401
|
Pussinen PJ, Metso J, Keva R, Hirschmugl B, Sattler W, Jauhiainen M, Malle E. Plasma phospholipid transfer protein-mediated reactions are impaired by hypochlorite-modification of high density lipoprotein. Int J Biochem Cell Biol 2003; 35:192-202. [PMID: 12479869 DOI: 10.1016/s1357-2725(02)00130-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The two main functions of phospholipid transfer protein (PLTP) are the transfer of phospholipids between plasma lipoproteins and the conversion of high density lipoprotein (HDL), where prebeta-HDL particles are generated. HDL is considered an anti-atherogenic lipoprotein due to its function in the reverse cholesterol transport, where prebeta-HDL accepts cellular membrane cholesterol from peripheral tissues. However, the anti-atherogenic properties of native HDL may be abolished by oxidation/modification. Hypochlorous acid/hypochlorite (HOCl/OCl-)-a potent oxidant generated in vivo only by the myeloperoxidase-H2O2-chloride system of activated phagocytes-alters the physiological properties of HDL by generating a pro-atherogenic lipoprotein particle. Therefore, we have studied the effect of HOCl on the function of HDL subclass 3 (HDL3) and triglyceride-enriched HDL3 (TG-HDL3) in PLTP-mediated processes in vitro. Modification of HDL3 and TG-HDL3 with increasing HOCl concentrations (oxidant:lipoprotein molar ratio between 25:1 and 200:1) decreased the capacity of the corresponding lipoprotein particles to accept phospholipids. Although binding of PLTP to unmodified and HOCl-modified lipoprotein particles was similar, the degree of PLTP-mediated HDL conversion was decreased upon HOCl oxidation. PLTP released apolipoprotein A-I (apoA-I) from HOCl-modified HDL3, but the particles formed displayed no prebeta-mobility. Based on these findings, we conclude that the substrate properties of HOCl-modified HDL3 and TG-HDL3 in PLTP-mediated processes are impaired, which indicates that the anti-atherogenic properties of HDL are impaired.
Collapse
Affiliation(s)
- Pirkko J Pussinen
- Institute of Dentistry, University of Helsinki, P.O. Box 63, FIN-00014, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
402
|
Zhu BZ, Carr AC, Frei B. Pyrrolidine dithiocarbamate is a potent antioxidant against hypochlorous acid-induced protein damage. FEBS Lett 2002; 532:80-4. [PMID: 12459467 DOI: 10.1016/s0014-5793(02)03637-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The antioxidant potential of the dithiol compound pyrrolidine dithiocarbamate (PDTC) against protein damage induced by hypochlorous acid (HOCl) was investigated. The effects of PDTC were compared to those of reduced glutathione (GSH) and N-acetylcysteine (NAC). PDTC markedly and in a concentration-dependent manner inhibited HOCl-induced inactivation of alpha(1)-antiproteinase, protein carbonyl formation on serum albumin and oxidation of human low-density lipoprotein. The direct scavenging of HOCl by PDTC was demonstrated by two quantitative methods, oxidation of ferrocyanide and chlorination of monochlorodimedon. In all assay systems, PDTC was two to three times more potent than GSH and NAC, while diethyldithiocarbamate was about as effective as PDTC. These data demonstrate that PDTC is a potent antioxidant against HOCl-induced protein oxidative damage, suggesting that PDTC might be useful in the prevention and treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Ben-Zhan Zhu
- Linus Pauling Institute, Oregon State University, 571 Weniger Hall, Corvallis, OR 97331-6512, USA
| | | | | |
Collapse
|
403
|
Heigold S, Bauer G. RAW 264.7 macrophages induce apoptosis selectively in transformed fibroblasts: intercellular signaling based on reactive oxygen and nitrogen species. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.3.554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Stefanie Heigold
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Germany
| | - Georg Bauer
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Germany
| |
Collapse
|
404
|
Marsche G, Hammer A, Oskolkova O, Kozarsky KF, Sattler W, Malle E. Hypochlorite-modified high density lipoprotein, a high affinity ligand to scavenger receptor class B, type I, impairs high density lipoprotein-dependent selective lipid uptake and reverse cholesterol transport. J Biol Chem 2002; 277:32172-9. [PMID: 12070141 DOI: 10.1074/jbc.m200503200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypochlorous acid/hypochlorite (HOCl/OCl(-)), a potent oxidant generated in vivo by the myeloperoxidase-H(2)O(2)-chloride system of activated phagocytes, alters the physiological properties of high density lipoprotein (HDL) by generating a proatherogenic lipoprotein particle. On endothelial cells lectin-like oxidized low density lipoprotein receptor 1 (LOX-1) and scavenger receptor class B, type I (SR-BI), act in concert by mediating the holoparticle of and selective cholesteryl ester uptake from HOCl-HDL. We therefore investigated the ligand specificity of HOCl-HDL to SR-BI-overexpressing Chinese hamster ovary cells. Binding of HOCl-HDL was saturable, and the degree of HOCl modification was the determining factor for increased binding affinity to SR-BI. Competition experiments further confirmed that HOCl-HDL binds with increased affinity to the same or overlapping domain(s) of SR-BI as does native HDL. Furthermore, SR-BI-mediated selective HDL-cholesteryl ester association as well as time- and concentration-dependent cholesterol efflux from SR-BI overexpressing Chinese hamster ovary cells were, depending on the degree of HOCl modification of HDL, markedly impaired. The most significant findings of this study were that the presence of very low concentrations of HOCl-HDL severely impaired SR-BI-mediated bidirectional cholesterol flux mediated by native HDL. The colocalization of immunoreactive HOCl-modified epitopes with apolipoprotein A-I along with deposits of lipids in serial sections of human atheroma shown here indicates that the myeloperoxidase-H(2)O(2)-halide system contributes to oxidative damage of HDL in vivo.
Collapse
MESH Headings
- Amino Acids/analysis
- Animals
- CD36 Antigens/metabolism
- CHO Cells
- Cells, Cultured
- Cholesterol/metabolism
- Chromatography, High Pressure Liquid
- Cricetinae
- Fatty Acids, Nonesterified/blood
- Humans
- Hypochlorous Acid/pharmacology
- Kinetics
- Ligands
- Lipoproteins, HDL/blood
- Lipoproteins, HDL/drug effects
- Lipoproteins, HDL/metabolism
- Membrane Proteins
- Microscopy, Confocal
- Oxidants/pharmacology
- Phospholipids/isolation & purification
- Phospholipids/metabolism
- Receptors, Immunologic
- Receptors, Lipoprotein/metabolism
- Receptors, Scavenger
- Recombinant Proteins/drug effects
- Recombinant Proteins/metabolism
- Scavenger Receptors, Class B
- Scavenger Receptors, Class E
- Transfection
Collapse
Affiliation(s)
- Gunther Marsche
- Institute of Medical Biochemistry and Molecular Biology, Karl-Franzens University Graz, Austria
| | | | | | | | | | | |
Collapse
|
405
|
Carr AC. Hypochlorous acid-modified low-density lipoprotein inactivates the lysosomal protease cathepsin B: protection by ascorbic and lipoic acids. Redox Rep 2002; 6:343-9. [PMID: 11865974 DOI: 10.1179/135100001101536526] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Unregulated uptake of oxidized LDL by the scavenger receptor(s) of macrophages is thought to be an early event in atherosclerotic lesion development. Accumulation of oxidized LDL within macrophages may result from resistance of the modified LDL to enzymatic hydrolysis or from direct inactivation of lysosomal enzymes by reactive LDL-associated moieties. Since HOCl-modified LDL has been detected in vivo, the effects of HOCI-modified LDL on the activities of the cysteine protease cathepsin B and the aspartyl protease cathepsin D were investigated. LDL (0.5 mg protein/ml), which had been exposed to HOCl (25-200 microM), caused rapid dose-dependent inactivation of cathepsin B, but not of cathepsin D. Exposure of LDL to HOCl results primarily in the formation of LDL-associated chloramines, and the model chloramine N(alpha)-acetyl-lysine chloramine also caused dose-dependent inactivation of cathepsin B. Incubation of HOCl-modified LDL with ascorbic and lipoic acids (25-200 microM) resulted in dose-dependent reduction of LDL-associated chloramines and concomitant protection against cathepsin B inactivation. Thus, the data indicate that HOCl-modified LDL inactivates cathepsin B by a chloramine-dependent mechanism, most likely via oxidation of the enzyme's critical cysteine residue. Furthermore, small molecule antioxidants, such as ascorbic and lipoic acids, may be able to inhibit this potentially pro-atherogenic process by scavenging LDL-associated chloramines.
Collapse
Affiliation(s)
- A C Carr
- Linus Pauling Institute, Oregon State University, Corvallis 97331-6512, USA.
| |
Collapse
|
406
|
Arnhold J, Osipov AN, Spalteholz H, Panasenko OM, Schiller J. Formation of lysophospholipids from unsaturated phosphatidylcholines under the influence of hypochlorous acid. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1572:91-100. [PMID: 12204337 DOI: 10.1016/s0304-4165(02)00271-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The formation of lysophosphatidylcholines from unsaturated phosphatidylcholines upon treatment with hypochlorous acid was evaluated by means of MALDI-TOF mass spectrometry and 31P NMR spectroscopy. With an increasing number of double bonds in a fatty acid residue, the yield of lysophosphatidylcholines with a saturated fatty acid residue increased considerably in comparison to the total amount of higher molecular weight products like chlorohydrins and glycols. High amounts of lysophosphatidylcholines were formed from phospholipids containing arachidonic or docosahexaenoic acid residues. In phospholipids with monounsaturated fatty acid residues, the position of the double bond did not influence the yield of lyso-products. Besides the exclusive formation of chlorohydrin and glycol, hypochlorous acid caused the cleavage of the unsaturated fatty acid residue independent of its location at the first or second position of the glycerol backbone. In contrast, strong alkaline conditions, i.e. saponification led also to a hydrolysis of the saturated fatty acid residue from phosphatidylcholines. It is concluded that both MALDI-TOF mass spectrometry and 31P NMR spectroscopy are able to detect the formation of lysophosphatidylcholines. We conclude also that the formation of lysophospholipids from unsaturated phosphatidylcholines by hypochlorous acid can be relevant in vivo under acute inflammatory conditions.
Collapse
Affiliation(s)
- J Arnhold
- Institute of Medical Physics and Biophysics, Medical Department, University of Leipzig, Liebigstr. 27, D-04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
407
|
Suzuki T, Masuda M, Friesen MD, Fenet B, Ohshima H. Novel products generated from 2'-deoxyguanosine by hypochlorous acid or a myeloperoxidase-H2O2-Cl- system: identification of diimino-imidazole and amino-imidazolone nucleosides. Nucleic Acids Res 2002; 30:2555-64. [PMID: 12034845 PMCID: PMC117197 DOI: 10.1093/nar/30.11.2555] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hypochlorous acid (HOCl), generated by myeloperoxidase from H2O2 and Cl-, plays an important role in host defense and inflammatory tissue injury. We report here the identification of products generated from 2'-deoxyguanosine (dGuo) with HOCl. When 1 mM dGuo and 1 mM HOCl were reacted at pH 7.4 and 37 degrees C for 15 min and the reaction was terminated with N-acetylcysteine (N-AcCys), two products were generated in addition to 8-chloro-2'-deoxyguanosine (8-Cl-dGuo). One was identified as an amino-imidazolone nucleoside (dIz), a previously reported product of dGuo with other oxidation systems. The other was identified as a novel diimino-imidazole nucleoside, 2,5-diimino-4-[(2-deoxy-beta-D-erythro-pentofuranosyl)amino]-2H,5H-imidazole (dDiz) by spectrometric measurements. The yields were 1.4% dDiz, 0.6% dIz and 2.4% 8-Cl-dGuo, with 61.5% unreacted dGuo. Precursors of dDiz and dIz containing a chlorine atom were found in the reaction solution in the absence of termination by N-AcCys. dDiz, dIz and 8-Cl-dGuo were also formed from the reaction of dGuo with myeloperoxidase in the presence of H2O2 and Cl- under mildly acidic conditions. These results imply that dDiz and dIz are generated from dGuo via chlorination by electrophilic attack of HOCl and subsequent dechlorination by N-AcCys. These products may play a role in cytotoxic and/or genotoxic effects of HOCl.
Collapse
Affiliation(s)
- Toshinori Suzuki
- Unit of Endogenous Cancer Risk Factors, International Agency for Research on Cancer, 150 Cours Albert Thomas, F-69372 Lyon Cedex 08, France
| | | | | | | | | |
Collapse
|
408
|
Dalle-Donne I, Rossi R, Giustarini D, Gagliano N, Di Simplicio P, Colombo R, Milzani A. Methionine oxidation as a major cause of the functional impairment of oxidized actin. Free Radic Biol Med 2002; 32:927-37. [PMID: 11978495 DOI: 10.1016/s0891-5849(02)00799-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A significant specific increase in the actin carbonyl content has been recently demonstrated in human brain regions severely affected by the Alzheimer's disease pathology, in postischemic isolated rat hearts, and in human intestinal cell monolayers following incubation with hypochlorous acid (HOCl). We have very recently shown that exposure of actin to HOCl results in the immediate loss of Cys-374 thiol, oxidation of some methionine residues, and, at higher molar ratios of oxidant to protein, increase in protein carbonyl groups, associated with filament disruption and inhibition of filament formation. In the present work, we have studied the effect of methionine oxidation induced by chloramine-T (CT), which at neutral or slightly alkaline pH oxidizes preferentially Met and Cys residues, on actin filament formation and stability utilizing actin blocked at Cys-374. Methionines at positions 44, 47, and 355, which are the most solvent-exposed methionyl residues in the actin molecule, were found to be the most susceptible to oxidation to the sulfoxide derivative. Met-176, Met-190, Met-227, and Met-269 are the other sites of the oxidative modification. The increase in fluorescence associated with the binding of 8-anilino-1-naphtalene sulfonic acid to hydrophobic regions of the protein reveals that actin surface hydrophobicity increases with oxidation, indicating changes in protein conformation. Structural alterations were confirmed by the decreased susceptibility to proteolysis and by urea denaturation curves. Oxidation of some critical methionines (those at positions 176, 190, and 269) causes a complete inhibition of actin polymerization and severely affects the stability of actin filaments, which rapidly depolymerize. The present results would indicate that the oxidation of some critical methionines disrupts specific noncovalent interactions that normally stabilize the structure of actin filaments. We suggest that the process involving formation of actin carbonyl derivatives would occur at an extent of oxidative insult higher than that causing the oxidation of some critical methionine residues. Therefore, methionine oxidation could be a damaging event preceding the appearance of carbonyl groups on actin and a major cause for the functional impairment of the carbonylated protein recently observed both in vivo and in vitro.
Collapse
|
409
|
Sener G, Sehirli AO, Altunbas HZ, Ersoy Y, Paskaloglu K, Arbak S, Ayanoglu-Dulger G. Melatonin protects against gentamicin-induced nephrotoxicity in rats. J Pineal Res 2002; 32:231-6. [PMID: 11982792 DOI: 10.1034/j.1600-079x.2002.01858.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acute renal failure is a major complication of gentamicin (GEN), which is widely used in the treatment of gram-negative infections. A large body of in vitro and in vivo evidence indicates that reactive oxygen metabolites (or free radicals) are important mediators of gentamicin nephrotoxicity. In this study we investigated the role of free radicals in gentamicin-induced nephrotoxicity and whether melatonin, a potent antioxidant could prevent it. For this purpose female Sprague-Dawley rats were given intraperitoneally either gentamicin sulphate (40 mg/kg), melatonin (10 mg/kg), gentamicin plus melatonin or vehicle (control) twice daily for 14 days. The rats were decapitated on the 15th day and kidneys were removed. Blood urea nitrogen (BUN) and creatinine levels were measured in the blood and malondialdehyde (MDA) and glutathione (GSH) levels, protein oxidation (PO) and myeloperoxidase (MPO) activity were determined in the renal tissue. Gentamicin was observed to cause a severe nephrotoxicity which was evidenced by an elevation of BUN and creatinine levels. The significant decrease in GSH and increases in MDA levels, PO and MPO activity indicated that GEN-induced tissue injury was mediated through oxidative reactions. On the other hand simultaneous melatonin administration protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by GEN treatment.
Collapse
Affiliation(s)
- Göksel Sener
- Department of Pharmacology, School of Pharmacy, Marmara University, Istanbul, Turkey.
| | | | | | | | | | | | | |
Collapse
|
410
|
Inder T, Mocatta T, Darlow B, Spencer C, Senthilmohan R, Winterbourn CC, Volpe JJ. Markers of oxidative injury in the cerebrospinal fluid of a premature infant with meningitis and periventricular leukomalacia. J Pediatr 2002; 140:617-21. [PMID: 12032532 DOI: 10.1067/mpd.2002.123627] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Free radicals have been hypothesized to play a key role in the evolution of periventricular leukomalacia, although direct evidence of oxidative injury in the human infant is lacking. This case report is the first to demonstrate a marked elevation in the levels of lipid and protein oxidative products in the cerebrospinal fluid during the evolution of periventricular leukomalacia in a premature infant with meningitis.
Collapse
Affiliation(s)
- Terrie Inder
- Murdoch Children's Research Institute and Howard Florey Institute, Royal Women's Hospital, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
411
|
Biasi F, Poli G, Salizzoni M, Cerutti E, Battista S, Mengozzi G, Zamboni F, Franchello A, Molino G, Chiarpotto E, Cutrin JC, Zanetti D, Meurisse M, Honore P, Detry O, Defraigne JO, Pincemail J. Effect of perioperative infusion of antioxidants on neutrophil activation during liver transplantation in humans. Transplant Proc 2002; 34:755-8. [PMID: 12034172 DOI: 10.1016/s0041-1345(01)02903-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- F Biasi
- CNR Center of Immogenetics & Experimental Oncology, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
412
|
Suzuki T, Ohshima H. Nicotine-modulated formation of spiroiminodihydantoin nucleoside via 8-oxo-7,8-dihydro-2'-deoxyguanosine in 2'-deoxyguanosine-hypochlorous acid reaction. FEBS Lett 2002; 516:67-70. [PMID: 11959105 DOI: 10.1016/s0014-5793(02)02503-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hypochlorous acid (HOCl) is generated by myeloperoxidase of activated neutrophils which kill invading microorganisms, but also cause DNA damage in inflamed tissues. We report here that spiroiminodihydantoin nucleoside (dS), a further oxidized product of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), is formed, in addition to 8-chloro-2'-deoxyguanosine and 8-oxo-dG, by reaction of 2'-deoxyguanosine with HOCl. Presence of low concentrations of nicotine significantly enhanced the yields of these HOCl-modified nucleosides. Our results imply that nicotine may enhance genotoxicity and tissue damage caused by neutrophil activation. dS may also serve as a new biomarker for oxidative DNA damage induced by oxidants such as HOCl.
Collapse
Affiliation(s)
- Toshinori Suzuki
- Unit of Endogenous Cancer Risk Factors, International Agency for Research on Cancer, 150 Cours Albert Thomas, F 69372 Cedex 08, Lyon, France
| | | |
Collapse
|
413
|
Kristoffersen A, Voie ØA, Fonnum F. Ortho-substituted polybrominated biphenyls activate respiratory burst in granulocytes from humans. Toxicol Lett 2002; 129:161-6. [PMID: 11879987 DOI: 10.1016/s0378-4274(02)00005-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The in vivo consequences of exposure to polychlorinated biphenyls (PCB) have been reported to involve reduced phagocytic function, which could be related to increased susceptibility to infections. Though less abundant in the environment, polybrominated biphenyls (PBB) have similar toxicological properties as PCB. In this respect the effect of different PBBs on human granulocytes was elucidated. Ortho-substituted PBBs activated respiratory burst, measured by the chemiluminescence assay, and elevated intracellular calcium. The most active polybrominated congener 2,2',5-TBB increased chemiluminescence in a concentration-dependent manner, and ED(50) was approximately 10 microM. PBBs stimulated elevation of intracellular [Ca(2+)] in human granulocytes. The [Ca(2+)]i was elevated from 50 to 250 nM. The respiratory burst due to stimulation by PBBs was inhibited by U73122, ethanol (1%), wortmannin, and bisindolylmaleimide and by the elimination of extracellular calcium in the same way as shown previously for PCBs, indicating that PBB act by the same mechanisms.
Collapse
Affiliation(s)
- Anne Kristoffersen
- Norwegian Defence Research Establishment, Division for Environmental Toxicology, PO Box 25, N-2027 Kjeller, Norway
| | | | | |
Collapse
|
414
|
Chapman ALP, Hampton MB, Senthilmohan R, Winterbourn CC, Kettle AJ. Chlorination of bacterial and neutrophil proteins during phagocytosis and killing of Staphylococcus aureus. J Biol Chem 2002; 277:9757-62. [PMID: 11733505 DOI: 10.1074/jbc.m106134200] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myeloperoxidase is proposed to play a central role in bacterial killing by generating hypochlorous acid within neutrophil phagosomes. However, it has yet to be demonstrated that these inflammatory cells target hypochlorous acid against bacteria inside phagosomes. In this investigation, we treated Staphylococcus aureus with varying concentrations of reagent hypochlorous acid and found that even at sublethal doses, it converted some tyrosine residues in their proteins to 3-chlorotyrosine and 3,5-dichlorotyrosine. To determine whether or not ingested bacteria were exposed to hypochlorous acid in neutrophil phagosomes, we labeled their proteins with [(13)C(6)]tyrosine and used gas chromatography with mass spectrometry to identify the corresponding chlorinated isotopes after the bacteria had been phagocytosed. Chlorinated tyrosines were detected in bacterial proteins 5 min after phagocytosis and reached levels of approximately 2.5/1000 mol of tyrosine at 60 min. Inhibitor studies revealed that chlorination was dependent on myeloperoxidase. Chlorinated neutrophil proteins were also detected and accounted for 94% of total chlorinated tyrosine residues formed during phagocytosis. We conclude that hypochlorous acid is a major intracellular product of the respiratory burst. Although some reacts with the bacteria, most reacts with neutrophil components.
Collapse
Affiliation(s)
- Anna L P Chapman
- Free Radical Research Group, Department of Pathology, Christchurch School of Medicine and Health Sciences, Post Office Box 4345, Christchurch, New Zealand
| | | | | | | | | |
Collapse
|
415
|
Carr AC, Frei B. Human neutrophils oxidize low-density lipoprotein by a hypochlorous acid-dependent mechanism: the role of vitamin C. Biol Chem 2002; 383:627-36. [PMID: 12033452 DOI: 10.1515/bc.2002.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Oxidatively modified low-density lipoprotein (LDL) has been strongly implicated in the pathogenesis of atherosclerosis. Peripheral blood leukocytes, such as neutrophils, can oxidize LDL by processes requiring superoxide and redox-active transition metal ions; however, it is uncertain whether such catalytic metal ions are available in the artery wall. Stimulated leukocytes also produce the reactive oxidant hypochlorous acid (HOCl) via the heme enzyme myeloperoxidase. Since myeloperoxidase-derived HOCl may be a physiologically relevant oxidant in atherogenesis, we investigated the mechanisms of neutrophil-mediated LDL modification and its possible prevention by the antioxidant ascorbate (vitamin C). As a sensitive marker of LDL oxidation, we measured LDL thiol groups. Stimulated human neutrophils (5x10(6) cells/ml) incubated with human LDL (0.25 mg protein/ml) time-dependently oxidized LDL thiols (33% and 79% oxidized after 10 and 30 min, respectively). Supernatants from stimulated neutrophils also oxidized LDL thiols (33% oxidized after 30 min), implicating long-lived oxidants such as N-chloramines. Experiments using specific enzyme inhibitors and oxidant scavengers showed that HOCl, but not hydrogen peroxide nor superoxide, plays a critical role in LDL thiol oxidation by neutrophils. Ascorbate (200 microM) protected against neutrophil-mediated LDL thiol oxidation for up to 15 min of incubation, after which LDL thiols became rapidly oxidized. Although stimulated neutrophils accumulated ascorbate during oxidation of LDL, pre-loading of neutrophils with ascorbate did not attenuate oxidant production by the cells. Thus, activated neutrophils oxidize LDL thiols by HOCl- and N-chloramine-dependent mechanisms and physiological concentrations of vitamin C delay this process, most likely due to scavenging of extracellular oxidants, rather than by attenuating neutrophil oxidant production.
Collapse
Affiliation(s)
- Anitra C Carr
- Linus Pauling Institute, Oregon State University, Corvallis 97331-6512, USA
| | | |
Collapse
|
416
|
Defects in leukocyte-mediated initiation of lipid peroxidation in plasma as studied in myeloperoxidase-deficient subjects: systematic identification of multiple endogenous diffusible substrates for myeloperoxidase in plasma. Blood 2002. [DOI: 10.1182/blood.v99.5.1802.h8001802_1802_1810] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
More than a decade ago it was demonstrated that neutrophil activation in plasma results in the time-dependent formation of lipid hydroperoxides through an unknown, ascorbate-sensitive pathway. It is now shown that the mechanism involves myeloperoxidase (MPO)-dependent use of multiple low-molecular–weight substrates in plasma, generating diffusible oxidant species. Addition of activated human neutrophils (from healthy subjects) to plasma (50%, vol/vol) resulted in the peroxidation of endogenous plasma lipids by catalase-, heme poison-, and ascorbate-sensitive pathways, as assessed by high-performance liquid chromatography (HPLC) with on-line electrospray ionization tandem mass spectrometric analysis of free and lipid-bound 9-HETE and 9-HODE. In marked contrast, neutrophils isolated from multiple subjects with MPO deficiency failed to initiate peroxidation of plasma lipids, but they did so after supplementation with isolated human MPO. MPO-dependent use of a low-molecular–weight substrate(s) in plasma for initiating lipid peroxidation was illustrated by demonstrating that the filtrate of plasma (10-kd MWt cutoff) could supply components required for low-density lipoprotein lipid peroxidation in the presence of MPO and H2O2. Subsequent HPLC fractionation of plasma filtrate (10-kd MWt cutoff) by sequential column chromatography identified nitrite, tyrosine, and thiocyanate as major endogenous substrates and 17β-estradiol as a novel minor endogenous substrate in plasma for MPO in promoting peroxidation of plasma lipids. These results strongly suggest that the MPO–H2O2system of human leukocytes serves as a physiological mechanism for initiating lipid peroxidation in vivo.
Collapse
|
417
|
Sener G, Sehirli AO, Keyer-Uysal M, Arbak S, Ersoy Y, Yeğen BC. The protective effect of melatonin on renal ischemia-reperfusion injury in the rat. J Pineal Res 2002; 32:120-6. [PMID: 12071469 DOI: 10.1034/j.1600-079x.2002.1848.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Oxygen free radicals are considered to be important components involved in the pathophysiological tissue alterations observed during ischemia-reperfusion (I/R). In this study, we investigated the putative protective effects of melatonin treatment on renal I/R injury. Wistar albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 1, 3, 6, 24, 48 hr or 1 wk of reperfusion. Melatonin (10 mg/kg, s.c.) or vehicle was administered twice, 15 min prior to ischemia and immediately before the reperfusion period. At the end of the reperfusion periods, rats were decapitated. Kidney samples were taken for histological examination or the determination of renal malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and protein oxidation (PO). Serum creatinine and blood urea nitrogen (BUN) concentrations were measured for the evaluation of renal function. The results revealed that I/R induced nephrotoxicity, as evidenced by increases in BUN and creatinine levels at each time point, was reversed by melatonin treatment. The decrease in GSH and increases in MDA, MPO and PO induced by I/R indicated that renal injury involves free radical formation. As melatonin administration reversed these oxidant responses, improved renal function and microscopic damage, it seems likely that melatonin protects kidney tissue against oxidative damage.
Collapse
Affiliation(s)
- Göksel Sener
- Department of Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
418
|
Steinebach C, Bauer G. An alternative signaling pathway based on nitryl chloride during intercellular induction of apoptosis. IN VITRO & MOLECULAR TOXICOLOGY 2002; 14:107-20. [PMID: 11690564 DOI: 10.1089/10979330152560504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Transforming growth factor (TGF)-beta pretreated nontransformed fibroblasts induce apoptosis selectively in transformed fibroblasts. This potential control step during oncogenesis has been termed intercellular induction of apoptosis. Selectivity and efficiency of intercellular induction of apoptosis depend on transformed target cell-derived superoxide anions that drive two intercellular signaling pathways--the HOCl/hydroxyl radical and the nitric oxide (NO)/peroxynitrite pathway. Other natural antitumor systems like macrophages or cells of the granulocyte lineage seem to utilize the same signaling chemistry. Our data demonstrate the existence of an alternative signaling pathway in these systems. This pathway depends on the presence of nitrite and is still effective when the two conventional signaling pathways are blocked by superoxide dismutase (SOD). Nitrite-dependent apoptosis induction is neither blocked by SOD nor by the hydroxyl radical scavenger terephthalate, but it is inhibited by the peroxidase inhibitor aminobenzoyl hydrazide and by the hypochlorous acid (HOCl) scavenger taurine. Therefore, nitrite, that is nontoxic for our cells, seems to interact with HOCl to form the apoptosis inducer nitryl chloride. Nitryl chloride-mediated apoptosis induction might be relevant for apoptosis induction in tumor cells that release SOD and thus escape the two classical signaling pathways.
Collapse
Affiliation(s)
- C Steinebach
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Germany
| | | |
Collapse
|
419
|
Gaut JP, Byun J, Tran HD, Heinecke JW. Artifact-free quantification of free 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine in human plasma by electron capture-negative chemical ionization gas chromatography mass spectrometry and liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Biochem 2002; 300:252-9. [PMID: 11779118 DOI: 10.1006/abio.2001.5469] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Halogenation and nitration of biomolecules have been proposed as key mechanisms of host defense against bacteria, fungi, and viruses. Reactive oxidants also have the potential to damage host tissue, and they have been implicated in disease. In the current studies, we describe specific, sensitive, and quantitative methods for detecting three stable markers of oxidative damage: 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine. Our results indicate that electron capture-negative chemical ionization-gas chromatography/mass spectrometry (EC-NCI GC/MS) is 100-fold more sensitive than liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-MS/MS) for analyzing authentic 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine. Using an isotopomer of tyrosine to evaluate artifactual production of the analytes during sample preparation and analysis, we found that artifact generation was negligible with either technique. However, LC-MS/MS proved cumbersome for analyzing multiple samples because it required 1.5 h of run and equilibration time per analysis. In contrast, EC-NCI GC/MS required only 5 min of run time per analysis. Using EC-NCI GC/MS, we were able to detect and quantify attomole levels of free 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine in human plasma. Our results indicate that EC-NCI GC/MS is a sensitive and specific method for quantifying free 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine in biological fluids in a single, rapid analysis and that it avoids generating any of the analytes ex vivo.
Collapse
Affiliation(s)
- Joseph P Gaut
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
420
|
Hawkins CL, Rees MD, Davies MJ. Superoxide radicals can act synergistically with hypochlorite to induce damage to proteins. FEBS Lett 2002; 510:41-4. [PMID: 11755528 DOI: 10.1016/s0014-5793(01)03226-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activated phagocytes generate both superoxide radicals via a respiratory burst, and HOCl via the concurrent release of the haem enzyme myeloperoxidase. Amine and amide functions on proteins and carbohydrates are major targets for HOCl, generating chloramines (RNHCl) and chloramides (RC(O)NClR'), which can accumulate to high concentrations (>100 microM). Here we show that superoxide radicals catalyse the decomposition of chloramines and chloramides to reactive nitrogen-centred radicals, and increase the extent of protein fragmentation compared to that observed with either superoxide radicals or HOCl, alone. This synergistic action may be of significance at sites of inflammation, where both superoxide radicals and chloramines/chloramides are formed simultaneously.
Collapse
Affiliation(s)
- Clare L Hawkins
- The EPR Group, Heart Research Institute, Camperdown, Sydney, NSW 2050, Australia
| | | | | |
Collapse
|
421
|
Takizawa S, Aratani Y, Fukuyama N, Maeda N, Hirabayashi H, Koyama H, Shinohara Y, Nakazawa H. Deficiency of myeloperoxidase increases infarct volume and nitrotyrosine formation in mouse brain. J Cereb Blood Flow Metab 2002; 22:50-4. [PMID: 11807393 DOI: 10.1097/00004647-200201000-00006] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Peroxynitrite is responsible for nitration in vivo, whereas myeloperoxidase can also catalyze protein nitration in the presence of high NO2(-) levels. Recent reports of myeloperoxidase-mediated enzyme inactivation or lipid peroxidation have suggested a role of myeloperoxidase in various pathological conditions. To clarify the role of myeloperoxidase in ischemic brain injury, the authors measured nitrotyrosine formation and infarct volume in myeloperoxidase-deficient or wild-type mice subjected to 2-hour focal cerebral ischemia-reperfusion. Twenty-four hours after reperfusion, infarct volume was significantly larger in myeloperoxidase-deficient mice than in wild-type mice (81 +/- 20 mm(3) vs. 52 +/- 13 mm(3), P < 0.01), and nitrotyrosine levels in the infarct region were higher in myeloperoxidase-deficient mice than in wild-type mice (13.4 +/- 6.1 microg/mg vs. 9.8 +/- 4.4 microg/mg, P = 0.13). Fourteen hours after reperfusion, the nitrotyrosine level was significantly higher in myeloperoxidase-deficient mice than in wild-type mice (3.3 +/- 2.9 microg/mg vs. 1.4 +/- 0.4 microg/mg, P < 0.05). The authors conclude that the absence of myeloperoxidase increases ischemic neuronal damage in vivo, and that the myeloperoxidase-mediated pathway is not responsible for the nitration reaction in cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Shunya Takizawa
- Department of Neurology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
422
|
Bauer G. Signaling and proapoptotic functions of transformed cell-derived reactive oxygen species. Prostaglandins Leukot Essent Fatty Acids 2002; 66:41-56. [PMID: 12051956 DOI: 10.1054/plef.2001.0332] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transformed fibroblasts generate extracellular superoxide anions through the recently identified membrane-associated NADPH oxidase. These cell-derived superoxide anions exhibit signaling functions such as regulation of proliferation and maintenance of the transformed state. Their dismutation product hydrogen peroxide regulates the intracellular level of catalase, whose activity has been observed to be upregulated in certain transformed cells. After glutathione depletion, transformed cell-derived reactive oxygen species (ROS) exhibit apoptosis-inducing potential through the metal-catalyzed Haber-Weiss reaction. Moreover, transformed cell-derived ROS represent key elements for selective and efficient apoptosis induction by natural antitumor systems (such as fibroblasts, granulocytes and macrophages). These effector cells release peroxidase, which utilizes target cell-derived hydrogen peroxide for HOCl synthesis. In a second step, HOCl interacts with target cell-derived superoxide anions and forms apoptosis-inducing hydroxyl radicals. In a parallel signaling pathway, effector cell-derived NO interacts with target cell-derived superoxide anions and generates the apoptosis inducer peroxynitrite. Therefore, transformed cell-derived ROS determine transformed cells as selective targets for induction of apoptosis by these effector systems. It is therefore proposed that transformed cell derived ROS interact with associated cells to exhibit directed and specific signaling functions, some of which are beneficial and some of which can become detrimental to transformed cells.
Collapse
Affiliation(s)
- G Bauer
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Germany.
| |
Collapse
|
423
|
Gröne HJ, Gröne EF, Malle E. Immunohistochemical detection of hypochlorite-modified proteins in glomeruli of human membranous glomerulonephritis. J Transl Med 2002; 82:5-14. [PMID: 11796821 DOI: 10.1038/labinvest.3780390] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A proposed analogy between atherosclerosis and glomerulosclerosis suggests that factors that contribute to the development of atherosclerosis, ie, oxidatively modified (lipo)proteins, may also participate in glomerular injury. Although the nature of the in vivo oxidants has not been clearly identified, increasing evidence suggested the myeloperoxidase (MPO)-H(2)O(2)-halide system to be responsible for the damage observed in leukocyte-dependent glomerulonephritis. MPO, a heme protein secreted by activated phagocytes, may generate modified/oxidized proteins in vivo via intermediate formation of hypochlorous acid (HOCl)/hypochlorite. HOCl, a reactive oxygen species and powerful oxidant, can convert (lipo)proteins into atherogenic forms in vitro and in vivo. Here we demonstrate the presence of HOCl-modified proteins in glomeruli of patients with membranous glomerulonephritis using monoclonal antibodies that do not cross-react with other oxidative modifications. Immunostaining for HOCl-modified epitopes in human minimal change glomerulopathy revealed glomeruli that were unreactive, although the number of MPO-positive cells/glomerulus was slightly increased in comparison to controls. In contrast to minimal change glomerulopathy, a pronounced infiltration of mononuclear cells/glomerulus in membranoproliferative glomerulonephritis is in line with pronounced staining for HOCl-modified epitopes. Immunostaining was detected in intracapillary cells and immune complex deposits within the glomerular basement membrane. In human membranous glomerulonephritis (Stages I to III), staining for HOCl-modified proteins was localized at the basement membrane and podocytes. Staining of serial sections revealed colocalization of HOCl-modified epitopes and MPO in glomerular peripheral basement membranes. Subsequently, tubulointerstitial staining for HOCl-modified epitopes was observed in foam cells at the border of the cytoplasm and in damaged tubular epithelia in focal advanced chronic lesions. Our results indicate that oxidative modification of the basement membrane structure by phagocyte-derived HOCl may be of importance for glomerular defects. The observed colocalization of HOCl-modified proteins and MPO in podocytes and adjacent basement membranes strengthens the assumption that the MPO-H(2)O(2)-halide system contributes to glomerular dysfunction in patients with membranous glomerulonephritis.
Collapse
Affiliation(s)
- Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
424
|
Malle E, Wäg G, Thiery J, Sattler W, Gröne HJ. Hypochlorite-modified (lipo)proteins are present in rabbit lesions in response to dietary cholesterol. Biochem Biophys Res Commun 2001; 289:894-900. [PMID: 11735131 DOI: 10.1006/bbrc.2001.6074] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myeloperoxidase (MPO), a heme enzyme secreted by activated phagocytes, generates an array of oxidants proposed to play critical roles in host defense, tissues damage, and foam cell formation. Although neutrophils are the major source for MPO, the enzyme could be identified abundantly in circulating monocytes and monocytes/macrophages in rabbit lesions. MPO is the only enzyme known to generate hypochlorous acid (HOCl) and HOCl-modified lipoproteins have pronounced atherogenic and/or proinflammatory features in vivo and in vitro. Using specific monoclonal antibodies, HOCl-modified (lipo)proteins were detected in atherosclerotic plaques of heterozygous Watanabe heritable hyperlipidemic rabbits and to a lesser extent in a specific strain of New Zealand White rabbits with a high atherosclerotic response to hypercholesterolemia. Colocalization of immunoreactive MPO and HOCl-modified-epitopes in serial sections of rabbit lesions provides convincing evidence for MPO-H2O2-chloride system-mediated oxidation of (lipo)proteins under in vivo conditions. We propose that monocyte-derived MPO could connect chronic inflammatory conditions with arterial lipid/lipoprotein deposition during diet-induced atherogenesis in rabbits.
Collapse
Affiliation(s)
- E Malle
- Institute of Medical Biochemistry and Molecular Biology, Karl-Franzens University, Graz, A-8010, Austria.
| | | | | | | | | |
Collapse
|
425
|
Reichl S, Vocks A, Petković M, Schiller J, Arnhold J. The photoprotein pholasin as a luminescence substrate for detection of superoxide anion radicals and myeloperoxidase activity in stimulated neutrophils. Free Radic Res 2001; 35:723-33. [PMID: 11811524 DOI: 10.1080/10715760100301231] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Pholasin, the photoprotein of the common piddock Pholas dactylus, emits an intense luminescence upon oxidation. The contribution of superoxide anion radicals and myeloperoxidase (MPO) to Pholasin luminescence in stimulated neutrophils was investigated. Data on Pholasin luminescence were compared with results of superoxide anion radical generation detected by the cytochrome c test as well as with the release of elastase and MPO. In N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulated neutrophils, most of the luminescence is caused by superoxide anion radicals, whereas MPO shows only a small effect as shown by coincubation with superoxide dismutase (SOD) as well as potassium cyanide (KCN), an inhibitor of MPO. However, both, O2- and MPO contribute to light emission in fMLP/cytochalasin B and phorbol myristoyl acetate (PMA) stimulated cells. Thus, the kinetics of O2- generation and MPO release can be very well detected by Pholasin luminescence in stimulated neutrophils. Degranulation of azurophilic granules was assessed using an ELISA test kit for released MPO or detection of elastase activity with MeO-Suc-Ala-Ala-Pro-Val-p-nitroanilide in the supernatant of stimulated cells. Both approaches revealed concurrently similar results concerning the amount and kinetics of enzyme release with data of Pholasin luminescence. Both, cytochrome c measurements and Pholasin luminescence indicate that fMLP/cytochalasin B and PMA stimulated neutrophils produce more O2- than fMLP stimulated cells. Thus, Pholasin luminescence can be used to detect, sensitively and specifically, O2- production and MPO release from stimulated neutrophils.
Collapse
Affiliation(s)
- S Reichl
- Medical Department, Institute of Medical Physics and Biophysics, University of Leipzig, Germany
| | | | | | | | | |
Collapse
|
426
|
Hawkins CL, Brown BE, Davies MJ. Hypochlorite- and hypobromite-mediated radical formation and its role in cell lysis. Arch Biochem Biophys 2001; 395:137-45. [PMID: 11697850 DOI: 10.1006/abbi.2001.2581] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activated leukocytes generate the potent oxidants HOCl and HOBr via the formation of H(2)O(2) and the release of peroxidase enzymes (myeloperoxidase, eosinophil peroxidase). HOCl and HOBr are potent microbiocidal agents, but excessive or misplaced production can cause tissue damage and cell lysis. In this study it is shown that HOBr induces red blood cell lysis at approximately 10-fold lower concentrations than HOCl, whereas with monocyte (THP1) and macrophage (J774) cells HOCl and HOBr induce lysis at similar concentrations. The role of radical formation during lysis has been investigated by EPR spin trapping, and it is shown that reaction of both oxidants with each cell type generates cell-derived radicals. Red blood cells exposed to nonlytic doses of HOCl generate novel nitrogen-centered radicals whose formation is GSH dependent. In contrast, HOBr gives rise to nitrogen-centered, membrane-derived protein radicals. With lytic doses of either oxidant, protein (probably hemoglobin)-derived, nitrogen-centered radicals are observed. Unlike the red blood cells, treatment of monocytes and macrophages with HOCl gives significant radical formation only under conditions where cell lysis occurs concurrently. These radicals are nitrogen-centered, cell-protein-derived species and have parameters identical to those detected with red blood cells and HOBr. Exposure of these cells to HOBr did not give detectable radicals. Overall these experiments demonstrate that HOCl and HOBr react with different selectivity with cellular targets, and that this can result in radical formation. This radical generation can precede, and may play a role in, cell lysis.
Collapse
Affiliation(s)
- C L Hawkins
- The Heart Research Institute, Camperdown, Sydney, New South Wales 2050, Australia
| | | | | |
Collapse
|
427
|
Dalle-Donne I, Rossi R, Giustarini D, Gagliano N, Lusini L, Milzani A, Di Simplicio P, Colombo R. Actin carbonylation: from a simple marker of protein oxidation to relevant signs of severe functional impairment. Free Radic Biol Med 2001; 31:1075-83. [PMID: 11677040 DOI: 10.1016/s0891-5849(01)00690-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The number of protein-bound carbonyl groups is an established marker of protein oxidation. Recent evidence indicates a significant increase in actin carbonyl content in both Alzheimer's disease brains and ischemic hearts. The enhancement of actin carbonylation, causing the disruption of the actin cytoskeleton and the loss of the barrier function, has also been found in human colonic cells after exposure to hypochlorous acid (HOCl). Here, the effects of oxidation induced by HOCl on purified actin are presented. Results show that HOCl causes a rapidly increasing yield of carbonyl groups. However, when carbonylation becomes evident, some Cys and Met residues have been already oxidized. Covalent intermolecular cross-linking as well as some noncovalent aggregation of carbonylated actin have been found. The covalent cross-linking, unaffected by reducing and denaturing agents, parallels an increase in dityrosine fluorescence. Moreover, HOCl-mediated oxidation induces the progressive disruption of actin filaments and the inhibition of F-actin formation. The molar ratios of HOCl to actin that lead to inhibition of actin polymerization seem to have effect only on cysteines and methionines. The process that involves oxidation of amino acid side chains with formation of a carbonyl group would occur at an extent of oxidative insult higher than that causing the oxidation of some critical amino acid residues. Therefore, the increase in actin content of carbonyl groups found in vivo would indicate drastic oxidative modification leading to drastic functional impairments.
Collapse
Affiliation(s)
- I Dalle-Donne
- Department of Biology, Laboratory of Biochemistry and Biophysics of the Cytoskeleton, University of Milan, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
428
|
Arnhold J, Osipov AN, Spalteholz H, Panasenko OM, Schiller J. Effects of hypochlorous acid on unsaturated phosphatidylcholines. Free Radic Biol Med 2001; 31:1111-9. [PMID: 11677044 DOI: 10.1016/s0891-5849(01)00695-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effects of hypochlorous acid and of the myeloperoxidase-hydrogen peroxide-chloride system on mono- and polyunsaturated phosphatidylcholines were analyzed by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Chlorohydrins and glycols were detected as main products according to the characteristic shift of molecular masses. Mainly mono-chlorohydrins result upon the incubation of HOCl/(-)OCl with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, whereas only traces of mono-glycols were detected. 1-Palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine yielded a complex mixture of products. Mono-chlorohydrins and glycols dominated only at short incubation, while bis-chlorohydrins as well as products containing one chlorohydrin and one glycol moiety appeared after longer incubation. Similarly, a complex product mixture resulted upon incubation of 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine with hypochlorous acid. Additionally, tris-chlorohydrins, products with two chlorohydrin and one glycol moiety, as well as lysophosphatidylcholines and fragmentation products of the arachidonoyl side chain were detectable. Mono-chlorohydrins of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine were detected after the incubation of the latter phospholipid with the myeloperoxidase-hydrogen peroxide-chloride system at pH 6.0. These chlorohydrins were not observed in the absence of chloride, hydrogen peroxide, or myeloperoxidase as well as in the presence of methionine, taurine, or sodium azide. Thus, mono-chlorohydrins in 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine produced by hypochlorous acid from the myeloperoxidase-hydrogen peroxide-chloride system can also be detected by means of MALDI-TOF MS.
Collapse
Affiliation(s)
- J Arnhold
- Institute of Medical Physics and Biophysics, School of Medicine, University of Leipzig, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
429
|
Midwinter RG, Vissers MC, Winterbourn CC. Hypochlorous acid stimulation of the mitogen-activated protein kinase pathway enhances cell survival. Arch Biochem Biophys 2001; 394:13-20. [PMID: 11566022 DOI: 10.1006/abbi.2001.2530] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We investigated the activation of three subfamilies of mitogen-activated protein kinases (MAP kinase), the extracellular regulated kinase (ERK1/2), p38, and c-Jun N-terminal kinase (JNK), by the myeloperoxidase-derived oxidant HOCl, in human umbilical vein endothelial cells (HUVEC) and human skin fibroblasts. Treatment of fibroblasts with 10-30 microM HOCl induced a dose-dependent increase in the tyrosine phosphorylation of several proteins. ERK1/2 was activated by exposure to sublethal concentrations of reagent HOCl or by HOCl generated by myeloperoxidase as shown by immune complex kinase assays. Maximum activation was seen at 20 microM and peak activation occurred within 10 min. Western blot analysis demonstrated activation of p38 with 30 microM HOCl, occurring at 15-30 min. No activation of JNK was detected in the concentration range investigated. These results show that HOCl is able to activate MAP kinases. Effective doses were considerably lower than with H2O2 and the lack of JNK activation contrasts with the activation frequently seen with H2O2. Exposure to HOCl caused a loss of viability in HUVEC that was markedly enhanced when ERK1/2 activation was inhibited by U0126. This suggests that the activation of ERK promotes cell survival in response to the oxidative challenge.
Collapse
Affiliation(s)
- R G Midwinter
- Free Radical Research Group, Pathology Department, Christchurch School of Medicine, Christchurch, New Zealand.
| | | | | |
Collapse
|
430
|
Vissers MC, Carr AC, Winterbour CC. Fatty acid chlorohydrins and bromohydrins are cytotoxic to human endothelial cells. Redox Rep 2001; 6:49-55. [PMID: 11333116 DOI: 10.1179/135100001101536030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Reaction of unsaturated lipids with the hypohalous acids (hypochlorous acid and hypobromous acid) results in the addition of the halide (X) across double bonds to form halohydrins (-CH2CH(OH)CH(X)CH2-). These modified lipids could be potentially destabilising to cell membranes due to their increased polarity. We have investigated the effect of pre-formed halohydrins on human umbilical vein endothelial cells (HUVEC) by incubating cultured cells with oleic acid micelles containing chlorohydrins or bromohydrins. Cell detachment and necrotic death were observed with increasing doses of halohydrins, whereas the cells were unaffected by equivalent doses of oleic acid. Bromohydrins caused more lysis than did chlorohydrins at equivalent doses. Complete lysis was seen with 200 microM fatty acid/chlorohydrin micelles and with 50 microM fatty acid/bromohydrin micelles. Chlorohydrin uptake was much less than the oleic acid control whereas bromohydrins were incorporated into the endothelial cells similarly to oleic acid. This difference or the bulkier nature of the bromohydrins could account for their increased toxicity. This study has demonstrated the potential toxicity of the halohydrins, and implications for their formation in inflammation are discussed.
Collapse
Affiliation(s)
- M C Vissers
- Department of Pathology, Christchurch School of Medicine, New Zealand.
| | | | | |
Collapse
|
431
|
Pfeiffer S, Lass A, Schmidt K, Mayer B. Protein tyrosine nitration in cytokine-activated murine macrophages. Involvement of a peroxidase/nitrite pathway rather than peroxynitrite. J Biol Chem 2001; 276:34051-8. [PMID: 11425852 DOI: 10.1074/jbc.m100585200] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxynitrite, formed in a rapid reaction of nitric oxide (NO) and superoxide anion radical (O(2)), is thought to mediate protein tyrosine nitration in various inflammatory and infectious diseases. However, a recent in vitro study indicated that peroxynitrite exhibits poor nitrating efficiency at biologically relevant steady-state concentrations (Pfeiffer, S., Schmidt, K., and Mayer, B. (2000) J. Biol. Chem. 275, 6346-6352). To investigate the molecular mechanism of protein tyrosine nitration in intact cells, murine RAW 264.7 macrophages were activated with immunological stimuli, causing inducible NO synthase expression (interferon-gamma in combination with either lipopolysaccharide or zymosan A), followed by the determination of protein-bound 3-nitrotyrosine levels and release of potential triggers of nitration (NO, O(2)*, H(2)O(2), peroxynitrite, and nitrite). Levels of 3-nitrotyrosine started to increase at 16-18 h and exhibited a maximum at 20-24 h post-stimulation. Formation of O(2) was maximal at 1-5 h and decreased to base line 5 h after stimulation. Release of NO peaked at approximately 6 and approximately 9 h after stimulation with interferon-gamma/lipopolysaccharide and interferon-gamma/zymosan A, respectively, followed by a rapid decline to base line within the next 4 h. NO formation resulted in accumulation of nitrite, which leveled off at about 50 microm 15 h post-stimulation. Significant release of peroxynitrite was detectable only upon treatment of cytokine-activated cells with phorbol 12-myristate-13-acetate, which led to a 2.2-fold increase in dihydrorhodamine oxidation without significantly increasing the levels of 3-nitrotyrosine. Tyrosine nitration was inhibited by azide and catalase and mimicked by incubation of unstimulated cells with nitrite. Together with the striking discrepancy in the time course of NO/O(2) release versus 3-nitrotyrosine formation, these results suggest that protein tyrosine nitration in activated macrophages is caused by a nitrite-dependent peroxidase reaction rather than peroxynitrite.
Collapse
Affiliation(s)
- S Pfeiffer
- Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
432
|
Auchère F, Bertho G, Artaud I, Girault JP, Capeillère-Blandin C. Purification and structure of the major product obtained by reaction of NADPH and NMNH with the myeloperoxidase/hydrogen peroxide/chloride system. ACTA ACUST UNITED AC 2001; 268:2889-95. [PMID: 11358505 DOI: 10.1046/j.1432-1327.2001.02175.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The first spectrophotometric study of the reaction of the myeloperoxidase/H2O2/Cl- system with NADPH and NMNH showed that the reaction products were not the corresponding oxidized nucleotides and that modifications would take place on the nicotinamide part of the molecule [Auchère, F. & Capeillère-Blandin, C. (1999) Biochem. J. 343, 603-613]. In this report, in order to obtain more precise information on the structural modifications and mechanism of the reaction, we focus on the purification and isolation of products derived from NADPH and NMNH by RP-HPLC. Electrospray ionization mass spectra indicated that the relative height of the peaks reflected that of the natural isotopic abundance of 35Cl and 37Cl, providing evidence that the products derived from NADPH and NMNH were monochlorinated. Moreover, calculated masses revealed the 1 : 1 addition of HOCl to the molecule. Various 1D and 2D NMR experiments provided data for the assignments of the chemical shifts of protons and carbons and the coupling constants of the protons of the chlorinated nucleotides. Further NOESY experiments allowed the characterization of the spatial structure of the chlorinated product and showed that trans HOCl addition occurred at the C5=C6 carbon double bond of the nicotinamide ring, leading to a chlorohydrin.
Collapse
Affiliation(s)
- F Auchère
- Laboratoire de Chimie et Biochimie pharmacologiques et toxicologiques (UMR 8601CNRS), Université Paris 5, France
| | | | | | | | | |
Collapse
|
433
|
Nauseef WM. Contributions of myeloperoxidase to proinflammatory events: more than an antimicrobial system. Int J Hematol 2001; 74:125-33. [PMID: 11594511 DOI: 10.1007/bf02981994] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Optimal oxygen-dependent antimicrobial activity of circulating polymorphonuclear leukocytes reflects the synergistic effects of the myeloperoxidase (MPO)-hydrogen peroxide-halide system. Delivered from its storage compartment to the phagolysosome during fusion of the azurophilic granules, MPO catalyzes the oxidation of chloride in the presence of H2O2, chemistry unique to MPO, and thereby generates an array of highly reactive oxidants. Recent investigations of a wide range of inflammatory disorders have identified biochemical markers of MPO-dependent reactions, thus indirectly implicating MPO in their pathogenesis, progression, or perpetuation. The implied involvement of MPO-dependent events in diseases such as atherosclerosis forces reexamination of several fundamental tenets about MPO that are derived from studies of myeloid cells, most notably factors important in the regulated expression of MPO gene transcription. The evidence supporting a role for MPO in the pathogenesis of atherosclerosis, demyelinating diseases of the central nervous system, and specific cancers is reviewed and some of the new questions raised by these studies are discussed. Lastly, an appreciation for the existence of a broad family of proteins structurally related to MPO and the functional diversity implied by the corresponding structures may provide insights into novel ways in which MPO can function as more than an important antimicrobial component.
Collapse
Affiliation(s)
- W M Nauseef
- Inflammation Program and Departments of Medicine, University of Iowa and Veterans Administration Medical Center, Iowa City 52242, USA.
| |
Collapse
|
434
|
McCall MR, Carr AC, Forte TM, Frei B. Ldl modified by hypochlorous acid is a potent inhibitor of lecithin-cholesterol acyltransferase activity. Arterioscler Thromb Vasc Biol 2001; 21:1040-5. [PMID: 11397717 DOI: 10.1161/01.atv.21.6.1040] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Modification of low density lipoprotein (LDL) by myeloperoxidase-generated HOCl has been implicated in human atherosclerosis. Incubation of LDL with HOCl generates several reactive intermediates, primarily N-chloramines, which may react with other biomolecules. In this study, we investigated the effects of HOCl-modified LDL on the activity of lecithin-cholesterol acyltransferase (LCAT), an enzyme essential for high density lipoprotein maturation and the antiatherogenic reverse cholesterol transport pathway. We exposed human LDL (0.5 mg protein/mL) to physiological concentrations of HOCl (25 to 200 micromol/L) and characterized the resulting LDL modifications to apolipoprotein B and lipids; the modified LDL was subsequently incubated with apolipoprotein B-depleted plasma (density >1.063 g/mL fraction), which contains functional LCAT. Increasing concentrations of HOCl caused various modifications to LDL, primarily, loss of lysine residues and increases in N-chloramines and electrophoretic mobility, whereas lipid hydroperoxides were only minor products. LCAT activity was extremely sensitive to HOCl-modified LDL and was reduced by 23% and 93% by LDL preincubated with 25 and 100 micromol/L HOCl, respectively. Addition of 200 micromol/L ascorbate or N-acetyl derivatives of cysteine or methionine completely prevented LCAT inactivation by LDL preincubated with </=200 micromol/L HOCl. Protecting the free thiol groups of LCAT with 5,5'-dithio-bis-(2-nitrobenzoic acid) before exposure to HOCl-modified LDL, which inhibits lipid hydroperoxide-mediated inactivation of LCAT, failed to prevent the loss of enzyme activity. Our data indicate that N-chloramines from HOCl-modified LDL mediate the loss of plasma LCAT activity and provide a novel mechanism by which myeloperoxidase-generated HOCl may promote atherogenesis.
Collapse
Affiliation(s)
- M R McCall
- Linus Pauling Institute, Oregon State University, Corvallis 97331-6512, USA
| | | | | | | |
Collapse
|
435
|
Gutierrez-Correa J, Fairlamb AH, Stoppani AO. Trypanosoma cruzi trypanothione reductase is inactivated by peroxidase-generated phenothiazine cationic radicals. Free Radic Res 2001; 34:363-78. [PMID: 11328673 DOI: 10.1080/10715760100300311] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Trypanosoma cruzi trypanothione reductase (TR) was irreversibly inhibited by peroxidase/H2O2 /phenothiazine (PTZ) systems. TR inactivation depended on (a) time of incubation with the phenothiazine system; (b) the peroxidase nature and (c) the PTZ structure and concentration. With the most effective systems, TR inactivation kinetics were biphasic, with a relatively fast initial phase during which about 75% of the enzyme activity was lost, followed by a slower phase leading to total enzyme inactivation. GSH prevented TR inactivation by the peroxidase/H2O2/PTZ+* systems. Production of PTZ+* cation radicals by PTZ peroxidation was essential for TR inactivation. Horseradish peroxidase, leukocyte myeloperoxidase (MPO) and the pseudo-peroxidase myoglobin (Mb) were effective catalysts of PTZ+* production. Promazine, thioridazine, chlorpromazine, propionylpromazine prochlorperazine, perphenazine and trimeprazine were effective constituents of the HRP/H2O2 /PTZ system. The presence of substituents at the PTZ nucleus position 2 exerted significant influence on PTZ activity, as shown by the different effects of 2-trifluoromethyl and 2-H or 2-chlorophenothiazines. The PTZ+* cation radicals disproportionation regenerated the non-radical PTZ molecule and produced the PTZ sulfoxide that was inactive on TR. Thiol compounds including GSH interacted with PTZ+* cation radicals transferring an electron from the sulfide anion to the PTZ+*, thus nullifying the PTZ+* biological and chemical activities.
Collapse
Affiliation(s)
- J Gutierrez-Correa
- Bioenergetics Research Centre, School of Medicine, University of Buenos Aires, Paraguay 2155, 1121-Buenos Aires, Argentina
| | | | | |
Collapse
|
436
|
Henderson JP, Byun J, Williams MV, Mueller DM, McCormick ML, Heinecke JW. Production of brominating intermediates by myeloperoxidase. A transhalogenation pathway for generating mutagenic nucleobases during inflammation. J Biol Chem 2001; 276:7867-75. [PMID: 11096071 DOI: 10.1074/jbc.m005379200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The existence of interhalogen compounds was proposed more than a century ago, but no biological roles have been attributed to these highly oxidizing intermediates. In this study, we determined whether the peroxidases of white blood cells can generate the interhalogen gas bromine chloride (BrCl). Myeloperoxidase, the heme enzyme secreted by activated neutrophils and monocytes, uses H2O2 and Cl(-) to produce HOCl, a chlorinating intermediate. In contrast, eosinophil peroxidase preferentially converts Br(-) to HOBr. Remarkably, both myeloperoxidase and eosinophil peroxidase were able to brominate deoxycytidine, a nucleoside, and uracil, a nucleobase, at plasma concentrations of Br(-) (100 microM) and Cl(-) (100 mM). The two enzymes used different reaction pathways, however. When HOCl brominated deoxycytidine, the reaction required Br(-) and was inhibited by taurine. In contrast, bromination by HOBr was independent of Br(-) and unaffected by taurine. Moreover, taurine inhibited 5-bromodeoxycytidine production by the myeloperoxidase-H2O2-Cl(-)- Br(-) system but not by the eosinophil peroxidase-H2O2-Cl(-)-Br(-) system, indicating that bromination by myeloperoxidase involves the initial production of HOCl. Both HOCl-Br(-) and the myeloperoxidase-H2O2-Cl(-)-Br(-) system generated a gas that converted cyclohexene into 1-bromo-2-chlorocyclohexane, implicating BrCl in the reaction. Moreover, human neutrophils used myeloperoxidase, H2O2, and Br(-) to brominate deoxycytidine by a taurine-sensitive pathway, suggesting that transhalogenation reactions may be physiologically relevant. 5-Bromouracil incorporated into nuclear DNA is a well known mutagen. Our observations therefore raise the possibility that transhalogenation reactions initiated by phagocytes provide one pathway for mutagenesis and cytotoxicity at sites of inflammation.
Collapse
Affiliation(s)
- J P Henderson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
437
|
Peskin AV, Winterbourn CC. Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radic Biol Med 2001; 30:572-9. [PMID: 11182528 DOI: 10.1016/s0891-5849(00)00506-2] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thiol oxidation by hypochlorous acid and chloramines is a favorable reaction and may be responsible for alterations in regulatory or signaling pathways in cells exposed to neutrophil oxidants. In order to establish the mechanism for such changes, it is necessary to appreciate whether these oxidants are selective for different thiols as compared with other scavengers. We have measured rate constants for reactions of amino acid chloramines with a range of thiols, methionine, and ascorbate, using a combination of stopped-flow and competitive kinetics. For HOCl, rate constants are too fast to measure directly by our system and values relative to reduced glutathione were determined by competition with methionine. For taurine chloramine, the rate constants for reaction with 5-thio-2-nitrobenzoic acid, GSH, methionine, and ascorbate at pH 7.4 were 970, 115, 39, and 13 M(-1) s(-1), respectively. Values for 10 thiols varied by a factor of 20 and showed an inverse relationship to the pK(a) of the thiol group. Rate constants for chloramines of glycine and N-alpha-acetyl-lysine also showed these relationships. Rates increased with decreasing pH, suggesting a mechanism involving acid catalysis. For hypochlorous acid, rates of reaction with 5-thio-2-nitrobenzoic acid, GSH, cysteine, and most of the other thiols were very similar. Relative reactivities varied by less than 5 and there was no dependence on thiol pK(a). Chloramines have the potential to be selective for different cellular thiols depending on their pK(a). For HOCl to be selective, other factors must be important, or its reactions could be secondary to chloramine formation.
Collapse
Affiliation(s)
- A V Peskin
- Free Radical Research Group, Department of Pathology, Christchurch School of Medicine, Christchurch, New Zealand.
| | | |
Collapse
|
438
|
Carr AC, Hawkins CL, Thomas SR, Stocker R, Frei B. Relative reactivities of N-chloramines and hypochlorous acid with human plasma constituents. Free Radic Biol Med 2001; 30:526-36. [PMID: 11182523 DOI: 10.1016/s0891-5849(00)00495-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypochlorous acid (HOCl), the major strong oxidant produced by the phagocyte enzyme myeloperoxidase, reacts readily with free amino groups to form N-chloramines. Since different N-chloramines have different stabilities and reactivities depending on their structures, we investigated the relative reactivities of three model N-chloramines and HOCl with human plasma constituents. TheN-chloramines studied were N(alpha)-acetyl-lysine chloramine (LysCA, a model of protein-associated N-chloramines), taurine chloramine (TaurCA, the primary N-chloramine produced by activated neutrophils), and monochloramine (MonoCA, a lipophilic N-chloramine). Addition of these chlorine species (100--1000 microM each) to plasma resulted in rapid loss of thiols, with the extent of thiol oxidation decreasing in the order TaurCA = LysCA > MonoCA = HOCl. The single reduced thiol of albumin was the major target. Loss of plasma ascorbate also occurred, with the extent decreasing in the order HOCl > LysCA > TaurCA > MonoCA. Experiments comparing equimolar albumin thiols and ascorbate showed that while HOCl caused equivalent loss of thiols and ascorbate, theN-chloramines reacted preferentially with thiols. The chlorine species also inactivated alpha(1)-antiproteinase, implicating oxidation of methionine residues, and ascorbate provided variable protection depending on the chlorine species involved. Together, our data indicate that in biological fluids N-chloramines react more readily with protein thiols than with methionine residues or ascorbate, and thus may cause biologically relevant, selective loss of thiol groups.
Collapse
Affiliation(s)
- A C Carr
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331-6512, USA.
| | | | | | | | | |
Collapse
|
439
|
Ho H, Soldevilla J, Hook JM, Southwell-Keely PT. Oxidation of 2,2,7,8-tetramethyl-6-chromanol, the model compound of gamma-tocopherol, by hypochlorous acid. Redox Rep 2001; 5:60-2. [PMID: 10905550 DOI: 10.1179/rer.2000.5.1.60] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- H Ho
- School of Chemistry, University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
440
|
Kettle AJ, Candaeis LP. Oxidation of tryptophan by redox intermediates of myeloperoxidase and inhibition of hypochlorous acid production. Redox Rep 2001; 5:179-84. [PMID: 10994871 DOI: 10.1179/135100000101535726] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The neutrophil enzyme myeloperoxidase catalyzes the oxidation of tyrosine to tyrosyl radicals, which cross-link to proteins and initiate lipid peroxidation. Tryptophan is present in plasma at about the same concentration as tyrosine and has a similar one-electron reduction potential. In this investigation, we have determined the ability of myeloperoxidase to catalyze the oxidation of tryptophan to assess whether or not this reaction may contribute to oxidative stress at sites of inflammation. We show that tryptophan is a poor substrate for myeloperoxidase because, even though it reacts rapidly with compound I (kI 2.1 x 10(6) M(-1)s(-1)), it reacts sluggishly with compound II (kII 7 M(-1)s(-1)). Tryptophan reversibly inhibited production of hypochlorous acid by purified myeloperoxidase by converting the enzyme to a mixture of compound II and compound III. It gave 50% inhibition (I50) at a concentration of 2 microM. In contrast, it was an ineffective inhibitor of hypochlorous acid production by human neutrophils (I50 80 microM) unless superoxide dismutase was present (I50 5 microM). We propose that compound I of myeloperoxidase will oxidize tryptophan at sites of inflammation. Enzyme turnover will result from the reaction of superoxide or tyrosine with compound II. Thus, tryptophan radicals are potential candidates for exacerbating oxidative stress during inflammation.
Collapse
Affiliation(s)
- A J Kettle
- Free Radical Research Group, Christchurch School of Medicine, New Zealand.
| | | |
Collapse
|
441
|
Engelmann I, Dormann S, Saran M, Bauer G. Transformed target cell-derived superoxide anions drive apoptosis induction by myeloperoxidase. Redox Rep 2001; 5:207-14. [PMID: 10994875 DOI: 10.1179/135100000101535762] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Myeloperoxidase induces apoptosis in src- or raxs-transformed fibroblasts, but not in parental nontransformed fibroblasts. This selectivity seems to be based on superoxide anion production by transformed cells, a recently described characteristic feature of transformed cells. Myeloperoxidase-mediated apoptosis induction is inhibited by SOD, catalase, 4-aminobenzoyl hydrazide, taurine and DMSO. This pattern of inhibition allows us to conclude that transformed cell derived superoxide anions dismutate to hydrogen peroxide, which fosters HOCl formation by myeloperoxidase. Hydrogen peroxide formation thereby is the rate-limiting step and depends on the cell density. In a second step, HOCl interacts with superoxide anions to yield the highly reactive apoptosis inducing hydroxyl radical. This conclusion was verified through selective apoptosis induction in transformed cells by direct addition of HOCl, which was also inhibited by SOD and DMSO. Our findings demonstrate a specific interplay between target cell derived superoxide anions and MPO during selective apoptosis induction.
Collapse
Affiliation(s)
- I Engelmann
- Abteilung Virologie, Institut für Medinische Mikrobiologie und Hygiene, Universität Freiburg, Germany
| | | | | | | |
Collapse
|
442
|
Burner U, Krapfenbauer G, Furtmüller PG, Regelsberger G, Obinger C. Oxidation of hydroquinone, 2,3-dimethylhydroquinone and 2,3,5-trimethylhydroquinone by human myeloperoxidase. Redox Rep 2001; 5:185-90. [PMID: 10994872 DOI: 10.1179/135100000101535735] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Myeloperoxidase is very susceptible to reducing radicals because the reduction potential of the ferric/ferrous redox couple is much higher compared with other peroxidases. Semiquinone radicals are known to reduce heme proteins. Therefore, the kinetics and spectra of the reactions of p-hydroquinone, 2,3-dimethylhydroquinone and 2,3,5-trimethylhydroquinone with compounds I and II were investigated using both sequential-mixing stopped-flow techniques and conventional spectrophotometric measurements. At pH 7 and 15 degrees C the rate constants for compound I reacting with p-hydroquinone, 2,3-dimethylhydroquinone and 2,3,5-trimethylhydroquinone were determined to be 5.6+/-0.4 x 10(7) M(-1)s(-1), 1.3+/-0.1 x 10(6) M(-1)s(-1) and 3.1+/-0.3 x 10(6) M(-1)s(-1), respectively. The corresponding reaction rates for compound II reduction were calculated to be 4.5+/-0.3 x 10(6) M(-1)s(-1), 1.9+/-0.1 x 10(5) M(-1)s(-1) and 4.5+/-0.2 x 10(4) M(-1)s(-1), respectively. Semiquinone radicals, produced by compounds I and II in the classical peroxidation cycle, promote compound III (oxymyeloperoxidase) formation. We could monitor formation of ferrous myeloperoxidase as well as its direct transition to compound II by addition of molecular oxygen. Formation of ferrous myeloperoxidase is shown to depend strongly on the reduction potential of the corresponding redox couple benzoquinone/semiquinone. With 2,3-dimethylhydroquinone and 2,3,5-trimethylhydroquinone as substrate, myeloperoxidase is extremely quickly trapped as compound III. These MPO-typical features could have potential in designing specific drugs which inhibit the production of hypochlorous acid and consequently attenuate inflammatory tissue damage.
Collapse
Affiliation(s)
- U Burner
- Institute of Chemistry, University of Agricultural Sciences, Vienna, Austria
| | | | | | | | | |
Collapse
|
443
|
Hawkins CL, Davies MJ. Hypochlorite-induced damage to red blood cells: evidence for the formation of nitrogen-centred radicals. Redox Rep 2001; 5:57-9. [PMID: 10905549 DOI: 10.1179/rer.2000.5.1.57] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- C L Hawkins
- EPR Group, Heart Research Institute, Sydney, New South Wales, Australia
| | | |
Collapse
|
444
|
|
445
|
Carr AC, Frei B. The nitric oxide congener nitrite inhibits myeloperoxidase/H2O2/ Cl- -mediated modification of low density lipoprotein. J Biol Chem 2001; 276:1822-8. [PMID: 11054430 DOI: 10.1074/jbc.m009082200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide, a pivotal molecule in vascular homeostasis, is converted under aerobic conditions to nitrite. Recent studies have shown that myeloperoxidase (MPO), an abundant heme protein released by activated leukocytes, can oxidize nitrite (NO(2-)) to a radical species, most likely nitrogen dioxide. Furthermore, hypochlorous acid (HOCl), the major strong oxidant generated by MPO in the presence of physiological concentrations of chloride ions, can also react with nitrite, forming the reactive intermediate nitryl chloride. Since MPO and MPO-derived HOCl, as well as reactive nitrogen species, have been implicated in the pathogenesis of atherosclerosis through oxidative modification of low density lipoprotein (LDL), we investigated the effects of physiological concentrations of nitrite (12.5-200 microm) on MPO-mediated modification of LDL in the absence and presence of physiological chloride concentrations. Interestingly, nitrite concentrations as low as 12.5 and 25 microm significantly decreased MPO/H2O2)/Cl- -induced modification of apoB lysine residues, formation of N-chloramines, and increases in the relative electrophoretic mobility of LDL. In contrast, none of these markers of LDL atherogenic modification were affected by the MPO/H2O2/NO2-) system. Furthermore, experiments using ascorbate (12.5-200 microm) and the tyrosine analogue 4-hydroxyphenylacetic acid (12.5-200 microm), which are both substrates of MPO, indicated that nitrite inhibits MPO-mediated LDL modifications by trapping the enzyme in its inactive compound II form. These data offer a novel mechanism for a potential antiatherogenic effect of the nitric oxide congener nitrite.
Collapse
Affiliation(s)
- A C Carr
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, USA.
| | | |
Collapse
|
446
|
Carr AC, Myzak MC, Stocker R, McCall MR, Frei B. Myeloperoxidase binds to low-density lipoprotein: potential implications for atherosclerosis. FEBS Lett 2000; 487:176-80. [PMID: 11150504 DOI: 10.1016/s0014-5793(00)02227-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Myeloperoxidase (MPO), an abundant heme enzyme released by activated phagocytes, catalyzes the formation of a number of reactive species that can modify low-density lipoprotein (LDL) to a form that converts macrophages into lipid-laden or 'foam' cells, the hallmark of atherosclerotic lesions. Since MPO has been shown to bind to a number of different cell types, we investigated binding of MPO to LDL. Using the precipitation reagents phosphotungstate or isopropanol, MPO co-precipitated with LDL, retaining its catalytic activity. The association of MPO with LDL was confirmed using native gel electrophoresis. MPO was also found to co-precipitate with apolipoprotein B-100-containing lipoproteins in whole plasma. No precipitation of MPO was observed in lipoprotein-deficient plasma, and there was a dose-dependent increase in precipitation following addition of LDL to lipoprotein-deficient plasma. Binding of MPO to LDL could potentially enhance site-directed oxidation of the lipoprotein and limit scavenging of reactive oxygen species by antioxidants.
Collapse
Affiliation(s)
- A C Carr
- Linus Pauling Institute, Oregon State University, 571 Weniger Hall, Corvallis, OR 97331-6512, USA.
| | | | | | | | | |
Collapse
|
447
|
Herdener M, Heigold S, Saran M, Bauer G. Target cell-derived superoxide anions cause efficiency and selectivity of intercellular induction of apoptosis. Free Radic Biol Med 2000; 29:1260-71. [PMID: 11118816 DOI: 10.1016/s0891-5849(00)00422-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transformed fibroblasts are specifically eliminated by their nontransformed neighbors through intercellular induction of apoptosis. This process depends on the number of nontransformed effector cells and on the local density of transformed target cells. Intercellular signalling is inhibited by SOD (a scavenger of superoxide anions), taurine (a scavenger of HOCl), 4-aminobenzoyl hydrazide (a mechanism-based inhibitor of peroxidase), DMSO (a hydroxyl radical scavenger), and two inhibitors of NO synthase. Therefore, selective apoptosis induction seems to be based on superoxide anion production by transformed cells, their spontaneous dismutation to hydrogen peroxide, and HOCl generation by a novel effector cell-derived peroxidase. HOCl then interacts with target cell-derived superoxide anions to yield hydroxyl radicals. Due to the short diffusion pathway of superoxide anions, hydroxyl radical generation is confined to the intimate vicinity of transformed cells. In parallel, NO derived from effector cells interacts with superoxide anions of target cells to yield the apoptosis inducer peroxynitrite. Reconstitution experiments using transformed or nontransformed cells in conjunction with myeloperoxidase, HOCl, or an NO donor demonstrated that superoxide anions generated extracellularly by transformed cells participate in intercellular signalling and at the same time determine transformed cells as selective targets for intercellular induction of apoptosis.
Collapse
Affiliation(s)
- M Herdener
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|
448
|
Davies MJ, Hawkins CL. Hypochlorite-induced oxidation of thiols: formation of thiyl radicals and the role of sulfenyl chlorides as intermediates. Free Radic Res 2000; 33:719-29. [PMID: 11237094 DOI: 10.1080/10715760000301241] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Activated phagocytic cells generate hypochlorite (HOCl) via release of hydrogen peroxide and the enzyme myeloperoxidase. HOCl plays an important role in bacterial cell killing, but excessive or misplaced production of HOCI is also known to cause tissue damage. Studies have shown that low-molecular-weight thiols such as reduced glutathione (GSH), and sulfur-containing amino acids in proteins, are major targets for HOCl. Radicals have not generally been implicated as intermediates in thiol oxidation by HOCl, though there is considerable literature evidence for the involvement of radicals in the metal ion-, thermal- or UV light-catalysed decomposition of sulfenyl or sulfonyl chlorides which are postulated intermediates in thiol oxidation. In this study we show that thiyl radicals are generated on reaction of a number of low-molecular-weight thiols with HOCl. With sub-stoichiometric amounts of HOCl, relative to the thiol, thiyl radicals are the major species detected by EPR spin trapping. When the HOCl is present in excess over the thiol, additional radicals are detected with compounds which contain amine functions; these additional radicals are assigned to nitrogen-centered species. Evidence is presented for the involvement of sulfenyl chlorides (RSCl) in the formation of these radicals, and studies with an authentic sulfenyl chloride have demonstrated that this compound readily decomposes in thermal-, metal-ion- or light-catalysed reactions to give thiyl radicals. The formation of thiyl radicals on oxidation of thiols with HOCl appears to compete with non-radical reactions. The circumstances under which radical formation may be important are discussed.
Collapse
Affiliation(s)
- M J Davies
- The Heart Research Institute, Camperdown, New South Wales, Australia.
| | | |
Collapse
|
449
|
Abstract
We now show that NO serves as a substrate for multiple members of the mammalian peroxidase superfamily under physiological conditions. Myeloperoxidase (MPO), eosinophil peroxidase, and lactoperoxidase all catalytically consumed NO in the presence of the co-substrate hydrogen peroxide (H(2)O(2)). Near identical rates of NO consumption by the peroxidases were observed in the presence versus absence of plasma levels of Cl(-). Although rates of NO consumption in buffer were accelerated in the presence of a superoxide-generating system, subsequent addition of catalytic levels of a model peroxidase, MPO, to NO-containing solutions resulted in the rapid acceleration of NO consumption. The interaction between NO and compounds I and II of MPO were further investigated during steady-state catalysis by stopped-flow kinetics. NO dramatically influenced the build-up, duration, and decay of steady-state levels of compound II, the rate-limiting intermediate in the classic peroxidase cycle, in both the presence and absence of Cl(-). Collectively, these results suggest that peroxidases may function as a catalytic sink for NO at sites of inflammation, influencing its bioavailability. They also support the potential existence of a complex and interdependent relationship between NO levels and the modulation of steady-state catalysis by peroxidases in vivo.
Collapse
Affiliation(s)
- H M Abu-Soud
- Department of Cell Biology and Department of Cardiology, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
450
|
Myhre O, Vestad TA, Sagstuen E, Aarnes H, Fonnum F. The effects of aliphatic (n-nonane), naphtenic (1,2, 4-trimethylcyclohexane), and aromatic (1,2,4-trimethylbenzene) hydrocarbons on respiratory burst in human neutrophil granulocytes. Toxicol Appl Pharmacol 2000; 167:222-30. [PMID: 10986013 DOI: 10.1006/taap.2000.9008] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigates the effects of aliphatic (n-heptane, n-nonane), naphtenic (methylcyclohexane, 1,2,4-trimethylcyclohexane (TMCH)), and aromatic (methylbenzene, 1,2,4-trimethylbenzene (TMB)) hydrocarbons on respiratory burst in human granulocytes. The free radical formation was measured as 2,7-dichlorofluorescein diacetate-amplified (DCF) fluorescence, by electron paramagnetic resonance (EPR) spectroscopy and by hydroxylation of 4-hydroxybenzoate. The chemotactic peptide N-formyl-met-leu-phe (fMLP) and phorbol 12-myristate 13-acetate (PMA), a diacylglycerol analogue, were included as positive controls. DCF fluorescence was elevated in a concentration-dependent manner by C9 hydrocarbons. The C7 hydrocarbons did not stimulate respiratory burst in the concentration range examined. The naphtenic hydrocarbon TMCH showed the strongest effect on respiratory burst and was therefore selected for mechanistic studies of this free radical formation. In the absence of extracellular Ca(2+), fluorescence in response to TMCH and fMLP was reduced by 77 and 90%, respectively. Preincubation of the granulocytes with the protein kinase C inhibitor bisindolylmaleimide reduced the DCF fluorescence stimulated with TMCH, fMLP, and PMA by 82, 56, and 90%, respectively. The phospholipase C inhibitor U73122 lowered the TMCH- and fMLP-activated DCF fluorescence by 87 and 76%. In addition, the TMCH- and fMLP-induced DCF fluorescence, after the preincubation with the phospholipase D modulator n-butanol, was lowered by 83 and 52%, respectively. The importance of protein kinase C, phospholipase C, and phospholipase D for elevation of respiratory burst was also demonstrated by the EPR experiments using the spin trap 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO). Preincubation with the NADPH oxidase inhibitor diphenyleneiodonium and diethyldithiocarbamate, which inhibits superoxide dismutase, led to an almost complete reduction of DCF fluorescence in response to TMCH, fMLP, and PMA. Preincubation with diethyldithiocarbamate led to the elevation of superoxide adducts of DEPMPO. The hydrocarbons stimulated formation of mainly the superoxide (O(*-)(2)) adduct of DEPMPO (DEPMPO-OOH) but also small amounts of the hydroxyl adduct ((*)OH) (DEPMPO-OH). Using 4-hydroxybenzoate as a hydroxyl radical trap confirmed formation of (*)OH after stimulation with the hydrocarbons. In conclusion, our findings indicate that TMCH-activated respiratory burst is dependent on the Ca(2+)-dependent phospholipase C, phospholipase D, and protein kinase C prior to activation of the NADPH oxidase.
Collapse
Affiliation(s)
- O Myhre
- Norwegian Defence Research Establishment, Kjeller, Norway
| | | | | | | | | |
Collapse
|