway alone does not prevent cell death but does affect the morphology of the dying cells. Normal prostate epithelial cells require both the caspase and serine protease inhibitors to efficiently prevent apoptosis in response to TRAIL. In contrast, the serine protease inhibitor does not affect TRAIL-induced death in prostate tumor cells suggesting that the FADD-DD-dependent pathway can be activated by TRAIL. This apoptosis pathway is activated in a cell type-specific manner that is defective in cancer cells, suggesting that this pathway may be targeted during cancer development.
Collapse
Affiliation(s)
- Jacqueline Thorburn
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
428
|
Plaetzer K, Kiesslich T, Verwanger T, Krammer B. The Modes of Cell Death Induced by PDT: An Overview. ACTA ACUST UNITED AC 2003. [DOI: 10.1078/1615-1615-00082] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
429
|
Abstract
Members of the Bcl-2 family are crucial integrators of survival and death signals in higher eukaryotes. Although recent studies have provided novel and quite unexpected insights into the mechanisms by which these proteins might issue life permits or death sentences in cells, we are still on the way to fully understand their modes of action. This review provides a snapshot on where we are on this journey and how we may exploit our knowledge on this family of proteins to unveil the mysteries of immune regulation.
Collapse
Affiliation(s)
- Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany.
| |
Collapse
|
430
|
Hardwick JM, Bellows DS. Viral versus cellular BCL-2 proteins. Cell Death Differ 2003; 10 Suppl 1:S68-76. [PMID: 12655348 DOI: 10.1038/sj.cdd.4401133] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2002] [Revised: 07/15/2002] [Accepted: 07/29/2002] [Indexed: 11/08/2022] Open
Abstract
All gamma herpesviruses and a few other viruses encode at least one homologue of the mammalian cell death inhibitor BCL-2. Gamma herpesviruses are associated with human and animal lymphoid and epithelial tumours. However, the role of these viral BCL-2 homologues in the virus replication cycle or in human disease is not known, though recent developments show progress in this area. The structure of viral BCL-2 family protein, KSBcl-2, is similar to that of cellular family members, but viral BCL-2 proteins differ functionally from the cellular proteins, apparently escaping the regulatory mechanisms to which their cellular counterparts are subjected. Thus, exploring the biochemical and biological functions of the viral BCL-2 family proteins will increase our understanding of their role in virus infections and will undoubtedly teach us something about their cellular kin.
Collapse
Affiliation(s)
- J M Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
431
|
Abstract
A single mouse click on the topic tumor necrosis factor (TNF) in PubMed reveals about 50,000 articles providing one or the other information about this pleiotropic cytokine or its relatives. This demonstrates the enormous scientific and clinical interest in elucidating the biology of a molecule (or rather a large family of molecules), which began now almost 30 years ago with the description of a cytokine able to exert antitumoral effects in mouse models. Although our understanding of the multiple functions of TNF in vivo and of the respective underlying mechanisms at a cellular and molecular level has made enormous progress since then, new aspects are steadily uncovered and it appears that still much needs to be learned before we can conclude that we have a full comprehension of TNF biology. This review shortly covers some general aspects of this fascinating molecule and then concentrates on the molecular mechanisms of TNF signal transduction. In particular, the multiple facets of crosstalk between the various signalling pathways engaged by TNF will be addressed.
Collapse
Affiliation(s)
- H Wajant
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring, Germany.
| | | | | |
Collapse
|
432
|
Abstract
The sphingolipid metabolites ceramide, sphingosine, and sphingosine 1-phosphate contribute to controlling cell proliferation and apoptosis. Ceramide and its catabolite sphingosine act as negative regulators of cell proliferation and promote apoptosis. Conversely, sphingosine 1-phosphate, formed by phosphorylation of sphingosine by a sphingosine kinase, has been involved in stimulating cell growth and inhibiting apoptosis. As the phosphorylation of sphingosine diminishes apoptosis, while dephosphorylation of sphingosine 1-phosphate potentiates it, the role of sphingosine as a messenger of apoptosis is of importance. Herein, the effects of sphingosine on diverse signaling pathways implicated in the apoptotic process are reviewed.
Collapse
Affiliation(s)
- Olivier Cuvillier
- Inserm U466, Institut Louis Bugnard, CHU Rangueil, 1 avenue Jean Poulhès, 31403 Toulouse Cedex 4, France.
| |
Collapse
|
433
|
Debatin KM, Poncet D, Kroemer G. Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene 2002; 21:8786-803. [PMID: 12483532 DOI: 10.1038/sj.onc.1206039] [Citation(s) in RCA: 317] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2002] [Revised: 09/09/2002] [Accepted: 09/11/2002] [Indexed: 12/31/2022]
Abstract
One of the mechanisms by which chemotherapeutics destroy cancer cells is by inducing apoptosis. Apoptosis can be activated through several different signalling pathways, but these all appear to converge at a single event - mitochondrial membrane permeabilization (MMP). This 'point-of-no-return' in the cell death program is a complex process that is regulated by the composition of the mitochondrial membrane and pre-mitochondrial signal-transduction events. MMP is subject to a complex regulation, and local alterations in the composition of mitochondrial membranes, as well as alterations in pre-mitochondrial signal-transducing events, can determine chemotherapy resistance in cancer cells. Detecting MMP might thus be useful for detecting chemotherapy responses in vivo. Several cytotoxic drugs induce MMP by a direct action on mitochondria. This type of agents can enforce death in cells in which upstream signals normally leading to apoptosis have been disabled. Cytotoxic components acting on mitochondria can specifically target proteins from the Bcl-2 family, the peripheral benzodiazepin receptor, or the adenine nucleotide translocase, and/or act by virtue of their physicochemical properties as steroid analogues, cationic ampholytes, redox-active compounds or photosensitizers. Some compounds acting on mitochondria can overcome the cytoprotective effect of Bcl-2-like proteins. Several agents which are already used in anti-cancer chemotherapy can induce MMP, and new drugs specifically designed to target mitochondria are being developed.
Collapse
|
434
|
Beyaert R, Van Loo G, Heyninck K, Vandenabeele P. Signaling to gene activation and cell death by tumor necrosis factor receptors and Fas. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 214:225-72. [PMID: 11893167 DOI: 10.1016/s0074-7696(02)14007-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor necrosis factor (TNF) receptors and Fas elicit a wide range of biological responses, including cell death, cell proliferation, inflammation, and differentiation. The pleiotropic character of these receptors is reflected at the level of signal transduction. The cytotoxic effects of TNF and Fas result from the activation of an apoptotic/necrotic program. On the other hand, TNF receptors, and under certain conditions also Fas, exert a proinflammatory function that results from the induction of several genes. In this context, the transcription factor nuclear factor-kappa B (NF-kappaB) plays an important role. NF-kappaB is also important for the induction of several antiapoptotic genes, which explains at least partially why several cell types can only be killed by TNF in the presence of transcription or translation inhibitors. It is the balance between proapoptotic and antiapoptotic pathways that determines whether a cell will finally die or proliferate. A third signal transduction pathway that is activated in response to TNF is the mitogen-activated protein kinase cascade, which plays an important role in the modulation of transcriptional gene activation.
Collapse
Affiliation(s)
- Rudi Beyaert
- Department of Molecular Biology, University of Gent-Flanders Interuniversity Institute for Biotechnology, Belgium
| | | | | | | |
Collapse
|
435
|
Cezari MHS, Puzer L, Juliano MA, Carmona AK, Juliano L. Cathepsin B carboxydipeptidase specificity analysis using internally quenched fluorescent peptides. Biochem J 2002; 368:365-9. [PMID: 12201820 PMCID: PMC1222986 DOI: 10.1042/bj20020840] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2002] [Revised: 08/12/2002] [Accepted: 08/29/2002] [Indexed: 11/17/2022]
Abstract
We have examined in detail the specificity of the subsites S1, S2, S1' and S2' for the carboxydipeptidase activity of cathepsin B by synthesizing and assaying four series of internally quenched fluorescent peptides based on the sequence Dnp-GFRFW-OH, where Dnp (2,4-dinitrophenyl) is the quenching group of the fluorescence of the tryptophan residue. Each position, except the glycine, was substituted with 15 different naturally occurring amino acids. Based on the results we obtained, we also synthesized efficient and sensitive substrates that contained o -aminobenzoic acid and 3-Dnp-(2,3-diaminopropionic acid), or epsilon-amino-Dnp-Lys, as the fluorescence donor-receptor pair. The higher kinetic parameter values for the carboxydipeptidase compared with the endopeptidase activity of cathepsin B allowed an accurate analysis of its specificity. The subsite S1 accepted preferentially basic amino acids for hydrolysis; however, substrates with phenylalanine and aliphatic side-chain-containing amino acids at P1 had lower K m values. Despite the presence of Glu245 at S2, this subsite presented clear preference for aromatic amino acid residues, and the substrate with a lysine residue at P2 was hydrolysed better than that containing an arginine residue. S1' is essentially a hydrophobic subsite, and S2' has particular preference for phenylalanine or tryptophan residues.
Collapse
Affiliation(s)
- Maria Helena S Cezari
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo 04044-020, Brazil
| | | | | | | | | |
Collapse
|
436
|
Foghsgaard L, Lademann U, Wissing D, Poulsen B, Jaattela M. Cathepsin B mediates tumor necrosis factor-induced arachidonic acid release in tumor cells. J Biol Chem 2002; 277:39499-506. [PMID: 12185082 DOI: 10.1074/jbc.m206669200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arachidonic acid (AA) generated by cytosolic phospholipase A2 (cPLA2) has been suggested to function as a second messenger in tumor necrosis factor (TNF)-induced death signaling. Here, we show that cathepsin B-like proteases are required for the TNF-induced AA release in transformed cells. Pharmaceutical inhibitors of cathepsin B blocked TNF-induced AA release in human breast (MCF-7S1) and cervix (ME-180as) carcinoma as well as murine fibrosarcoma (WEHI-S) cells. Furthermore, TNF-induced AA release was significantly reduced in cathepsin B-deficient immortalized murine embryonic fibroblasts. Employing cPLA2-deficient MCF-7S1 cells expressing ectopic cPLA2 or cPLA2-deficient immortalized murine embryonic fibroblasts, we showed that cPLA2 is dispensable for TNF-induced AA release and death in these cells. Furthermore, TNF-induced cathepsin B-dependent AA release could be dissociated from the cathepsin B-independent cell death in MCF-7S1 cells, whereas both events required cathepsin B activity in other cell lines tested. These data suggest that cathepsin B inhibitors may prove useful not only in the direct control of cell death but also in limiting the damage-associated inflammation.
Collapse
Affiliation(s)
- Lasse Foghsgaard
- Apoptosis Laboratory, Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
437
|
Ekdahl CT, Mohapel P, Weber E, Bahr B, Blomgren K, Lindvall O. Caspase-mediated death of newly formed neurons in the adult rat dentate gyrus following status epilepticus. Eur J Neurosci 2002; 16:1463-71. [PMID: 12405959 DOI: 10.1046/j.1460-9568.2002.02202.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A large proportion of cells that proliferate in the adult dentate gyrus under normal conditions or in response to brain insults exhibit only short-term survival. Here, we sought to determine which cell death pathways are involved in the degeneration of newly formed neurons in the rat dentate gyrus following 2 h of electrically induced status epilepticus. We investigated the role of three families of cysteine proteases, caspases, calpains, and cathepsins, which can all participate in apoptotic cell death. Status epilepticus increased the number of bromodeoxyuridine (BrdU)-positive proliferated cells in the subgranular zone of the dentate gyrus. At the time of maximum cell proliferation, immunohistochemical analyses revealed protein expression of active caspase-cleaved poly (ADP-ribose) polymerase (PARP) in approximately 66% of the BrdU-positive cells, while none of them expressed cathepsin B or the 150-kDa calpain-produced fodrin breakdown product. To evaluate the importance of cysteine proteases in regulating survival of the newly formed neurons, we administered intracerebroventricular infusions of a caspase inhibitor cocktail (zVAD-fmk, zDEVD-fmk and zLEHD-fmk) over a 2-week period, sufficient to allow for neuronal differentiation, starting 1 week after the epileptic insult. Increased numbers of cells double-labelled with BrdU and neuron-specific nuclear protein (NeuN) marker were detected in the subgranular zone and granule cell layer of the caspase inhibitor-treated rats. Our data indicate that caspase-mediated cell death pathways are active in progenitor cell progeny generated by status epilepticus and compromise survival during neuronal differentiation.
Collapse
Affiliation(s)
- Christine T Ekdahl
- Section of Restorative Neurology, Wallenberg Neuroscience Center, BMC A11, 221 84 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
438
|
van Loo G, Saelens X, van Gurp M, MacFarlane M, Martin SJ, Vandenabeele P. The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 2002; 9:1031-42. [PMID: 12232790 DOI: 10.1038/sj.cdd.4401088] [Citation(s) in RCA: 452] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2002] [Revised: 06/07/2002] [Accepted: 06/11/2002] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are 'life-essential' organelles for the production of metabolic energy in the form of ATP. Paradoxically mitochondria also play a key role in controlling the pathways that lead to cell death. This latter role of mitochondria is more than just a 'loss of function' resulting in an energy deficit but is an active process involving different mitochondrial proteins. Cytochrome c was the first characterised mitochondrial factor shown to be released from the mitochondrial intermembrane space and to be actively implicated in apoptotic cell death. Since then, other mitochondrial proteins, such as AIF, Smac/DIABLO, endonuclease G and Omi/HtrA2, were found to undergo release during apoptosis and have been implicated in various aspects of the cell death process. Members of the Bcl-2 protein family control the integrity and response of mitochondria to apoptotic signals. The molecular mechanism by which mitochondrial intermembrane space proteins are released and the regulation of mitochondrial homeostasis by Bcl-2 proteins is still elusive. This review summarises and evaluates the current knowledge concerning the complex role of released mitochondrial proteins in the apoptotic process.
Collapse
Affiliation(s)
- G van Loo
- Molecular Signalling and Cell Death Unit, Department of Molecular Biomedical Research, VIB, Gent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
439
|
Reiners JJ, Caruso JA, Mathieu P, Chelladurai B, Yin XM, Kessel D. Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage. Cell Death Differ 2002; 9:934-44. [PMID: 12181744 PMCID: PMC4569095 DOI: 10.1038/sj.cdd.4401048] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2001] [Revised: 01/25/2002] [Accepted: 02/11/2002] [Indexed: 01/07/2023] Open
Abstract
Photodynamic therapy (PDT) protocols employing lysosomal sensitizers induce apoptosis via a mechanism that causes cytochrome c release prior to loss of mitochondrial membrane potential (DeltaPsi(m)). The current study was designed to determine how lysosomal photodamage initiates mitochondrial-mediated apoptosis in murine hepatoma 1c1c7 cells. Fluorescence microscopy demonstrated that the photosensitizer N-aspartyl chlorin e6 (NPe6) localized to the lysosomes. Irradiation of cultures preloaded with NPe6 induced the rapid destruction of lysosomes, and subsequent cleavage/activation of Bid, pro-caspases-9 and -3. Pro-caspase-8 was not activated. Release of cytochrome c occurred at about the time of Bid cleavage and preceded the loss of DeltaPsi(m). Extracts of purified lysosomes catalyzed the in vitro cleavage of cytosolic Bid, but not pro-caspase-3 activation. Pharmacological inhibition of cathepsin B, L and D activities did not suppress Bid cleavage or pro-caspases-9 and -3 activation. These studies demonstrate that photodamaged lysosomes trigger the mitochondrial apoptotic pathway by releasing proteases that activate Bid.
Collapse
Affiliation(s)
- J J Reiners
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | | | |
Collapse
|
440
|
Khurana P, Ashraf QM, Mishra OP, Delivoria-Papadopoulos M. Effect of hypoxia on caspase-3, -8, and -9 activity and expression in the cerebral cortex of newborn piglets. Neurochem Res 2002; 27:931-8. [PMID: 12396104 DOI: 10.1023/a:1020347732741] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Caspases play an important role in programmed cell death. Caspase-3 is a key executioner of apoptosis, whose activation is mediated by the initiator caspases, caspase-8 and caspase-9. The present study tested the hypothesis that cerebral hypoxia results in increased activation and expression of caspases-3, -8, and -9 in the cytosolic fraction of the cerebral cortex of newborn piglets. To test this hypothesis the activity and expression of caspases-3, -8, and -9 were determined in newborn piglets divided into normoxic and hypoxic groups. Caspase activity was determined spectrofluorometrically using enzyme specific substrates. The expression of caspase protein was assessed by Western blot analysis using enzyme specific antibody. Caspases-3, -8, and -9 activity and expression was significantly higher in the hypoxic group than in the normoxic group. These results demonstrate that hypoxia induces activation and increased expression of both the initiator caspases and the executioner caspase in the cerebral cortex of newborn piglets. We conclude that hypoxia results in stimulation of both the pathways of caspase-3 activation.
Collapse
|
441
|
Bidère N, Briet M, Dürrbach A, Dumont C, Feldmann J, Charpentier B, de Saint-Basile G, Senik A. Selective inhibition of dipeptidyl peptidase I, not caspases, prevents the partial processing of procaspase-3 in CD3-activated human CD8(+) T lymphocytes. J Biol Chem 2002; 277:32339-47. [PMID: 12080079 DOI: 10.1074/jbc.m205153200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of primary human T cells by anti-CD3 and interleukin-2 resulted in partial processing of procaspase-3 in activated nonapoptotic (Delta Psi(m)high) CD8(+) T cells but not in CD4(+) T cells. Apical caspases-8 and -9 were not activated, and Bid was not processed to truncated Bid. Boc-D.fmk, a broad spectrum caspase inhibitor, did not prevent this process, whereas GF.dmk, a selective inhibitor of dipeptidyl peptidase I, was effective. Dipeptidyl peptidase I is required for the activation of granule-associated serine proteases. It is enriched in the cytolytic granules of cytotoxic lymphocytes, where it promotes the proteolytic activation of progranzymes A and B. Inhibition of granzyme B (GrB)-like serine proteases by Z-AAD.cmk prevented partial processing of procapase-3, whereas inhibition of GrA activity by D-FPR.cmk had no effect. Specific inhibitors of other lysosomal proteases such as cathepsins B, L, and D did not interfere in this event. Patients with Chediak-Higashi syndrome or with perforin deficiency also displayed partial processing of procaspase-3, excluding the involvement of granule exocytosis for the delivery of the serine protease in cause. The p20/p12 processing pattern of procaspase-3 in our model points to GrB, the sole serine protease with caspase activity. Small amounts of GrB were indeed exported from cytolytic granules to the cytosol of a significant fraction of GrB-positive cells.
Collapse
Affiliation(s)
- Nicolas Bidère
- Laboratoire de Greffes d'Epithéliums et Régulation de l'Activation Lymphocytaire, Unité INSERM 542, Hôpital Paul Brousse, 94807 Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
442
|
Gil-Parrado S, Fernández-Montalván A, Assfalg-Machleidt I, Popp O, Bestvater F, Holloschi A, Knoch TA, Auerswald EA, Welsh K, Reed JC, Fritz H, Fuentes-Prior P, Spiess E, Salvesen GS, Machleidt W. Ionomycin-activated calpain triggers apoptosis. A probable role for Bcl-2 family members. J Biol Chem 2002; 277:27217-26. [PMID: 12000759 DOI: 10.1074/jbc.m202945200] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitous calpains (mu- and m-calpain) have been repeatedly implicated in apoptosis, but the underlying mechanism(s) remain(s) to be elucidated. We examined ionomycin-induced cell death in LCLC 103H cells, derived from a human large cell lung carcinoma. We detected hallmarks of apoptosis such as membrane blebbing, nuclear condensation, DNA ladder formation, caspase activation, and poly-(ADP-ribose)polymerase cleavage. Apoptosis was prevented by preincubation of the cells with the calpain inhibitor acetyl-calpastatin 27-peptide and the caspase inhibitor Z-DEVD-fmk, implicating both the calpains and caspases in the apoptotic process. The apoptotic events correlated in a calpastatin-inhibitable manner with Bid and Bcl-2 decrease and with activation of caspases-9, -3, and -7. In vitro both ubiquitous calpains cleaved recombinant Bcl-2, Bid, and Bcl-x(L) at single sites truncating their N-terminal regions. Binding studies revealed diminished interactions of calpain-truncated Bcl-2 and Bid with immobilized intact Bcl-2 family proteins. Moreover, calpain-cleaved Bcl-2 and Bid induced cytochrome c release from isolated mitochondria. We conclude that ionomycin-induced calpain activation promotes decrease of Bcl-2 proteins thereby triggering the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Shirley Gil-Parrado
- Abteilung für Klinische Chemie und Klinische Biochemie, Chirurgische Klinik Innenstadt, Klinikum der LMU München, Nussbaumstrasse 20, D-80336 Münich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
443
|
Turk B, Stoka V, Rozman-Pungercar J, Cirman T, Droga-Mazovec G, Oresić K, Turk V. Apoptotic pathways: involvement of lysosomal proteases. Biol Chem 2002; 383:1035-44. [PMID: 12437086 DOI: 10.1515/bc.2002.112] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Apoptosis or programmed cell death is the major mechanism used by multicellular organisms to remove infected, excessive and potentially dangerous cells. Cysteine proteases from the caspase family play a crucial role in the process. However, there is increasing evidence that lysosomal proteases are also involved in apoptosis. In this review various lysosomal proteases and their potential contribution to propagation of apoptosis are discussed.
Collapse
Affiliation(s)
- Boris Turk
- Department of Biochemistry and Molecular Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
444
|
Abstract
There are many ways to measure apoptosis and other forms of programmed cell death in development. Once nonmammalian embryos have passed the midblastula transition, or much earlier in mammalian embryos, apoptosis is similar to that seen in adult organisms, and is used to sculpt the animal, fuse bilateral tissues, and establish the structure of the nervous system and the immune system. Embryos present unique problems in that, in naturally occurring cell deaths, few cells are involved and they are frequently in very restricted regions. Thus, identification of apoptotic or other dying cells is more effectively achieved by microscopy-based techniques than by electrophoretic or cell-sorting techniques. Since embryos have many mitotic cells and are frequently more difficult to fix than adult tissues, it is best to confirm interpretations by the use of two or more independent techniques. Although natural embryonic deaths are frequently programmed and require protein synthesis, activation of a cell death pathway is often post-translational and assays for transcriptional or translational changes-as opposed to changes in aggregation of death-related molecules or proteolytic activation of enzymes-is likely to be uninformative. Also, embryos can frequently exploit partially redundant pathways, such that the phenotype of a knockout or upregulated death-related gene is often rather modest, even though the adult may develop response or regulation problems. For these reasons, the study of cell death in embryos is fascinating but researchers should be cautious in their analyses.
Collapse
Affiliation(s)
- Zahra Zakeri
- Department of Biology, Queens College and Graduate Center of CUNY, 65-30 Kissena Boulevard, Flushing, NY 11367, USA.
| | | |
Collapse
|
445
|
Roberg K, Kågedal K, Ollinger K. Microinjection of cathepsin d induces caspase-dependent apoptosis in fibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:89-96. [PMID: 12107093 PMCID: PMC1850710 DOI: 10.1016/s0002-9440(10)64160-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent reports have indicated that enzymes such as cathepsins D and B are translocated from lysosomal compartments to the cytosol early during apoptosis. We have previously noted that a translocation of cathepsins D and B occur before cytochrome c release and caspase activation in cardiomyocytes and human fibroblasts during oxidative stress-induced apoptosis. In the present report, we use a microinjection technique to investigate if cytosolic location of the cathepsins D and B are important for induction of apoptosis. We found that microinjection of cathepsin D into the cytosol of human fibroblasts caused apoptosis, which was detected as changes in distribution of cytochrome c, cell shrinkage, activation of caspases, chromatin condensation, and formation of pycnotic nuclei. No apoptosis was, however, induced by microinjection of cathepsin B. Moreover, apoptosis was prevented in fibroblasts pretreated with a caspase-3-like inhibitor, and also when microinjected with cathepsin D mixed with the cathepsin D inhibitor, pepstatin A. These results show that cytosolic cathepsin D can act as a proapoptotic mediator upstream of cytochrome c release and caspase activation in human fibroblasts.
Collapse
Affiliation(s)
- Karin Roberg
- Division of Pathology II, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | |
Collapse
|
446
|
Qiao L, McKinstry R, Gupta S, Gilfor D, Windle JJ, Hylemon PB, Grant S, Fisher PB, Dent P. Cyclin kinase inhibitor p21 potentiates bile acid-induced apoptosis in hepatocytes that is dependent on p53. Hepatology 2002; 36:39-48. [PMID: 12085347 DOI: 10.1053/jhep.2002.33899] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Prolonged activation of the mitogen-activated protein kinase (MAPK) pathway enhances expression of the cyclin kinase inhibitor p21 that can promote growth arrest and cell survival in response to cytotoxic insults. Bile acids can also cause prolonged MAPK activation that is cytoprotective against bile acid-induced cell death. Here, we examined the impact of bile acid-induced MAPK signaling and p21 expression on the survival of primary mouse hepatocytes. Deoxycholic acid (DCA) caused prolonged activation of the MAPK pathway that weakly enhanced p21 protein expression. When DCA-induced MAPK activation was blocked using MEK1/2 inhibitors, both hepatocyte viability and expression of p21 were reduced. Surprisingly, constitutive overexpression of p21 in p21+/+ hepatocytes enhanced DCA-induced cell killing. In agreement with these findings, treatment of p21-/- hepatocytes with DCA and MEK1/2 inhibitors also caused less apoptosis than observed in wild-type p21+/+ cells. Expression of p21 in p21-/- hepatocytes did not modify basal levels of apoptosis but restored the apoptotic response of p21-/- cells to those of p21+/+ cells overexpressing p21. These findings suggest that basal expression of p21 plays a facilitating, proapoptotic role in DCA-induced apoptosis. Overexpression of p21 enhanced p53 protein levels. In agreement with a role for p53 in the enhanced apoptotic response, overexpression of p21 did not potentiate apoptosis in p53-/- hepatocytes but, instead, attenuated the death response in these cells. In conclusion, our data suggest that overexpression of p21 can promote apoptosis, leading to elevated sensitivity to proapoptotic stimuli.
Collapse
Affiliation(s)
- Liang Qiao
- Department of Radiation Oncology, Medical College of Virginia, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298-0058, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
447
|
Persson HL, Svensson AI, Brunk UT. Alpha-lipoic acid and alpha-lipoamide prevent oxidant-induced lysosomal rupture and apoptosis. Redox Rep 2002; 6:327-34. [PMID: 11778851 DOI: 10.1179/135100001101536472] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Alpha-lipoic acid (LA) and its corresponding derivative, alpha-lipoamide (LM), have been described as antioxidants, but the mechanisms of their putative antioxidant effects remain largely uncharacterised. The vicinal thiols present in the reduced forms of these compounds suggest that they might possess metal chelating properties. We have shown previously that cell death caused by oxidants may be initiated by lysosomal rupture and that this latter event may involve intralysosomal iron which catalyzes Fenton-type chemistry and resultant peroxidative damage to lysosomal membranes. Here, using cultured J774 cells as a model, we show that both LA and LM stabilize lysosomes against oxidative stress, probably by chelating intralysosomal iron and, consequently, preventing intralysosomal Fenton reactions. In preventing oxidant-mediated apoptosis, LM is significantly more effective than LA, as would be expected from their differing capacities to enter cells and concentrate within the acidic lysosomal compartment. As previously reported, the powerful iron-chelator, desferrioxamine (Des) (which also locates within the lysosomal compartment), also provides protection against oxidant-mediated cell death. Interestingly, although Des enhances the partial protection afforded by LA, it confers no additional protection when added with LM. Therefore, the antioxidant actions of LA and LM may arise from intralysosomal iron chelation, with LM being more effective in this regard.
Collapse
Affiliation(s)
- H L Persson
- Division of Pathology II, Faculty of Health Sciences, Linköping University, Sweden.
| | | | | |
Collapse
|
448
|
Ji ZS, Miranda RD, Newhouse YM, Weisgraber KH, Huang Y, Mahley RW. Apolipoprotein E4 potentiates amyloid beta peptide-induced lysosomal leakage and apoptosis in neuronal cells. J Biol Chem 2002; 277:21821-8. [PMID: 11912196 DOI: 10.1074/jbc.m112109200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We assessed the isoform-specific effects of apolipoprotein (apo) E on the response of Neuro-2a cells to the amyloid beta peptide (Abeta1-42). As determined by the intracellular staining pattern and the release of beta-hexosaminidase into the cytosol, apoE4-transfected cells treated with aggregated Abeta1-42 showed a greater tendency toward lysosomal leakage than neo- or apoE3-transfected cells. Abeta1-42 caused significantly greater cell death and more than 2-fold greater DNA fragmentation in apoE4-secreting than in apoE3-secreting or control cells. H2O2 or staurosporine enhanced cell death and apoptosis in apoE4-transfected cells but not in apoE3-transfected cells. A caspase-9 inhibitor abolished the potentiation of Abeta1-42-induced apoptosis by apoE4. Similar results were obtained with conditioned medium from cells secreting apoE3 or apoE4. Cells preincubated for 4 h with a source of apoE3 or apoE4, followed by removal of apoE from the medium and from the cell surface, still exhibited the isoform-specific response to Abeta1-42, indicating that the potentiation of apoptosis required intracellular apoE, presumably in the endosomes or lysosomes. Studies of phospholipid (dimyristoylphosphatidylcholine) bilayer vesicles encapsulating 5-(and-6)-carboxyfluorescein dye showed that apoE4 remodeled and disrupted the phospholipid vesicles to a greater extent than apoE3 or apoE2. In response to Abeta1-42, vesicles containing apoE4 were disrupted to a greater extent than those containing apoE3. These findings are consistent with apoE4 forming a reactive molecular intermediate that avidly binds phospholipid and may insert into the lysosomal membrane, destabilizing it and causing lysosomal leakage and apoptosis in response to Abeta1-42.
Collapse
Affiliation(s)
- Zhong-Sheng Ji
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California 94141-9100, USA
| | | | | | | | | | | |
Collapse
|
449
|
Abstract
Caspase-mediated apoptosis is a major hindrance to tumour growth and metastasis. Accordingly, defects in signalling pathways leading to the activation of caspases are common in tumours. Moreover, many tumour cells can unexpectedly survive the activation of caspases. As a result, caspase-independent cell death programmes are gaining increasing interest among cancer researchers. The heterogeneity of cancer cells with respect to their sensitivity to various death stimuli further emphasizes the need for additional death pathways in the therapeutic control of cell death. An understanding of the molecular control of alternative death pathways is beginning to emerge, being comparable with that of the molecular anatomy of apoptosis at the time of the discovery of caspases less than a decade ago. Here, newly discovered triggers and molecular regulators of alternative cell death programmes are reviewed and their potential in future cancer therapy is discussed.
Collapse
Affiliation(s)
- Ida S Mathiasen
- Apoptosis Laboratory, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|
450
|
Yuan XM, Li W, Dalen H, Lotem J, Kama R, Sachs L, Brunk UT. Lysosomal destabilization in p53-induced apoptosis. Proc Natl Acad Sci U S A 2002; 99:6286-91. [PMID: 11959917 PMCID: PMC122941 DOI: 10.1073/pnas.092135599] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2002] [Indexed: 01/24/2023] Open
Abstract
The tumor suppressor wild-type p53 can induce apoptosis. M1-t-p53 myeloid leukemic cells have a temperature-sensitive p53 protein that changes its conformation to wild-type p53 after transfer from 37 degrees C to 32 degrees C. We have now found that these cells showed an early lysosomal rupture after transfer to 32 degrees C. Mitochondrial damage, including decreased membrane potential and release of cytochrome c, and the appearance of apoptotic cells occurred later. Lysosomal rupture, mitochondrial damage, and apoptosis were all inhibited by the cytokine IL-6. Some other compounds can also inhibit apoptosis induced by p53. The protease inhibitor N-tosyl-l-phenylalanine chloromethyl ketone inhibited the decrease in mitochondrial membrane potential and cytochrome c release, the Ca(2+)-ATPase inhibitor thapsigargin inhibited only cytochrome c release, and the antioxidant butylated hydroxyanisole inhibited only the decrease in mitochondrial membrane potential. In contrast to IL-6, these other compounds that inhibited some of the later occurring mitochondrial damage did not inhibit the earlier p53-induced lysosomal damage. The results indicate that apoptosis is induced by p53 through a lysosomal-mitochondrial pathway that is initiated by lysosomal destabilization, and that this pathway can be dissected by using different apoptosis inhibitors. These findings on the induction of p53-induced lysosomal destabilization can also help to formulate new therapies for diseases with apoptotic disorders.
Collapse
Affiliation(s)
- Xi-Ming Yuan
- Pathology II, Linköping University, Linköping 581 85, Sweden.
| | | | | | | | | | | | | |
Collapse
|