401
|
Becker MN, Diamond G, Verghese MW, Randell SH. CD14-dependent lipopolysaccharide-induced beta-defensin-2 expression in human tracheobronchial epithelium. J Biol Chem 2000; 275:29731-6. [PMID: 10882713 DOI: 10.1074/jbc.m000184200] [Citation(s) in RCA: 239] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The induction of host antimicrobial molecules following binding of pathogen components to pattern recognition receptors such as CD14 and the Toll-like receptors (TLRs) is a key feature of innate immunity. The human airway epithelium is an important environmental interface, but LPS recognition pathways have not been determined. We hypothesized that LPS would trigger beta-defensin (hBD2) mRNA in human tracheobronchial epithelial (hTBE) cells through a CD14-dependent mechanism, ultimately activating NF-kappa B. An average 3-fold increase in hBD2 mRNA occurs 24 h after LPS challenge of hTBE cells. For the first time, we demonstrate the presence of CD14 mRNA and cell surface protein in hTBE cells and show that CD14 neutralization abolishes LPS induction of hBD2 mRNA. Furthermore, we demonstrate TLR mRNA in hTBE cells and NF-kappa B activation following LPS. Thus, LPS induction of hBD2 in hTBE cells requires CD14, which may complex with a TLR to ultimately activate NF-kappa B.
Collapse
Affiliation(s)
- M N Becker
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
402
|
O'Neil DA, Cole SP, Martin-Porter E, Housley MP, Liu L, Ganz T, Kagnoff MF. Regulation of human beta-defensins by gastric epithelial cells in response to infection with Helicobacter pylori or stimulation with interleukin-1. Infect Immun 2000; 68:5412-5. [PMID: 10948173 PMCID: PMC101807 DOI: 10.1128/iai.68.9.5412-5415.2000] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Gastric epithelial cells in vitro and in vivo are shown to constitutively express the peptide antibiotic human beta-defensin type 1 (hBD-1). In contrast, hBD-2 expression is regulated in gastric epithelial cells and increases in response to infection with Helicobacter pylori or stimulation with the proinflammatory cytokine interleukin-1. These data suggest that hBD-2 is a component of the regulated host gastric epithelial cell response to H. pylori infection and proinflammatory mediators.
Collapse
Affiliation(s)
- D A O'Neil
- Laboratory of Mucosal Immunology, Department of Medicine, University of California, San Diego, La Jolla, California 92093-0623, USA
| | | | | | | | | | | | | |
Collapse
|
403
|
Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 2000; 1:113-8. [PMID: 11248802 DOI: 10.1038/77783] [Citation(s) in RCA: 776] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Paneth cells in mouse small intestinal crypts secrete granules rich in microbicidal peptides when exposed to bacteria or bacterial antigens. The dose-dependent secretion occurs within minutes and alpha-defensins, or cryptdins, account for 70% of the released bactericidal peptide activity. Gram-negative bacteria, Gram-positive bacteria, lipopolysaccharide, lipoteichoic acid, lipid A and muramyl dipeptide elicit cryptdin secretion. Live fungi and protozoa, however, do not stimulate degranulation. Thus intestinal Paneth cells contribute to innate immunity by sensing bacteria and bacterial antigens, and discharge microbicidal peptides at effective concentrations accordingly.
Collapse
Affiliation(s)
- T Ayabe
- Department of Pathology, College of Medicine, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
404
|
Cole AM, Darouiche RO, Legarda D, Connell N, Diamond G. Characterization of a fish antimicrobial peptide: gene expression, subcellular localization, and spectrum of activity. Antimicrob Agents Chemother 2000; 44:2039-45. [PMID: 10898673 PMCID: PMC90011 DOI: 10.1128/aac.44.8.2039-2045.2000] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial peptides are proposed to act as the first line of mucosal host defense by exerting broad-spectrum microbicidal activity against pathogenic microbes. Pleurocidin, a new 25-residue linear antimicrobial peptide, was recently isolated from the skin secretions of winter flounder (Pleuronectes americanus). The present study identifies the cDNA and gene encoding pleurocidin. The pleurocidin gene comprises four exons. Its upstream region demonstrates consensus binding sequences for transcription factors found in host defense genes in mammals, including sequences identical to the NF-IL6 and alpha and gamma interferon response elements. Pleurocidin is predicted to exist as a 68-residue prepropeptide that undergoes proteolytic cleavage of its amino-terminal signal and carboxy-terminal anionic propiece to form the active, mature peptide. Transmission electron microscopy localized pleurocidin to the mucin granules of skin and intestinal goblet cells. Significant synergy was shown to occur between pleurocidin and D-cycloserine targeting Mycobacterium smegmatis. Pleurocidin was functionally active at physiologic concentrations of magnesium and calcium; however, high concentrations of these divalent cations ablated pleurocidin's activity against a standard test strain, Escherichia coli D31. Pleurocidin was tested against bacterial and fungal clinical isolates and showed broad-spectrum antimicrobial activity. Together, these data support the hypothesis that pleurocidin participates in innate mucosal immunity, and it may prove to be a beneficial therapeutic agent.
Collapse
Affiliation(s)
- A M Cole
- Department of Anatomy, Cell Biology and Injury Sciences, University of Medicine and Dentistry of New Jersey-New Jersey Medical School and Graduate School of Biomedical Sciences, Newark, New Jersey 07103, USA
| | | | | | | | | |
Collapse
|
405
|
Frye M, Bargon J, Lembcke B, Wagner TO, Gropp R. Differential expression of human alpha- and beta-defensins mRNA in gastrointestinal epithelia. Eur J Clin Invest 2000; 30:695-701. [PMID: 10964161 DOI: 10.1046/j.1365-2362.2000.00696.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND While defensins have received great attention for their role in bronchial innate immune defence, little is known about the expression levels of the four human epithelial defensins (HD5, HD6, hBD1 and hBD2) in the digestive tract. In this study we quantified the alpha- and beta-defensins mRNA in biopsies obtained from the gastrointestinal mucosa and identified the cells expressing the beta-defensin hBD1 mRNA in ileal mucosa. MATERIAL AND METHODS Biopsies from human stomach (corpus and antrum), duodenum, jejunum, ileum and colon were analysed for their expression of alpha- and beta-defensins. The mRNA of defensins was quantified by semiquantitative reverse transcription-polymerase chain reaction. Cells expressing beta-defensin hBD1 mRNA were identified by in situ hybridization with 35S-labelled RNA probes in tissue sections of human ileum. RESULTS The hBD1 mRNA was expressed at low levels with little variability throughout the gastrointestinal tract and was detected in all epithelial cells of ileal mucosa. HD5 and HD6 mRNA expression was restricted to the intestine and displayed high interindividual variability. The highest expression levels were observed in jejunum and ileum. Biopsies obtained from duodenum displayed low levels or no expression of HD5 and HD6. The expression level increased considerably in a biopsy obtained from a patient with acute coeliac sprue. In contrast, low levels were observed in a biopsy from a patient with coeliac sprue in remission. CONCLUSIONS The expression levels of hBD1, HD5 and HD6 throughout the gastrointestinal tract are tissue and peptide specific and these defensins are expressed with high interindividual variability.
Collapse
Affiliation(s)
- M Frye
- Institute for Anthropology and Human Genetics, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
406
|
Tunzi CR, Harper PA, Bar-Oz B, Valore EV, Semple JL, Watson-MacDonell J, Ganz T, Ito S. Beta-defensin expression in human mammary gland epithelia. Pediatr Res 2000; 48:30-5. [PMID: 10879797 DOI: 10.1203/00006450-200007000-00008] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Milk of mammalian species contains a wide spectrum of anti-infectious factors, some of which are heat stable. Focusing on recently discovered heat-stable antibacterial peptides called defensins, which are expressed in epithelial tissues such as airway, skin, and kidney, we hypothesized that mammary gland epithelia produce and secrete defensins onto the epithelial surface and into milk. Using a reverse-transcription PCR assay, we identified the human beta-defensin-1 (hBD-1) gene transcript in a human mammary gland epithelial cell line, MCF-12A, and in mammary glandular tissue of nine nonlactating women. Epithelial cells harvested from milk of lactating women also expressed hBD-1 mRNA. Presence of hBD-1 peptide in mammary epithelia was confirmed by immunostaining with an hBD-1 antibody. In contrast, expression of human beta-defensin-2 was not apparent both at mRNA and protein levels. Our findings suggest a biologic role of hBD-1 in the human mammary gland.
Collapse
Affiliation(s)
- C R Tunzi
- Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
407
|
Harder J, Meyer-Hoffert U, Teran LM, Schwichtenberg L, Bartels J, Maune S, Schröder JM. Mucoid Pseudomonas aeruginosa, TNF-alpha, and IL-1beta, but not IL-6, induce human beta-defensin-2 in respiratory epithelia. Am J Respir Cell Mol Biol 2000; 22:714-21. [PMID: 10837369 DOI: 10.1165/ajrcmb.22.6.4023] [Citation(s) in RCA: 315] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cultured lung epithelial cells release antibacterial activity upon contact with Pseudomonas aeruginosa (PA), which is impaired in cystic fibrosis (CF). In order to identify the factors responsible for killing PA by a biochemical approach, we purified antimicrobial activity from supernatants of the A549 lung epithelial cell line, previously stimulated with PA bacteria, by subsequent high performance liquid chromatography. NH(2)-terminal sequencing of a major bactericidal compound revealed it to be identical with human beta-defensin-2 (hBD-2). A mucoid phenotype of PA, but not two nonmucoid PA strains, high concentrations (> 10 microg/ml) of PA lipopolysaccharide, tumor necrosis factor alpha, and interleukin (IL)-1beta, but not IL-6, dose-dependently induced hBD-2 messenger RNA in cultured normal bronchial, tracheal, as well as normal and CF-derived nasal epithelial cells. Genomic analysis of hBD-2 revealed a promoter region containing several putative transcription factor binding sites, including nuclear factor (NF) kappaB, activator protein (AP)-1, AP-2, and NF-IL-6, known to be involved in the regulation of inflammatory responses. Thus, hBD-2 represents a major inducible antimicrobial factor released by airway epithelial cells either on contact with mucoid PA or by endogenously produced primary cytokines. Therefore, it might be important in lung infections caused by mucoid PA, including those seen in patients with CF.
Collapse
Affiliation(s)
- J Harder
- Department of Dermatology and Otolaryngology, University of Kiel, Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
408
|
Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L. Neutrophils: molecules, functions and pathophysiological aspects. J Transl Med 2000; 80:617-53. [PMID: 10830774 DOI: 10.1038/labinvest.3780067] [Citation(s) in RCA: 745] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
409
|
Krisanaprakornkit S, Kimball JR, Weinberg A, Darveau RP, Bainbridge BW, Dale BA. Inducible expression of human beta-defensin 2 by Fusobacterium nucleatum in oral epithelial cells: multiple signaling pathways and role of commensal bacteria in innate immunity and the epithelial barrier. Infect Immun 2000; 68:2907-15. [PMID: 10768988 PMCID: PMC97503 DOI: 10.1128/iai.68.5.2907-2915.2000] [Citation(s) in RCA: 323] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/1999] [Accepted: 02/07/2000] [Indexed: 11/20/2022] Open
Abstract
Human gingival epithelial cells (HGE) express two antimicrobial peptides of the beta-defensin family, human beta-defensin 1 (hBD-1) and hBD-2, as well as cytokines and chemokines that contribute to innate immunity. In the present study, the expression and transcriptional regulation of hBD-2 was examined. HBD-2 mRNA was induced by cell wall extract of Fusobacterium nucleatum, an oral commensal microorganism, but not by that of Porphyromonas gingivalis, a periodontal pathogen. HBD-2 mRNA was also induced by the proinflammatory cytokine tumor necrosis factor alpha (TNF-alpha) and phorbol myristate acetate (PMA), an epithelial cell activator. HBD-2 mRNA was also expressed in 14 of 15 noninflamed gingival tissue samples. HBD-2 peptide was detected by immunofluorescence in HGE stimulated with F. nucleatum cell wall, consistent with induction of the mRNA by this stimulant. Kinetic analysis indicates involvement of multiple distinct signaling pathways in the regulation of hBD-2 mRNA; TNF-alpha and F. nucleatum cell wall induced hBD-2 mRNA rapidly (2 to 4 h), while PMA stimulation was slower ( approximately 10 h). In contrast, each stimulant induced interleukin 8 (IL-8) within 1 h. The role of TNF-alpha as an intermediary in F. nucleatum signaling was ruled out by addition of anti-TNF-alpha that did not inhibit hBD-2 induction. However, inhibitor studies show that F. nucleatum stimulation of hBD-2 mRNA requires both new gene transcription and new protein synthesis. Bacterial lipopolysaccharides isolated from Escherichia coli and F. nucleatum were poor stimulants of hBD-2, although they up-regulated IL-8 mRNA. Collectively, our findings show inducible expression of hBD-2 mRNA via multiple pathways in HGE in a pattern that is distinct from that of IL-8 expression. We suggest that different aspects of innate immune responses are differentially regulated and that commensal organisms have a role in stimulating mucosal epithelial cells in maintaining the barrier that contributes to homeostasis and host defense.
Collapse
Affiliation(s)
- S Krisanaprakornkit
- Department of Oral Biology, School of Dentistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
410
|
Travis SM, Anderson NN, Forsyth WR, Espiritu C, Conway BD, Greenberg EP, McCray PB, Lehrer RI, Welsh MJ, Tack BF. Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun 2000; 68:2748-55. [PMID: 10768969 PMCID: PMC97484 DOI: 10.1128/iai.68.5.2748-2755.2000] [Citation(s) in RCA: 291] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endogenous antimicrobial peptides of the cathelicidin family contribute to innate immunity. The emergence of widespread antibiotic resistance in many commonly encountered bacteria requires the search for new bactericidal agents with therapeutic potential. Solid-phase synthesis was employed to prepare linear antimicrobial peptides found in cathelicidins of five mammals: human (FALL39/LL37), rabbit (CAP18), mouse (mCRAMP), rat (rCRAMP), and sheep (SMAP29 and SMAP34). These peptides were tested at ionic strengths of 25 and 175 mM against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus. Each peptide manifested activity against P. aeruginosa irrespective of the NaCl concentration. CAP18 and SMAP29 were the most effective peptides of the group against all test organisms under both low- and high-salt conditions. Select peptides of 15 to 21 residues, modeled on CAP18 (37 residues), retained activity against the gram-negative bacteria and methicillin-sensitive S. aureus, although the bactericidal activity was reduced compared to that of the parent peptide. In accordance with the behavior of the parent molecule, the truncated peptides adopted an alpha-helical structure in the presence of trifluoroethanol or lipopolysaccharide. The relationship between the bactericidal activity and several physiochemical properties of the cathelicidins was examined. The activities of the full-length peptides correlated positively with a predicted gradient of hydrophobicity along the peptide backbone and with net positive charge; they correlated inversely with relative abundance of anionic residues. The salt-resistant, antimicrobial properties of CAP18 and SMAP29 suggest that these peptides or congeneric structures have potential for the treatment of bacterial infections in normal and immunocompromised persons and individuals with cystic fibrosis.
Collapse
Affiliation(s)
- S M Travis
- Department of Internal Medicine, University of Iowa College of Medicine Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
411
|
López-Boado YS, Wilson CL, Hooper LV, Gordon JI, Hultgren SJ, Parks WC. Bacterial exposure induces and activates matrilysin in mucosal epithelial cells. J Cell Biol 2000; 148:1305-15. [PMID: 10725342 PMCID: PMC2174301 DOI: 10.1083/jcb.148.6.1305] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/1999] [Accepted: 02/15/2000] [Indexed: 11/22/2022] Open
Abstract
Matrilysin, a matrix metalloproteinase, is expressed and secreted lumenally by intact mucosal and glandular epithelia throughout the body, suggesting that its regulation and function are shared among tissues. Because matrilysin is produced in Paneth cells of the murine small intestine, where it participates in innate host defense by activation of prodefensins, we speculated that its expression would be influenced by bacterial exposure. Indeed, acute infection (10-90 min) of human colon, bladder, and lung carcinoma cells, primary human tracheal epithelial cells, and human tracheal explants with type 1-piliated Escherichia coli mediated a marked (25-50-fold) and sustained (>24 h) induction of matrilysin production. In addition, bacterial infection resulted in activation of the zymogen form of the enzyme, which was selectively released at the apical surface. Induction of matrilysin was mediated by a soluble, non-LPS bacterial factor and correlated with the release of defensin-like bacteriocidal activity. Bacteria did not induce matrilysin in other cell types, and expression of other metalloproteinases by epithelial cells was not affected by bacteria. Matrilysin was not detected in germ-free mice, but the enzyme was induced after colonization with Bacteroides thetaiotaomicron. These findings indicate that bacterial exposure is a potent and physiologically relevant signal regulating matrilysin expression in epithelial cells.
Collapse
Affiliation(s)
| | | | - Lora V. Hooper
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jeffrey I. Gordon
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Scott J. Hultgren
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine, St. Louis, Missouri 63110
| | - William C. Parks
- Department of Pediatrics, Allergy and Pulmonary Division
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
412
|
Lysenko ES, Gould J, Bals R, Wilson JM, Weiser JN. Bacterial phosphorylcholine decreases susceptibility to the antimicrobial peptide LL-37/hCAP18 expressed in the upper respiratory tract. Infect Immun 2000; 68:1664-71. [PMID: 10678986 PMCID: PMC97327 DOI: 10.1128/iai.68.3.1664-1671.2000] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of pathogens of the upper respiratory tract express an unusual prokaryotic structure, phosphorylcholine (ChoP), on their cell surface. We tested the hypothesis that ChoP, also found on host membrane lipids in the form of phosphatidylcholine, acts so as to decrease killing by antimicrobial peptides that target differences between bacterial and host membranes. In Haemophilus influenzae, ChoP is a phase-variable structure on the oligosaccharide portion of the lipopolysaccharide (LPS). There was a bactericidal effect of the peptide LL-37/hCAP18 on a nontypeable H. influenzae strain, with an increasing selection for the ChoP(+) phase as the concentration of the peptide was raised from 0 to 10 microgram/ml. Moreover, constitutive ChoP-expressing mutants of unrelated strains showed up to 1,000-fold-greater survival compared to mutants without ChoP. The effect of ChoP on resistance to killing by LL-37/hCAP18 was dependent on the salt concentration and was observed only when bacteria were grown in the presence of environmental choline, a requirement for the expression of ChoP on the LPS. Further studies established that there is transcription of the LL-37/hCAP18 gene on the epithelial surface of the human nasopharynx in situ and inducible transcription in epithelial cells derived from the upper airway. The presence of highly variable amounts of LL-37/hCAP18 in normal nasal secretions (<1.2 to >80 microgram/ml) was demonstrated with an antibody against this peptide. It was concluded that ChoP alters the bacterial cell surface so as mimic host membrane lipids and decrease killing by LL-37/hCAP18, an antimicrobial peptide that may be expressed on the mucosal surface of the nasopharynx in bactericidal concentrations.
Collapse
Affiliation(s)
- E S Lysenko
- Departments of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
413
|
Diamond G, Kaiser V, Rhodes J, Russell JP, Bevins CL. Transcriptional regulation of beta-defensin gene expression in tracheal epithelial cells. Infect Immun 2000; 68:113-9. [PMID: 10603376 PMCID: PMC97109 DOI: 10.1128/iai.68.1.113-119.2000] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Innate immunity provides an ever-present or rapidly inducible initial defense against microbial infection. Among the effector molecules of this defense in many species are broad-spectrum antimicrobial peptides. Tracheal antimicrobial peptide (TAP) was the first discovered member of the beta-defensin family of mammalian antimicrobial peptides. TAP is expressed in the ciliated epithelium of the bovine trachea, and its mRNA levels are dramatically increased upon stimulation with bacteria or bacterial lipopolysaccharide (LPS). We report here that this induction by LPS is regulated at the level of transcription. Furthermore, the transfection of reporter gene constructs into tracheal epithelial cells indicates that DNA sequences in the 5' flanking region of the TAP gene, within 324 nucleotides of the transcription start site, are responsible in part for mediating gene induction. This region includes consensus binding sites for NF-kappaB and nuclear factor interleukin-6 (NF IL-6) transcription factors. Gel mobility shift assays indicate that LPS induces NF-kappaB binding activity in the nuclei of these cells, while NF IL-6 binding activity is constitutively present. The gene encoding human beta-defensin 2, a human homologue of TAP with similar inducible expression patterns in the airway, was cloned and found to have conserved NF-kappaB and NF IL-6 consensus binding sites in its 5' flanking region. Previous studies of antimicrobial peptides from insects indicated that their induction by infectious microbes and microbial products also occurs via activation of NF-kappaB-like and NF IL-6-like transcription factors. Together, these observations indicate that a strategy for the induction of peptide-based antimicrobial innate immunity is conserved among evolutionarily diverse organisms.
Collapse
Affiliation(s)
- G Diamond
- Department of Anatomy, Cell Biology and Injury Sciences, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA.
| | | | | | | | | |
Collapse
|
414
|
Bals R. Epithelial antimicrobial peptides in host defense against infection. Respir Res 2000; 1:141-50. [PMID: 11667978 PMCID: PMC59560 DOI: 10.1186/rr25] [Citation(s) in RCA: 328] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2000] [Revised: 09/25/2000] [Accepted: 09/27/2000] [Indexed: 01/30/2023] Open
Abstract
One component of host defense at mucosal surfaces seems to be epithelium-derived antimicrobial peptides. Antimicrobial peptides are classified on the basis of their structure and amino acid motifs. Peptides of the defensin, cathelicidin, and histatin classes are found in humans. In the airways, alpha-defensins and the cathelicidin LL-37/hCAP-18 originate from neutrophils. beta-Defensins and LL-37/hCAP-18 are produced by the respiratory epithelium and the alveolar macrophage and secreted into the airway surface fluid. Beside their direct antimicrobial function, antimicrobial peptides have multiple roles as mediators of inflammation with effects on epithelial and inflammatory cells, influencing such diverse processes as proliferation, immune induction, wound healing, cytokine release, chemotaxis, protease-antiprotease balance, and redox homeostasis. Further, antimicrobial peptides qualify as prototypes of innovative drugs that might be used as antibiotics, anti-lipopolysaccharide drugs, or modifiers of inflammation.
Collapse
Affiliation(s)
- R Bals
- Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
415
|
O’Neil DA, Porter EM, Elewaut D, Anderson GM, Eckmann L, Ganz T, Kagnoff MF. Expression and Regulation of the Human β-Defensins hBD-1 and hBD-2 in Intestinal Epithelium. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.12.6718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The intestinal epithelium forms a physical barrier to limit access of enteric microbes to the host and contributes to innate host defense by producing effector molecules against luminal microbes. To further define the role of the intestinal epithelium in antimicrobial host defense, we analyzed the expression, regulation, and production of two antimicrobial peptides, human defensins hBD-1 and hBD-2, by human intestinal epithelial cells in vitro and in vivo. The human colon epithelial cell lines HT-29 and Caco-2 constitutively express hBD-1 mRNA and protein but not hBD-2. However, hBD-2 expression is rapidly induced by IL-1α stimulation or infection of those cells with enteroinvasive bacteria. Moreover, hBD-2 functions as a NF-κB target gene in the intestinal epithelium as blocking NF-κB activation inhibits the up-regulated expression of hBD-2 in response to IL-1α stimulation or bacterial infection. Caco-2 cells produce two hBD-1 isoforms and a hBD-2 peptide larger in size than previously described hBD-2 isoforms. Paralleling the in vitro findings, human fetal intestinal xenografts constitutively express hBD-1, but not hBD-2, and hBD-2 expression, but not hBD-1, is up-regulated in xenografts infected intraluminally with Salmonella. hBD-1 is expressed by the epithelium of normal human colon and small intestine, with a similar pattern of expression in inflamed colon. In contrast, there is little hBD-2 expression by the epithelium of normal colon, but abundant hBD-2 expression by the epithelium of inflamed colon. hBD-1 and hBD-2 may be integral components of epithelial innate immunity in the intestine, with each occupying a distinct functional niche in intestinal mucosal defense.
Collapse
Affiliation(s)
- Deborah A. O’Neil
- *Laboratory of Mucosal Immunology, Department of Medicine, University of California at San Diego, La Jolla, CA 92093
| | - Edith Martin Porter
- †Will Rogers Institute Pulmonary Research Laboratory, Department of Medicine, University of California, Los Angeles, CA 90095; and
| | - Dirk Elewaut
- *Laboratory of Mucosal Immunology, Department of Medicine, University of California at San Diego, La Jolla, CA 92093
| | | | - Lars Eckmann
- *Laboratory of Mucosal Immunology, Department of Medicine, University of California at San Diego, La Jolla, CA 92093
| | - Tomas Ganz
- †Will Rogers Institute Pulmonary Research Laboratory, Department of Medicine, University of California, Los Angeles, CA 90095; and
| | - Martin F. Kagnoff
- *Laboratory of Mucosal Immunology, Department of Medicine, University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|
416
|
Baird RM, Brown H, Smith AW, Watson ML. Burkholderia cepacia is resistant to the antimicrobial activity of airway epithelial cells. IMMUNOPHARMACOLOGY 1999; 44:267-72. [PMID: 10598883 DOI: 10.1016/s0162-3109(99)00122-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There has been much interest recently in the antimicrobial properties of cationic peptides called beta-defensins from epithelial cells. Human beta-defensin (hBD)-1 and -2 have been particularly implicated in cystic fibrosis (CF) patients, where their inhibition by high salt concentrations may explain in part the susceptibility of the CF lung to bacterial infection. In this work, we have employed a simple co-culture system using the 16-HBE human bronchial epithelial cell line to assess growth inhibitory activity against Pseudomonas aeruginosa and Burkholderia cepacia. In medium alone, P. aeruginosa proliferated more than 100,000-fold, whereas in the presence of 16-HBE cells or 16-HBE-conditioned medium, bacterial proliferation was less than 100-fold. Raising the salt concentration of cell-free 16-HBE conditioned medium to approximately 200 mM significantly reduced this growth inhibitory activity. In contrast, there was no evidence of epithelial-derived growth inhibitory activity against two strains of B. cepacia. RT-PCR analysis indicated expression of the hBD-2 mRNA in 16-HBE cells, but not hBD-1. These data demonstrate for the first time that B. cepacia is resistant to epithelial-derived antimicrobial substances and argue against them being important in the defense against this organism in the lung.
Collapse
Affiliation(s)
- R M Baird
- Department of Pharmnnacy and Pharmacology, University of Bath, Claverton Down, UK
| | | | | | | |
Collapse
|
417
|
Bals R, Weiner DJ, Moscioni AD, Meegalla RL, Wilson JM. Augmentation of innate host defense by expression of a cathelicidin antimicrobial peptide. Infect Immun 1999; 67:6084-9. [PMID: 10531270 PMCID: PMC96996 DOI: 10.1128/iai.67.11.6084-6089.1999] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial peptides, such as defensins or cathelicidins, are effector substances of the innate immune system and are thought to have antimicrobial properties that contribute to host defense. The evidence that vertebrate antimicrobial peptides contribute to innate immunity in vivo is based on their expression pattern and in vitro activity against microorganisms. The goal of this study was to investigate whether the overexpression of an antimicrobial peptide results in augmented protection against bacterial infection. C57BL/6 mice were given an adenovirus vector containing the cDNA for LL-37/hCAP-18, a human cathelicidin antimicrobial peptide. Mice treated with intratracheal LL-37/hCAP-18 vector had a lower bacterial load and a smaller inflammatory response than did untreated mice following pulmonary challenge with Pseudomonas aeruginosa PAO1. Systemic expression of LL-37/hCAP-18 after intravenous injection of recombinant adenovirus resulted in improved survival rates following intravenous injection of lipopolysaccharide with galactosamine or Escherichia coli CP9. In conclusion, the data demonstrate that expression of an antimicrobial peptide by gene transfer results in augmentation of the innate immune response, providing support for the hypothesis that vertebrate antimicrobial peptides protect against microorganisms in vivo.
Collapse
Affiliation(s)
- R Bals
- Institute for Human Gene Therapy, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
418
|
Teramoto S, Mastsue T, Ouchi Y. Manipulation of volume vs osmolality in cystic fibrosis lung disease. Chest 1999; 116:1494-5. [PMID: 10559127 DOI: 10.1378/chest.116.5.1494-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
419
|
Zhao C, Nguyen T, Liu L, Shamova O, Brogden K, Lehrer RI. Differential expression of caprine beta-defensins in digestive and respiratory tissues. Infect Immun 1999; 67:6221-4. [PMID: 10531296 PMCID: PMC97022 DOI: 10.1128/iai.67.11.6221-6224.1999] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified two novel beta-defensin precursors, preproGBD-1 and preproGBD-2, in the tissues of a goat. Although the precursors were identical in 96.8% of their bases and 88.2% (60 of 68) of their amino acids, preproGBD-1 was expressed principally in the tongue and respiratory tract, whereas preproGBD-2 expression predominated throughout the intestine. These findings exemplify the phenomenon of tissue-specific expression in a family of host defense peptides that arose before the avian and mammalian lineages diverged.
Collapse
Affiliation(s)
- C Zhao
- Department of Medicine, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
420
|
Wada A, Mori N, Oishi K, Hojo H, Nakahara Y, Hamanaka Y, Nagashima M, Sekine I, Ogushi K, Niidome T, Nagatake T, Moss J, Hirayama T. Induction of human beta-defensin-2 mRNA expression by Helicobacter pylori in human gastric cell line MKN45 cells on cag pathogenicity island. Biochem Biophys Res Commun 1999; 263:770-4. [PMID: 10512755 DOI: 10.1006/bbrc.1999.1452] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Helicobacter pylori is an etiological agent of gastritis, peptic ulcer, and gastric cancer. Human beta-defensin-2 (hBD-2) is an antimicrobial peptide which belongs to one of the most important host defense systems against bacterial infection in several epithelial tissues. We studied the effect of H. pylori on the expression of hBD-2 mRNA in MKN45 gastric mucosal cells. H. pylori, but not culture filtrate, increased the hBD-2 mRNA level in MKN45 cells; the inductive effect of H. pylori was not detected with Intestine 407 cells. Among H. pylori strains, strain OHPC0002, which lacks a cag Pathogenicity Island (PAI), did not induce hBD-2 mRNA in MKN45 cells. These results suggested that H. pylori cag PAI is critical for the induction of hBD-2 mRNA in MKN45 cells. Exposure of MKN45 cells to Salmonella typhimurium, S. enteritidis, S. typhi, and S. dublin, but not Escherichia coli ML35, also resulted in induction of hBD-2 mRNA.
Collapse
Affiliation(s)
- A Wada
- Department of Bacteriology, Nagasaki University, Sakamoto, Nagasaki, 852-8523, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
421
|
Jia HP, Mills JN, Barahmand-Pour F, Nishimura D, Mallampali RK, Wang G, Wiles K, Tack BF, Bevins CL, McCray PB. Molecular cloning and characterization of rat genes encoding homologues of human beta-defensins. Infect Immun 1999; 67:4827-33. [PMID: 10456937 PMCID: PMC96815 DOI: 10.1128/iai.67.9.4827-4833.1999] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
beta-Defensins are cationic peptides with broad-spectrum antimicrobial activity that may play a role in mucosal defenses of several organs. They have been isolated in several species, and in humans, two beta-defensins have been identified. Here, we report the identification of two genes encoding beta-defensin homologues in the rat. Partial cDNAs were found by searching the expressed-sequence-tag database, and primers were designed to generate full-length mRNA coding sequences. One gene was highly similar to the human beta-defensin-1 (HBD-1) gene and mouse beta-defensin-1 gene at both the nucleic acid and amino acid levels and was termed rat beta-defensin-1 (RBD-1). The other gene, named RBD-2, was homologous to the HBD-2 and bovine tracheal antimicrobial peptide (TAP) genes. The predicted prepropeptides were strongly cationic, were 69 and 63 residues in length for RBD-1 and RBD-2, respectively, and contained the six-cysteine motif characteristic of beta-defensins. The beta-defensin genes mapped closely on rat chromosome 16 and were closely linked to the alpha-defensins genes, suggesting that they are part of a gene cluster, similar to the organization reported for humans. Northern blot analysis showed that both RBD-1 and RBD-2 mRNA transcripts were approximately 0.5 kb in length; RBD-1 mRNA was abundantly transcribed in the rat kidney, while RBD-2 was prevalent in the lung. Reverse transcription-PCR indicated that RBD-1 and RBD-2 mRNAs were distributed in a variety of other tissues. In the lung, RBD-1 mRNA expression localized to the tracheal epithelium while RBD-2 was expressed in alveolar type II cells. In conclusion, we characterized two novel beta-defensin homologues in the rat. The rat may be a useful model to investigate the function and contribution of beta-defensins to host defense in the lung, kidney, and other tissues.
Collapse
Affiliation(s)
- H P Jia
- Department of Pediatrics, University of Iowa College of Medicine, Iowa City, Iowa, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
422
|
Kalfa VC, Brogden KA. Anionic antimicrobial peptide-lysozyme interactions in innate pulmonary immunity. Int J Antimicrob Agents 1999; 13:47-51. [PMID: 10563404 DOI: 10.1016/s0924-8579(99)00095-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The respiratory tract contains numerous antimicrobial factors necessary for normal innate pulmonary defense. Although many of these molecules reside in airway surface liquid (ASL) simultaneously, little information exists concerning antagonistic, additive, or synergistic interactions. Since both cationic lysozyme and anionic antimicrobial peptides (AP) are found in high concentrations in ASL, the purpose of this study was to assess any interaction that might affect antimicrobial activity. For this, Pasteurella haemolytica, Micrococcus lysodeikticus, or Pseudomonas aeruginosa were added to egg white lysozyme (3.9-250.0 microg/ml) or human neutrophil lysozyme (0.8-50.0 microg/ml) and H-GADDDDD-OH (from 0.01 to 0.50 mM) mixtures in 50, 100, or 150 mM NaCl; incubated for 2 h; and then plated. In this assay, the MICs of AP for P. haemolytica, M. lysodeikticus, and P. aeruginosa varied slightly depending upon the concentration of NaCl and MICs generally increased slightly with increasing NaCl concentrations. The MIC of lysozyme for P. haemolytica and M. lysodeikticus also increased slightly with increasing NaCl concentrations. The MIC of lysozyme for P. aeruginosa was greater than 50 microg/ml and did not vary with increasing NaCl concentrations. When AP was combined with lysozyme in 50, 100, or 150 mM NaCl concentrations, there was no significant interaction that affected antimicrobial activity. In conclusion, the MICs of AP generally increased with increasing NaCl concentrations but lysozyme and AP appeared not to interact significantly at physiologically relevant concentrations.
Collapse
Affiliation(s)
- V C Kalfa
- Respiratory and Neurologic Disease Research Unit, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA 50010, USA
| | | |
Collapse
|
423
|
Hecht G. Innate mechanisms of epithelial host defense: spotlight on intestine. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C351-8. [PMID: 10484321 DOI: 10.1152/ajpcell.1999.277.3.c351] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The single layer of epithelial cells lining the intestinal tract is charged with a most difficult task: protecting the underlying biological compartments from both the normal commensal flora that reside within the intestinal lumen as well as the uninvited pathogens. To such an end, the intestinal epithelial cells are equipped with a panoply of defense mechanisms, both constitutive and inducible. This review focuses only on those defense mechanisms that are initiated and executed by the intestinal epithelial cell. Fitting these strict criteria are three major categories of epithelial host defense: enhanced salt and water secretion, expression of antimicrobial proteins and peptides, and production of intestinal mucins. Each of these areas is discussed in this review.
Collapse
Affiliation(s)
- G Hecht
- Section of Digestive and Liver Diseases, Department of Medicine, University of Illinois and West Side Veterans Affairs Medical Center, Chicago, Illinois 60612, USA.
| |
Collapse
|
424
|
Ma W, Korngreen A, Uzlaner N, Priel Z, Silberberg SD. Extracellular sodium regulates airway ciliary motility by inhibiting a P2X receptor. Nature 1999; 400:894-7. [PMID: 10476971 DOI: 10.1038/23743] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mucociliary system is responsible for clearing inhaled particles and pathogens from the airways. This important task is performed by the beating of cilia and the consequent movement of mucus from the lungs to the upper airways. Because ciliary motility is enhanced by elevated intracellular calcium concentrations, inhibition of calcium influx could lead to disease by jeopardizing mucociliary clearance. Several hormones and neurotransmitters stimulate ciliary motility, one of the most potent of which is extracellular ATP (ATP0), which acts by releasing calcium ions from internal stores and by activating calcium influx. Here we show that, in airway ciliated cells, extracellular sodium ions (Na+(0)) specifically and competitively inhibit an ATP0-gated channel that is permeable to calcium ions, and thereby attenuate ATP0-induced ciliary motility. Our finding points to a physiological role for Na+(0) in ciliary function, and indicates that mucociliary clearance might be improved in respiratory disorders such as chronic bronchitis and cystic fibrosis by decreasing the sodium concentration of the airway surface fluid in which the cilia are bathed.
Collapse
Affiliation(s)
- W Ma
- Department of Chemistry, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | |
Collapse
|
425
|
Zhang G, Hiraiwa H, Yasue H, Wu H, Ross CR, Troyer D, Blecha F. Cloning and characterization of the gene for a new epithelial beta-defensin. Genomic structure, chromosomal localization, and evidence for its constitutive expression. J Biol Chem 1999; 274:24031-7. [PMID: 10446172 DOI: 10.1074/jbc.274.34.24031] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian beta-defensins are endogenous cysteine-rich peptide antibiotics that are produced either by epithelial cells lining the respiratory, digestive, and urogenital tracts or by granulocytes and macrophages. A growing body of evidence has implicated these peptides in host defense, particularly mucosal innate immunity. We previously reported the cloning of the full-length cDNA for a porcine beta-defensin (pBD-1), which was found to be expressed throughout the airway and oral mucosa. Here, we provide the structural organization of the pBD-1 gene, showing that the entire gene spans approximately 1.9 kilobases with two short exons separated by a 1.5-kilobase intron. Fluorescence in situ hybridization mapped the pBD-1 gene to porcine chromosome 15q14-q15. 1 within a region of conserved synteny to the chromosomal locations of human and mouse alpha- and beta-defensins. We also provide several independent lines of evidence showing that the pBD-1 gene is expressed constitutively during inflammation and infection, despite its resemblance to many inducible epithelial beta-defensins in amino acid sequence, genomic structure, and sites of expression. First, stimulation of primary porcine tongue epithelial cells with lipopolysaccharide, tumor necrosis factor-alpha, and interleukin (IL)-1beta failed to up-regulate the expression of pBD-1 mRNA. Second, pBD-1 gene expression was not enhanced in either digestive or respiratory mucosa of pigs following a 2-day infection with Salmonella typhimurium or Actinobacillus pleuropneumoniae. Last, direct transfection of the pBD-1 gene promoter into NIH/3T3 cells showed no difference in reporter gene activity in response to stimulation by lipopolysaccharide and IL-1beta. The constitutive expression of pBD-1 in airway and oral mucosa, which is consistent with a lack of consensus binding sites for nuclear factor-kappaB or NF-IL-6 in its promoter region, suggests that it may play a surveillance role in maintaining the steady state of microflora on mucosal surfaces.
Collapse
Affiliation(s)
- G Zhang
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | | | | | |
Collapse
|
426
|
Affiliation(s)
- S J Chanock
- Immunocompromised Host Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892 USA
| | | |
Collapse
|
427
|
Bals R, Wang X, Meegalla RL, Wattler S, Weiner DJ, Nehls MC, Wilson JM. Mouse beta-defensin 3 is an inducible antimicrobial peptide expressed in the epithelia of multiple organs. Infect Immun 1999; 67:3542-7. [PMID: 10377137 PMCID: PMC116542 DOI: 10.1128/iai.67.7.3542-3547.1999] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One component of host defense at mucosal surfaces is epithelium-derived peptides with antimicrobial activity called defensins. We describe in this report the isolation and characterization of a murine homologue of human beta-defensin 2 (hBD-2) called mouse beta-defensin 3 (mBD-3). The predicted amino acid sequence shows the hallmark features of other known epithelial defensins, including the ordered array of six cysteine residues. Analysis of a genomic clone of mBD-3 revealed two exons separated by a 1.7-kb intron. The mBD-3 gene is localized at the proximal portion of chromosome 8, the site where genes for mouse alpha- and beta-defensins are found. Under basal condition, mBD-3 transcripts were detected at low levels in epithelial cells of surface organs, such as the intestine and lung. After instillation of Pseudomonas aeruginosa PAO1 into mouse airways, mBD-3-specific mRNA was upregulated significantly not only in large airways but also in the small bowel and liver. Recombinant mBD-3 peptide, produced from a baculovirus expression system, showed antimicrobial activity against P. aeruginosa PAO1 (MIC of 8 micrograms/ml) and Escherichia coli D31 (MIC of 16 micrograms/ml) in a salt-dependent manner. This study demonstrates that a murine homologue of hBD-2 is present in the respiratory system and other mucosal surfaces. These similarities between murine and human host defense apparatus provide further impetus to evaluate the mouse as a model for studying the human innate host defense system.
Collapse
Affiliation(s)
- R Bals
- Institute for Human Gene Therapy, Department of Medicine and Molecular and Cellular Engineering, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
428
|
Abstract
Human beta-defensin-2 (HBD-2) is a cysteine-rich cationic low molecular weight antimicrobial peptide recently discovered in psoriatic lesional skin. It is produced by a number of epithelial cells and exhibits potent antimicrobial activity against Gram-negative bacteria and Candida, but not Gram-positive Staphylococcus aureus. HBD-2 represents the first human defensin that is produced following stimulation of epithelial cells by contact with microorganisms such as Pseudomonas aeruginosa or cytokines such as TNF-alpha and IL-1 beta. The HBD-2 gene and protein are locally expressed in keratinocytes associated with inflammatory skin lesions such as psoriasis as well as in the infected lung epithelia of patients with cystic fibrosis. It is intriguing to speculate that HBD-2 is a dynamic component of the local epithelial defense system of the skin and respiratory tract having a role to protect surfaces from infection, and providing a possible reason why skin and lung infections with Gram-negative bacteria are rather rare.
Collapse
Affiliation(s)
- J M Schröder
- Department of Dermatology, University of Kiel, Germany.
| | | |
Collapse
|
429
|
Shi J, Zhang G, Wu H, Ross C, Blecha F, Ganz T. Porcine epithelial beta-defensin 1 is expressed in the dorsal tongue at antimicrobial concentrations. Infect Immun 1999; 67:3121-7. [PMID: 10338529 PMCID: PMC96630 DOI: 10.1128/iai.67.6.3121-3127.1999] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epithelial cells and phagocytes contain antimicrobial polypeptides that participate in innate host defense. A recently cloned porcine beta-defensin, PBD-1, was detected by Northern organ blots exclusively in the tongue epithelium. We generated recombinant PBD-1 peptide by using a baculovirus-insect cell expression system and obtained two forms (PBD-142 and PBD-138), which differed by N-terminal truncation. Only PBD-142 was found in scrapings of the surface of the dorsal tongue or the buccal mucosa. Immunohistochemical staining with antibody to PBD-142 revealed that PBD-1 was highly concentrated in an approximately 0.1-mm-thick layer in the cornified tips of the filiform (but not fungiform) papillae of the dorsal tongue and in the superficial squamous cell layers of the buccal mucosa. By scraping, extraction, and semiquantitative Western blotting, the concentration of PBD-1 in the dorsal tongue surface and the buccal mucosa was estimated at 20 to 100 micrograms/ml. PBD-1 had antibacterial activity against Escherichia coli, Salmonella typhimurium, Listeria monocytogenes, and Candida albicans in 10 mM sodium phosphate buffer (pH 7.4). Added NaCl progressively inhibited the activity of PBD-1 against E. coli and C. albicans. In 10 mM sodium phosphate with 125 mM NaCl, the combinations of sublethal concentrations of PBD-1 and the porcine neutrophil peptide PG-3, PR-39, or PR-26 showed synergistic activity against E. coli or the multidrug-resistant S. typhimurium DT104. At its physiologic concentration, PBD-1 has antimicrobial effects under both low- and high-salt conditions encountered in the oral cavity and may contribute to the antimicrobial barrier properties of the dorsal tongue and oral epithelium.
Collapse
Affiliation(s)
- J Shi
- Department of Medicine, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
430
|
Abstract
Mammalian epithelial surfaces are remarkable for their ability to provide critical physiologic functions in the face of frequent microbial challenges. The fact that these mucosal surfaces remain infection-free in the normal host suggests that highly effective mechanisms of host defense have evolved to protect these environmentally exposed tissues. Throughout the animal and plant kingdoms, endogenous genetically encoded antimicrobial peptides have been shown to be key elements in the response to epithelial compromise and microbial invasion. In mammals, a variety of such peptides have been identified, including the well-characterized defensins and cathelicidins. A major source of these host defense molecules is circulating phagocytic leukocytes. However, more recently, it has been shown that resident epithelial cells of the skin and respiratory, alimentary, and genitourinary tracts also synthesize and release antimicrobial peptides. Both in vitro and in vivo data support the hypothesis that these molecules are important contributors to intrinsic mucosal immunity. Alterations in their level of expression or biologic activity can predispose the organism to microbial infection. The regulatory and developmental aspects of antimicrobial peptide synthesis are discussed from a perspective that emphasizes the possible relevance to pediatric medicine.
Collapse
Affiliation(s)
- K M Huttner
- Division of Newborn Medicine, Children's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
431
|
Travis SM, Conway BA, Zabner J, Smith JJ, Anderson NN, Singh PK, Greenberg EP, Welsh MJ. Activity of abundant antimicrobials of the human airway. Am J Respir Cell Mol Biol 1999; 20:872-9. [PMID: 10226057 DOI: 10.1165/ajrcmb.20.5.3572] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human airways produce several antimicrobial factors; the most abundant are lysozyme and lactoferrin. Despite their likely importance in preventing infection, and their possible key role in the pathogenesis of cystic fibrosis (CF), we know little about their antibacterial activity in the context of the CF airway. We found that abundant airway antimicrobial factors kill common CF pathogens, although Burkholderia was relatively resistant. To study the antibacterial activity, we developed a rapid, sensitive, and quantitative in vitro luminescence assay. Because NaCl concentrations may be elevated in CF airway surface liquid, we tested the effect of salt on antibacterial activity. Activity of individual factors and of airway lavage fluid was inhibited by high ionic strength, and it was particularly sensitive to divalent cations. However, it was not inhibited by nonionic osmolytes and thus did not require hypotonic liquid. The inhibition by ionic strength could be partially compensated by increased concentrations of antibacterial factors, thus there was no one unique salt concentration for inhibition. CF airway secretions also contain abundant mucin and elastase; however, these had no effect on antibacterial activity of lysozyme, lactoferrin, or airway lavage fluids. When studied at low NaCl concentrations, CF and non-CF airway lavage fluids contained similar levels of antibacterial activity. These results suggest approaches toward developing treatments aimed at preventing or reducing airway infections in individuals with CF.
Collapse
Affiliation(s)
- S M Travis
- Howard Hughes Medical Institute, Departments of Internal Medicine, Microbiology, Pediatrics, and Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, Iowa, USA
| | | | | | | | | | | | | | | |
Collapse
|
432
|
Bevins CL. Scratching the surface: inroads to a better understanding of airway host defense. Am J Respir Cell Mol Biol 1999; 20:861-3. [PMID: 10226055 DOI: 10.1165/ajrcmb.20.5.f149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- C L Bevins
- Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, USA.
| |
Collapse
|
433
|
|
434
|
Bals R, Weiner DJ, Meegalla RL, Wilson JM. Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J Clin Invest 1999; 103:1113-7. [PMID: 10207162 PMCID: PMC408283 DOI: 10.1172/jci6570] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent studies suggest that the gene defect in cystic fibrosis (CF) leads to a breach in innate immunity. We describe a novel genetic strategy for reversing the CF-specific defect of antimicrobial activity by transferring a gene encoding a secreted cathelicidin peptide antibiotic into the airway epithelium grown in a human bronchial xenograft model. The airway surface fluid (ASF) from CF xenografts failed to kill Pseudomonas aeruginosa or Staphylococcus aureus. Partial reconstitution of CF transmembrane conductance regulator expression after adenovirus-mediated gene transfer restored the antimicrobial activity of ASF from CF xenografts to normal levels. Exposure of CF xenografts to an adenovirus expressing the human cathelicidin LL-37/hCAP-18 increased levels of this peptide in the ASF three- to fourfold above the normal concentrations, which were equivalent in ASF from CF and normal xenografts before gene transfer. The increase of LL-37 was sufficient to restore bacterial killing to normal levels. The data presented describe an alternative genetic approach to the treatment of CF based on enhanced expression of an endogenous antimicrobial peptide and provide strong evidence that expression of antimicrobial peptides indeed protects against bacterial infection.
Collapse
Affiliation(s)
- R Bals
- Department of Medicine and Molecular and Cellular Engineering, Institute for Human Gene Therapy, The Wistar Institute, Philadelphia, Pennsylvania 19104-4268, USA
| | | | | | | |
Collapse
|
435
|
Lamberty M, Ades S, Uttenweiler-Joseph S, Brookhart G, Bushey D, Hoffmann JA, Bulet P. Insect immunity. Isolation from the lepidopteran Heliothis virescens of a novel insect defensin with potent antifungal activity. J Biol Chem 1999; 274:9320-6. [PMID: 10092609 DOI: 10.1074/jbc.274.14.9320] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lepidoptera have been reported to produce several antibacterial peptides in response to septic injury. However, in marked contrast to other insect groups, no inducible antifungal molecules had been described so far in this insect order. Surprisingly, also cysteine-rich antimicrobial peptides, which predominate in the antimicrobial defense of other insects, had not been discovered in Lepidoptera. Here we report the isolation from the hemolymph of immune induced larvae of the lepidopteran Heliothis virescens of a cysteine-rich molecule with exclusive antifungal activity. We have fully characterized this antifungal molecule, which has significant homology with the insect defensins, a large family of antibacterial peptides directed against Gram-positive strains. Interestingly, the novel peptide shows also similarities with the antifungal peptide drosomycin from Drosophila. Thus, Lepidoptera appear to have built their humoral immune response against bacteria on cecropins and attacins. In addition, we report that Lepidoptera have conferred antifungal properties to the well conserved structure of antibacterial insect defensins through amino acid replacements.
Collapse
Affiliation(s)
- M Lamberty
- Institut de Biologie Moléculaire et Cellulaire, Unité Propre de Recherche 9022, CNRS, "Réponse Immunitaire et Développement chez les Insectes," 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
436
|
Bals R, Weiner DJ, Wilson JM. The innate immune system in cystic fibrosis lung disease. J Clin Invest 1999; 103:303-7. [PMID: 9927489 PMCID: PMC407907 DOI: 10.1172/jci6277] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- R Bals
- Institute for Human Gene Therapy, Departments of Medicine and Molecular and Cellular Engineering, The Wistar Institute, Philadelphia, Pennsylvania 19104-4268, USA
| | | | | |
Collapse
|
437
|
Abstract
During the past year, additional insights into systems that regulate antimicrobial peptide production in Drosophila were reported. Granulysin, a peptide stored in the cytoplasmic granules of human natural killer cells and cytolytic T cells, was shown to kill Mycobacterium tuberculosis. More data implicating antimicrobial peptides in the pathogenesis of bronchopulmonary infections in cystic fibrosis appeared. Studies that examined the potential contributions of antimicrobial peptides to regional innate immunity gained in prominence. Efforts to design peptide analogues to prevent or treat infections continued.
Collapse
Affiliation(s)
- R I Lehrer
- Department of Medicine, The Molecular Biology Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
438
|
Morrison GM, Davidson DJ, Dorin JR. A novel mouse beta defensin, Defb2, which is upregulated in the airways by lipopolysaccharide. FEBS Lett 1999; 442:112-6. [PMID: 9923615 DOI: 10.1016/s0014-5793(98)01630-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Studies have shown that beta defensins are present in the human airways and may be relevant to the pathogenesis of cystic fibrosis lung disease. Here we report the identification of a novel mouse gene, Defb2, which shows sequence similarity to previously described mouse and human airway beta defensins. Defb2 does not appear to be expressed in the airways of untreated mice but it is upregulated in response to lipopolysaccharide. The induced expression of this gene by an inflammatory stimulus strongly suggests that this defensin contributes to host defence at the mucosal surface of the airways.
Collapse
Affiliation(s)
- G M Morrison
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, UK
| | | | | |
Collapse
|