401
|
Abstract
Auditory perception is our main gateway to communication with others via speech and music, and it also plays an important role in alerting and orienting us to new events. This review provides an overview of selected topics pertaining to the perception and neural coding of sound, starting with the first stage of filtering in the cochlea and its profound impact on perception. The next topic, pitch, has been debated for millennia, but recent technical and theoretical developments continue to provide us with new insights. Cochlear filtering and pitch both play key roles in our ability to parse the auditory scene, enabling us to attend to one auditory object or stream while ignoring others. An improved understanding of the basic mechanisms of auditory perception will aid us in the quest to tackle the increasingly important problem of hearing loss in our aging population.
Collapse
Affiliation(s)
- Andrew J Oxenham
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455;
| |
Collapse
|
402
|
Möhrle D, Reimann K, Wolter S, Wolters M, Varakina K, Mergia E, Eichert N, Geisler HS, Sandner P, Ruth P, Friebe A, Feil R, Zimmermann U, Koesling D, Knipper M, Rüttiger L. NO-Sensitive Guanylate Cyclase Isoforms NO-GC1 and NO-GC2 Contribute to Noise-Induced Inner Hair Cell Synaptopathy. Mol Pharmacol 2017; 92:375-388. [PMID: 28874607 DOI: 10.1124/mol.117.108548] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/18/2017] [Indexed: 02/14/2025] Open
Abstract
Nitric oxide (NO) activates the NO-sensitive soluble guanylate cyclase (NO-GC, sGC) and triggers intracellular signaling pathways involving cGMP. For survival of cochlear hair cells and preservation of hearing, NO-mediated cascades have both protective and detrimental potential. Here we examine the cochlear function of mice lacking one of the two NO-sensitive guanylate cyclase isoforms [NO-GC1 knockout (KO) or NO-GC2 KO]. The deletion of NO-GC1 or NO-GC2 did not influence electromechanical outer hair cell (OHC) properties, as measured by distortion product otoacoustic emissions, neither before nor after noise exposure, nor were click- or noise-burst-evoked auditory brainstem response thresholds different from controls. Yet inner hair cell (IHC) ribbons and auditory nerve responses showed significantly less deterioration in NO-GC1 KO and NO-GC2 KO mice after noise exposure. Consistent with a selective role of NO-GC in IHCs, NO-GC β1 mRNA was found in isolated IHCs but not in OHCs. Using transgenic mice expressing the fluorescence resonance energy transfer-based cGMP biosensor cGi500, NO-induced elevation of cGMP was detected in real-time in IHCs but not in OHCs. Pharmacologic long-term treatment with a NO-GC stimulator altered auditory nerve responses but did not affect OHC function and hearing thresholds. Interestingly, NO-GC stimulation exacerbated the loss of auditory nerve response in aged animals but attenuated the loss in younger animals. We propose NO-GC2 and, to some degree, NO-GC1 as targets for early pharmacologic prevention of auditory fiber loss (synaptopathy). Both isoforms provide selective benefits for hearing function by maintaining the functional integrity of auditory nerve fibers in early life rather than at old age.
Collapse
MESH Headings
- Animals
- Female
- Guanylate Cyclase/metabolism
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Isoenzymes/metabolism
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Morpholines/pharmacology
- Nitric Oxide/metabolism
- Noise/adverse effects
- Pyrimidines/pharmacology
- Rats
- Rats, Wistar
- Receptors, Cell Surface/agonists
- Receptors, Cell Surface/metabolism
- Synapses/drug effects
- Synapses/metabolism
- Synapses/pathology
Collapse
Affiliation(s)
- Dorit Möhrle
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Katrin Reimann
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Steffen Wolter
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Markus Wolters
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Ksenya Varakina
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Evanthia Mergia
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Nicole Eichert
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Hyun-Soon Geisler
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Peter Sandner
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Peter Ruth
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Andreas Friebe
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Robert Feil
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Ulrike Zimmermann
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Doris Koesling
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| |
Collapse
|
403
|
Bhatt JM, Lin HW, Bhattacharyya N. Epidemiology of firearm and other noise exposures in the United States. Laryngoscope 2017; 127:E340-E346. [PMID: 28301677 PMCID: PMC6067011 DOI: 10.1002/lary.26540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/14/2017] [Accepted: 01/23/2017] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Identify contemporary noise exposures and hearing protection use among adults. STUDY DESIGN Cross-sectional analysis of national health survey. METHODS Adult respondents in the 2014 National Health Interview Series hearing survey module were analyzed. Potentially harmful exposures to occupational and recreational noises in the past 12 months were extracted and quantified. Patterns of hearing protection use also were analyzed. RESULTS Among 239.7 million adults, "loud" and "very loud" occupational noise exposures were reported by 5.3% and 21.7%, respectively. Of those exposed to "loud" or "very loud" sounds at work, only 18.7% and 43.6%, respectively, always used hearing protection. A total of 38.2% (1.9 million) of those with "very loud" occupational exposures never used hearing protection. Frequent (> 10/year) "loud" and "very loud" recreational noise exposures were reported by 13.9% and 21.1%, respectively, most commonly to lawn mowers (72.6% and 55.2%, respectively). When exposed to recreational "loud/very loud" noise, only 11.4% always used hearing protection, whereas 62.3% (6.3 million) never used any protection. Lifetime exposure to firearm noise was reported by 36.6% of adults, 11.5% of whom had used firearms in the prior 12 months. Of those, only 58.5% always used hearing protection, whereas 21.4% (7.4 million) never used hearing protection. CONCLUSION Substantial noise exposures with potentially serious long-term hearing health consequences frequently are occurring in occupational and recreational settings, and with the use of firearms. Only a minority of those exposed consistently are using hearing protection. Healthcare providers should actively identify and encourage the use of hearing protection with those patients at risk. LEVEL OF EVIDENCE 4. Laryngoscope, 127:E340-E346, 2017.
Collapse
Affiliation(s)
- Jay M Bhatt
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Irvine, California, U.S.A
| | - Harrison W Lin
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Irvine, California, U.S.A
| | - Neil Bhattacharyya
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, U.S.A
| |
Collapse
|
404
|
Applying Neurotrophins to the Round Window Rescues Auditory Function and Reduces Inner Hair Cell Synaptopathy After Noise-induced Hearing Loss. Otol Neurotol 2017; 37:1223-30. [PMID: 27631825 DOI: 10.1097/mao.0000000000001191] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
HYPOTHESIS Applying neurotrophins to the round window immediately after a single noise exposure will prevent noise-induced hidden hearing loss. BACKGROUND Loud noise can eliminate neural connections between inner hair cells and their afferent neurons (thereby diminishing sound perception) without causing a detectable change on audiogram. This phenomenon is termed hidden hearing loss. METHODS Guinea pigs were exposed for 2 hours to 4 to 8 kHz noise at either 95 or 105 dB SPL. Immediately afterward a 4 μl bolus of neurotrophins (brain-derived neurotrophic factor 1 μg/μl, and neurotrophin-3 1 μg/μl) was delivered to the round window of one ear, and saline to the other. Auditory brainstem responses to pure-tone pips were acquired preoperatively, and at 1 and 2 weeks' postexposure. Cochleae were removed and whole mounted for immunohistochemical analysis, with presynaptic ribbons of inner hair cells and associated postsynaptic glutamatergic AMPA receptors identified using CtBP2 and GluA2 antibodies respectively. RESULTS After exposure to 105 dB noise, threshold did not change, but the amplitude growth of the auditory brainstem response was significantly reduced in control ears in response to 16 and 32 kHz tones. The amplitude growth was also reduced neurotrophin ears, but to a lesser degree and the reduction was not significant. Similar results were obtained from control ears exposed to 95 dB, but amplitude growth recovered in neurotrophin-treated ears, this reaching statistical significance in response to 16 kHz tones. There were significantly more presynaptic ribbons, postsynaptic glutamate receptors, and colocalized ribbons after neurotrophin treatment. CONCLUSION A single dose of neurotrophins delivered to the round window reduced synaptopathy and recovered high-frequency hearing in ears exposed to 95 dB noise. These findings suggest that hidden hearing loss may be reduced by providing trophic support to the cochlea after injury.
Collapse
|
405
|
Fettiplace R. Hair Cell Transduction, Tuning, and Synaptic Transmission in the Mammalian Cochlea. Compr Physiol 2017; 7:1197-1227. [PMID: 28915323 DOI: 10.1002/cphy.c160049] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sound pressure fluctuations striking the ear are conveyed to the cochlea, where they vibrate the basilar membrane on which sit hair cells, the mechanoreceptors of the inner ear. Recordings of hair cell electrical responses have shown that they transduce sound via submicrometer deflections of their hair bundles, which are arrays of interconnected stereocilia containing the mechanoelectrical transducer (MET) channels. MET channels are activated by tension in extracellular tip links bridging adjacent stereocilia, and they can respond within microseconds to nanometer displacements of the bundle, facilitated by multiple processes of Ca2+-dependent adaptation. Studies of mouse mutants have produced much detail about the molecular organization of the stereocilia, the tip links and their attachment sites, and the MET channels localized to the lower end of each tip link. The mammalian cochlea contains two categories of hair cells. Inner hair cells relay acoustic information via multiple ribbon synapses that transmit rapidly without rundown. Outer hair cells are important for amplifying sound-evoked vibrations. The amplification mechanism primarily involves contractions of the outer hair cells, which are driven by changes in membrane potential and mediated by prestin, a motor protein in the outer hair cell lateral membrane. Different sound frequencies are separated along the cochlea, with each hair cell being tuned to a narrow frequency range; amplification sharpens the frequency resolution and augments sensitivity 100-fold around the cell's characteristic frequency. Genetic mutations and environmental factors such as acoustic overstimulation cause hearing loss through irreversible damage to the hair cells or degeneration of inner hair cell synapses. © 2017 American Physiological Society. Compr Physiol 7:1197-1227, 2017.
Collapse
Affiliation(s)
- Robert Fettiplace
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
406
|
Vogl C, Butola T, Haag N, Hausrat TJ, Leitner MG, Moutschen M, Lefèbvre PP, Speckmann C, Garrett L, Becker L, Fuchs H, Hrabe de Angelis M, Nietzsche S, Kessels MM, Oliver D, Kneussel M, Kilimann MW, Strenzke N. The BEACH protein LRBA is required for hair bundle maintenance in cochlear hair cells and for hearing. EMBO Rep 2017; 18:2015-2029. [PMID: 28893864 DOI: 10.15252/embr.201643689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 07/27/2017] [Accepted: 08/07/2017] [Indexed: 12/15/2022] Open
Abstract
Lipopolysaccharide-responsive beige-like anchor protein (LRBA) belongs to the enigmatic class of BEACH domain-containing proteins, which have been attributed various cellular functions, typically involving intracellular protein and membrane transport processes. Here, we show that LRBA deficiency in mice leads to progressive sensorineural hearing loss. In LRBA knockout mice, inner and outer hair cell stereociliary bundles initially develop normally, but then partially degenerate during the second postnatal week. LRBA deficiency is associated with a reduced abundance of radixin and Nherf2, two adaptor proteins, which are important for the mechanical stability of the basal taper region of stereocilia. Our data suggest that due to the loss of structural integrity of the central parts of the hair bundle, the hair cell receptor potential is reduced, resulting in a loss of cochlear sensitivity and functional loss of the fraction of spiral ganglion neurons with low spontaneous firing rates. Clinical data obtained from two human patients with protein-truncating nonsense or frameshift mutations suggest that LRBA deficiency may likewise cause syndromic sensorineural hearing impairment in humans, albeit less severe than in our mouse model.
Collapse
Affiliation(s)
- Christian Vogl
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Tanvi Butola
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry Göttingen, Göttingen, Germany
| | - Natja Haag
- Institute for Biochemistry I, University Hospital Jena, Jena, Germany
| | - Torben J Hausrat
- Department for Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Michael G Leitner
- Department of Physiology, Philipps University Marburg, Marburg, Germany
| | - Michel Moutschen
- Department of Immunology and Infectious Diseases, University of Liège CHU Liège, Liège, Belgium
| | - Philippe P Lefèbvre
- Department of Otorhinolaryngology, University of Liège CHU Liège, Liège, Belgium
| | - Carsten Speckmann
- Division of Pediatric Hematology and Oncology, Center for Chronic Immunodeficiency and Department of Pediatrics and Adolescent Medicine, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, München, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Michael M Kessels
- Institute for Biochemistry I, University Hospital Jena, Jena, Germany
| | - Dominik Oliver
- Department of Physiology, Philipps University Marburg, Marburg, Germany
| | - Matthias Kneussel
- Department for Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Manfred W Kilimann
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany.,Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Nicola Strenzke
- Auditory Systems Physiology Group Department of Otolaryngology University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
407
|
Grinn SK, Wiseman KB, Baker JA, Le Prell CG. Hidden Hearing Loss? No Effect of Common Recreational Noise Exposure on Cochlear Nerve Response Amplitude in Humans. Front Neurosci 2017; 11:465. [PMID: 28919848 PMCID: PMC5585187 DOI: 10.3389/fnins.2017.00465] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/07/2017] [Indexed: 11/22/2022] Open
Abstract
This study tested hypothesized relationships between noise exposure and auditory deficits. Both retrospective assessment of potential associations between noise exposure history and performance on an audiologic test battery and prospective assessment of potential changes in performance after new recreational noise exposure were completed. Methods: 32 participants (13M, 19F) with normal hearing (25-dB HL or better, 0.25–8 kHz) were asked to participate in 3 pre- and post-exposure sessions including: otoscopy, tympanometry, distortion product otoacoustic emissions (DPOAEs) (f2 frequencies 1–8 kHz), pure-tone audiometry (0.25–8 kHz), Words-in-Noise (WIN) test, and electrocochleography (eCochG) measurements at 70, 80, and 90-dB nHL (click and 2–4 kHz tone-bursts). The first session was used to collect baseline data, the second session was collected the day after a loud recreational event, and the third session was collected 1-week later. Of the 32 participants, 26 completed all 3 sessions. Results: The retrospective analysis did not reveal statistically significant relationships between noise exposure history and any auditory deficits. The day after new exposure, there was a statistically significant correlation between noise “dose” and WIN performance overall, and within the 4-dB signal-to-babble ratio. In contrast, there were no statistically significant correlations between noise dose and changes in threshold, DPOAE amplitude, or AP amplitude the day after new noise exposure. Additional analyses revealed a statistically significant relationship between TTS and DPOAE amplitude at 6 kHz, with temporarily decreased DPOAE amplitude observed with increasing TTS. Conclusions: There was no evidence of auditory deficits as a function of previous noise exposure history, and no permanent changes in audiometric, electrophysiologic, or functional measures after new recreational noise exposure. There were very few participants with TTS the day after exposure - a test time selected to be consistent with previous animal studies. The largest observed TTS was approximately 20-dB. The observed pattern of small TTS suggests little risk of synaptopathy from common recreational noise exposure, and that we should not expect to observe changes in evoked potentials for this reason. No such changes were observed in this study. These data do not support suggestions that common, recreational noise exposure is likely to result in “hidden hearing loss”.
Collapse
Affiliation(s)
- Sarah K Grinn
- School of Behavioral and Brain Sciences, University of Texas at DallasDallas, TX, United States.,College of Public Health and Health Professions, University of FloridaGainesville, FL, United States
| | - Kathryn B Wiseman
- School of Behavioral and Brain Sciences, University of Texas at DallasDallas, TX, United States
| | - Jason A Baker
- School of Behavioral and Brain Sciences, University of Texas at DallasDallas, TX, United States
| | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at DallasDallas, TX, United States
| |
Collapse
|
408
|
The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise. Hear Res 2017; 353:224-236. [DOI: 10.1016/j.heares.2017.07.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/25/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022]
|
409
|
Eggermont JJ. Effects of long-term non-traumatic noise exposure on the adult central auditory system. Hearing problems without hearing loss. Hear Res 2017; 352:12-22. [DOI: 10.1016/j.heares.2016.10.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 11/27/2022]
|
410
|
Valero MD, Burton JA, Hauser SN, Hackett TA, Ramachandran R, Liberman MC. Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta). Hear Res 2017; 353:213-223. [PMID: 28712672 PMCID: PMC5632522 DOI: 10.1016/j.heares.2017.07.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/02/2017] [Accepted: 07/06/2017] [Indexed: 12/21/2022]
Abstract
Cochlear synaptopathy can result from various insults, including acoustic trauma, aging, ototoxicity, or chronic conductive hearing loss. For example, moderate noise exposure in mice can destroy up to ∼50% of synapses between auditory nerve fibers (ANFs) and inner hair cells (IHCs) without affecting outer hair cells (OHCs) or thresholds, because the synaptopathy occurs first in high-threshold ANFs. However, the fiber loss likely impairs temporal processing and hearing-in-noise, a classic complaint of those with sensorineural hearing loss. Non-human primates appear to be less vulnerable to noise-induced hair-cell loss than rodents, but their susceptibility to synaptopathy has not been studied. Because establishing a non-human primate model may be important in the development of diagnostics and therapeutics, we examined cochlear innervation and the damaging effects of acoustic overexposure in young adult rhesus macaques. Anesthetized animals were exposed bilaterally to narrow-band noise centered at 2 kHz at various sound-pressure levels for 4 h. Cochlear function was assayed for up to 8 weeks following exposure via auditory brainstem responses (ABRs) and otoacoustic emissions (OAEs). A moderate loss of synaptic connections (mean of 12-27% in the basal half of the cochlea) followed temporary threshold shifts (TTS), despite minimal hair-cell loss. A dramatic loss of synapses (mean of 50-75% in the basal half of the cochlea) was seen on IHCs surviving noise exposures that produced permanent threshold shifts (PTS) and widespread hair-cell loss. Higher noise levels were required to produce PTS in macaques compared to rodents, suggesting that primates are less vulnerable to hair-cell loss. However, the phenomenon of noise-induced cochlear synaptopathy in primates is similar to that seen in rodents.
Collapse
Affiliation(s)
- M D Valero
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA.
| | - J A Burton
- Vanderbilt University Medical Center, Dept. of Hearing and Speech Sciences, Nashville, TN 37232, USA
| | - S N Hauser
- Vanderbilt University Medical Center, Dept. of Hearing and Speech Sciences, Nashville, TN 37232, USA
| | - T A Hackett
- Vanderbilt University Medical Center, Dept. of Hearing and Speech Sciences, Nashville, TN 37232, USA
| | - R Ramachandran
- Vanderbilt University Medical Center, Dept. of Hearing and Speech Sciences, Nashville, TN 37232, USA
| | - M C Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
411
|
Abstract
Noise levels are truly continuous in relatively few occupations, with some degree of intermittency the most common condition. The sound levels of intermittent noise are often referred to as non-Gaussian in that they are not normally distributed in the time domain. In some conditions, intermittent noise affects the ear differently from continuous noise, and it is this assumption that underlies the selection of the 5-dB exchange rate (ER). The scientific and professional communities have debated this assumption over recent decades. This monograph explores the effect of non-Gaussian noise on the auditory system. It begins by summarizing an earlier report by the same author concentrating on the subject of the ER. The conclusions of the earlier report supported the more conservative 3-dB ER with possible adjustments to the permissible exposure limit for certain working conditions. The current document has expanded on the earlier report in light of the relevant research accomplished in the intervening decades. Although some of the animal research has supported the mitigating effect of intermittency, a closer look at many of these studies reveals certain weaknesses, along with the fact that these noise exposures were not usually representative of the conditions under which people actually work. The more recent animal research on complex noise shows that intermittencies do not protect the cochlea and that many of the previous assumptions about the ameliorative effect of intermittencies are no longer valid, lending further support to the 3-dB ER. The neurologic effects of noise on hearing have gained increasing attention in recent years because of improvements in microscopy and immunostaining techniques. Animal experiments showing damage to auditory synapses from noise exposures previously considered harmless may signify the need for a more conservative approach to the assessment of noise-induced hearing loss and consequently the practice of hearing conservation programs.
Collapse
|
412
|
Auditory Neuropathy after Damage to Cochlear Spiral Ganglion Neurons in Mice Resulting from Conditional Expression of Diphtheria Toxin Receptors. Sci Rep 2017; 7:6409. [PMID: 28743950 PMCID: PMC5527113 DOI: 10.1038/s41598-017-06600-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 06/15/2017] [Indexed: 01/08/2023] Open
Abstract
Auditory neuropathy (AN) is a hearing disorder characterized by normal cochlear amplification to sound but poor temporal processing and auditory perception in noisy backgrounds. These deficits likely result from impairments in auditory neural synchrony; such dyssynchrony of the neural responses has been linked to demyelination of auditory nerve fibers. However, no appropriate animal models are currently available that mimic this pathology. In this study, Cre-inducible diphtheria toxin receptor (iDTR+/+) mice were cross-mated with mice containing Cre (Bhlhb5-Cre+/−) specific to spiral ganglion neurons (SGNs). In double-positive offspring mice, the injection of diphtheria toxin (DT) led to a 30–40% rate of death for SGNs, but no hair cell damage. Demyelination types of pathologies were observed around the surviving SGNs and their fibers, many of which were distorted in shape. Correspondingly, a significant reduction in response synchrony to amplitude modulation was observed in this group of animals compared to the controls, which had a Cre− genotype. Taken together, our results suggest that SGN damage following the injection of DT in mice with Bhlhb5-Cre+/− and iDTR+/− is likely to be a good AN model of demyelination.
Collapse
|
413
|
Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations. J Neurosci 2017; 36:10584-10597. [PMID: 27733610 DOI: 10.1523/jneurosci.1187-16.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/23/2016] [Indexed: 12/14/2022] Open
Abstract
Auditory nerve fibers (ANFs) exhibit a range of spontaneous firing rates (SRs) that are inversely correlated with threshold for sounds. To probe the underlying mechanisms and time course of SR differentiation during cochlear maturation, loose-patch extracellular recordings were made from ANF dendrites using acutely excised rat cochlear preparations of different ages after hearing onset. Diversification of SRs occurred mostly between the second and the third postnatal week. Statistical properties of ANF spike trains showed developmental changes that approach adult-like features in older preparations. Comparison with intracellularly recorded EPSCs revealed that most properties of ANF spike trains derive from the characteristics of presynaptic transmitter release. Pharmacological tests and waveform analysis showed that endogenous firing produces some fraction of ANF spikes, accounting for their unusual properties; the endogenous firing diminishes gradually during maturation. Paired recordings showed that ANFs contacting the same inner hair cell could have different SRs, with no correlation in their spike timing. SIGNIFICANCE STATEMENT The inner hair cell (IHC)/auditory nerve fiber (ANF) synapse is the first synapse of the auditory pathway. Remarkably, each IHC is the sole partner of 10-30 ANFs with a range of spontaneous firing rates (SRs). Low and high SR ANFs respond to sound differently, and both are important for encoding sound information across varying acoustical environments. Here we demonstrate SR diversification after hearing onset by afferent recordings in acutely excised rat cochlear preparations. We describe developmental changes in spike train statistics and endogenous firing in immature ANFs. Dual afferent recordings provide the first direct evidence that fibers with different SRs contact the same IHCs and do not show correlated spike timing at rest. These results lay the groundwork for understanding the differential sensitivity of ANFs to acoustic trauma.
Collapse
|
414
|
Sagers JE, Landegger LD, Worthington S, Nadol JB, Stankovic KM. Human Cochlear Histopathology Reflects Clinical Signatures of Primary Neural Degeneration. Sci Rep 2017; 7:4884. [PMID: 28687782 PMCID: PMC5501826 DOI: 10.1038/s41598-017-04899-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/22/2017] [Indexed: 01/22/2023] Open
Abstract
Auditory neuropathy is a significant and understudied cause of human hearing loss, diagnosed in patients who demonstrate abnormal function of the cochlear nerve despite typical function of sensory cells. Because the human inner ear cannot be visualized during life, histopathological analysis of autopsy specimens is critical to understanding the cellular mechanisms underlying this pathology. Here we present statistical models of severe primary neuronal degeneration and its relationship to pure tone audiometric thresholds and word recognition scores in comparison to age-matched control patients, spanning every decade of life. Analysis of 30 ears from 23 patients shows that severe neuronal loss correlates with elevated audiometric thresholds and poor word recognition. For each ten percent increase in total neuronal loss, average thresholds across patients at each audiometric test frequency increase by 6.0 dB hearing level (HL). As neuronal loss increases, threshold elevation proceeds more rapidly in low audiometric test frequencies than in high frequencies. Pure tone average closely agrees with word recognition scores in the case of severe neural pathology. Histopathologic study of the human inner ear continues to emphasize the need for non- or minimally invasive clinical tools capable of establishing cellular-level diagnoses.
Collapse
Affiliation(s)
- Jessica E Sagers
- Eaton-Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, 02114, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, 02114, United States
| | - Lukas D Landegger
- Eaton-Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, 02114, United States.,Department of Otolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, 1090, Austria.,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, United States
| | - Steven Worthington
- Harvard Institute for Quantitative Social Science, Harvard University, Cambridge, MA, 02138, USA
| | - Joseph B Nadol
- Eaton-Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, 02114, United States.,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, United States
| | - Konstantina M Stankovic
- Eaton-Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, 02114, United States. .,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, 02114, United States. .,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, United States.
| |
Collapse
|
415
|
Ouyang J, Pace E, Lepczyk L, Kaufman M, Zhang J, Perrine SA, Zhang J. Blast-Induced Tinnitus and Elevated Central Auditory and Limbic Activity in Rats: A Manganese-Enhanced MRI and Behavioral Study. Sci Rep 2017; 7:4852. [PMID: 28687812 PMCID: PMC5501813 DOI: 10.1038/s41598-017-04941-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/27/2017] [Indexed: 02/06/2023] Open
Abstract
Blast-induced tinitus is the number one service-connected disability that currently affects military personnel and veterans. To elucidate its underlying mechanisms, we subjected 13 Sprague Dawley adult rats to unilateral 14 psi blast exposure to induce tinnitus and measured auditory and limbic brain activity using manganese-enhanced MRI (MEMRI). Tinnitus was evaluated with a gap detection acoustic startle reflex paradigm, while hearing status was assessed with prepulse inhibition (PPI) and auditory brainstem responses (ABRs). Both anxiety and cognitive functioning were assessed using elevated plus maze and Morris water maze, respectively. Five weeks after blast exposure, 8 of the 13 blasted rats exhibited chronic tinnitus. While acoustic PPI remained intact and ABR thresholds recovered, the ABR wave P1-N1 amplitude reduction persisted in all blast-exposed rats. No differences in spatial cognition were observed, but blasted rats as a whole exhibited increased anxiety. MEMRI data revealed a bilateral increase in activity along the auditory pathway and in certain limbic regions of rats with tinnitus compared to age-matched controls. Taken together, our data suggest that while blast-induced tinnitus may play a role in auditory and limbic hyperactivity, the non-auditory effects of blast and potential traumatic brain injury may also exert an effect.
Collapse
Affiliation(s)
- Jessica Ouyang
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Edward Pace
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Laura Lepczyk
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Michael Kaufman
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jessica Zhang
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jinsheng Zhang
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Communication Sciences & Disorders, Wayne State University College of Liberal Arts and Sciences, Detroit, MI, 48201, USA.
| |
Collapse
|
416
|
Du X, West MB, Cai Q, Cheng W, Ewert DL, Li W, Floyd RA, Kopke RD. Antioxidants reduce neurodegeneration and accumulation of pathologic Tau proteins in the auditory system after blast exposure. Free Radic Biol Med 2017; 108:627-643. [PMID: 28438658 DOI: 10.1016/j.freeradbiomed.2017.04.343] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/17/2017] [Accepted: 04/21/2017] [Indexed: 12/31/2022]
Abstract
Cochlear neurodegeneration commonly accompanies hair cell loss resulting from aging, ototoxicity, or exposures to intense noise or blast overpressures. However, the precise pathophysiological mechanisms that drive this degenerative response have not been fully elucidated. Our laboratory previously demonstrated that non-transgenic rats exposed to blast overpressures exhibited marked somatic accumulation of neurotoxic variants of the microtubule-associated protein, Tau, in the hippocampus. In the present study, we extended these analyses to examine neurodegeneration and pathologic Tau accumulation in the auditory system in response to blast exposure and evaluated the potential therapeutic efficacy of antioxidants on short-circuiting this pathological process. Blast injury induced ribbon synapse loss and retrograde neurodegeneration in the cochlea in untreated animals. An accompanying perikaryal accumulation of neurofilament light chain and pathologic Tau oligomers were observed in neurons from both the peripheral and central auditory system, spanning from the spiral ganglion to the auditory cortex. Due to its coincident accumulation pattern and well-documented neurotoxicity, our results suggest that the accumulation of pathologic Tau oligomers may actively contribute to blast-induced cochlear neurodegeneration. Therapeutic intervention with a combinatorial regimen of 2,4-disulfonyl α-phenyl tertiary butyl nitrone (HPN-07) and N-acetylcysteine (NAC) significantly reduced both pathologic Tau accumulation and indications of ongoing neurodegeneration in the cochlea and the auditory cortex. These results demonstrate that a combination of HPN-07 and NAC administrated shortly after a blast exposure can serve as a potential therapeutic strategy for preserving auditory function among military personnel or civilians with blast-induced traumatic brain injuries.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Li
- Hough Ear Institute, Oklahoma City, OK, USA
| | - Robert A Floyd
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Richard D Kopke
- Hough Ear Institute, Oklahoma City, OK, USA; Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Departments of Physiology and Otolaryngology, University of Oklahoma Health Sciences Center, Oklahoma City 73014, USA.
| |
Collapse
|
417
|
Abstract
The classic view of sensorineural hearing loss has been that the primary damage targets are hair cells and that auditory nerve loss is typically secondary to hair cell degeneration. Recent work has challenged that view. In noise-induced hearing loss, exposures causing only reversible threshold shifts (and no hair cell loss) nevertheless cause permanent loss of >50% of the synaptic connections between hair cells and the auditory nerve. Similarly, in age-related hearing loss, degeneration of cochlear synapses precedes both hair cell loss and threshold elevation. This primary neural degeneration has remained a "hidden hearing loss" for two reasons: 1) the neuronal cell bodies survive for years despite loss of synaptic connection with hair cells, and 2) the degeneration is selective for auditory nerve fibers with high thresholds. Although not required for threshold detection when quiet, these high-threshold fibers are critical for hearing in noisy environments. Research suggests that primary neural degeneration is an important contributor to the perceptual handicap in sensorineural hearing loss, and it may be key to the generation of tinnitus and other associated perceptual anomalies. In cases where the hair cells survive, neurotrophin therapies can elicit neurite outgrowth from surviving auditory neurons and re-establishment of their peripheral synapses; thus, treatments may be on the horizon.
Collapse
Affiliation(s)
- M Charles Liberman
- Department of Otolaryngology, Harvard Medical School, Eaton Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles St., Boston, MA, 02114, USA
| |
Collapse
|
418
|
Lauer AM. Minimal Effects of Age and Exposure to a Noisy Environment on Hearing in Alpha9 Nicotinic Receptor Knockout Mice. Front Neurosci 2017. [PMID: 28626386 PMCID: PMC5454393 DOI: 10.3389/fnins.2017.00304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Studies have suggested a role of weakened medial olivocochlear (OC) efferent feedback in accelerated hearing loss and increased susceptibility to noise. The present study investigated the progression of hearing loss with age and exposure to a noisy environment in medial OC-deficient mice. Alpha9 nicotinic acetylcholine receptor knockout (α9KO) and wild types were screened for hearing loss using auditory brainstem responses. α9KO mice housed in a quiet environment did not show increased hearing loss compared to wild types in young adulthood and middle age. Challenging the medial OC system by housing in a noisy environment did not increase hearing loss in α9KO mice compared to wild types. ABR wave 1 amplitudes also did not show differences between α9KO mice and wild types. These data suggest that deficient medial OC feedback does not result in early onset of hearing loss.
Collapse
Affiliation(s)
- Amanda M Lauer
- Department of Otolaryngology-HNS, Center for Hearing and Balance, Johns Hopkins University School of MedicineBaltimore, MD, United States
| |
Collapse
|
419
|
Liberman MC, Kujawa SG. Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms. Hear Res 2017; 349:138-147. [PMID: 28087419 PMCID: PMC5438769 DOI: 10.1016/j.heares.2017.01.003] [Citation(s) in RCA: 478] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022]
Abstract
Common causes of hearing loss in humans - exposure to loud noise or ototoxic drugs and aging - often damage sensory hair cells, reflected as elevated thresholds on the clinical audiogram. Recent studies in animal models suggest, however, that well before this overt hearing loss can be seen, a more insidious, but likely more common, process is taking place that permanently interrupts synaptic communication between sensory inner hair cells and subsets of cochlear nerve fibers. The silencing of affected neurons alters auditory information processing, whether accompanied by threshold elevations or not, and is a likely contributor to a variety of perceptual abnormalities, including speech-in-noise difficulties, tinnitus and hyperacusis. Work described here will review structural and functional manifestations of this cochlear synaptopathy and will consider possible mechanisms underlying its appearance and progression in ears with and without traditional 'hearing loss' arising from several common causes in humans.
Collapse
MESH Headings
- Animals
- Auditory Perception
- Auditory Threshold
- Cochlear Nerve/metabolism
- Cochlear Nerve/pathology
- Cochlear Nerve/physiopathology
- Glutamic Acid/metabolism
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Hearing
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Hearing Loss, Noise-Induced/psychology
- Hearing Loss, Sensorineural/metabolism
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/physiopathology
- Hearing Loss, Sensorineural/psychology
- Humans
- Nerve Degeneration
- Noise/adverse effects
- Risk Factors
- Synapses/metabolism
- Synapses/pathology
- Synaptic Transmission
Collapse
Affiliation(s)
- M Charles Liberman
- Department of Otology and Laryngology, Harvard Medical School, Boston MA, USA; Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston MA, USA
| | - Sharon G Kujawa
- Department of Otology and Laryngology, Harvard Medical School, Boston MA, USA; Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston MA, USA.
| |
Collapse
|
420
|
Noise-induced cochlear synaptopathy: Past findings and future studies. Hear Res 2017; 349:148-154. [DOI: 10.1016/j.heares.2016.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/08/2016] [Accepted: 12/08/2016] [Indexed: 01/12/2023]
|
421
|
Drug discovery for hearing loss: Phenotypic screening of chemical compounds on primary cultures of the spiral ganglion. Hear Res 2017; 349:177-181. [DOI: 10.1016/j.heares.2016.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/21/2016] [Accepted: 07/30/2016] [Indexed: 11/23/2022]
|
422
|
Tabuchi H, Laback B. Psychophysical and modeling approaches towards determining the cochlear phase response based on interaural time differences. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:4314. [PMID: 28618834 PMCID: PMC5734621 DOI: 10.1121/1.4984031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The cochlear phase response is often estimated by measuring masking of a tonal target by harmonic complexes with various phase curvatures. Maskers yielding most modulated internal envelope representations after passing the cochlear filter are thought to produce minimum masking, with fast-acting cochlear compression as the main contributor to that effect. Thus, in hearing-impaired (HI) listeners, reduced cochlear compression hampers estimation of the phase response using the masking method. This study proposes an alternative approach, based on the effect of the envelope modulation strength on the sensitivity to interaural time differences (ITDs). To evaluate the general approach, ITD thresholds were measured in seven normal-hearing listeners using 300-ms Schroeder-phase harmonic complexes with nine different phase curvatures. ITD thresholds tended to be lowest for phase curvatures roughly similar to those previously shown to produce minimum masking. However, an unexpected ITD threshold peak was consistently observed for a particular negative phase curvature. An auditory-nerve based ITD model predicted the general pattern of ITD thresholds except for the threshold peak, as well as published envelope ITD data. Model predictions simulating outer hair cell loss support the feasibility of the ITD-based approach to estimate the phase response in HI listeners.
Collapse
|
423
|
Brozoski T, Brozoski D, Wisner K, Bauer C. Chronic tinnitus and unipolar brush cell alterations in the cerebellum and dorsal cochlear nucleus. Hear Res 2017; 350:139-151. [PMID: 28478300 DOI: 10.1016/j.heares.2017.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 12/19/2022]
Abstract
Animal model research has shown that the central features of tinnitus, the perception of sound without an acoustic correlate, include elevated spontaneous and stimulus-driven activity, enhanced burst-mode firing, decreased variance of inter-spike intervals, and distortion of tonotopic frequency representation. Less well documented are cell-specific correlates of tinnitus. Unipolar brush cell (UBC) alterations in animals with psychophysical evidence of tinnitus has recently been reported. UBCs are glutamatergic interneurons that appear to function as local-circuit signal amplifiers. UBCs are abundant in the dorsal cochlear nucleus (DCN) and very abundant in the flocculus (FL) and paraflocculus (PFL) of the cerebellum. In the present research, two indicators of UBC structure and function were examined: Doublecortin (DCX) and epidermal growth factor receptor substrate 8 (Eps8). DCX is a protein that binds to microtubules where it can modify their assembly and growth. Eps8 is a cell-surface tyrosine kinase receptor mediating the response to epidermal growth factor; it appears to have a role in actin polymerization as well as cytoskeletal protein interactions. Both functions could contribute to synaptic remodeling. In the present research UBC Eps8 and DCX immunoreactivity (IR) were determined in 4 groups of rats distinguished by their exposure to high-level sound and psychophysical performance: Unexposed, exposed to high-level sound with behavioral evidence of tinnitus, and two exposed groups without behavioral evidence of tinnitus. Compared to unexposed controls, exposed animals with tinnitus had Eps8 IR elevated in their PFL; other structures were not affected, nor was DCX IR affected. This was interpreted as UBC upregulation in animals with tinnitus. Exposure that failed to produce tinnitus did not increase either Eps8 or DCX IR. Rather Eps8 IR was decreased in the FL and DCN of one subgroup (Least-Tinnitus), while DCX IR decreased in the FL of the other subgroup (No-Tinnitus). Neuron degeneration was also documented in the cochlear nucleus and PFL of exposed animals, both with and without tinnitus. Degeneration was not found in unexposed animals. Implications for tinnitus neuropathy are discussed in the context of synaptic remodeling and cerebellar sensory modulation.
Collapse
Affiliation(s)
- Thomas Brozoski
- Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62794, United States.
| | - Daniel Brozoski
- Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62794, United States
| | - Kurt Wisner
- Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62794, United States
| | - Carol Bauer
- Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62794, United States
| |
Collapse
|
424
|
Malapati H, Millen SM, J Buchser W. The axon degeneration gene SARM1 is evolutionarily distinct from other TIR domain-containing proteins. Mol Genet Genomics 2017; 292:909-922. [PMID: 28447196 DOI: 10.1007/s00438-017-1320-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/17/2017] [Indexed: 11/30/2022]
Abstract
Many forms of neurodegenerative disease are characterized by Wallerian degeneration, an active program of axonal destruction. Recently, the important player which enacts Wallerian degeneration was discovered, the multidomain protein SARM1. Since the SARM1 protein has classically been thought of as an innate immune molecule, its role in Wallerian degeneration has raised questions on the evolutionary forces acting on it. Here, we synthesize a picture of SARM1's evolution through various organisms by examining the molecular and genetic changes of SARM1 and the genes around it. Using proteins that possess domains homologous to SARM1, we established distances and Ka/Ks values through 5671 pairwise species-species comparisons. We demonstrate that SARM1 diverged across species in a pattern similar to other SAM domain-containing proteins. This is surprising, because it was expected that SARM1 would behave more like its TIR domain relatives. Going along with this divorce from TIR, we also noted that SARM1's TIR is under stronger purifying selection than the rest of the TIR domain-containing proteins (remaining highly conserved). In addition, SARM1's synteny analysis reveals that the surrounding gene cluster is highly conserved, functioning as a potential nexus of gene functionality across species. Taken together, SARM1 demonstrates a unique evolutionary pattern, separate from the TIR domain protein family.
Collapse
Affiliation(s)
- Harsha Malapati
- Department of Biology, College of William & Mary, 540 Landrum Dr., Williamsburg, VA, USA
| | - Spencer M Millen
- Neuroscience Program, College of William & Mary, Williamsburg, VA, USA
| | - William J Buchser
- Department of Biology, College of William & Mary, 540 Landrum Dr., Williamsburg, VA, USA. .,Neuroscience Program, College of William & Mary, Williamsburg, VA, USA.
| |
Collapse
|
425
|
Hoben R, Easow G, Pevzner S, Parker MA. Outer Hair Cell and Auditory Nerve Function in Speech Recognition in Quiet and in Background Noise. Front Neurosci 2017; 11:157. [PMID: 28439223 PMCID: PMC5383716 DOI: 10.3389/fnins.2017.00157] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/10/2017] [Indexed: 11/17/2022] Open
Abstract
The goal of this study was to describe the contribution of outer hair cells (OHCs) and the auditory nerve (AN) to speech understanding in quiet and in the presence of background noise. Fifty-three human subjects with hearing ranging from normal to moderate sensorineural hearing loss were assayed for both speech in quiet (Word Recognition) and speech in noise (QuickSIN test) performance. Their scores were correlated with OHC function as assessed via distortion product otoacoustic emissions, and AN function as measured by amplitude, latency, and threshold of the VIIIth cranial nerve Compound Action Potential (CAP) recorded during electrocochleography (ECochG). Speech and ECochG stimuli were presented at equivalent sensation levels in order to control for the degree of hearing sensitivity across patients. The results indicated that (1) OHC dysfunction was evident in the lower range of normal audiometric thresholds, which demonstrates that OHC damage can produce “Hidden Hearing Loss,” (2) AN dysfunction was evident beginning at mild levels of hearing loss, (3) when controlled for normal OHC function, persons exhibiting either high or low ECochG amplitudes exhibited no statistically significant differences in neither speech in quiet nor speech in noise performance, (4) speech in noise performance was correlated with OHC function, (5) hearing impaired subjects with OHC dysfunction exhibited better speech in quiet performance at or near threshold when stimuli were presented at equivalent sensation levels. These results show that OHC dysfunction contributes to hidden hearing loss, OHC function is required for optimum speech in noise performance, and those persons with sensorineural hearing loss exhibit better word discrimination in quiet at or near their audiometric thresholds than normal listeners.
Collapse
Affiliation(s)
- Richard Hoben
- Department of Otolaryngology, Steward St. Elizabeth's Medical CenterBoston, MA, USA
| | - Gifty Easow
- Department of Otolaryngology, Steward St. Elizabeth's Medical CenterBoston, MA, USA
| | - Sofia Pevzner
- Department of Otolaryngology, Steward St. Elizabeth's Medical CenterBoston, MA, USA
| | - Mark A Parker
- Department of Otolaryngology, Steward St. Elizabeth's Medical CenterBoston, MA, USA.,Department of Otolaryngology, Head and Neck Surgery, Tufts University School of MedicineBoston, MA, USA
| |
Collapse
|
426
|
Spatial Gradients in the Size of Inner Hair Cell Ribbons Emerge Before the Onset of Hearing in Rats. J Assoc Res Otolaryngol 2017; 18:399-413. [PMID: 28361374 DOI: 10.1007/s10162-017-0620-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 03/02/2017] [Indexed: 01/02/2023] Open
Abstract
The size and locations of pre-synaptic ribbons and glutamate receptors within and around inner hair cells are correlated with auditory afferent response features such as the spontaneous discharge rate (SR), threshold, and dynamic range of sound intensity representation (the so-called SR-groups). To test if the development of these spatial gradients requires experience with sound intensity, we quantified the size and spatial distribution of synaptic ribbons from the inner hair cells of neonatal rats before and after the onset of hearing (from post-natal day (P) 3 to P33). To quantify ribbon size, we used high resolution fluorescence confocal microscopy and 3-D reconstructions of immunolabeled ribbons. The size, density, and spatial distribution of ribbons changed during development. At P3, ribbons were densely clustered near the basal/modiolar face of the hair cell where low SR-groups preferentially contact adult hair cells. By P12, the disparity in ribbon count was less striking and ribbons were equally likely to occupy both faces. At all ages before P12, ribbons were larger on the modiolar face than on the pillar face. These differences initially grew larger with age but collapsed around the onset of hearing. Between P12 and P33, the spatial gradients remained small and began to re-emerge around P33. Even by P12, we did not find spatial gradients in the size of the post-synaptic glutamate receptors as is found on afferent terminals contacting adult inner hair cells. These results suggest that spatial gradients in ribbon size develop in the absence of sensory experience.
Collapse
|
427
|
Mehraei G, Gallardo AP, Shinn-Cunningham BG, Dau T. Auditory brainstem response latency in forward masking, a marker of sensory deficits in listeners with normal hearing thresholds. Hear Res 2017; 346:34-44. [PMID: 28159652 PMCID: PMC5402043 DOI: 10.1016/j.heares.2017.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/19/2017] [Accepted: 01/25/2017] [Indexed: 12/17/2022]
Abstract
In rodent models, acoustic exposure too modest to elevate hearing thresholds can nonetheless cause auditory nerve fiber deafferentation, interfering with the coding of supra-threshold sound. Low-spontaneous rate nerve fibers, important for encoding acoustic information at supra-threshold levels and in noise, are more susceptible to degeneration than high-spontaneous rate fibers. The change in auditory brainstem response (ABR) wave-V latency with noise level has been shown to be associated with auditory nerve deafferentation. Here, we measured ABR in a forward masking paradigm and evaluated wave-V latency changes with increasing masker-to-probe intervals. In the same listeners, behavioral forward masking detection thresholds were measured. We hypothesized that 1) auditory nerve fiber deafferentation increases forward masking thresholds and increases wave-V latency and 2) a preferential loss of low-spontaneous rate fibers results in a faster recovery of wave-V latency as the slow contribution of these fibers is reduced. Results showed that in young audiometrically normal listeners, a larger change in wave-V latency with increasing masker-to-probe interval was related to a greater effect of a preceding masker behaviorally. Further, the amount of wave-V latency change with masker-to-probe interval was positively correlated with the rate of change in forward masking detection thresholds. Although we cannot rule out central contributions, these findings are consistent with the hypothesis that auditory nerve fiber deafferentation occurs in humans and may predict how well individuals can hear in noisy environments.
Collapse
Affiliation(s)
- Golbarg Mehraei
- Program in Speech and Hearing Bioscience and Technology, Harvard University-Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Computational Neuroscience and Neural Technology, Boston University, Boston, MA, 02215, USA; Hearing Systems Group, Technical University of Denmark, Ørsteds Plads Building 352, 2800, Kongens Lyngby, Denmark.
| | - Andreu Paredes Gallardo
- Hearing Systems Group, Technical University of Denmark, Ørsteds Plads Building 352, 2800, Kongens Lyngby, Denmark
| | - Barbara G Shinn-Cunningham
- Program in Speech and Hearing Bioscience and Technology, Harvard University-Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Computational Neuroscience and Neural Technology, Boston University, Boston, MA, 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Torsten Dau
- Hearing Systems Group, Technical University of Denmark, Ørsteds Plads Building 352, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
428
|
The Coupling between Ca 2+ Channels and the Exocytotic Ca 2+ Sensor at Hair Cell Ribbon Synapses Varies Tonotopically along the Mature Cochlea. J Neurosci 2017; 37:2471-2484. [PMID: 28154149 PMCID: PMC5354352 DOI: 10.1523/jneurosci.2867-16.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 11/24/2022] Open
Abstract
The cochlea processes auditory signals over a wide range of frequencies and intensities. However, the transfer characteristics at hair cell ribbon synapses are still poorly understood at different frequency locations along the cochlea. Using recordings from mature gerbils, we report here a surprisingly strong block of exocytosis by the slow Ca2+ buffer EGTA (10 mM) in basal hair cells tuned to high frequencies (∼30 kHz). In addition, using recordings from gerbil, mouse, and bullfrog auditory organs, we find that the spatial coupling between Ca2+ influx and exocytosis changes from nanodomain in low-frequency tuned hair cells (∼<2 kHz) to progressively more microdomain in high-frequency cells (∼>2 kHz). Hair cell synapses have thus developed remarkable frequency-dependent tuning of exocytosis: accurate low-latency encoding of onset and offset of sound intensity in the cochlea's base and submillisecond encoding of membrane receptor potential fluctuations in the apex for precise phase-locking to sound signals. We also found that synaptic vesicle pool recovery from depletion was sensitive to high concentrations of EGTA, suggesting that intracellular Ca2+ buffers play an important role in vesicle recruitment in both low- and high-frequency hair cells. In conclusion, our results indicate that microdomain coupling is important for exocytosis in high-frequency hair cells, suggesting a novel hypothesis for why these cells are more susceptible to sound-induced damage than low-frequency cells; high-frequency inner hair cells must have a low Ca2+ buffer capacity to sustain exocytosis, thus making them more prone to Ca2+-induced cytotoxicity. SIGNIFICANCE STATEMENT In the inner ear, sensory hair cells signal reception of sound. They do this by converting the sound-induced movement of their hair bundles present at the top of these cells, into an electrical current. This current depolarizes the hair cell and triggers the calcium-induced release of the neurotransmitter glutamate that activates the postsynaptic auditory fibers. The speed and precision of this process enables the brain to perceive the vital components of sound, such as frequency and intensity. We show that the coupling strength between calcium channels and the exocytosis calcium sensor at inner hair cell synapses changes along the mammalian cochlea such that the timing and/or intensity of sound is encoded with high precision.
Collapse
|
429
|
Paul BT, Bruce IC, Roberts LE. Evidence that hidden hearing loss underlies amplitude modulation encoding deficits in individuals with and without tinnitus. Hear Res 2017; 344:170-182. [DOI: 10.1016/j.heares.2016.11.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/24/2016] [Accepted: 11/17/2016] [Indexed: 12/31/2022]
|
430
|
Prendergast G, Guest H, Munro KJ, Kluk K, Léger A, Hall DA, Heinz MG, Plack CJ. Effects of noise exposure on young adults with normal audiograms I: Electrophysiology. Hear Res 2017; 344:68-81. [PMID: 27816499 PMCID: PMC5256477 DOI: 10.1016/j.heares.2016.10.028] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022]
Abstract
Noise-induced cochlear synaptopathy has been demonstrated in numerous rodent studies. In these animal models, the disorder is characterized by a reduction in amplitude of wave I of the auditory brainstem response (ABR) to high-level stimuli, whereas the response at threshold is unaffected. The aim of the present study was to determine if this disorder is prevalent in young adult humans with normal audiometric hearing. One hundred and twenty six participants (75 females) aged 18-36 were tested. Participants had a wide range of lifetime noise exposures as estimated by a structured interview. Audiometric thresholds did not differ across noise exposures up to 8 kHz, although 16-kHz audiometric thresholds were elevated with increasing noise exposure for females but not for males. ABRs were measured in response to high-pass (1.5 kHz) filtered clicks of 80 and 100 dB peSPL. Frequency-following responses (FFRs) were measured to 80 dB SPL pure tones from 240 to 285 Hz, and to 80 dB SPL 4 kHz pure tones amplitude modulated at frequencies from 240 to 285 Hz (transposed tones). The bandwidth of the ABR stimuli and the carrier frequency of the transposed tones were chosen to target the 3-6 kHz characteristic frequency region which is usually associated with noise damage in humans. The results indicate no relation between noise exposure and the amplitude of the ABR. In particular, wave I of the ABR did not decrease with increasing noise exposure as predicted. ABR wave V latency increased with increasing noise exposure for the 80 dB peSPL click. High carrier-frequency (envelope) FFR signal-to-noise ratios decreased as a function of noise exposure in males but not females. However, these correlations were not significant after the effects of age were controlled. The results suggest either that noise-induced cochlear synaptopathy is not a significant problem in young, audiometrically normal adults, or that the ABR and FFR are relatively insensitive to this disorder in young humans, although it is possible that the effects become more pronounced with age.
Collapse
Affiliation(s)
- Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK
| | - Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK; Audiology Department, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Karolina Kluk
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK
| | - Agnès Léger
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK
| | - Deborah A Hall
- National Institute for Health Research (NIHR) Nottingham Hearing Biomedical Research Unit, Nottingham, NG1 5DU, UK; Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Michael G Heinz
- Department of Speech, Language, & Hearing Sciences and Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK; Department of Psychology, Lancaster University, Lancaster, LA1 4YF, UK
| |
Collapse
|
431
|
Salvi R, Sun W, Ding D, Chen GD, Lobarinas E, Wang J, Radziwon K, Auerbach BD. Inner Hair Cell Loss Disrupts Hearing and Cochlear Function Leading to Sensory Deprivation and Enhanced Central Auditory Gain. Front Neurosci 2017; 10:621. [PMID: 28149271 PMCID: PMC5241314 DOI: 10.3389/fnins.2016.00621] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 12/30/2016] [Indexed: 11/13/2022] Open
Abstract
There are three times as many outer hair cells (OHC) as inner hair cells (IHC), yet IHC transmit virtually all acoustic information to the brain as they synapse with 90–95% of type I auditory nerve fibers. Here we review a comprehensive series of experiments aimed at determining how loss of the IHC/type I system affects hearing by selectively destroying these cells in chinchillas using the ototoxic anti-cancer agent carboplatin. Eliminating IHC/type I neurons has no effect on distortion product otoacoustic emission or the cochlear microphonic potential generated by OHC; however, it greatly reduces the summating potential produced by IHC and the compound action potential (CAP) generated by type I neurons. Remarkably, responses from remaining auditory nerve fibers maintain sharp tuning and low thresholds despite innervating regions of the cochlea with ~80% IHC loss. Moreover, chinchillas with large IHC lesions have surprisingly normal thresholds in quiet until IHC losses exceeded 80%, suggesting that only a few IHC are needed to detect sounds in quiet. However, behavioral thresholds in broadband noise are elevated significantly and tone-in-narrow band noise masking patterns exhibit greater remote masking. These results suggest the auditory system is able to compensate for considerable loss of IHC/type I neurons in quiet but not in difficult listening conditions. How does the auditory brain deal with the drastic loss of cochlear input? Recordings from the inferior colliculus found a relatively small decline in sound-evoked activity despite a large decrease in CAP amplitude after IHC lesion. Paradoxically, sound-evoked responses are generally larger than normal in the auditory cortex, indicative of increased central gain. This gain enhancement in the auditory cortex is associated with decreased GABA-mediated inhibition. These results suggest that when the neural output of the cochlea is reduced, the central auditory system compensates by turning up its gain so that weak signals once again become comfortably loud. While this gain enhancement is able to restore normal hearing under quiet conditions, it may not adequately compensate for peripheral dysfunction in more complex sound environments. In addition, excessive gain increases may convert recruitment into the debilitating condition known as hyperacusis.
Collapse
Affiliation(s)
- Richard Salvi
- Center for Hearing and Deafness, University at Buffalo Buffalo, NY, USA
| | - Wei Sun
- Center for Hearing and Deafness, University at Buffalo Buffalo, NY, USA
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo Buffalo, NY, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo Buffalo, NY, USA
| | | | - Jian Wang
- School of Human Communication Disorders, Dalhousie University Halifax, NS, Canada
| | - Kelly Radziwon
- Center for Hearing and Deafness, University at Buffalo Buffalo, NY, USA
| | | |
Collapse
|
432
|
Hickox AE, Larsen E, Heinz MG, Shinobu L, Whitton JP. Translational issues in cochlear synaptopathy. Hear Res 2017; 349:164-171. [PMID: 28069376 DOI: 10.1016/j.heares.2016.12.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
Abstract
Understanding the biology of the previously underappreciated sensitivity of cochlear synapses to noise insult, and its clinical consequences, is becoming a mission for a growing number of auditory researchers. In addition, several research groups have become interested in developing therapeutic approaches that can reverse synaptopathy and restore hearing function. One of the major challenges to realizing the potential of synaptopathy rodent models is that current clinical audiometric approaches cannot yet reveal the presence of this subtle cochlear pathology in humans. This has catalyzed efforts, both from basic and clinical perspectives, to investigate novel means for diagnosing synaptopathy and to determine the main functional consequences for auditory perception and hearing abilities. Such means, and a strong concordance between findings in pre-clinical animal models and clinical studies in humans, are important for developing and realizing therapeutics. This paper frames the key outstanding translational questions that need to be addressed to realize this ambitious goal.
Collapse
Affiliation(s)
- Ann E Hickox
- Decibel Therapeutics, 215 First St, Cambridge, MA, 02142, USA.
| | - Erik Larsen
- Decibel Therapeutics, 215 First St, Cambridge, MA, 02142, USA.
| | - Michael G Heinz
- Speech, Language, and Hearing Sciences and Biomedical Engineering, Purdue University, 715 Clinic Drive, West Lafayette, IN, 47907, USA.
| | - Leslie Shinobu
- Decibel Therapeutics, 215 First St, Cambridge, MA, 02142, USA.
| | | |
Collapse
|
433
|
Grose JH, Buss E, Hall JW. Loud Music Exposure and Cochlear Synaptopathy in Young Adults: Isolated Auditory Brainstem Response Effects but No Perceptual Consequences. Trends Hear 2017; 21:2331216517737417. [PMID: 29105620 PMCID: PMC5676494 DOI: 10.1177/2331216517737417] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/21/2017] [Indexed: 01/20/2023] Open
Abstract
The purpose of this study was to test the hypothesis that listeners with frequent exposure to loud music exhibit deficits in suprathreshold auditory performance consistent with cochlear synaptopathy. Young adults with normal audiograms were recruited who either did ( n = 31) or did not ( n = 30) have a history of frequent attendance at loud music venues where the typical sound levels could be expected to result in temporary threshold shifts. A test battery was administered that comprised three sets of procedures: (a) electrophysiological tests including distortion product otoacoustic emissions, auditory brainstem responses, envelope following responses, and the acoustic change complex evoked by an interaural phase inversion; (b) psychoacoustic tests including temporal modulation detection, spectral modulation detection, and sensitivity to interaural phase; and (c) speech tests including filtered phoneme recognition and speech-in-noise recognition. The results demonstrated that a history of loud music exposure can lead to a profile of peripheral auditory function that is consistent with an interpretation of cochlear synaptopathy in humans, namely, modestly abnormal auditory brainstem response Wave I/Wave V ratios in the presence of normal distortion product otoacoustic emissions and normal audiometric thresholds. However, there were no other electrophysiological, psychophysical, or speech perception effects. The absence of any behavioral effects in suprathreshold sound processing indicated that, even if cochlear synaptopathy is a valid pathophysiological condition in humans, its perceptual sequelae are either too diffuse or too inconsequential to permit a simple differential diagnosis of hidden hearing loss.
Collapse
Affiliation(s)
- John H. Grose
- Department of Otolaryngology—Head and Neck Surgery, University of North Carolina at Chapel Hill, NC, USA
| | - Emily Buss
- Department of Otolaryngology—Head and Neck Surgery, University of North Carolina at Chapel Hill, NC, USA
| | - Joseph W. Hall
- Department of Otolaryngology—Head and Neck Surgery, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
434
|
Krauss P, Tziridis K, Metzner C, Schilling A, Hoppe U, Schulze H. Stochastic Resonance Controlled Upregulation of Internal Noise after Hearing Loss as a Putative Cause of Tinnitus-Related Neuronal Hyperactivity. Front Neurosci 2016; 10:597. [PMID: 28082861 PMCID: PMC5187388 DOI: 10.3389/fnins.2016.00597] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 12/14/2016] [Indexed: 11/25/2022] Open
Abstract
Subjective tinnitus is generally assumed to be a consequence of hearing loss. In animal studies it has been demonstrated that acoustic trauma induced cochlear damage can lead to behavioral signs of tinnitus. In addition it was shown that noise trauma may lead to deafferentation of cochlear inner hair cells (IHC) even in the absence of elevated hearing thresholds, and it seems conceivable that such hidden hearing loss may be sufficient to cause tinnitus. Numerous studies have indicated that tinnitus is correlated with pathologically increased spontaneous firing rates and hyperactivity of neurons along the auditory pathway. It has been proposed that this hyperactivity is the consequence of a mechanism aiming to compensate for reduced input to the auditory system by increasing central neuronal gain, a mechanism referred to as homeostatic plasticity (HP), thereby maintaining mean firing rates over longer timescales for stabilization of neuronal processing. Here we propose an alternative, new interpretation of tinnitus-related development of neuronal hyperactivity in terms of information theory. In particular, we suggest that stochastic resonance (SR) plays a key role in both short- and long-term plasticity within the auditory system and that SR is the primary cause of neuronal hyperactivity and tinnitus. We argue that following hearing loss, SR serves to lift signals above the increased neuronal thresholds, thereby partly compensating for the hearing loss. In our model, the increased amount of internal noise-which is crucial for SR to work-corresponds to neuronal hyperactivity which subsequently causes neuronal plasticity along the auditory pathway and finally may lead to the development of a phantom percept, i.e., subjective tinnitus. We demonstrate the plausibility of our hypothesis using a computational model and provide exemplary findings in human patients that are consistent with that model. Finally we discuss the observed asymmetry in human tinnitus pitch distribution as a consequence of asymmetry of the distribution of auditory nerve type I fibers along the cochlea in the context of our model.
Collapse
Affiliation(s)
- Patrick Krauss
- Experimental Otolaryngology, ENT-Hospital, Head and Neck Surgery, Friedrich-Alexander University Erlangen-NürnbergErlangen, Germany
- Biophysics Group, Department of Physics, Center for Medical Physics and Technology, Friedrich-Alexander University Erlangen-NürnbergErlangen, Germany
| | - Konstantin Tziridis
- Experimental Otolaryngology, ENT-Hospital, Head and Neck Surgery, Friedrich-Alexander University Erlangen-NürnbergErlangen, Germany
| | - Claus Metzner
- Biophysics Group, Department of Physics, Center for Medical Physics and Technology, Friedrich-Alexander University Erlangen-NürnbergErlangen, Germany
| | - Achim Schilling
- Experimental Otolaryngology, ENT-Hospital, Head and Neck Surgery, Friedrich-Alexander University Erlangen-NürnbergErlangen, Germany
- Biophysics Group, Department of Physics, Center for Medical Physics and Technology, Friedrich-Alexander University Erlangen-NürnbergErlangen, Germany
| | - Ulrich Hoppe
- Department of Audiology, ENT-Hospital, Head and Neck Surgery, Friedrich-Alexander University Erlangen-NürnbergErlangen, Germany
| | - Holger Schulze
- Experimental Otolaryngology, ENT-Hospital, Head and Neck Surgery, Friedrich-Alexander University Erlangen-NürnbergErlangen, Germany
| |
Collapse
|
435
|
Vlajkovic SM, Ambepitiya K, Barclay M, Boison D, Housley GD, Thorne PR. Adenosine receptors regulate susceptibility to noise-induced neural injury in the mouse cochlea and hearing loss. Hear Res 2016; 345:43-51. [PMID: 28034618 DOI: 10.1016/j.heares.2016.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/15/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
Abstract
Our previous studies have shown that the stimulation of A1 adenosine receptors in the inner ear can mitigate the loss of sensory hair cells and hearing loss caused by exposure to traumatic noise. Here, we focus on the role of adenosine receptors (AR) in the development of noise-induced neural injury in the cochlea using A1AR and A2AAR null mice (A1AR-/- and A2AAR-/-). Wildtype (WT) and AR deficient mice were exposed to octave band noise (8-16 kHz, 100 dB SPL) for 2 h to induce cochlear injury and hearing loss. Auditory thresholds and input/output functions were assessed using auditory brainstem responses (ABR) before and two weeks post-exposure. The loss of outer hair cells (OHC), afferent synapses and spiral ganglion neurons (SGN) were assessed by quantitative histology. A1AR-/- mice (6-8 weeks old) displayed a high frequency hearing loss (ABR threshold shift and reduced ABR wave I and II amplitudes). This hearing loss was further aggravated by acute noise exposure and exceeded the hearing loss in the WT and A2AAR-/- mice. All mice experienced the loss of OHC, synaptic ribbons and SGN after noise exposure, but the loss of SGN was significantly higher in A1AR-/- mice than in the A2AAR-/- and WT genotypes. The A2AAR-/- demonstrated better preservation of OHC and afferent synapses and the minimal loss of SGN after noise exposure. The findings suggest that the loss of A1AR expression results in an increased susceptibility to cochlear neural injury and hearing loss, whilst absence of A2AAR increases cochlear resistance to acoustic trauma.
Collapse
Affiliation(s)
- Srdjan M Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand.
| | - Kaushi Ambepitiya
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Meagan Barclay
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Detlev Boison
- RS Dow Neurobiology Laboratories, Legacy Research, Portland, OR, 97232, USA
| | - Gary D Housley
- Department of Physiology and Translational Neuroscience Facility, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Peter R Thorne
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand
| |
Collapse
|
436
|
Lobarinas E, Spankovich C, Le Prell CG. Evidence of "hidden hearing loss" following noise exposures that produce robust TTS and ABR wave-I amplitude reductions. Hear Res 2016; 349:155-163. [PMID: 28003148 DOI: 10.1016/j.heares.2016.12.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/21/2016] [Accepted: 12/12/2016] [Indexed: 11/30/2022]
Abstract
In animals, noise exposures that produce robust temporary threshold shifts (TTS) can produce immediate damage to afferent synapses and long-term degeneration of low spontaneous rate auditory nerve fibers. This synaptopathic damage has been shown to correlate with reduced auditory brainstem response (ABR) wave-I amplitudes at suprathreshold levels. The perceptual consequences of this "synaptopathy" remain unknown but have been suggested to include compromised hearing performance in competing background noise. Here, we used a modified startle inhibition paradigm to evaluate whether noise exposures that produce robust TTS and ABR wave-I reduction but not permanent threshold shift (PTS) reduced hearing-in-noise performance. Animals exposed to 109 dB SPL octave band noise showed TTS >30 dB 24-h post noise and modest but persistent ABR wave-I reduction 2 weeks post noise despite full recovery of ABR thresholds. Hearing-in-noise performance was negatively affected by the noise exposure. However, the effect was observed only at the poorest signal to noise ratio and was frequency specific. Although TTS >30 dB 24-h post noise was a predictor of functional deficits, there was no relationship between the degree of ABR wave-I reduction and degree of functional impairment.
Collapse
Affiliation(s)
- Edward Lobarinas
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, USA.
| | - Christopher Spankovich
- University of Mississippi Medical Center, Department of Otolaryngology and Communicative Sciences, USA
| | - Colleen G Le Prell
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, USA
| |
Collapse
|
437
|
Kollmeier B, Kiessling J. Functionality of hearing aids: state-of-the-art and future model-based solutions. Int J Audiol 2016; 57:S3-S28. [DOI: 10.1080/14992027.2016.1256504] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Birger Kollmeier
- Medizinische Physik, Universität Oldenburg and Cluster of Excellence Hearing4all, Hörzentrum Oldenburg, HörTech gGmbH and Fraunhofer IDMT/HSA, Oldenburg, Germany and
| | - Jürgen Kiessling
- Funktionsbereich Audiologie, Justus-Liebig-Universität Gießen, Giessen, Germany
| |
Collapse
|
438
|
Guest H, Munro KJ, Prendergast G, Howe S, Plack CJ. Tinnitus with a normal audiogram: Relation to noise exposure but no evidence for cochlear synaptopathy. Hear Res 2016; 344:265-274. [PMID: 27964937 PMCID: PMC5256478 DOI: 10.1016/j.heares.2016.12.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 11/25/2022]
Abstract
In rodents, exposure to high-level noise can destroy synapses between inner hair cells and auditory nerve fibers, without causing hair cell loss or permanent threshold elevation. Such "cochlear synaptopathy" is associated with amplitude reductions in wave I of the auditory brainstem response (ABR) at moderate-to-high sound levels. Similar ABR results have been reported in humans with tinnitus and normal audiometric thresholds, leading to the suggestion that tinnitus in these cases might be a consequence of synaptopathy. However, the ABR is an indirect measure of synaptopathy and it is unclear whether the results in humans reflect the same mechanisms demonstrated in rodents. Measures of noise exposure were not obtained in the human studies, and high frequency audiometric loss may have impacted ABR amplitudes. To clarify the role of cochlear synaptopathy in tinnitus with a normal audiogram, we recorded ABRs, envelope following responses (EFRs), and noise exposure histories in young adults with tinnitus and matched controls. Tinnitus was associated with significantly greater lifetime noise exposure, despite close matching for age, sex, and audiometric thresholds up to 14 kHz. However, tinnitus was not associated with reduced ABR wave I amplitude, nor with significant effects on EFR measures of synaptopathy. These electrophysiological measures were also uncorrelated with lifetime noise exposure, providing no evidence of noise-induced synaptopathy in this cohort, despite a wide range of exposures. In young adults with normal audiograms, tinnitus may be related not to cochlear synaptopathy but to other effects of noise exposure.
Collapse
Affiliation(s)
- Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK.
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK; Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK
| | - Simon Howe
- Audiology Department, James Cook University Hospital, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK; Department of Psychology, Lancaster University, Lancaster, UK
| |
Collapse
|
439
|
Undurraga JA, Haywood NR, Marquardt T, McAlpine D. Neural Representation of Interaural Time Differences in Humans-an Objective Measure that Matches Behavioural Performance. J Assoc Res Otolaryngol 2016; 17:591-607. [PMID: 27628539 PMCID: PMC5112218 DOI: 10.1007/s10162-016-0584-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/15/2016] [Indexed: 12/22/2022] Open
Abstract
Humans, and many other species, exploit small differences in the timing of sounds at the two ears (interaural time difference, ITD) to locate their source and to enhance their detection in background noise. Despite their importance in everyday listening tasks, however, the neural representation of ITDs in human listeners remains poorly understood, and few studies have assessed ITD sensitivity to a similar resolution to that reported perceptually. Here, we report an objective measure of ITD sensitivity in electroencephalography (EEG) signals to abrupt modulations in the interaural phase of amplitude-modulated low-frequency tones. Specifically, we measured following responses to amplitude-modulated sinusoidal signals (520-Hz carrier) in which the stimulus phase at each ear was manipulated to produce discrete interaural phase modulations at minima in the modulation cycle-interaural phase modulation following responses (IPM-FRs). The depth of the interaural phase modulation (IPM) was defined by the sign and the magnitude of the interaural phase difference (IPD) transition which was symmetric around zero. Seven IPM depths were assessed over the range of ±22 ° to ±157 °, corresponding to ITDs largely within the range experienced by human listeners under natural listening conditions (120 to 841 μs). The magnitude of the IPM-FR was maximal for IPM depths in the range of ±67.6 ° to ±112.6 ° and correlated well with performance in a behavioural experiment in which listeners were required to discriminate sounds containing IPMs from those with only static IPDs. The IPM-FR provides a sensitive measure of binaural processing in the human brain and has a potential to assess temporal binaural processing.
Collapse
Affiliation(s)
- Jaime A Undurraga
- Department Linguistics, The Australian Hearing Hub, Macquarie University, 16 University Avenue, Sydney, NSW, 2109, Australia.
- UCL Ear Institute, University College London, 332 Gray's Inn Rd., London, WC1X8EE, UK.
| | - Nick R Haywood
- Department Linguistics, The Australian Hearing Hub, Macquarie University, 16 University Avenue, Sydney, NSW, 2109, Australia
- UCL Ear Institute, University College London, 332 Gray's Inn Rd., London, WC1X8EE, UK
| | - Torsten Marquardt
- UCL Ear Institute, University College London, 332 Gray's Inn Rd., London, WC1X8EE, UK
| | - David McAlpine
- Department Linguistics, The Australian Hearing Hub, Macquarie University, 16 University Avenue, Sydney, NSW, 2109, Australia
- UCL Ear Institute, University College London, 332 Gray's Inn Rd., London, WC1X8EE, UK
| |
Collapse
|
440
|
Wolak T, Cieśla K, Rusiniak M, Piłka A, Lewandowska M, Pluta A, Skarżyński H, Skarżyński PH. Influence of Acoustic Overstimulation on the Central Auditory System: An Functional Magnetic Resonance Imaging (fMRI) Study. Med Sci Monit 2016; 22:4623-4635. [PMID: 27893698 PMCID: PMC5132427 DOI: 10.12659/msm.897929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background The goal of the fMRI experiment was to explore the involvement of central auditory structures in pathomechanisms of a behaviorally manifested auditory temporary threshold shift in humans. Material/Methods The material included 18 healthy volunteers with normal hearing. Subjects in the exposure group were presented with 15 min of binaural acoustic overstimulation of narrowband noise (3 kHz central frequency) at 95 dB(A). The control group was not exposed to noise but instead relaxed in silence. Auditory fMRI was performed in 1 session before and 3 sessions after acoustic overstimulation and involved 3.5–4.5 kHz sweeps. Results The outcomes of the study indicate a possible effect of acoustic overstimulation on central processing, with decreased brain responses to auditory stimulation up to 20 min after exposure to noise. The effect can be seen already in the primary auditory cortex. Decreased BOLD signal change can be due to increased excitation thresholds and/or increased spontaneous activity of auditory neurons throughout the auditory system. Conclusions The trial shows that fMRI can be a valuable tool in acoustic overstimulation studies but has to be used with caution and considered complimentary to audiological measures. Further methodological improvements are needed to distinguish the effects of TTS and neuronal habituation to repetitive stimulation.
Collapse
Affiliation(s)
- Tomasz Wolak
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland
| | - Katarzyna Cieśla
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland
| | - Mateusz Rusiniak
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland
| | - Adam Piłka
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland
| | - Monika Lewandowska
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland
| | - Agnieszka Pluta
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland
| | - Henryk Skarżyński
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland
| | - Piotr H Skarżyński
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland.,Department of Heart Failure and Cardiac Rehabilitation, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
441
|
Dobie RA, Humes LE. Commentary on the regulatory implications of noise-induced cochlear neuropathy. Int J Audiol 2016; 56:74-78. [DOI: 10.1080/14992027.2016.1255359] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Robert A. Dobie
- Department of Otolaryngology, Head and Neck Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA and
| | - Larry E. Humes
- Department of Speech and Hearing Sciences, Indiana University, Bloomington, IN, USA
| |
Collapse
|
442
|
Verhulst S, Jagadeesh A, Mauermann M, Ernst F. Individual Differences in Auditory Brainstem Response Wave Characteristics: Relations to Different Aspects of Peripheral Hearing Loss. Trends Hear 2016; 20:2331216516672186. [PMID: 27837052 PMCID: PMC5117250 DOI: 10.1177/2331216516672186] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 09/08/2016] [Indexed: 11/20/2022] Open
Abstract
Little is known about how outer hair cell loss interacts with noise-induced and age-related auditory nerve degradation (i.e., cochlear synaptopathy) to affect auditory brainstem response (ABR) wave characteristics. Given that listeners with impaired audiograms likely suffer from mixtures of these hearing deficits and that ABR amplitudes have successfully been used to isolate synaptopathy in listeners with normal audiograms, an improved understanding of how different hearing pathologies affect the ABR source generators will improve their sensitivity in hearing diagnostics. We employed a functional model for human ABRs in which different combinations of hearing deficits were simulated and show that high-frequency cochlear gain loss steepens the slope of the ABR Wave-V latency versus intensity and amplitude versus intensity curves. We propose that grouping listeners according to a ratio of these slope metrics (i.e., the ABR growth ratio) might offer a way to factor out the outer hair cell loss deficit and maximally relate individual differences for constant ratios to other peripheral hearing deficits such as cochlear synaptopathy. We compared the model predictions to recorded click-ABRs from 30 participants with normal or high-frequency sloping audiograms and confirm the predicted relationship between the ABR latency growth curve and audiogram slope. Experimental ABR amplitude growth showed large individual differences and was compared with the Wave-I amplitude, Wave-V/I ratio, or the interwaveI-W latency in the same listeners. The model simulations along with the ABR recordings suggest that a hearing loss profile depicting the ABR growth ratio versus the Wave-I amplitude or Wave-V/I ratio might be able to differentiate outer hair cell deficits from cochlear synaptopathy in listeners with mixed pathologies.
Collapse
Affiliation(s)
- Sarah Verhulst
- Cluster of Excellence Hearing4all and Medizinische Physik, Department of Medical Physics and Acoustics, Oldenburg University, Oldenburg, Germany
- Department of Information Technology, Ghent University, Technologiepark, Zwijnaarde, Belgium
| | - Anoop Jagadeesh
- Cluster of Excellence Hearing4all and Medizinische Physik, Department of Medical Physics and Acoustics, Oldenburg University, Oldenburg, Germany
| | - Manfred Mauermann
- Cluster of Excellence Hearing4all and Medizinische Physik, Department of Medical Physics and Acoustics, Oldenburg University, Oldenburg, Germany
| | - Frauke Ernst
- Cluster of Excellence Hearing4all and Medizinische Physik, Department of Medical Physics and Acoustics, Oldenburg University, Oldenburg, Germany
| |
Collapse
|
443
|
Bressler S, Goldberg H, Shinn-Cunningham B. Sensory coding and cognitive processing of sound in Veterans with blast exposure. Hear Res 2016; 349:98-110. [PMID: 27815131 DOI: 10.1016/j.heares.2016.10.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/07/2016] [Accepted: 10/26/2016] [Indexed: 11/17/2022]
Abstract
Recent anecdotal reports from VA audiology clinics as well as a few published studies have identified a sub-population of Service Members seeking treatment for problems communicating in everyday, noisy listening environments despite having normal to near-normal hearing thresholds. Because of their increased risk of exposure to dangerous levels of prolonged noise and transient explosive blast events, communication problems in these soldiers could be due to either hearing loss (traditional or "hidden") in the auditory sensory periphery or from blast-induced injury to cortical networks associated with attention. We found that out of the 14 blast-exposed Service Members recruited for this study, 12 had hearing thresholds in the normal to near-normal range. A majority of these participants reported having problems specifically related to failures with selective attention. Envelope following responses (EFRs) measuring neural coding fidelity of the auditory brainstem to suprathreshold sounds were similar between blast-exposed and non-blast controls. Blast-exposed subjects performed substantially worse than non-blast controls in an auditory selective attention task in which listeners classified the melodic contour (rising, falling, or "zig-zagging") of one of three simultaneous, competing tone sequences. Salient pitch and spatial differences made for easy segregation of the three concurrent melodies. Poor performance in the blast-exposed subjects was associated with weaker evoked response potentials (ERPs) in frontal EEG channels, as well as a failure of attention to enhance the neural responses evoked by a sequence when it was the target compared to when it was a distractor. These results suggest that communication problems in these listeners cannot be explained by compromised sensory representations in the auditory periphery, but rather point to lingering blast-induced damage to cortical networks implicated in the control of attention. Because all study participants also suffered from post-traumatic disorder (PTSD), follow-up studies are required to tease apart the contributions of PTSD and blast-induced injury on cognitive performance.
Collapse
Affiliation(s)
- Scott Bressler
- Center for Computational Neuroscience and Neural Technologies (CompNet), Boston University, Boston, MA 02215, USA
| | - Hannah Goldberg
- Center for Computational Neuroscience and Neural Technologies (CompNet), Boston University, Boston, MA 02215, USA
| | - Barbara Shinn-Cunningham
- Center for Computational Neuroscience and Neural Technologies (CompNet), Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
444
|
Bernstein LR, Trahiotis C. Behavioral manifestations of audiometrically-defined "slight" or "hidden" hearing loss revealed by measures of binaural detection. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:3540. [PMID: 27908080 DOI: 10.1121/1.4966113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study assessed whether audiometrically-defined "slight" or "hidden" hearing losses might be associated with degradations in binaural processing as measured in binaural detection experiments employing interaurally delayed signals and maskers. Thirty-one listeners participated, all having no greater than slight hearing losses (i.e., no thresholds greater than 25 dB HL). Across the 31 listeners and consistent with the findings of Bernstein and Trahiotis [(2015). J. Acoust. Soc. Am. 138, EL474-EL479] binaural detection thresholds at 500 Hz and 4 kHz increased with increasing magnitude of interaural delay, suggesting a loss of precision of coding with magnitude of interaural delay. Binaural detection thresholds were consistently found to be elevated for listeners whose absolute thresholds at 4 kHz exceeded 7.5 dB HL. No such elevations were observed in conditions having no binaural cues available to aid detection (i.e., "monaural" conditions). Partitioning and analyses of the data revealed that those elevated thresholds (1) were more attributable to hearing level than to age and (2) result from increased levels of internal noise. The data suggest that listeners whose high-frequency monaural hearing status would be classified audiometrically as being normal or "slight loss" may exhibit substantial and perceptually meaningful losses of binaural processing.
Collapse
Affiliation(s)
- Leslie R Bernstein
- Departments of Neuroscience and Surgery (Otolaryngology), University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Constantine Trahiotis
- Departments of Neuroscience and Surgery (Otolaryngology), University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| |
Collapse
|
445
|
Encke J, Kreh J, Völk F, Hemmert W. [Conversion of sound into auditory nerve action potentials]. HNO 2016; 64:808-814. [PMID: 27785535 DOI: 10.1007/s00106-016-0258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Outer hair cells play a major role in the hearing process: they amplify the motion of the basilar membrane up to a 1000-fold and at the same time sharpen the excitation patterns. These patterns are converted by inner hair cells into action potentials of the auditory nerve. Outer hair cells are delicate structures and easily damaged, e. g., by overexposure to noise. Hearing aids can amplify the amplitude of the excitation patterns, but they cannot restore their degraded frequency selectivity. Noise overexposure also leads to delayed degeneration of auditory nerve fibers, particularly those with low a spontaneous rate, which are important for the coding of sound in noise. However, this loss cannot be diagnosed by pure-tone audiometry.
Collapse
Affiliation(s)
- J Encke
- Bioanaloge Informationsverarbeitung, Zentralinstitut für Medizintechnik, Technische Universität München, Boltzmannstr. 11, 85748, Garching, Deutschland
| | - J Kreh
- Bioanaloge Informationsverarbeitung, Zentralinstitut für Medizintechnik, Technische Universität München, Boltzmannstr. 11, 85748, Garching, Deutschland
| | - F Völk
- Bioanaloge Informationsverarbeitung, Zentralinstitut für Medizintechnik, Technische Universität München, Boltzmannstr. 11, 85748, Garching, Deutschland
| | - W Hemmert
- Bioanaloge Informationsverarbeitung, Zentralinstitut für Medizintechnik, Technische Universität München, Boltzmannstr. 11, 85748, Garching, Deutschland.
| |
Collapse
|
446
|
|
447
|
Dai L, Shinn-Cunningham BG. Contributions of Sensory Coding and Attentional Control to Individual Differences in Performance in Spatial Auditory Selective Attention Tasks. Front Hum Neurosci 2016; 10:530. [PMID: 27812330 PMCID: PMC5071360 DOI: 10.3389/fnhum.2016.00530] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/05/2016] [Indexed: 11/13/2022] Open
Abstract
Listeners with normal hearing thresholds (NHTs) differ in their ability to steer attention to whatever sound source is important. This ability depends on top-down executive control, which modulates the sensory representation of sound in the cortex. Yet, this sensory representation also depends on the coding fidelity of the peripheral auditory system. Both of these factors may thus contribute to the individual differences in performance. We designed a selective auditory attention paradigm in which we could simultaneously measure envelope following responses (EFRs, reflecting peripheral coding), onset event-related potentials (ERPs) from the scalp (reflecting cortical responses to sound) and behavioral scores. We performed two experiments that varied stimulus conditions to alter the degree to which performance might be limited due to fine stimulus details vs. due to control of attentional focus. Consistent with past work, in both experiments we find that attention strongly modulates cortical ERPs. Importantly, in Experiment I, where coding fidelity limits the task, individual behavioral performance correlates with subcortical coding strength (derived by computing how the EFR is degraded for fully masked tones compared to partially masked tones); however, in this experiment, the effects of attention on cortical ERPs were unrelated to individual subject performance. In contrast, in Experiment II, where sensory cues for segregation are robust (and thus less of a limiting factor on task performance), inter-subject behavioral differences correlate with subcortical coding strength. In addition, after factoring out the influence of subcortical coding strength, behavioral differences are also correlated with the strength of attentional modulation of ERPs. These results support the hypothesis that behavioral abilities amongst listeners with NHTs can arise due to both subcortical coding differences and differences in attentional control, depending on stimulus characteristics and task demands.
Collapse
Affiliation(s)
- Lengshi Dai
- Department of Biomedical Engineering, Boston University Boston, MA, USA
| | | |
Collapse
|
448
|
Dai L, Shinn-Cunningham BG. Contributions of Sensory Coding and Attentional Control to Individual Differences in Performance in Spatial Auditory Selective Attention Tasks. Front Hum Neurosci 2016. [PMID: 27812330 DOI: 10.3389/fnhum.2016.00530/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Listeners with normal hearing thresholds (NHTs) differ in their ability to steer attention to whatever sound source is important. This ability depends on top-down executive control, which modulates the sensory representation of sound in the cortex. Yet, this sensory representation also depends on the coding fidelity of the peripheral auditory system. Both of these factors may thus contribute to the individual differences in performance. We designed a selective auditory attention paradigm in which we could simultaneously measure envelope following responses (EFRs, reflecting peripheral coding), onset event-related potentials (ERPs) from the scalp (reflecting cortical responses to sound) and behavioral scores. We performed two experiments that varied stimulus conditions to alter the degree to which performance might be limited due to fine stimulus details vs. due to control of attentional focus. Consistent with past work, in both experiments we find that attention strongly modulates cortical ERPs. Importantly, in Experiment I, where coding fidelity limits the task, individual behavioral performance correlates with subcortical coding strength (derived by computing how the EFR is degraded for fully masked tones compared to partially masked tones); however, in this experiment, the effects of attention on cortical ERPs were unrelated to individual subject performance. In contrast, in Experiment II, where sensory cues for segregation are robust (and thus less of a limiting factor on task performance), inter-subject behavioral differences correlate with subcortical coding strength. In addition, after factoring out the influence of subcortical coding strength, behavioral differences are also correlated with the strength of attentional modulation of ERPs. These results support the hypothesis that behavioral abilities amongst listeners with NHTs can arise due to both subcortical coding differences and differences in attentional control, depending on stimulus characteristics and task demands.
Collapse
Affiliation(s)
- Lengshi Dai
- Department of Biomedical Engineering, Boston University Boston, MA, USA
| | | |
Collapse
|
449
|
Kim S, Lim EJ, Kim TH, Park JH. Long-term effect of noise exposure during military service in South Korea. Int J Audiol 2016; 56:130-136. [PMID: 27723371 DOI: 10.1080/14992027.2016.1236417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Most Korean men spend at least two years in the military service usually in their early twenties. The aim of this study was to identify the long-term effect of exposure to military noise during military service by comparing two regressions of age-related hearing loss between groups with and without exposure to military noise. DESIGN Cross-sectional observational study. STUDY SAMPLE Finally, 4079 subjects were included, among 10,286 data of men's audiogram from January 2004 to April 2010. We excluded repeated testers and any subjects who had other known external causes or had an asymmetric audiogram. We grouped subjects with exposure to military noise (N = 3163) and those without as the control group (N = 916). RESULTS There was a significant effect of exposure to military noise at 4 and 8 kHz after controlling for the effect of age. The annual threshold deterioration rates were faster in the military noise exposed group than in the control group at 1, 2 and 4 kHz (p < 0.05). CONCLUSION The long-term effect of exposure to military noise on age-related hearing loss showed an adding effect at 8 kHz and an accelerating effect in the frequency region from 1 to 4 kHz.
Collapse
Affiliation(s)
- SungHee Kim
- a Department of Otolaryngology , Daegu Fatima Hospital , Republic of Korea
| | - Eun Jung Lim
- a Department of Otolaryngology , Daegu Fatima Hospital , Republic of Korea
| | - Tae Hoon Kim
- a Department of Otolaryngology , Daegu Fatima Hospital , Republic of Korea
| | - Jun Ho Park
- a Department of Otolaryngology , Daegu Fatima Hospital , Republic of Korea
| |
Collapse
|
450
|
Altschuler RA, Wys N, Prieskorn D, Martin C, DeRemer S, Bledsoe S, Miller JM. Treatment with Piribedil and Memantine Reduces Noise-Induced Loss of Inner Hair Cell Synaptic Ribbons. Sci Rep 2016; 6:30821. [PMID: 27686418 PMCID: PMC5043183 DOI: 10.1038/srep30821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/16/2016] [Indexed: 11/18/2022] Open
Abstract
Noise overstimulation can induce loss of synaptic ribbons associated with loss of Inner Hair Cell – Auditory Nerve synaptic connections. This study examined if systemic administration of Piribedil, a dopamine agonist that reduces the sound evoked auditory nerve compound action potential and/or Memantine, an NMDA receptor open channel blocker, would reduce noise-induced loss of Inner Hair Cell ribbons. Rats received systemic Memantine and/or Piribedil for 3 days before and 3 days after a 3 hour 4 kHz octave band noise at 117 dB (SPL). At 21 days following the noise there was a 26% and 38% loss of synaptic ribbons in regions 5.5 and 6.5 mm from apex, respectively, elevations in 4-, 8- and 20 kHz tonal ABR thresholds and reduced dynamic output at higher intensities of stimulation. Combined treatment with Piribedil and Memantine produced a significant reduction in the noise-induced loss of ribbons in both regions and changes in ABR sensitivity and dynamic responsiveness. Piribedil alone gave significant reduction in only the 5.5 mm region and Memantine alone did not reach significance in either region. Results identify treatments that could prevent the hearing loss and hearing disorders that result from noise-induced loss of Inner Hair Cell – Auditory Nerve synaptic connections.
Collapse
Affiliation(s)
- Richard A Altschuler
- Kresge Hearing Research Institute, Department of Otolaryngology Head &Neck Surgery, University of Michigan, MI, USA.,Department of Cell &Developmental Biology, University of Michigan, MI, USA
| | - Noel Wys
- Kresge Hearing Research Institute, Department of Otolaryngology Head &Neck Surgery, University of Michigan, MI, USA
| | - Diane Prieskorn
- Kresge Hearing Research Institute, Department of Otolaryngology Head &Neck Surgery, University of Michigan, MI, USA
| | - Cathy Martin
- Kresge Hearing Research Institute, Department of Otolaryngology Head &Neck Surgery, University of Michigan, MI, USA
| | - Susan DeRemer
- Kresge Hearing Research Institute, Department of Otolaryngology Head &Neck Surgery, University of Michigan, MI, USA
| | - Sanford Bledsoe
- Kresge Hearing Research Institute, Department of Otolaryngology Head &Neck Surgery, University of Michigan, MI, USA
| | - Josef M Miller
- Kresge Hearing Research Institute, Department of Otolaryngology Head &Neck Surgery, University of Michigan, MI, USA
| |
Collapse
|