401
|
Zhang D, Fan GC, Zhou X, Zhao T, Pasha Z, Xu M, Zhu Y, Ashraf M, Wang Y. Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium. J Mol Cell Cardiol 2007; 44:281-92. [PMID: 18201717 DOI: 10.1016/j.yjmcc.2007.11.010] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 11/12/2007] [Accepted: 11/28/2007] [Indexed: 12/16/2022]
Abstract
Bone marrow mesenchymal stem cells (MSCs) participate in myocardial repair following myocardial infarction. However, their in vivo reparative capability is limited due to lack of their survival in the infarcted myocardium. To overcome this limitation, we genetically engineered male rat MSCs overexpressing CXCR4 in order to maximize the effect of stromal cell-derived factor-1alpha (SDF-1alpha) for cell migration and regeneration. MSCs were isolated from adult male rats and cultured. Adenoviral transduction was carried out to over-express either CXCR4/green fluorescent protein (Ad-CXCR4/GFP) or Ad-null/GFP alone (control). Flow cytometry was used to identify and isolate GFP/CXCR4 over-expressing MSCs for transplantation. Female rats were assigned to one of four groups (n=8 each) to receive GFP-transduced male MSCs (2 x 10(6)) via tail vein injection 3 days after ligation of the left anterior descending (LAD) coronary artery: GFP-transduced MSCs (Ad-null/GFP-MSCs, group 1) or MSCs over-expressing CXCR4/GFP (Ad-CXCR4/GFP-MSCs, group 2), or Ad-CXCR4/GFP-MSCs plus SDF-1alpha (50 ng/microl) (Ad-CXCR4/GFP-MSCs/SDF-1alpha, group 3), or Ad-miRNA targeting CXCR4 plus SDF-1alpha (Ad-miRNA/GFP-MSCs+SDF-1alpha treatment, group 4). Cardiodynamic data were obtained 4 weeks after induction of regional myocardial infarction (MI) using echocardiography after which hearts were harvested for immunohistochemical studies. The migration of GFP and Y-chromosome positive cells increased significantly in the peri- and infarct areas of groups 2 and 3 compared to control group (p<0.05), or miRNA-CXCR4 group (p<0.01). The number of CXCR4 positive cells in groups 2, 3 was intimately associated with angiogenesis and myogenesis. MSCs engraftment was blocked by pretreatment with miRNA (group 4). Cardiac function was significantly improved in rats receiving MSCs over-expressing CXCR4 alone or with SDF-1alpha. The up-regulation of matrix metalloproteinases (MMPs) by CXCR4 overexpressing MSCs perhaps facilitated their engraftment in the collagenous tissue of the infarcted area. CXCR4 over-expression led to enhance in vivo mobilization and engraftment of MSCs into ischemic area where these cells promoted neomyoangiogenesis and alleviated early signs of left ventricular remodeling.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
402
|
Sueblinvong V, Loi R, Eisenhauer PL, Bernstein IM, Suratt BT, Spees JL, Weiss DJ. Derivation of lung epithelium from human cord blood-derived mesenchymal stem cells. Am J Respir Crit Care Med 2007; 177:701-11. [PMID: 18063840 DOI: 10.1164/rccm.200706-859oc] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Recent studies have suggested that both embryonic stem cells and adult bone marrow stem cells can participate in the regeneration and repair of diseased adult organs, including the lungs. However, the extent of airway epithelial remodeling with adult marrow stem cells is low, and there are no available in vivo data with embryonic stem cells. Human umbilical cord blood contains both hematopoietic and nonhematopoietic stem cells, which have been used clinically as an alternative to bone marrow transplantation for hematologic malignancies and other diseases. OBJECTIVES We hypothesized that human umbilical cord blood stem cells might be an effective alternative to adult bone marrow and embryonic stem cells for regeneration and repair of injured airway epithelium. METHODS Human cord blood was obtained from normal deliveries at the University of Vermont. Cultured plastic adherent cells were characterized as mesenchymal stem cells (MSCs) by flow cytometry and differentiation assays. Cord blood-derived MSCs (CB-MSCs) were cultured in specialized airway growth media or with specific growth factors, including keratinocyte growth factor and retinoic acid. mRNA and protein expression were analyzed with PCR and immunofluorescent staining. CB-MSCs were systematically administered to immunotolerant, nonobese diabetic/severe combined immunodeficiency (NOD-SCID) mice. Lungs were analyzed for presence of human cells. MEASUREMENTS AND MAIN RESULTS When cultured in specialized airway growth media or with specific growth factors, CB-MSCs differentially expressed Clara cell secretory protein (CCSP), cystic fibrosis transmembrane conductance regulator (CFTR), surfactant protein C, and thyroid transcription factor-1 mRNA, and CCSP and CFTR protein. Furthermore, CB-MSCs were easily transduced with recombinant lentiviral vectors to express human CFTR. After systemic administration to immunotolerant, NOD-SCID, mice, rare cells were found in the airway epithelium that had acquired cytokeratin and human CFTR expression. CONCLUSIONS CB-MSCs appear to be comparable to MSCs obtained from adult bone marrow in ability to express phenotypic markers of airway epithelium and to participate in airway remodeling in vivo.
Collapse
Affiliation(s)
- Viranuj Sueblinvong
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont 05405, USA.
| | | | | | | | | | | | | |
Collapse
|
403
|
Hall B, Dembinski J, Sasser AK, Studeny M, Andreeff M, Marini F. Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol 2007; 86:8-16. [PMID: 17675260 DOI: 10.1532/ijh97.06230] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent evidence suggests that mesenchymal stem cells (MSC) selectively home to tumors, where they contribute to the formation of tumor-associated stroma. This effect can be opposed by genetically modifying MSC to produce high levels of anti-cancer agents that blunt tumor growth kinetics and inhibit the growth of tumors in situ. In this review article, we describe the biological properties of MSC within the tumor microenvironment and discuss the potential use of MSC and other bone marrow-derived cell populations as delivery vehicles for antitumor proteins.
Collapse
Affiliation(s)
- Brett Hall
- Department of Pediatrics, The Ohio State University and Center for Childhood Cancer, Columbus Children's Research Institute, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
404
|
Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. ACTA ACUST UNITED AC 2007; 204:3037-47. [PMID: 18025128 PMCID: PMC2118517 DOI: 10.1084/jem.20070885] [Citation(s) in RCA: 1744] [Impact Index Per Article: 96.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Healing of myocardial infarction (MI) requires monocytes/macrophages. These mononuclear phagocytes likely degrade released macromolecules and aid in scavenging of dead cardiomyocytes, while mediating aspects of granulation tissue formation and remodeling. The mechanisms that orchestrate such divergent functions remain unknown. In view of the heightened appreciation of the heterogeneity of circulating monocytes, we investigated whether distinct monocyte subsets contribute in specific ways to myocardial ischemic injury in mouse MI. We identify two distinct phases of monocyte participation after MI and propose a model that reconciles the divergent properties of these cells in healing. Infarcted hearts modulate their chemokine expression profile over time, and they sequentially and actively recruit Ly-6Chi and -6Clo monocytes via CCR2 and CX3CR1, respectively. Ly-6Chi monocytes dominate early (phase I) and exhibit phagocytic, proteolytic, and inflammatory functions. Ly-6Clo monocytes dominate later (phase II), have attenuated inflammatory properties, and express vascular–endothelial growth factor. Consequently, Ly-6Chi monocytes digest damaged tissue, whereas Ly-6Clo monocytes promote healing via myofibroblast accumulation, angiogenesis, and deposition of collagen. MI in atherosclerotic mice with chronic Ly-6Chi monocytosis results in impaired healing, underscoring the need for a balanced and coordinated response. These observations provide novel mechanistic insights into the cellular and molecular events that regulate the response to ischemic injury and identify new therapeutic targets that can influence healing and ventricular remodeling after MI.
Collapse
Affiliation(s)
- Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
405
|
Zhang H, Song P, Tang Y, Zhang XL, Zhao SH, Wei YJ, Hu SS. Injection of bone marrow mesenchymal stem cells in the borderline area of infarcted myocardium: Heart status and cell distribution. J Thorac Cardiovasc Surg 2007; 134:1234-40. [DOI: 10.1016/j.jtcvs.2007.07.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/25/2007] [Accepted: 07/19/2007] [Indexed: 01/16/2023]
|
406
|
Dousset V, Tourdias T, Brochet B, Boiziau C, Petry KG. How to trace stem cells for MRI evaluation? J Neurol Sci 2007; 265:122-6. [PMID: 17963784 DOI: 10.1016/j.jns.2007.09.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 09/09/2007] [Accepted: 09/12/2007] [Indexed: 11/20/2022]
Abstract
Applications of imaging techniques to visualize stem cells for monitoring, control and treatment of biological systems, in particular the brain, is at the forefront of investigations. These approaches involve the identification of stem and precursor cells that may be of various origins, but are related to specific clinical conditions, and the choice of the appropriate markers to achieve the required imaging while minimizing the side effects. This article will review examples of the contrast agent design for rational approaches in stem cell imaging. Potential pitfalls or side effects associated with contrast agents, in particular iron oxide nanoparticles, for cell labelling are also discussed.
Collapse
Affiliation(s)
- Vincent Dousset
- Laboratoire de Neurobiologie des Affections de la Myéline EA 2966 Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat 33076 Bordeaux, France.
| | | | | | | | | |
Collapse
|
407
|
Korosoglou G, Gilson WD, Schär M, Ustun A, Hofmann LV, Kraitchman DL, Stuber M. Hind limb ischemia in rabbit model: T2-prepared versus time-of-flight MR angiography at 3 T. Radiology 2007; 245:761-9. [PMID: 17951349 DOI: 10.1148/radiol.2452062067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To prospectively compare various parameters of vessels imaged at 3 T by using time-of-flight (TOF) and T2-prepared magnetic resonance (MR) angiography in a rabbit model of hind limb ischemia. MATERIALS AND METHODS Experiments were approved by the institutional animal care and use committee. Endovascular occlusion of the left superficial femoral artery was induced in 14 New Zealand white rabbits. After 2 weeks, MR angiography and conventional (x-ray) angiography were performed. Vessel sharpness was evaluated visually in the ischemic and nonischemic limbs, and the presence of small collateral vessels was evaluated in the ischemic limbs. Vessel sharpness was also quantified by evaluating the magnitude of signal intensity change at the vessel borders. RESULTS The sharpness of vessels in the nonischemic limbs was similar between the TOF and the T2-prepared images. In the ischemic limbs, however, T2-prepared imaging, as compared with TOF imaging, generated higher vessel sharpness in arteries with diminished blood flow (mean vessel sharpness: 44% vs 30% for popliteal arteries, 45% vs 28% for saphenous arteries; P < .001 for both comparisons) and enabled better detection of small collateral vessels (93% vs 36% of vessels, P < .001). CONCLUSION T2-prepared imaging can facilitate high-spatial-resolution MR angiography of small vessels with low blood flow and thus has potential as a tool for noninvasive evaluation of arteriogenic therapies, without use of contrast material. SUPPLEMENTAL MATERIAL http://radiology.rsnajnls.org/cgi/content/full/2452062067/DC1.
Collapse
Affiliation(s)
- Grigorios Korosoglou
- Russell H. Morgan Department of Radiology and Radiological Science, JHOC 4223, The Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD, 21287, USA
| | | | | | | | | | | | | |
Collapse
|
408
|
Walczak P, Bulte JWM. The role of noninvasive cellular imaging in developing cell-based therapies for neurodegenerative disorders. NEURODEGENER DIS 2007; 4:306-13. [PMID: 17627134 DOI: 10.1159/000101887] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Stem and progenitor cells from various sources are currently recognized as entities with potential for the treatment of numerous neurodegenerative diseases. It has been observed in many animal models that transplantation of stem cells induces functional improvement. As a result of these findings, the first clinical cell transplantation trials were initiated, including those for Parkinson's disease and cerebral ischemia patients. However, in many patients, although modest improvements have been observed, these improvements were not sufficient to warrant invasive and possibly risky cell therapy. Thus, it is apparent that therapeutic success requires a better understanding of the mechanisms of action and the ability to control these mechanisms that underlie functional improvements, permitting amplification of the therapeutic effect. Considering the complexity of the nervous system, the task of repairing damaged or dysfunctional brain tissue with naïve cellular elements that require spatially and temporally accurate governance may seem daunting. However, the hope for faster and more inclusive progress in this field arises from recent developments in medical biotechnology that offers scientists increasingly sophisticated tools to study and control biological processes. One such technology with great potential for neurotransplantation is noninvasive cellular imaging. This tool allows real-time 'supervision' of grafted cells, as well as monitoring biodistribution and development. In this review, we highlight the current challenges in the field of cell-based therapy for neurodegenerative disorders and outline the role and capabilities of different cellular imaging techniques in addressing those issues.
Collapse
Affiliation(s)
- Piotr Walczak
- Russell H Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205-2195, USA
| | | |
Collapse
|
409
|
Amsalem Y, Mardor Y, Feinberg MS, Landa N, Miller L, Daniels D, Ocherashvilli A, Holbova R, Yosef O, Barbash IM, Leor J. Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation 2007; 116:I38-45. [PMID: 17846324 DOI: 10.1161/circulationaha.106.680231] [Citation(s) in RCA: 244] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cell labeling with superparamagnetic iron oxide (SPIO) nanoparticles enables noninvasive MRI and tracking of transplanted stem cells. We sought to determine whether mesenchymal stem cell (MSC) outcome is affected by SPIO labeling in a rat model of myocardial infarction. METHODS AND RESULTS Rat MSCs were labeled with SPIO (ferumoxides; Endorem; Guerbet, Villepinte, France). By trypan-blue exclusion assay, almost 100% of the cells remained viable after labeling. Seven days after MI, rats were randomized to injections of 2x10(6) SPIO-labeled MSCs, 2x10(6) unlabeled MSCs, or saline. Labeled cells were visualized in the infarcted myocardium as large black spots by serial MRI studies throughout the 4-week follow-up. The presence of labeled cells was confirmed by iron staining and real-time polymerase chain reaction on postmortem specimens. At 4 weeks after transplantation, the site of cell injection was infiltrated by inflammatory cells. Costaining for iron and ED1 (resident macrophage marker) showed that the iron-positive cells were cardiac macrophages. By real-time polymerase chain reaction, the Y-chromosome-specific SRY DNA of MSCs from male donors was not detected in infarcted hearts of female recipients. Serial echocardiography studies at baseline and 4 weeks after cell transplantation showed that both unlabeled and labeled MSCs attenuated progressive left ventricular dilatation and dysfunction compared with controls. CONCLUSIONS At 4 weeks after transplantation of SPIO-labeled MSCs, the transplanted cells are not present in the scar and the enhanced MRI signals arise from cardiac macrophages that engulfed the SPIO nanoparticles. However, both labeled and unlabeled cells attenuate left ventricular dilatation and dysfunction after myocardial infarction.
Collapse
Affiliation(s)
- Yoram Amsalem
- Neufeld Cardiac Research Institute, Sheba Medical Center, Tel-Hashomer 52621, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
410
|
Ye Y, Bogaert J. Cell therapy in myocardial infarction: emphasis on the role of MRI. Eur Radiol 2007; 18:548-69. [DOI: 10.1007/s00330-007-0777-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 08/31/2007] [Accepted: 09/04/2007] [Indexed: 01/14/2023]
|
411
|
Boomsma RA, Swaminathan PD, Geenen DL. Intravenously injected mesenchymal stem cells home to viable myocardium after coronary occlusion and preserve systolic function without altering infarct size. Int J Cardiol 2007; 122:17-28. [PMID: 17187879 DOI: 10.1016/j.ijcard.2006.11.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 09/28/2006] [Accepted: 11/02/2006] [Indexed: 01/30/2023]
Abstract
BACKGROUND The purpose of this study was to determine whether murine mesenchymal stem cells (MSC) are able to home to the viable myocardium when injected intravenously and attenuate cardiac dysfunction and ventricular remodeling associated with myocardial infarction. METHODS AND RESULTS Murine bone marrow cells were negatively selected for lineage markers and adherent MSC differentiated into adipocytes and osteocytes following treatment in culture. Two weeks after coronary occlusion that resulted in a permanent transmural infarct we observed a significant drop in LV systolic pressure, dP/dt(max), dP/dt(min), ESPVR and E(max) and a significant increase in end-diastolic volume in vivo. Femoral vein injection of MSC 1 h after occlusion attenuated the cardiac dysfunction without altering infarct size, or end-diastolic volume. Injected MSC pre-labeled with fluorescent paramagnetic microspheres were observed scattered in noninfarcted regions of the myocardium. Flow cytometry of whole heart digests after intravenous injection of MSC labeled with either fluorescent microspheres or fluorescent PKH26 dye demonstrated that infarcted hearts from mice that received MSC injections contained significantly more cells that integrated into the heart (20x) than those from uninfarcted controls. CONCLUSION We conclude that intravenously injected MSC were able to home to viable myocardium and preserve systolic function by 2 weeks following ligation. The preserved contractility is likely an MSC-mediated paracrine response since infarct morphology was unchanged and labeled cells observed at two weeks exhibited the same characteristics as the injected MSC. These data underscore the importance of using MSC as a potential therapeutic intervention in preserving cardiac function following infarction.
Collapse
Affiliation(s)
- Robert A Boomsma
- Department of Biology, Trinity Christian College, Palos Heights, IL 60463, United States
| | | | | |
Collapse
|
412
|
Abstract
In recent years, stem cell therapy for the treatment of heart disease has translated from the imagination of investigators to the bedside of patients. The initial results from trials evaluating cell therapy for the heart are encouraging. As this new field of cellular transplantation matures, it is imperative that novel methodologies for evaluating cell therapy are developed and applied to guide therapy. Molecular imaging is a discipline that is evolving to address these needs and is expected to play an increasing role in the characterization and assessment of cell therapy. This article provides a focused overview of clinical stem cell therapy for the heart, followed by a discussion of how novel molecular imaging techniques are presently being applied to monitor cell therapy.
Collapse
Affiliation(s)
- Ahmad Y Sheikh
- Department of Medicine, Division of Cardiology and Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Edwards Building, Room R-354, Stanford, CA 94305-5324, USA
| | | |
Collapse
|
413
|
Hwang GL, Patel TH, Hofmann LV. Role of image-guided vascular intervention in therapeutic angiogenesis translational research. Expert Rev Cardiovasc Ther 2007; 5:903-15. [PMID: 17867920 DOI: 10.1586/14779072.5.5.903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Therapeutic angiogenesis, the process of growing collateral blood vessels to better perfuse ischemic tissue, has been hailed as an up-and-coming treatment for symptomatic lower-extremity peripheral arterial occlusive disease. A minimally invasive durable treatment would be welcome since current treatment options for this disease carry high risk, limited efficacy or limited durability. Unfortunately, as evidenced by disappointing results in multiple clinical trials, therapeutic angiogenesis has yet to deliver in humans the success it has seen in animal models. In this review, we discuss the challenges of translating therapeutic angiogenesis into effective clinical treatments for lower-extremity peripheral arterial occlusive disease and we highlight the role that experts in image-guided vascular interventions can play in advancing the field.
Collapse
Affiliation(s)
- Gloria L Hwang
- Stanford University Medical Center, Department of Radiology, Room H3630, 300 Pasteur Drive, Stanford, CA 94305-5642, USA.
| | | | | |
Collapse
|
414
|
Schweizer PA, Krause U, Becker R, Seckinger A, Bauer A, Hardt C, Eckstein V, Ho AD, Koenen M, Katus HA, Zehelein J. Atrial-radiofrequency catheter ablation mediated targeting of mesenchymal stromal cells. Stem Cells 2007; 25:1546-51. [PMID: 17548531 DOI: 10.1634/stemcells.2006-0682] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Sinus node dysfunction and high-degree heart block are the major causes for electronic pacemaker implantation. Recently, genetically modified mesenchymal stromal cells (MSCs, also known as "mesenchymal stem cells") were demonstrated to generate pacemaker function in vivo. However, experimental approaches typically use open thoracotomy for direct cell injection into the myocardium. Future clinical implementation, however, essentially requires development of more gentle methods to precisely and efficiently apply specified stem cells at specific cardiac locations. In a "proof of concept" study, we performed selective power-controlled radiofrequency catheter ablation (RFCA) with eight ablation pulses (30 W, 60 seconds each) to induce heat-mediated lesions at the auricles of the cardiac right atrium of four healthy foxhounds. The next day, allogeneic MSCs (4.3 x 10(5) cells per kilogram of body weight) labeled with superparamagnetic iron oxide particles (SPIOs) were infused intravenously. Hearts were explanted 8 days later. High numbers of SPIO-labeled cells were identified in areas surrounding the RFCA-induced lesions by Prussian blue staining. Antibody staining revealed SPIO-labeled cells being positive for the typical MSC surface antigen CD44. In contrast, low levels of calprotectin, an antigen found on monocytes and macrophages, indicated negligible infiltration of monocytes in MSC-positive areas. Thus, RFCA allows targeting of MSCs to the cardiac right atrium, adjacent to the sinoatrial node, providing an opportunity to rescue or generate pacemaker function without open thoracotomy and direct injection of MSCs. This method presents a new strategy for cardiac stem cell application leading to an efficient guidance of MSCs into the myocardium. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Patrick A Schweizer
- Innere Medizin III, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
415
|
Discussion. Plast Reconstr Surg 2007. [DOI: 10.1097/01.prs.0000267697.74070.f7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
416
|
Krause U, Harter C, Seckinger A, Wolf D, Reinhard A, Bea F, Dengler T, Hardt S, Ho A, Katus HA, Kuecherer H, Hansen A. Intravenous delivery of autologous mesenchymal stem cells limits infarct size and improves left ventricular function in the infarcted porcine heart. Stem Cells Dev 2007; 16:31-7. [PMID: 17348804 DOI: 10.1089/scd.2006.0089] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Systemic delivery of bone marrow-derived mesenchymal stem cells (MSCs) is a noninvasive approach for myocardial repair. We aimed to test this strategy in a pig model of myocardial infarction. Pigs (n = 8) received autologous MSCs (1 x 10(6)/kg body weight) labeled with fluorescent dye 48 h post proximal left anterior descending artery (LAD) occlusion. Hemodyamics, infarct size, and myocardial function were assessed at baseline and after 1 month. Morphologic analysis revealed that labeled MSCs migrated in the peri-infarct region, resulting in smaller infarct size (32 +/- 7 vs. 19 +/- 7%, p = 0.01), higher fractional area shortening (23 +/- 3 vs. 34.0 +/- 7%, p = 0.001), lower left ventricular end diastolic pressure (18.7 +/- 5 vs. 10.2 +/- 4 mmHg, p = 0.02) and higher +dp/dt (4,570 +/- 540 vs. 6,742 +/- 700 mmHg/s, p = 0.03) during inotropic stimulation. Systemic intravenous delivery of MSCs to pigs limits myocardial infarct size and is an attractive approach for tissue repair.
Collapse
Affiliation(s)
- Ulf Krause
- Department of Hematology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
417
|
Pittet MJ, Grimm J, Berger CR, Tamura T, Wojtkiewicz G, Nahrendorf M, Romero P, Swirski FK, Weissleder R. In vivo imaging of T cell delivery to tumors after adoptive transfer therapy. Proc Natl Acad Sci U S A 2007; 104:12457-61. [PMID: 17640914 PMCID: PMC1941490 DOI: 10.1073/pnas.0704460104] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adoptive transfer therapy of in vitro-expanded tumor-specific cytolytic T lymphocytes (CTLs) can mediate objective cancer regression in patients. Yet, technical limitations hamper precise monitoring of posttherapy T cell responses. Here we show in a mouse model that fused single photon emission computed tomography and x-ray computed tomography allows quantitative whole-body imaging of (111)In-oxine-labeled CTLs at tumor sites. Assessment of CTL localization is rapid, noninvasive, three-dimensional, and can be repeated for longitudinal analyses. We compared the effects of lymphodepletion before adoptive transfer on CTL recruitment and report that combined treatment increased intratumoral delivery of CTLs and improved antitumor efficacy. Because (111)In-oxine is a Food and Drug Administration-approved clinical agent, and human SPECT-CT systems are available, this approach should be clinically translatable, insofar as it may assess the efficacy of immunization procedures in individual patients and lead to development of more effective therapies.
Collapse
Affiliation(s)
- Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
418
|
Sheikh AY, Lin SA, Cao F, Cao Y, van der Bogt KE, Chu P, Chang CP, Contag CH, Robbins RC, Wu JC. Molecular imaging of bone marrow mononuclear cell homing and engraftment in ischemic myocardium. Stem Cells 2007; 25:2677-84. [PMID: 17628019 PMCID: PMC3657503 DOI: 10.1634/stemcells.2007-0041] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bone marrow mononuclear cell (BMMC) therapy shows promise as a treatment for ischemic heart disease. However, the ability to monitor long-term cell fate remains limited. We hypothesized that molecular imaging could be used to track stem cell homing and survival after myocardial ischemia-reperfusion (I/R) injury. We first harvested donor BMMCs from adult male L2G85 transgenic mice constitutively expressing both firefly luciferase (Fluc) and enhanced green fluorescence protein reporter gene. Fluorescence-activated cell sorting analysis revealed approximately 0.07% of the population to consist of classic hematopoietic stem cells (lin-, thy-int, c-kit+, Sca-1+). Afterward, adult female FVB recipients (n = 38) were randomized to sham surgery or acute I/R injury. Animals in the sham (n = 16) and I/R (n = 22) groups received 5 x 10(6) of the L2G85-derived BMMCs via tail vein injection. Bioluminescence imaging (BLI) was used to track cell migration and survival in vivo for 4 weeks. BLI showed preferential homing of BMMCs to hearts with I/R injury compared with sham hearts within the first week following cell injection. Ex vivo analysis of explanted hearts by histology confirmed BLI imaging results, and quantitative real-time polymerase chain reaction (for the male Sry gene) further demonstrated a greater number of BMMCs in hearts with I/R injury compared with the sham group. Functional evaluation by echocardiography demonstrated a trend toward improved left ventricular fractional shortening in animals receiving BMMCs. Taken together, these data demonstrate that molecular imaging can be used to successfully track BMMC therapy in murine models of heart disease. Specifically, we have demonstrated that systemically delivered BMMCs preferentially home to and are retained by injured myocardium. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Ahmad Y. Sheikh
- Department of Cardiothoracic Surgery, Stanford Stanford University School of Medicine, Stanford, CA, USA
| | - Shu-An Lin
- Molecular Imaging Program at Stanford (MIPS) Stanford University School of Medicine, Stanford, CA, USA
| | - Feng Cao
- Molecular Imaging Program at Stanford (MIPS) Stanford University School of Medicine, Stanford, CA, USA
| | - Yuan Cao
- Molecular Imaging Program at Stanford (MIPS) Stanford University School of Medicine, Stanford, CA, USA
| | - Koen E.A. van der Bogt
- Department of Cardiothoracic Surgery, Stanford Stanford University School of Medicine, Stanford, CA, USA
| | - Pauline Chu
- Department of Comparative Medicine Stanford University School of Medicine, Stanford, CA, USA
| | - Ching-Pin Chang
- Department of Medicine, Division of Cardiology. Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher H. Contag
- Molecular Imaging Program at Stanford (MIPS) Stanford University School of Medicine, Stanford, CA, USA
| | - Robert C. Robbins
- Department of Cardiothoracic Surgery, Stanford Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C. Wu
- Molecular Imaging Program at Stanford (MIPS) Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiology. Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
419
|
Bone marrow-derived progenitor cells contribute to lung remodelling after myocardial infarction. Cardiovasc Pathol 2007; 16:321-8. [PMID: 18005870 DOI: 10.1016/j.carpath.2007.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 04/10/2007] [Accepted: 04/12/2007] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Congestive heart failure (CHF) causes structural modifications of the lungs that contribute to the functional limitations of affected subjects. We hypothesized that bone marrow-derived progenitor cells could contribute to lung structural remodelling after myocardial infarction (MI). METHODS Wistar rats were irradiated and received a bone marrow transplant (BMT) from green fluorescent protein (GFP) transgenic rats, followed 5 weeks later by coronary artery ligation or sham operation. Five weeks after MI, lung immunofluorescence studies were performed and GFP expression evaluated by Western immunoblotting. RESULTS After MI, rats developed lung structural remodelling characterized by myofibroblast (MF) proliferation in the alveolar septa. After BMT, some GFP+ cells were found in the lungs of sham animals. The amount of GFP+ cells in the lungs of MI rats was greatly increased with evidence of differentiation into MFs, as evaluated by co-localization correlation analysis with smooth muscle alpha-actin (P<.01). These cells were particularly abundant in the perivenular regions where they incorporated into the wall of blood vessels. There was a threefold increase in lung GFP protein expression after MI (P=.01). CONCLUSIONS After MI, bone marrow-derived progenitor differentiates into lung MFs. This novel pathophysiologic process may contribute to the pulmonary manifestations of CHF and could have significant therapeutic implications.
Collapse
|
420
|
Wickline SA, Neubauer AM, Winter PM, Caruthers SD, Lanza GM. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J Magn Reson Imaging 2007; 25:667-80. [PMID: 17347992 DOI: 10.1002/jmri.20866] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Advances in bionanotechnology are poised to impact the field of cardiovascular diagnosis and therapy for decades to come. This review seeks to illustrate selected examples of newly developed diagnostic and therapeutic nanosystems that have been evaluated in experimental atherosclerosis, thrombosis, and vascular biology. We review a variety of nanotechnologies that are capable of detecting early cardiovascular pathology, as well as associated imaging approaches and conjunctive strategies for site-targeted treatment with nanoparticle delivery systems.
Collapse
Affiliation(s)
- Samuel A Wickline
- Department of Medicine, Washington University, St. Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
421
|
Wolf D, Reinhard A, Krause U, Seckinger A, Katus HA, Kuecherer H, Hansen A. Stem cell therapy improves myocardial perfusion and cardiac synchronicity: new application for echocardiography. J Am Soc Echocardiogr 2007; 20:512-20. [PMID: 17484992 DOI: 10.1016/j.echo.2006.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Intravenous delivery of mesenchymal stem cell (MSC) is a noninvasive approach for myocardial tissue repair. We aimed to test this strategy in a pig model of myocardial infarction and to examine the usefulness of new echocardiographic applications to monitor cardioprotective effects of stem cell therapy. METHODS Pigs (n = 8) received autologous or allogeneic MSCs (1 x 10(6)/kg body weight) labeled with fluorescent dye 48 hours after proximal left anterior descending coronary artery occlusion. Infarct size, myocardial function, and perfusion (A x beta) were assessed by myocardial contrast echocardiography and standard histologic methods after 1 month. RESULTS Morphologic analysis revealed that labeled MSCs migrated in the peri-infarct region resulting in smaller infarct size by myocardial contrast echocardiography (control vs autologous and allogeneic MSC: 38 +/- 10% vs 25 +/- 5% and 28 +/- 6%, P < .01), higher fractional area shortening (23 +/- 3% vs 34.0 +/- 7% and 28 +/- 2%, P < .01), higher cardiac synchrony (167 +/- 36 vs 68 +/- 17 and 85 +/- 26 milliseconds, P < .003), and improved microvascular flow A x beta in the ischemic border zone (0.18 +/- 0.2 vs 0.56 +/- 0.3 and 0.49 +/- 0.2, P < .03). CONCLUSIONS Systemic delivery of autologous and allogeneic MSCs preserves myocardial viability even in large animals and is, therefore, an attractive approach for tissue repair. Myocardial contrast echocardiography is useful to evaluate microvascular perfusion, which was enhanced by MSCs.
Collapse
Affiliation(s)
- David Wolf
- Department of Cardiology and Angiology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
422
|
Rosen AB, Kelly DJ, Schuldt AJT, Lu J, Potapova IA, Doronin SV, Robichaud KJ, Robinson RB, Rosen MR, Brink PR, Gaudette GR, Cohen IS. Finding fluorescent needles in the cardiac haystack: tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis. Stem Cells 2007; 25:2128-38. [PMID: 17495112 DOI: 10.1634/stemcells.2006-0722] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stem cells show promise for repair of damaged cardiac tissue. Little is known with certainty, however, about the distribution of these cells once introduced in vivo. Previous attempts at tracking delivered stem cells have been hampered by the autofluorescence of host tissue and limitations of existing labeling techniques. We have developed a novel loading approach to stably label human mesenchymal stem cells with quantum dot (QD) nanoparticles. We report the optimization and validation of this long-term tracking technique and highlight several important biological applications by delivering labeled cells to the mammalian heart. The bright QD crystals illuminate exogenous stem cells in histologic sections for at least 8 weeks following delivery and permit, for the first time, the complete three-dimensional reconstruction of the locations of all stem cells following injection into the heart. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Amy B Rosen
- Institute for Molecular Cardiology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
423
|
Saborowski O, Saeed M. An overview on the advances in cardiovascular interventional MR imaging. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2007; 20:117-27. [PMID: 17487451 DOI: 10.1007/s10334-007-0074-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 03/19/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
Interventional cardiovascular magnetic resonance imaging (iCMR) represents a new discipline whose systematic development will foster minimally invasive interventional procedures without radiation exposure. New generations of open, wide and short bore MR scanners and real time sequences made cardiovascular intervention possible. MR compatible endovascular catheters and guide-wires are needed for delivery of devices such as stents or atrial septal defect (ASD) closures. Catheter tracking is based on active and passive approaches. Currently performed MR-guided procedures are used to monitor, navigate and track endovascular catheters and to deliver local therapeutic agents to targets, such as infarcted myocardium and vascular walls. Heating of endovascular MR catheters, guide-wires and devices during imaging still presents high safety risks. MR contrast media improve the capabilities of MR imaging by enhancing blood signal, pathologic targets (such as myocardial infarctions and atherosclerotic plaques), endovascular catheters and by tracking injected therapeutic agents. Labeling injected soluble therapeutic agents, genes or cells with MR contrast media enables interventionalists to ensure the administration of the drugs in the target and to trace their distribution in the targets. The future clinical use of this iCMR technique requires (1) high spatial and temporal resolution imaging, (2) special catheters and devices and (3) effective therapeutic agents, genes or cells. These conditions are available at a low scale at the present time and need to be developed in the near future. Such progress will lead to improved patient care and minimize invasiveness.
Collapse
Affiliation(s)
- Olaf Saborowski
- Department of Radiology, University of California San Francisco, 513 Parnassus Avenue, HSW 207B, San Francisco, CA 94143-0628, USA
| | | |
Collapse
|
424
|
Affiliation(s)
- David E Sosnovik
- Center for Molecular Imaging Research, Massachusetts General Hospital, 149 13th St, Charlestown, MA 02129, USA.
| | | | | |
Collapse
|
425
|
Chun HJ, Wilson KO, Huang M, Wu JC. Integration of genomics, proteomics, and imaging for cardiac stem cell therapy. Eur J Nucl Med Mol Imaging 2007; 34 Suppl 1:S20-6. [PMID: 17464506 DOI: 10.1007/s00259-007-0437-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cardiac stem cell therapy is beginning to mature as a valid treatment for heart disease. As more clinical trials utilizing stem cells emerge, it is imperative to establish the mechanisms by which stem cells confer benefit in cardiac diseases. In this paper, we review three methods - molecular cellular imaging, gene expression profiling, and proteomic analysis - that can be integrated to provide further insights into the role of this emerging therapy.
Collapse
Affiliation(s)
- Hyung J Chun
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | |
Collapse
|
426
|
Fuster V, Sanz J. Gene therapy and stem cell therapy for cardiovascular diseases today: a model for translational research. ACTA ACUST UNITED AC 2007; 4 Suppl 1:S1-8. [PMID: 17230204 DOI: 10.1038/ncpcardio0737] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 11/01/2006] [Indexed: 11/09/2022]
Abstract
Clinical trials looking at ways to promote myocardial regeneration have reported that the administered therapies have either neutral effects or modest benefits of questionable impact. These somewhat disappointing results should emphasize the need for translational research, with bidirectional feedback between the basic research laboratory and the clinical arena. Such a translational pathway is illustrated by the quest to find an effective therapy for restenosis, which culminated in the development of sirolimus. At this point a move away from the bedside and a return to the bench seems necessary to better understand the mechanisms of action of progenitor cells and stimulating factors. Without such basic knowledge research might be prematurely discouraged and the opportunity to fully understand the true potential of cardiovascular regenerative therapy might be missed.
Collapse
Affiliation(s)
- Valentin Fuster
- The Zena and Michael A Wiener Cardiovascular Institute and The Marie-Josee and Henry R Kravis Center for Cardiovascular Health, Mount Sinai School of Medicine, New York, NY 10029-6574, USA.
| | | |
Collapse
|
427
|
Song H, Chang W, Lim S, Seo HS, Shim CY, Park S, Yoo KJ, Kim BS, Min BH, Lee H, Jang Y, Chung N, Hwang KC. Tissue transglutaminase is essential for integrin-mediated survival of bone marrow-derived mesenchymal stem cells. Stem Cells 2007; 25:1431-8. [PMID: 17347495 DOI: 10.1634/stemcells.2006-0467] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Autologous mesenchymal stem cell (MSC) transplantation therapy for repair of myocardial injury has inherent limitations due to the poor viability of the stem cells after cell transplantation. Adhesion is a prerequisite for cell survival and also a key factor for the differentiation of MSCs. As a novel prosurvival modification strategy, we genetically engineered MSCs to overexpress tissue transglutaminase (tTG), with intention to enhance adhesion and ultimately cell survival after implantation. tTG-transfected MSCs (tTG-MSCs) showed a 2.7-fold and greater than a twofold increase of tTG expression and surface tTG activity, respectively, leading to a 20% increased adhesion of MSCs on fibronectin (Fn). Spreading and migration of tTG-MSCs were increased 4.75% and 2.52%, respectively. Adhesion of tTG-MSCs on cardiogel, a cardiac fibroblast-derived three-dimensional matrix, showed a 33.1% increase. Downregulation of tTG by transfection of small interfering RNA specific to the tTG resulted in markedly decreased adhesion and spread of MSCs on Fn or cardiogel. tTG-MSCs on Fn significantly increased phosphorylation of focal adhesion related kinases FAK, Src, and PI3K. tTG-MSCs showed significant retention in infarcted myocardium by forming a focal adhesion complex and developed into cardiac myocyte-like cells by the expression of cardiac-specific proteins. Transplantation of 1 x 10(6) MSCs transduced with tTG into the ischemic rat myocardium restored normalized systolic and diastolic cardiac function. tTG-MSCs further restored cardiac function of infarcted myocardium as compared with MSC transplantation alone. These findings suggested that tTG may play an important role in integrin-mediated adhesion of MSCs in implanted tissues. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Heesang Song
- Cardiovascular Research Institute, Cardiology Division, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
428
|
Beeres SLMA, Bengel FM, Bartunek J, Atsma DE, Hill JM, Vanderheyden M, Penicka M, Schalij MJ, Wijns W, Bax JJ. Role of imaging in cardiac stem cell therapy. J Am Coll Cardiol 2007; 49:1137-48. [PMID: 17367656 DOI: 10.1016/j.jacc.2006.10.072] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 10/11/2006] [Accepted: 10/23/2006] [Indexed: 12/17/2022]
Abstract
Stem cell therapy has emerged as a potential therapeutic option for cell death-related heart diseases. Preclinical and a number of early phase human studies suggested that cell therapy may augment perfusion and increase myocardial contractility. The rapid translation into clinical trials has left many issues unresolved, and emphasizes the need for specific techniques to visualize the mechanisms involved. Furthermore, the clinical efficacy of cell therapy remains to be proven. Imaging allows for in vivo tracking of cells and can provide a better understanding in the evaluation of the functional effects of cell-based therapies. In this review, a summary of the most promising imaging techniques for cell tracking is provided. Among these are direct labeling of cells with super-paramagnetic agents, radionuclides, and the use of reporter genes for imaging of transplanted cells. In addition, a comprehensive summary is provided of the currently available studies investigating a cell therapy-related effect on left ventricular function, myocardial perfusion, scar tissue, and myocardial viability.
Collapse
Affiliation(s)
- Saskia L M A Beeres
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
429
|
Shirani J, Narula J, Eckelman WC, Narula N, Dilsizian V. Early imaging in heart failure: exploring novel molecular targets. J Nucl Cardiol 2007; 14:100-10. [PMID: 17276312 DOI: 10.1016/j.nuclcard.2006.12.318] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
430
|
Abstract
Drugs, surgery, and radiation are the traditional modalities of therapy in medicine. To these are being added new therapies based on cells and viruses or their derivatives. In these novel therapies, a cell or viral vector acts as a drug in its own right, altering the host or a disease process to bring about healing. Most of these advances originate from the significant recent advances in molecular medicine, but some have been around for some time. Blood transfusions and cowpox vaccinations are part of the history of medicine...but nevertheless are examples of cell- and viral-based therapies. This article focuses on the modern molecular incarnations of these therapies, and specifically on how imaging is used to track and guide these novel agents. We survey the literature dealing with imaging these new cell and viral particle therapies and provide a framework for understanding publications in this area. Leading technology of gene modifications are the fundamental modifications applied to make these new therapies amenable to imaging.
Collapse
Affiliation(s)
- Dawid Schellingerhout
- Neuroradiology Section, Department of Radiology and Experimental Diagnostic Imaging, Division of Diagnostic Imaging, M D Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
431
|
Molecular imaging in heart failure. Curr Opin Biotechnol 2007; 18:65-72. [DOI: 10.1016/j.copbio.2006.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 12/05/2006] [Accepted: 12/19/2006] [Indexed: 11/17/2022]
|
432
|
Sanz J, Moreno PR, Fuster V. Update on advances in atherothrombosis. ACTA ACUST UNITED AC 2007; 4:78-89. [PMID: 17245402 DOI: 10.1038/ncpcardio0774] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 08/03/2006] [Indexed: 02/07/2023]
Abstract
The study of atherothrombosis is a rapidly evolving field, and significant progress was achieved in various aspects of the disease during the past year. In the area of diagnostic imaging, MRI and multidetector CT were actively used to evaluate the characteristics of the arterial wall, including calcified and noncalcified lesions, and both in the coronary and extracoronary vascular territories. There was also extensive research into the application of imaging modalities to visualize cellular or molecular disease processes, known as molecular imaging. Considerable efforts were devoted to the identification of novel biomarkers that reflect different components of atherothrombosis, namely inflammation, thrombogenicity, oxidative stress and reparative ability, predicting the presence of early disease or the risk of clinical events. In the therapeutic arena, substantial evidence accumulated on the beneficial effects of several pharmacologic agents, most significantly statins. Finally, important advances were also made in the understanding of the roles of immunity and neovascularization in atherogenesis, including the development and progression of disease at different stages. Awareness of these recent advances and new lines of active research is fundamental for health professionals involved in the care of patients with atherothrombosis. In this Review we present an overview of data in these areas.
Collapse
Affiliation(s)
- Javier Sanz
- Department of Medicine/Cardiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
433
|
Jacquier A, Higgins CB, Saeed M. MR imaging in assessing cardiovascular interventions and myocardial injury. CONTRAST MEDIA & MOLECULAR IMAGING 2007; 2:1-15. [PMID: 17326039 DOI: 10.1002/cmmi.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Performing an MR-guided endovascular intervention requires (1) real-time tracking and guidance of catheters/guide wires to the target, (2) high-resolution images of the target and its surroundings in order to define the extent of the target, (3) performing a therapeutic procedure (delivery of stent or injection of gene or cells) and (4) evaluating the outcome of the therapeutic procedure. The combination of X-ray and MR imaging (XMR) in a single suite was designed for new interventional procedures. MR contrast media can be used to delineate myocardial infarcts and microvascular obstruction, thereby defining the target for local delivery of therapeutic agents under MR-guidance. Iron particles, or gadolinium- or dysprosium-chelates are mixed with the soluble injectates or stem cells in order to track intramyocardial delivery and distribution. Preliminary results show that genes encoded for vascular endothelial and fibroblast growth factor and cells are effective in promoting angiogenesis, arteriogenesis, perfusion and LV function. Angiogenic growth factors, genes and cells administered under MR-guided minimally invasive catheter-based procedures will open up new avenues in treating end-stage ischemic heart disease. The optimum dose of the therapeutic agents, delivery devices and real-time imaging techniques to guide the delivery are currently the subject of ongoing research. The aim of this review is to (1) provide an updated review of experiences using MR imaging to guide transcatheter therapy, (2) address the potential of cardiovascular magnetic resonance (MR) imaging and MR contrast media in assessing myocardial injury at a molecular level and labeling cells and (3) illustrate the applicability of the non-invasive MR imaging in the field of angiogenic therapies through recent clinical and experimental publications.
Collapse
Affiliation(s)
- Alexis Jacquier
- Department of Radiology, University of California San Francisco, CA 94134-0628, USA
| | | | | |
Collapse
|
434
|
Hall B, Andreeff M, Marini F. The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol 2007:263-83. [PMID: 17554513 DOI: 10.1007/978-3-540-68976-8_12] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent evidence suggests that mesenchymal stem cells (MSC) selectively proliferate to tumors and contribute to the formation of tumor-associated stroma. The biological rationale for tumor recruitment of MSC remains unclear but may represent an effort of the host to blunt tumor cell growth and improve survival. There is mounting experimental evidence that normal stromal cells can revert malignant cell behavior, and separate studies have demonstrated that stromal cells can enhance tumor progression after acquisition of tumor-like genetic lesions. Together, these observations support the rationale for modifying normal MSC to deliver therapeutic proteins directly into the tumor microenvironment. Modified MSC can produce high concentrations of antitumor proteins directly within the Tumor mass, which have been shown to blunt tumor growth kinetics in experimental animal model systems. In this chapter we will address the biological properties of MSC within the tumor microenvironment and discuss the potential use of MSC and other bone marrow-derived cell populations as delivery vehicles for antitumor proteins.
Collapse
Affiliation(s)
- B Hall
- Center for Childhood Cancer, Columbus Children's Research Institute, 700 Children's Drive, Columbus, OH 43205, USA
| | | | | |
Collapse
|
435
|
Abstract
Until recently, the concept of treating the injured or failing heart by generating new functional myocardium was considered physiologically impossible. Major scientific strides in the past few years have challenged the concept that the heart is a post-mitotic organ, leading to the hypothesis that cardiac regeneration could be therapeutically achieved. Bone marrow-derived adult stem cells were among the first cell populations that were used to test this hypothesis. Animal studies and early clinical experience support the concept that therapeutically delivered mesenchymal stem cells (MSCs) safely improve heart function after an acute myocardial infarction (MI). MSCs produce a variety of cardio-protective signalling molecules, and have the ability to differentiate into both myocyte and vascular lineages. Additionally, MSCs are attractive as a cellular vehicle for gene delivery, cell transplantation or for tissue engineering because they offer several practical advantages. They can be obtained in relatively large numbers through standard clinical procedures, and they are easily expanded in culture. The multi-lineage potential of MSC, in combination with their immunoprivileged status, make MSCs a promising source for cell therapy in cardiac diseases. Here we provide an overview of biological characteristics of MSCs, experimental animal studies and early clinical trials with MSCs. In addition, we discuss the routes of cell delivery, cell tracking experiments and current knowledge of the mechanistic underpinnings of their action.
Collapse
Affiliation(s)
- K H Schuleri
- Miller School of Medicine, University of Miami and Johns Hopkins Medical Institutions, Stem Cell Institute and Cardiology Division, 1120 NW 14th Street, Miami, FL 33136, USA
| | | | | |
Collapse
|
436
|
Gibbons RJ, Araoz PA, Williamson EE. The year in cardiac imaging. J Am Coll Cardiol 2006; 48:2324-39. [PMID: 17161266 DOI: 10.1016/j.jacc.2006.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 06/08/2006] [Indexed: 11/26/2022]
Affiliation(s)
- Raymond J Gibbons
- Division of Cardiovascular Diseases and Internal Medicine, Department of Medicine, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
437
|
Abstract
Cardiac stem cell therapy is an innovative and promising therapeutic approach for heart failure. However, despite an increasing body of existing experimental and human data, it still presents a substantial challenge for basic scientists and clinical researchers. Several issues concerning biologic mechanisms of therapy remain to be answered, and unequivocal proof of clinical efficacy is needed. The variety of different available cell types and different methods for cell delivery to the myocardium raises further questions about the most useful therapeutic approach. Nuclear imaging not only provides accurate noninvasive information about myocardial perfusion, contractile function and viability, which enables assessment of clinical benefits of therapy. The rapidly developing field of molecular imaging has also brought up more specific tracers targeting cellular and subcellular biologic events, which are expected to shed more light upon mechanisms of cell therapy. Moreover, nuclear imaging is well suited for tracking of transplanted cells by use of direct radionuclide labeling or genetic labeling with reporter genes that can be targeted by radioactive reporter probes. Such a broad spectrum of available in vivo information is expected to significantly impact the future development of cell therapy towards a clinically accepted treatment.
Collapse
Affiliation(s)
- Frank M Bengel
- Division of Nuclear Medicine, Russell H Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University Medical Institutions, 601 N Caroline St, JHOC 3225, Baltimore, MD 21287, USA.
| |
Collapse
|
438
|
Rogers WJ, Meyer CH, Kramer CM. Technology insight: in vivo cell tracking by use of MRI. ACTA ACUST UNITED AC 2006; 3:554-62. [PMID: 16990841 DOI: 10.1038/ncpcardio0659] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 06/18/2006] [Indexed: 02/02/2023]
Abstract
Animal studies have shown some success in the use of stem cells of diverse origins to treat heart failure and ventricular dysfunction secondary to ischemic injury. The clinical use of these cells is, therefore, promising. In order to develop effective cell therapies, the location, distribution and long-term viability of these cells must be evaluated in a noninvasive manner. MRI of cells labeled with magnetically visible contrast agents after either direct injection or local or intravenous infusion has the potential to fulfill this goal. In this Review, techniques for labeling and imaging a variety of cells will be discussed. Particular attention will be given to the advantages and limitations of various contrast agents and passive and facilitated cell-labeling methods, as well as to imaging techniques that produce negative and positive contrast, and the effect on image quantification of compartmentalization of contrast agents within the cell.
Collapse
Affiliation(s)
- Walter J Rogers
- Department of Radiology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
439
|
Mayer-Kuckuk P, Boskey AL. Molecular imaging promotes progress in orthopedic research. Bone 2006; 39:965-977. [PMID: 16843078 DOI: 10.1016/j.bone.2006.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 04/13/2006] [Accepted: 05/05/2006] [Indexed: 02/03/2023]
Abstract
Modern orthopedic research is directed towards the understanding of molecular mechanisms that determine development, maintenance and health of musculoskeletal tissues. In recent years, many genetic and proteomic discoveries have been made which necessitate investigation under physiological conditions in intact, living tissues. Molecular imaging can meet this demand and is, in fact, the only strategy currently available for noninvasive, quantitative, real-time biology studies in living subjects. In this review, techniques of molecular imaging are summarized, and applications to bone and joint biology are presented. The imaging modality most frequently used in the past was optical imaging, particularly bioluminescence and near-infrared fluorescence imaging. Alternate technologies including nuclear and magnetic resonance imaging were also employed. Orthopedic researchers have applied molecular imaging to murine models including transgenic mice to monitor gene expression, protein degradation, cell migration and cell death. Within the bone compartment, osteoblasts and their stem cells have been investigated, and the organic and mineral bone phases have been assessed. These studies addressed malignancy and injury as well as repair, including fracture healing and cell/gene therapy for skeletal defects. In the joints, molecular imaging has focused on the inflammatory and tissue destructive processes that cause arthritis. As described in this review, the feasibility of applying molecular imaging to numerous areas of orthopedic research has been demonstrated and will likely result in an increase in research dedicated to this powerful strategy. Molecular imaging holds great promise in the future for preclinical orthopedic research as well as next-generation clinical musculoskeletal diagnostics.
Collapse
Affiliation(s)
- Philipp Mayer-Kuckuk
- Bone Cell Biology and Imaging Laboratory, Hospital for Special Surgery, New York 10021, USA; Memorial Sloan-Kettering Cancer Center, New York 10021, USA.
| | - Adele L Boskey
- Bone Cell Biology and Imaging Laboratory, Hospital for Special Surgery, New York 10021, USA
| |
Collapse
|
440
|
Zhou R, Acton PD, Ferrari VA. Imaging stem cells implanted in infarcted myocardium. J Am Coll Cardiol 2006; 48:2094-106. [PMID: 17112999 PMCID: PMC2597078 DOI: 10.1016/j.jacc.2006.08.026] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 08/14/2006] [Accepted: 08/14/2006] [Indexed: 01/14/2023]
Abstract
Stem cell-based cellular cardiomyoplasty represents a promising therapy for myocardial infarction. Noninvasive imaging techniques would allow the evaluation of survival, migration, and differentiation status of implanted stem cells in the same subject over time. This review describes methods for cell visualization using several corresponding noninvasive imaging modalities, including magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, and bioluminescent imaging. Reporter-based cell visualization is compared with direct cell labeling for short- and long-term cell tracking.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
441
|
Abstract
Stem cell therapy is emerging as a promising approach to treat heart diseases. Considerable evidence from experimental studies and initial clinical trials suggests that stem cell transplantation promotes systolic function and prevent ventricular remodeling. However, the specific mechanisms by which stem cells improve heart function remain largely unknown. In addition, interpreting the long-term effects of stem cell therapy is difficult because of the limitations of conventional techniques. The recent development of molecular imaging techniques offers great potential to address these critical issues by noninvasively tracking the fate of the transplanted cells. This review offers a focused discussion on the use of stem cell therapy and imaging in the context of cardiology.
Collapse
Affiliation(s)
- Gwendolen Y Chang
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, Calif, USA
| | | | | |
Collapse
|
442
|
Abstract
Nuclear cardiology has made significant advances since the first reports of planar scintigraphy for the evaluation of left ventricular perfusion and function. While the current "state of the art" of gated myocardial perfusion single-photon emission computed tomographic (SPECT) imaging offers invaluable diagnostic and prognostic information for the evaluation of patients with suspected or known coronary artery disease (CAD), advances in the cellular and molecular biology of the cardiovascular system have helped to usher in a new modality in nuclear cardiology, namely, molecular imaging. In this review, we will discuss the current state of the art in nuclear cardiology, which includes SPECT and positron emission tomographic evaluation of myocardial perfusion, evaluation of left ventricular function by gated myocardial perfusion SPECT and gated blood pool SPECT, and the evaluation of myocardial viability with PET and SPECT methods. In addition, we will discuss the future of nuclear cardiology and the role that molecular imaging will play in the early detection of CAD at the level of the vulnerable plaque, the evaluation of cardiac remodeling, and monitoring of important new therapies including gene therapy and stem cell therapy.
Collapse
|
443
|
Barnett BP, Kraitchman DL, Lauzon C, Magee CA, Walczak P, Gilson WD, Arepally A, Bulte JWM. Radiopaque Alginate Microcapsules for X-ray Visualization and Immunoprotection of Cellular Therapeutics. Mol Pharm 2006; 3:531-8. [PMID: 17009852 DOI: 10.1021/mp060056l] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Alginate-poly-L-lysine-alginate (APA) microcapsules have been explored as vehicles for therapeutic drug and cell delivery. The permselectivity of these capsules provides a unique means of controlled drug release and immunoisolation of encapsulated cells. Immunoisolation is especially attractive as it abrogates the need for chronic immunosuppressive therapy and opens up the possibility for the delivery of numerous cell sources including xenogeneic grafts. APA microcapsules containing cellular therapeutics have proven effective in the short-term treatment of a wide range of diseases requiring enzyme or endocrine replacement therapy, including type I diabetes. If these microcapsules could be noninvasively monitored with X-ray imaging modalities (i.e., fluoroscopy, CT, and digital subtraction angiography), questions such as the ideal transplantation site, the best means of delivery, and the long-term survival of grafts could be better addressed. We have developed two novel alginate-based radiopaque microcapsule formulations containing either barium sulfate (Ba X-Caps) or bismuth sulfate (Bi X-Caps). As compared to conventional, nonradiopaque APA capsules, Ba X-Caps and Bi X-Caps containing human cadaveric islets resulted in a decrease in cellular viability of less than 5% up to 14 days after encapsulation. Both radiopaque capsules were found to be permeable to lectins < or =75 kDa, but were impermeable to lectins > or =120 kDa, thus ensuring the blockage of the penetration of antibodies while allowing free diffusion of insulin and nutrients. The glucose-responsive insulin secretion of the radiopaque encapsulated human islets was found to be unaltered compared to that of unlabeled controls, with human C-peptide levels ranging from 3.21 to 2.87 (Ba X-Caps) and 3.23 to 2.87 (Bi X-Caps) ng/islet at 7 and 14 days postencapsulation, respectively. Using fluoroscopy, both Ba X-Caps and Bi X-Caps could be readily visualized as single radiopaque entities in vitro. Furthermore, following transplantation in vivo in mice and rabbits, single capsules could be identified with no significant change in contrast for at least 2 weeks. This study represents the first attempt at making radiopaque microcapsules for X-ray guided delivery and imaging of cellular therapeutics. While human cadaveric islets were used as a proof-of-principle, these radiopaque capsules may have wide ranging therapeutic applications for a variety of cell types.
Collapse
Affiliation(s)
- B P Barnett
- Russell H Morgan Department of Radiology and Radiological Science and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
444
|
Abstract
The ability to image the pancreatic islet in vivo would enhance our understanding of diabetes and accelerate improvements in islet transplantation. However, the small size of islets and their diffuse distribution (both natively and after transplantation) present formidable challenges for current imaging techniques. This article reviews the relative merits and shortcomings of several imaging modalities in humans and in animal models of diabetes.
Collapse
Affiliation(s)
- John Virostko
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University, Nashville, TN 37232, USA
| | | | | |
Collapse
|
445
|
Yang ZJ, Ma DC, Wang W, Xu SL, Zhang YQ, Chen B, Zhou F, Zhu TB, Wang LS, Xu ZQ, Zhang FM, Cao KJ, Ma WZ. Experimental study of bone marrow-derived mesenchymal stem cells combined with hepatocyte growth factor transplantation via noninfarct-relative artery in acute myocardial infarction. Gene Ther 2006; 13:1564-8. [PMID: 16810195 DOI: 10.1038/sj.gt.3302820] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We investigated the impact of bone marrow-derived mesenchymal stem cells (BM-MSCs) alone or in combination with hepatocyte growth factor (HGF) transplantation via noninfarct-relative artery in a swine myocardial infarction (MI) model. Donor BM-MSCs were derived in vitro from swine auto-bone marrow cultures labeled by bromodeoxyuridine (BrdU) incorporation. Host MI swine model was created by ligating the distal left anterior descending artery. After 4 weeks, age-matched male MI swines were used for the transplantation. Male MI swines were transfused via noninfarct-relative artery with vehicle (control, n=6) or BrdU-labeled BM-MSCs (5 x 10(6)) alone (MSCs, n=6) or BrdU-labeled BM-MSCs (5 x 10(6)) combined with HGF (4 x 10(9) PFU) (MSCs+HGF, n=6). To evaluate the collateral artery growth (Rentrop) and cardiac perfusion in these animals, gate cardiac perfusion imaging and coronary angiography were performed before and 4 weeks after transplantation, respectively. To assess the contribution of donor-originated cells in stimulation of cardiomyocyte regeneration and angiogenesis, immunohistochemistry for BrdU and alpha-smooth muscle actin (alpha-SMA) and quantitative image analysis were performed at 4 weeks after transplantation. The results are as follows: (1) BrdU-positive cells were detected in host myocardium in both MSCs and MSCs+HGF groups, but not in the vehicle group. Most BrdU-positive cells expressed myosin heavy chain beta. (2) alpha-SMA(-)positive arteriole densities in the infarcted border area and infarcted area were increased significantly in both transplantation groups compared with the vehicle group. (3) Gate cardiac perfusion imaging demonstrated that the cardiac perfusion was significantly improved in transplantation groups compared with the vehicle group. (4) Ejection fraction and alpha-SMA-positive arteriole densities were increased significantly in both transplantation groups compared with the vehicle group. However, there was no difference in ejection fraction and alpha-SMA-positive arteriole densities between the MSCs group and the MSCs+HGF group. Growth of collateral arteries was not detected by coronary angiography in all three groups. In conclusion, the current study indicates that BM-MSCs transplantation via noninfarct-relative artery stimulates cardiomyocyte regeneration and angiogenesis and improves cardiac function, but does not stimulate collateral artery growth. BM-MSCs transplantation combined with HGF therapy is not superior to BM-MSCs alone transplantation. BM-MSCs transplantation via noninfarct-relative artery may be an alternative for those patients who cannot be transplanted via infarct-relative artery in clinical practice.
Collapse
Affiliation(s)
- Z-J Yang
- Department of cardiovascular medicine, the first affiliated hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
446
|
Swirski FK, Pittet MJ, Kircher MF, Aikawa E, Jaffer FA, Libby P, Weissleder R. Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proc Natl Acad Sci U S A 2006; 103:10340-10345. [PMID: 16801531 PMCID: PMC1502459 DOI: 10.1073/pnas.0604260103] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Monocytes participate importantly in the pathogenesis of atherosclerosis, but their spatial and temporal recruitment from circulation remains uncertain. This study tests the hypothesis that monocyte accumulation in atheroma correlates with the extent of disease by using a sensitive and simple quantitative assay that allows tracking of highly enriched populations of blood monocytes. A two-step isolation method yielded viable and functionally intact highly enriched peripheral blood monocyte populations (>90%). Recipient mice received syngeneic monocytes labeled in two ways: by transgenically expressing EGFP or with a radioactive tracer [(111)In]oxine. After 5 days, more labeled cells accumulated in the aorta, principally the aortic root and ascending aorta, of 10-wk-old ApoE(-/-) compared with 10-wk-old C57BL/6 mice (223 +/- 3 vs. 87 +/- 22 cells per aorta). Considerably more monocytes accumulated in 20-wk-old ApoE(-/-) mice on either chow (314 +/- 41 cells) or high-cholesterol diet (395 +/- 53 cells). Fifty-week-old ApoE(-/-) mice accumulated even more monocytes in the aortic root, ascending aorta, and thoracic aorta after both chow (503 +/- 67 cells) or high-cholesterol diet (648 +/- 81 cells). Labeled monocyte content in the aorta consistently correlated with lesion surface area. These data indicate that monocytes accumulate continuously during atheroma formation, accumulation increases in proportion to lesion size, and recruitment is augmented with hypercholesterolemia. These results provide insights into mechanisms of atherogenesis and have implications for the duration of therapies directed at leukocyte recruitment.
Collapse
Affiliation(s)
- Filip K Swirski
- *Center for Molecular Imaging Research and Donald W. Reynolds Cardiovascular Clinical Research Center on Atherosclerosis at Harvard Medical School, Massachusetts General Hospital and Harvard Medical School, CNY 149, Charlestown, MA 02129; and
- Cardiovascular Division, Department of Medicine and Donald W. Reynolds Cardiovascular Clinical Research Center on Atherosclerosis at Harvard Medical School, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Mikael J Pittet
- *Center for Molecular Imaging Research and Donald W. Reynolds Cardiovascular Clinical Research Center on Atherosclerosis at Harvard Medical School, Massachusetts General Hospital and Harvard Medical School, CNY 149, Charlestown, MA 02129; and
| | - Moritz F Kircher
- *Center for Molecular Imaging Research and Donald W. Reynolds Cardiovascular Clinical Research Center on Atherosclerosis at Harvard Medical School, Massachusetts General Hospital and Harvard Medical School, CNY 149, Charlestown, MA 02129; and
| | - Elena Aikawa
- *Center for Molecular Imaging Research and Donald W. Reynolds Cardiovascular Clinical Research Center on Atherosclerosis at Harvard Medical School, Massachusetts General Hospital and Harvard Medical School, CNY 149, Charlestown, MA 02129; and
| | - Farouc A Jaffer
- *Center for Molecular Imaging Research and Donald W. Reynolds Cardiovascular Clinical Research Center on Atherosclerosis at Harvard Medical School, Massachusetts General Hospital and Harvard Medical School, CNY 149, Charlestown, MA 02129; and
| | - Peter Libby
- Cardiovascular Division, Department of Medicine and Donald W. Reynolds Cardiovascular Clinical Research Center on Atherosclerosis at Harvard Medical School, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Ralph Weissleder
- *Center for Molecular Imaging Research and Donald W. Reynolds Cardiovascular Clinical Research Center on Atherosclerosis at Harvard Medical School, Massachusetts General Hospital and Harvard Medical School, CNY 149, Charlestown, MA 02129; and
| |
Collapse
|
447
|
Graham JJ, Lederman RJ, Dick AJ. Magnetic resonance imaging and its role in myocardial regenerative therapy. Regen Med 2006; 1:347-55. [PMID: 17465788 DOI: 10.2217/17460751.1.3.347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There has been extensive interest recently in cardiac stem cell therapy. Current research has been hampered by differences in cell type, methods of delivery and efficacy evaluation. In this article we review the use of magnetic resonance imaging in this growing area and argue that it is well suited to all areas of myocardial regeneration: from patient identification, through cell delivery and tracking of appropriately labeled cells, to evaluation of therapeutic effect. Potential future advances are discussed including magnetic resonance imaging-guided intervention suites and the use of higher field strength magnets for cell tracking.
Collapse
Affiliation(s)
- John J Graham
- Division of Cardiology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | | |
Collapse
|
448
|
Chang MG, Tung L, Sekar RB, Chang CY, Cysyk J, Dong P, Marbán E, Abraham MR. Proarrhythmic Potential of Mesenchymal Stem Cell Transplantation Revealed in an In Vitro Coculture Model. Circulation 2006; 113:1832-41. [PMID: 16606790 DOI: 10.1161/circulationaha.105.593038] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background—
Mesenchymal stem cells (MSCs) are bone marrow stromal cells that are in phase 1 clinical studies of cellular cardiomyoplasty. However, the electrophysiological effects of MSC transplantation have not been studied. Although improvement of ventricular function would represent a positive outcome of MSC transplantation, focal application of stem cells has the potential downside of creating inhomogeneities that may predispose the heart to reentrant arrhythmias. In the present study we use an MSC and neonatal rat ventricular myocyte (NRVM) coculture system to investigate potential proarrhythmic consequences of MSC transplantation into the heart.
Methods and Results—
Human MSCs were cocultured with NRVMs in ratios of 1:99, 1:9, and 1:4 and optically mapped. We found that conduction velocity was decreased in cocultures compared with controls, but action potential duration (APD
80
) was not affected. Reentrant arrhythmias were induced in 86% of cocultures containing 10% and 20% MSCs (n=36) but not in controls (n=7) or cocultures containing only 1% MSCs (n=4). Immunostaining, Western blot, and dye transfer revealed the presence of functional gap junctions involving MSCs.
Conclusions—
Our results suggest that mixtures of MSCs and NRVMs can produce an arrhythmogenic substrate. The mechanism of reentry is probably increased tissue heterogeneity resulting from electric coupling of inexcitable MSCs with myocytes.
Collapse
Affiliation(s)
- Marvin G Chang
- Division of Cardiology, Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
449
|
Abstract
The discovery of adult progenitor cells capable of generating new vascular and myocardial tissue offers the promise of salvage of ischaemically threatened or irreversibly damaged cardiac tissue. Not surprisingly, great interest has focused on the use of a variety of cell types to treat both acute myocardial infarction and chronic ischaemic heart disease. This review focuses on the treatment of these two categories of disease, the cell types being considered, our understanding of timing and methods of cellular administration, and possible mechanisms of myocardial salvage.
Collapse
Affiliation(s)
- Thomas J Povsic
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Box 3126, Durham, NC 27710, USA.
| | | |
Collapse
|
450
|
Freyman T, Polin G, Osman H, Crary J, Lu M, Cheng L, Palasis M, Wilensky RL. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 2006; 27:1114-22. [PMID: 16510464 DOI: 10.1093/eurheartj/ehi818] [Citation(s) in RCA: 444] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIMS Mesenchymal stem cells (MSCs), rare bone marrow-derived stem cell precursors of non-haematopoietic tissues, have shown promise in potentially repairing infarcted myocardium. These and similar cell types are being tested clinically, but understanding of delivery and subsequent biodistribution is lacking. This study was designed to quantitatively compare MSC engraftment rates after intravenous (IV), intracoronary (IC), or endocardial (EC) delivery in a porcine myocardial infarction (MI) model. METHODS AND RESULTS Allogeneic, male MSCs were cultured from porcine bone marrow aspirates. Iridium nanoparticles were added during culturing and internalized by the MSCs. An MI was induced in female swine (27-40 kg in size) by prolonged balloon occlusion of the mid-left anterior descending artery. Animals (n = 6 per group) were randomized to one of three delivery methods. Cellular engraftment was determined 14+/-3 days post-delivery by measuring ex-vivo the iridium nanoparticle concentration in the infarct. Confirmation of cellular engraftment utilized both DiI and fluorescence in situ hybridization (FISH) labelling techniques. During MSC infusion, no adverse events were noted. However, following IC infusion, half of the pigs exhibited decreased blood flow distal to the infusion site. At 14 days, the mean number of engrafted cells within the infarct zone was significantly greater (P< or =0.01) following IC infusion than either EC injection or IV infusion and EC engraftment was greater than IV engraftment (P< or =0.01). There was less systemic delivery to the lungs following [EC vs. IV (P = 0.02), EC vs. IC (P = 0.06)]. Both DiI and FISH labelling demonstrated the presence of engrafted male MSCs within the female infarcted tissue. CONCLUSION IC and EC injection of MSCs post-MI resulted in increased engraftment within infarcted tissue when compared with IV infusion, and IC was more efficient than EC. However, IC delivery was also associated with a higher incidence of decreased coronary blood flow. EC delivery into acutely infarcted myocardial tissue was safe and well tolerated and was associated with decreased remote organ engraftment with compared with IC and IV deliveries.
Collapse
|