401
|
Fairfield H, Falank C, Avery L, Reagan MR. Multiple myeloma in the marrow: pathogenesis and treatments. Ann N Y Acad Sci 2016; 1364:32-51. [PMID: 27002787 PMCID: PMC4806534 DOI: 10.1111/nyas.13038] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple myeloma (MM) is a B cell malignancy resulting in osteolytic lesions and fractures. In the disease state, bone healing is limited owing to increased osteoclastic and decreased osteoblastic activity, as well as an MM-induced forward-feedback cycle where bone-embedded growth factors further enhance tumor progression as bone is resorbed. Recent work on somatic mutation in MM tumors has provided insight into cytogenetic changes associated with this disease; the initiating driver mutations causing MM are diverse because of the complexity and multitude of mutations inherent in MM tumor cells. This manuscript provides an overview of MM pathogenesis by summarizing cytogenic changes related to oncogenes and tumor suppressors associated with MM, reviewing risk factors, and describing the disease progression from monoclonal gammopathy of undetermined significance to overt MM. It also highlights the importance of the bone marrow microenvironment (BMM) in the establishment and progression of MM, as well as associated MM-induced bone disease, and the relationship of the bone marrow to current and future therapeutics. This review highlights why understanding the basic biology of the healthy and diseased BMM is crucial in the quest for better treatments and work toward a cure for genetically diverse diseases such as MM.
Collapse
Affiliation(s)
| | | | | | - Michaela R Reagan
- Maine Medical Center Research Institute, Scarborough, Maine
- University of Maine, Orono, Maine
| |
Collapse
|
402
|
van Pel M, Fibbe WE, Schepers K. The human and murine hematopoietic stem cell niches: are they comparable? Ann N Y Acad Sci 2015; 1370:55-64. [DOI: 10.1111/nyas.12994] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Melissa van Pel
- Department of Immunohematology and Blood Transfusion; Leiden University Medical Center; Leiden the Netherlands
| | - Willem E. Fibbe
- Department of Immunohematology and Blood Transfusion; Leiden University Medical Center; Leiden the Netherlands
| | - Koen Schepers
- Department of Immunohematology and Blood Transfusion; Leiden University Medical Center; Leiden the Netherlands
| |
Collapse
|
403
|
Miron RJ, Bosshardt DD. OsteoMacs: Key players around bone biomaterials. Biomaterials 2015; 82:1-19. [PMID: 26735169 DOI: 10.1016/j.biomaterials.2015.12.017] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
Osteal macrophages (OsteoMacs) are a special subtype of macrophage residing in bony tissues. Interesting findings from basic research have pointed to their vast and substantial roles in bone biology by demonstrating their key function in bone formation and remodeling. Despite these essential findings, much less information is available concerning their response to a variety of biomaterials used for bone regeneration with the majority of investigation primarily focused on their role during the foreign body reaction. With respect to biomaterials, it is well known that cells derived from the monocyte/macrophage lineage are one of the first cell types in contact with implanted biomaterials. Here they demonstrate extremely plastic phenotypes with the ability to differentiate towards classical M1 or M2 macrophages, or subsequently fuse into osteoclasts or multinucleated giant cells (MNGCs). These MNGCs have previously been characterized as foreign body giant cells and associated with biomaterial rejection, however more recently their phenotypes have been implicated with wound healing and tissue regeneration by studies demonstrating their expression of key M2 markers around biomaterials. With such contrasting hypotheses, it becomes essential to better understand their roles to improve the development of osteo-compatible and osteo-promotive biomaterials. This review article expresses the necessity to further study OsteoMacs and MNGCs to understand their function in bone biomaterial tissue integration including dental/orthopedic implants and bone grafting materials.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Oral Surgery and Stomatology, Department of Periodontology, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland.
| | - Dieter D Bosshardt
- Department of Oral Surgery and Stomatology, Department of Periodontology, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland.
| |
Collapse
|
404
|
Sinder BP, Pettit AR, McCauley LK. Macrophages: Their Emerging Roles in Bone. J Bone Miner Res 2015; 30:2140-9. [PMID: 26531055 PMCID: PMC4876707 DOI: 10.1002/jbmr.2735] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 12/14/2022]
Abstract
Macrophages are present in nearly all tissues and are critical for development, homeostasis, and regeneration. Resident tissue macrophages of bone, termed osteal macrophages, are recently classified myeloid cells that are distinct from osteoclasts. Osteal macrophages are located immediately adjacent to osteoblasts, regulate bone formation, and play diverse roles in skeletal homeostasis. Genetic or pharmacological modulation of macrophages in vivo results in significant bone phenotypes, and these phenotypes depend on which macrophage subsets are altered. Macrophages are also key mediators of osseous wound healing and fracture repair, with distinct roles at various stages of the repair process. A central function of macrophages is their phagocytic ability. Each day, billions of cells die in the body and efferocytosis (phagocytosis of apoptotic cells) is a critical process in both clearing dead cells and recruitment of replacement progenitor cells to maintain homeostasis. Recent data suggest a role for efferocytosis in bone biology and these new mechanisms are outlined. Finally, although macrophages have an established role in primary tumors, emerging evidence suggests that macrophages in bone support cancers which preferentially metastasize to the skeleton. Collectively, this developing area of osteoimmunology raises new questions and promises to provide novel insights into pathophysiologic conditions as well as therapeutic and regenerative approaches vital for skeletal health.
Collapse
Affiliation(s)
- Benjamin P Sinder
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Allison R Pettit
- Blood and Bone Diseases Program, Mater Research Institute–The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Medical School, Ann Arbor, MI, USA
| |
Collapse
|
405
|
Jacobsen RN, Nowlan B, Brunck ME, Barbier V, Winkler IG, Levesque JP. Fms-like tyrosine kinase 3 (Flt3) ligand depletes erythroid island macrophages and blocks medullar erythropoiesis in the mouse. Exp Hematol 2015; 44:207-12.e4. [PMID: 26607596 DOI: 10.1016/j.exphem.2015.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/15/2015] [Accepted: 11/05/2015] [Indexed: 01/20/2023]
Abstract
The cytokines granulocyte colony-stimulating factor (G-CSF) and Flt3 ligand (Flt3-L) mobilize hematopoietic stem and progenitor cells into the peripheral blood of primates, humans, and mice. We recently reported that G-CSF administration causes a transient blockade of medullar erythropoiesis by suppressing erythroblastic island (EI) macrophages in the bone marrow. In the study described here, we investigated the effect of mobilizing doses of Flt3-L on erythropoiesis in mice in vivo. Similar to G-CSF, Flt3-L caused whitening of the bone marrow with significant reduction in the numbers of EI macrophages and erythroblasts. This was compensated by an increase in the numbers of EI macrophages and erythroblasts in the spleen. However, unlike G-CSF, Flt3-L had an indirect effect on EI macrophages, as it was not detected at the surface of EI macrophages or erythroid progenitors.
Collapse
Affiliation(s)
- Rebecca N Jacobsen
- Stem Cell Biology Group, Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia; School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Bianca Nowlan
- Stem Cell Biology Group, Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Marion E Brunck
- Stem Cell Biology Group, Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Valerie Barbier
- Stem Cells and Cancer Group, Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Ingrid G Winkler
- Stem Cells and Cancer Group, Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Jean-Pierre Levesque
- Stem Cell Biology Group, Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia; School of Medicine, University of Queensland, Herston, Queensland, Australia.
| |
Collapse
|
406
|
Ou CC, Hsiao YM, Hou TY, Wu MF, Ko JL. Fungal immunomodulatory proteins alleviate docetaxel-induced adverse effects. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
407
|
Hao S, Wang Y, Dong F, Cheng T. [Crosstalk between hematopoietic stem cells and immune system]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2015; 36:1043-8. [PMID: 26759110 PMCID: PMC7342323 DOI: 10.3760/cma.j.issn.0253-2727.2015.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Sha Hao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yajie Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
408
|
The Hematopoietic Niche in Myeloproliferative Neoplasms. Mediators Inflamm 2015; 2015:347270. [PMID: 26696752 PMCID: PMC4677214 DOI: 10.1155/2015/347270] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/12/2015] [Indexed: 12/18/2022] Open
Abstract
Specialized microanatomical areas of the bone marrow provide the signals that are mandatory for the maintenance and regulation of hematopoietic stem cells (HSCs) and progenitor cells. A complex microenvironment adjacent to the marrow vasculature (vascular niche) and close to the endosteum (endosteal niche) harbors multiple cell types including mesenchymal stromal cells and their derivatives such as CAR cells expressing high levels of chemokines C-X-C motif ligand 12 and early osteoblastic lineage cells, endothelial cells, and megakaryocytes. The characterization of the cellular and molecular networks operating in the HSC niche has opened new perspectives for the understanding of the bidirectional cross-talk between HSCs and stromal cell populations in normal and malignant conditions. A structural and functional remodeling of the niche may contribute to the development of myeloproliferative neoplasms (MPN). Malignant HSCs may alter the function and survival of MSCs that do not belong to the neoplastic clone. For example, a regression of nestin+ MSCs by apoptosis has been attributed to neuroglial damage in MPN. Nonneoplastic MSCs in turn can promote aggressiveness and drug resistance of malignant cells. In the future, strategies to counteract the pathological interaction between the niche and neoplastic HSCs may offer additional treatment strategies for MPN patients.
Collapse
|
409
|
Calvi LM, Link DC. The hematopoietic stem cell niche in homeostasis and disease. Blood 2015; 126:2443-51. [PMID: 26468230 PMCID: PMC4661168 DOI: 10.1182/blood-2015-07-533588] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/06/2015] [Indexed: 12/12/2022] Open
Abstract
The bone marrow microenvironment contains a heterogeneous population of stromal cells organized into niches that support hematopoietic stem cells (HSCs) and other lineage-committed hematopoietic progenitors. The stem cell niche generates signals that regulate HSC self-renewal, quiescence, and differentiation. Here, we review recent studies that highlight the heterogeneity of the stromal cells that comprise stem cell niches and the complexity of the signals that they generate. We highlight emerging data that stem cell niches in the bone marrow are not static but instead are responsive to environmental stimuli. Finally, we review recent data showing that hematopoietic niches are altered in certain hematopoietic malignancies, and we discuss how these alterations might contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Laura M Calvi
- Department of Medicine and Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY; and
| | - Daniel C Link
- Departments of Medicine and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
410
|
Reagan MR, Rosen CJ. Navigating the bone marrow niche: translational insights and cancer-driven dysfunction. Nat Rev Rheumatol 2015; 12:154-68. [PMID: 26607387 DOI: 10.1038/nrrheum.2015.160] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bone marrow niche consists of stem and progenitor cells destined to become mature cells such as haematopoietic elements, osteoblasts or adipocytes. Marrow cells, influenced by endocrine, paracrine and autocrine factors, ultimately function as a unit to regulate bone remodelling and haematopoiesis. Current evidence highlights that the bone marrow niche is not merely an anatomic compartment; rather, it integrates the physiology of two distinct organ systems, the skeleton and the marrow. The niche has a hypoxic microenvironment that maintains quiescent haematopoietic stem cells (HSCs) and supports glycolytic metabolism. In response to biochemical cues and under the influence of neural, hormonal, and biochemical factors, marrow stromal elements, such as mesenchymal stromal cells (MSCs), differentiate into mature, functioning cells. However, disruption of the niche can affect cellular differentiation, resulting in disorders ranging from osteoporosis to malignancy. In this Review, we propose that the niche reflects the vitality of two tissues - bone and blood - by providing a unique environment for stem and stromal cells to flourish while simultaneously preventing disproportionate proliferation, malignant transformation or loss of the multipotent progenitors required for healing, functional immunity and growth throughout an organism's lifetime. Through a fuller understanding of the complexity of the niche in physiologic and pathologic states, the successful development of more-effective therapeutic approaches to target the niche and its cellular components for the treatment of rheumatic, endocrine, neoplastic and metabolic diseases becomes achievable.
Collapse
Affiliation(s)
- Michaela R Reagan
- Center for Molecular Medicine, Maine Medical Centre Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| | - Clifford J Rosen
- Center for Molecular Medicine, Maine Medical Centre Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| |
Collapse
|
411
|
Gomes AC, Gomes MS. Hematopoietic niches, erythropoiesis and anemia of chronic infection. Exp Hematol 2015; 44:85-91. [PMID: 26615156 DOI: 10.1016/j.exphem.2015.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 02/07/2023]
Abstract
Anemia is a significant co-morbidity of chronic infections, as well as other inflammatory diseases. Anemia of chronic infection results from defective bone marrow erythropoiesis. Although the limitation of iron availability has been considered a key factor, the exact mechanisms underlying blockade in erythroid generation during infection are not fully understood. Erythropoiesis is a tightly regulated process that is very sensitive to environmental changes. During the last decade, the importance of the bone marrow hematopoietic niche has been progressively acknowledged. Several bone marrow cell types (such as macrophages, mesenchymal stem cells, and progenitor cells) and molecular mediators (such as CXCL12) have been identified as fundamental for both the maintenance of hematopoietic stem cell pluripotency and their most adequate differentiation into each hematopoietic cell lineage. Importantly, both niche-supporting cells and hematopoietic progenitors were found to be able to sense local and systemic cues to adapt the hematopoietic output to needs of the organism. Here, we review how hematopoietic progenitors and niche-supporting cells sense and respond to stress cues and suggest a potential role for the hematopoietic niche in the development of anemia of chronic infection.
Collapse
Affiliation(s)
- Ana Cordeiro Gomes
- Graduate Program in Biomedical Sciences, ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria Salomé Gomes
- Department of Molecular Biology, ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
412
|
Evidence that a lipolytic enzyme--hematopoietic-specific phospholipase C-β2--promotes mobilization of hematopoietic stem cells by decreasing their lipid raft-mediated bone marrow retention and increasing the promobilizing effects of granulocytes. Leukemia 2015; 30:919-28. [PMID: 26582648 PMCID: PMC4823158 DOI: 10.1038/leu.2015.315] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 10/14/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) reside in the bone marrow (BM) microenvironment and are retained there by the interaction of membrane lipid raft-associated receptors, such as the α-chemokine receptor CXCR4 and the α4β1-integrin (VLA-4, very late antigen 4 receptor) receptor, with their respective specific ligands, stromal-derived factor 1 and vascular cell adhesion molecule 1, expressed in BM stem cell niches. The integrity of the lipid rafts containing these receptors is maintained by the glycolipid glycosylphosphatidylinositol anchor (GPI-A). It has been reported that a cleavage fragment of the fifth component of the activated complement cascade, C5a, has an important role in mobilizing HSPCs into the peripheral blood (PB) by (i) inducing degranulation of BM-residing granulocytes and (ii) promoting their egress from the BM into the PB so that they permeabilize the endothelial barrier for subsequent egress of HSPCs. We report here that hematopoietic cell-specific phospholipase C-β2 (PLC-β2) has a crucial role in pharmacological mobilization of HSPCs. On the one hand, when released during degranulation of granulocytes, it digests GPI-A, thereby disrupting membrane lipid rafts and impairing retention of HSPCs in BM niches. On the other hand, it is an intracellular enzyme required for degranulation of granulocytes and their egress from BM. In support of this dual role, we demonstrate that PLC-β2-knockout mice are poor mobilizers and provide, for the first time, evidence for the involvement of this lipolytic enzyme in the mobilization of HSPCs.
Collapse
|
413
|
Macrophages derived from THP-1 promote the osteogenic differentiation of mesenchymal stem cells through the IL-23/IL-23R/β-catenin pathway. Exp Cell Res 2015; 339:81-9. [PMID: 26477825 DOI: 10.1016/j.yexcr.2015.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 01/29/2023]
Abstract
Abnormal bone formation is a clinically significant dilemma for many conditions in response to injury, inflammation or genetic disease. However, the effects of inflammation on the osteogenic differentiation of mesenchymal stem cells (MSCs) remain unclear. IL-23 secretion from macrophages might contribute to the development of bone formation. Here, we investigated the stimulatory effects of THP-1 macrophage conditioned medium (MΦ CM) on the osteogenic differentiation of human MSCs and the associated signaling pathways. The osteogenic differentiation of MSCs was induced after exposure to osteogenic differentiation medium (OM). MΦ CM significantly increased alkaline phosphate (ALP) activity and calcium mineralization in MSCs. Osteogenic marker genes, including RUNX2, ALP and osteocalcin (OCN), were also up-regulated in MSCs after exposure to MΦ CM. Moreover, western blotting revealed that MΦ CM treatment induced STAT3 and β-catenin activation in MSCs. Furthermore, blockade of IL-23 in MΦ CM not only impaired the osteogenic-promotion effects of macrophage but also decreased the expression of osteogenic maker genes. However, IL-23R silencing suppressed MΦ CM-induced calcium mineralization and osteogenic maker gene expression in MSCs. These data suggest that macrophages derived from THP-1 promote the osteoblastic differentiation of MSCs through the IL-23/IL-23R/β-catenin pathway and macrophages might contribute to the development of bone formation in inflammation.
Collapse
|
414
|
Asada N, Sato M, Katayama Y. Communication of bone cells with hematopoiesis, immunity and energy metabolism. BONEKEY REPORTS 2015; 4:748. [PMID: 26512322 DOI: 10.1038/bonekey.2015.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/28/2015] [Indexed: 12/20/2022]
Abstract
The bone contains the bone marrow. The functional communication between bone cells and hematopoiesis has been extensively studied in the past decade or so. Osteolineage cells and their modulators, such as the sympathetic nervous system, macrophages and osteoclasts, form a complex unit to maintain the homeostasis of hematopoiesis, called the 'microenvironment'. Recently, bone-embedded osteocytes, the sensors of gravity and mechanical stress, have joined the microenvironment, and they are demonstrated to contribute to whole body homeostasis through the control of immunity and energy metabolism. The inter-organ communication orchestrated by the bone is summarized in this article.
Collapse
Affiliation(s)
- Noboru Asada
- Division of Hematology, Department of Medicine, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Mari Sato
- Division of Hematology, Department of Medicine, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Yoshio Katayama
- Division of Hematology, Department of Medicine, Kobe University Graduate School of Medicine , Kobe, Japan ; Department of Hematology, Kobe University Hospital , Kobe, Japan ; PRESTO, Japan Science and Technology Agency , Kawaguchi, Japan
| |
Collapse
|
415
|
Josefsdottir KS, King KY. Interferons coordinate a multifaceted defense. Cell Host Microbe 2015; 17:6-7. [PMID: 25590754 DOI: 10.1016/j.chom.2014.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
While interferons help kill virally infected cells, they can also promote systemic immune responses in distant tissues. In this issue of Cell Host & Microbe, Sun et al. (2015) demonstrate that type I interferon induces intestinal epithelial proliferation. This may help maintain a healthy gut and promote recovery from viral gastroenteritis.
Collapse
Affiliation(s)
- Kamilla S Josefsdottir
- Department of Pediatrics, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katherine Y King
- Department of Pediatrics, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
416
|
Uy GL, Hsu YMS, Schmidt AP, Stock W, Fletcher TR, Trinkaus KM, Westervelt P, DiPersio JF, Link DC. Targeting bone marrow lymphoid niches in acute lymphoblastic leukemia. Leuk Res 2015; 39:1437-42. [PMID: 26467815 DOI: 10.1016/j.leukres.2015.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/15/2015] [Accepted: 09/28/2015] [Indexed: 01/24/2023]
Abstract
In acute lymphoblastic leukemia (ALL) the bone marrow microenvironment provides growth and survival signals that may confer resistance to chemotherapy. Granulocyte colony-stimulating factor (G-CSF) potently inhibits lymphopoiesis by targeting stromal cells that comprise the lymphoid niche in the bone marrow. To determine whether lymphoid niche disruption by G-CSF sensitizes ALL cells to chemotherapy, we conducted a pilot study of G-CSF in combination with chemotherapy in patients with relapsed or refractory ALL. Thirteen patients were treated on study; three patients achieved a complete remission (CR/CRi) for an overall response rate of 23%. In the healthy volunteers, G-CSF treatment disrupted the lymphoid niche, as evidenced by reduced expression of CXCL12, interleukin-7, and osteocalcin. However, in most patients with relapsed/refractory ALL expression of these genes was markedly suppressed at baseline. Thus, although G-CSF treatment was associated with ALL cell mobilization into the blood, and increased apoptosis of bone marrow resident ALL cells, alterations in the bone marrow microenvironment were modest and highly variable. These data suggest that disruption of lymphoid niches by G-CSF to sensitize ALL cells to chemotherapy may be best accomplished in the consolidation where the bone marrow microenvironment is more likely to be normal.
Collapse
Affiliation(s)
- Geoffrey L Uy
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Yen-Michael S Hsu
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, United States
| | - Amy P Schmidt
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Wendy Stock
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Theresa R Fletcher
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kathryn M Trinkaus
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - Peter Westervelt
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - John F DiPersio
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Daniel C Link
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
417
|
|
418
|
Heideveld E, Masiello F, Marra M, Esteghamat F, Yağcı N, von Lindern M, Migliaccio ARF, van den Akker E. CD14+ cells from peripheral blood positively regulate hematopoietic stem and progenitor cell survival resulting in increased erythroid yield. Haematologica 2015; 100:1396-406. [PMID: 26294724 DOI: 10.3324/haematol.2015.125492] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/12/2015] [Indexed: 12/28/2022] Open
Abstract
Expansion of erythroblasts from human peripheral blood mononuclear cells is 4- to 15-fold more efficient than that of CD34(+) cells purified from peripheral blood mononuclear cells. In addition, purified CD34(+) and CD34(-) populations from blood do not reconstitute this erythroid yield, suggesting a role for feeder cells present in blood mononuclear cells that increase hematopoietic output. Immunodepleting peripheral blood mononuclear cells for CD14(+) cells reduced hematopoietic stem and progenitor cell expansion. Conversely, the yield was increased upon co-culture of CD34(+) cells with CD14(+) cells (full contact or transwell assays) or CD34(+) cells re-constituted in conditioned medium from CD14(+) cells. In particular, CD14(++)CD16(+) intermediate monocytes/macrophages enhanced erythroblast outgrowth from CD34(+) cells. No effect of CD14(+) cells on erythroblasts themselves was observed. However, 2 days of co-culturing CD34(+) and CD14(+) cells increased CD34(+) cell numbers and colony-forming units 5-fold. Proliferation assays suggested that CD14(+) cells sustain CD34(+) cell survival but not proliferation. These data identify previously unrecognized erythroid and non-erythroid CD34(-) and CD34(+) populations in blood that contribute to the erythroid yield. A flow cytometry panel containing CD34/CD36 can be used to follow specific stages during CD34(+) differentiation to erythroblasts. We have shown modulation of hematopoietic stem and progenitor cell survival by CD14(+) cells present in peripheral blood mononuclear cells which can also be found near specific hematopoietic niches in the bone marrow.
Collapse
Affiliation(s)
- Esther Heideveld
- Sanquin Research, Dept. of Hematopoiesis, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Francesca Masiello
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanita, Rome, Italy
| | - Manuela Marra
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanita, Rome, Italy
| | - Fatemehsadat Esteghamat
- Sanquin Research, Dept. of Hematopoiesis, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Nurcan Yağcı
- Sanquin Research, Dept. of Hematopoiesis, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Marieke von Lindern
- Sanquin Research, Dept. of Hematopoiesis, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Anna Rita F Migliaccio
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanita, Rome, Italy Division of Hematology and Medical Oncology, Mount Sinai School of Medicine and the Myeloproliferative Disorders Research Consortium, New York, NY, USA
| | - Emile van den Akker
- Sanquin Research, Dept. of Hematopoiesis, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
419
|
Strauss L, Sangaletti S, Consonni FM, Szebeni G, Morlacchi S, Totaro MG, Porta C, Anselmo A, Tartari S, Doni A, Zitelli F, Tripodo C, Colombo MP, Sica A. RORC1 Regulates Tumor-Promoting "Emergency" Granulo-Monocytopoiesis. Cancer Cell 2015; 28:253-69. [PMID: 26267538 DOI: 10.1016/j.ccell.2015.07.006] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/09/2015] [Accepted: 07/21/2015] [Indexed: 11/25/2022]
Abstract
Cancer-driven granulo-monocytopoiesis stimulates expansion of tumor promoting myeloid populations, mostly myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). We identified subsets of MDSCs and TAMs based on the expression of retinoic-acid-related orphan receptor (RORC1/RORγ) in human and mouse tumor bearers. RORC1 orchestrates myelopoiesis by suppressing negative (Socs3 and Bcl3) and promoting positive (C/EBPβ) regulators of granulopoiesis, as well as the key transcriptional mediators of myeloid progenitor commitment and differentiation to the monocytic/macrophage lineage (IRF8 and PU.1). RORC1 supported tumor-promoting innate immunity by protecting MDSCs from apoptosis, mediating TAM differentiation and M2 polarization, and limiting tumor infiltration by mature neutrophils. Accordingly, ablation of RORC1 in the hematopoietic compartment prevented cancer-driven myelopoiesis, resulting in inhibition of tumor growth and metastasis.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Cell Differentiation/genetics
- Cell Line, Tumor
- Cytokines/genetics
- Cytokines/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Granulocytes/metabolism
- Granulocytes/pathology
- Humans
- Immunohistochemistry
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Monocytes/metabolism
- Monocytes/pathology
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Myelopoiesis/genetics
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neutrophils/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Burden/genetics
Collapse
Affiliation(s)
- Laura Strauss
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Sabina Sangaletti
- Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Francesca Maria Consonni
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro," Via Bovio 6, 28100 Novara, Italy
| | - Gabor Szebeni
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Sara Morlacchi
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Maria Grazia Totaro
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro," Via Bovio 6, 28100 Novara, Italy
| | - Achille Anselmo
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Silvia Tartari
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Andrea Doni
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Francesco Zitelli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro," Via Bovio 6, 28100 Novara, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Mario P Colombo
- Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Antonio Sica
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro," Via Bovio 6, 28100 Novara, Italy.
| |
Collapse
|
420
|
Macrophages Contribute to the Spermatogonial Niche in the Adult Testis. Cell Rep 2015; 12:1107-19. [PMID: 26257171 DOI: 10.1016/j.celrep.2015.07.015] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/02/2015] [Accepted: 07/08/2015] [Indexed: 02/07/2023] Open
Abstract
The testis produces sperm throughout the male reproductive lifespan by balancing self-renewal and differentiation of spermatogonial stem cells (SSCs). Part of the SSC niche is thought to lie outside the seminiferous tubules of the testis; however, specific interstitial components of the niche that regulate spermatogonial divisions and differentiation remain undefined. We identified distinct populations of testicular macrophages, one of which lies on the surface of seminiferous tubules, in close apposition to areas of tubules enriched for undifferentiated spermatogonia. These macrophages express spermatogonial proliferation- and differentiation-inducing factors, such as colony-stimulating factor 1 (CSF1) and enzymes involved in retinoic acid (RA) biosynthesis. We show that transient depletion of macrophages leads to a disruption in spermatogonial differentiation. These findings reveal an unexpected role for macrophages in the spermatogonial niche in the testis and raise the possibility that macrophages play previously unappreciated roles in stem/progenitor cell regulation in other tissues.
Collapse
|
421
|
Xie J, Zhang C. Ex vivo expansion of hematopoietic stem cells. SCIENCE CHINA-LIFE SCIENCES 2015; 58:839-53. [PMID: 26246379 DOI: 10.1007/s11427-015-4895-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 06/03/2015] [Indexed: 02/03/2023]
Abstract
Ex vivo expansion of hematopoietic stem cells (HSCs) would benefit clinical applications in several aspects, to improve patient survival, utilize cord blood stem cells for adult applications, and selectively propagate stem cell populations after genetic manipulation. In this review we summarize and discuss recent advances in the culture systems of mouse and human HSCs, which include stroma/HSC co-culture, continuous perfusion and fed-batch cultures, and those supplemented with extrinsic ligands, membrane transportable transcription factors, complement components, protein modification enzymes, metabolites, or small molecule chemicals. Some of the expansion systems have been tested in clinical trials. The optimal condition for ex vivo expansion of the primitive and functional human HSCs is still under development. An improved understanding of the mechanisms for HSC cell fate determination and the HSC culture characteristics will guide development of new strategies to overcome difficulties. In the future, development of a combination treatment regimen with agents that enhance self-renewal, block differentiation, and improve homing will be critical. Methods to enhance yields and lower cost during collection and processing should be employed. The employment of an efficient system for ex vivo expansion of HSCs will facilitate the further development of novel strategies for cell and gene therapies including genome editing.
Collapse
Affiliation(s)
- JingJing Xie
- Taishan Scholar Immunology Program, Binzhou Medical University, Yantai, 264003, China
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | - ChengCheng Zhang
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA.
| |
Collapse
|
422
|
Albiero M, Poncina N, Ciciliot S, Cappellari R, Menegazzo L, Ferraro F, Bolego C, Cignarella A, Avogaro A, Fadini GP. Bone Marrow Macrophages Contribute to Diabetic Stem Cell Mobilopathy by Producing Oncostatin M. Diabetes 2015; 64:2957-68. [PMID: 25804939 DOI: 10.2337/db14-1473] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 03/16/2015] [Indexed: 11/13/2022]
Abstract
Diabetes affects bone marrow (BM) structure and impairs mobilization of stem cells (SCs) into peripheral blood (PB). This amplifies multiorgan complications because BMSCs promote vascular repair. Because diabetes skews macrophage phenotypes and BM macrophages (BMMΦ) prevent SC mobilization, we hypothesized that excess BMMΦ contribute to diabetic SC mobilopathy. We show that patients with diabetes have increased M1 macrophages, whereas diabetic mice have increased CD169(+) BMMΦ with SC-retaining activity. Depletion of BMMΦ restored SC mobilization in diabetic mice. We found that CD169 labels M1 macrophages and that conditioned medium (CM) from M1 macrophages, but not from M0 and M2 macrophages, induced chemokine (C-X-C motif) ligand 12 (CXCL12) expression by mesenchymal stem/stromal cells. In silico data mining and in vitro validation identified oncostatin M (OSM) as the soluble mediator contained in M1 CM that induces CXCL12 expression via a mitogen-activated protein kinase kinase-p38-signal transducer and activator of a transcription 3-dependent pathway. In diabetic mice, OSM neutralization prevented CXCL12 induction and improved granulocyte-colony stimulating factor and ischemia-induced mobilization, SC homing to ischemic muscles, and vascular recovery. In patients with diabetes, BM plasma OSM levels were higher and correlated with the BM-to-PB SC ratio. In conclusion, BMMΦ prevent SC mobilization by OSM secretion, and OSM antagonism is a strategy to restore BM function in diabetes, which can translate into protection mediated by BMSCs.
Collapse
Affiliation(s)
- Mattia Albiero
- Department of Medicine, University of Padova, Padova, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | - Nicol Poncina
- Department of Medicine, University of Padova, Padova, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | - Stefano Ciciliot
- Department of Medicine, University of Padova, Padova, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | | | - Lisa Menegazzo
- Department of Medicine, University of Padova, Padova, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | - Francesca Ferraro
- Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, PA Fox Chase Cancer Center, Philadelphia, PA
| | - Chiara Bolego
- Department of Pharmaceutical Sciences, University of Padova, Italy
| | | | - Angelo Avogaro
- Department of Medicine, University of Padova, Padova, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Padova, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
423
|
de Couto G, Liu W, Tseliou E, Sun B, Makkar N, Kanazawa H, Arditi M, Marbán E. Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. J Clin Invest 2015. [PMID: 26214527 DOI: 10.1172/jci81321] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ischemic injury in the heart induces an inflammatory cascade that both repairs damage and exacerbates scar tissue formation. Cardiosphere-derived cells (CDCs) are a stem-like population that is derived ex vivo from cardiac biopsies; they confer both cardioprotection and regeneration in acute myocardial infarction (MI). While the regenerative effects of CDCs in chronic settings have been studied extensively, little is known about how CDCs confer the cardioprotective process known as cellular postconditioning. Here, we used an in vivo rat model of ischemia/reperfusion (IR) injury-induced MI and in vitro coculture assays to investigate how CDCs protect stressed cardiomyocytes. Compared with control animals, animals that received CDCs 20 minutes after IR had reduced infarct size when measured at 48 hours. CDCs modified the myocardial leukocyte population after ischemic injury. Specifically, introduction of CDCs reduced the number of CD68+ macrophages, and these CDCs secreted factors that polarized macrophages toward a distinctive cardioprotective phenotype that was not M1 or M2. Systemic depletion of macrophages with clodronate abolished CDC-mediated cardioprotection. Using both in vitro coculture assays and a rat model of adoptive transfer after IR, we determined that CDC-conditioned macrophages attenuated cardiomyocyte apoptosis and reduced infarct size, thereby recapitulating the beneficial effects of CDC therapy. Together, our data indicate that CDCs limit acute injury by polarizing an effector macrophage population within the heart.
Collapse
|
424
|
Klamer S, Voermans C. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adh Migr 2015; 8:563-77. [PMID: 25482635 PMCID: PMC4594522 DOI: 10.4161/19336918.2014.968501] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Maintenance of haematopoietic stem cells and differentiation of committed progenitors occurs in highly specialized niches. The interactions of haematopoietic stem and progenitor cells (HSPCs) with cells, growth factors and extracellular matrix (ECM) components of the bone marrow (BM) microenvironment control homeostasis of HSPCs. We only start to understand the complexity of the haematopoietic niche(s) that comprises endosteal, arterial, sinusoidal, mesenchymal and neuronal components. These distinct niches produce a broad range of soluble factors and adhesion molecules that modulate HSPC fate during normal hematopoiesis and BM regeneration. Adhesive interactions between HSPCs and the microenvironment will influence their localization and differentiation potential. In this review we highlight the current understanding of the functional role of ECM- and adhesion (regulating) molecules in the haematopoietic niche during homeostatic and regenerative hematopoiesis. This knowledge may lead to the improvement of current cellular therapies and more efficient development of future cellular products.
Collapse
Affiliation(s)
- Sofieke Klamer
- a Department of Hematopoiesis; Sanquin Research; Landsteiner Laboratory; Academic Medical Centre ; University of Amsterdam ; Amsterdam , The Netherlands
| | | |
Collapse
|
425
|
Abstract
Monocytes are part of the vertebrate innate immune system. Blood monocytes are produced by bone marrow and splenic progenitors that derive from hematopoietic stem cells (HSCs). In cardiovascular disease, such as atherosclerosis and myocardial infarction, HSCs proliferate at higher levels that in turn increase production of hematopoietic cells, including monocytes. Once produced in hematopoietic niches, monocytes intravasate blood vessels, circulate, and migrate to sites of inflammation. Monocyte recruitment to atherosclerotic plaque and the ischemic heart depends on various chemokines, such as CCL2, CX3 CL1, and CCL5. Once in tissue, monocytes can differentiate into macrophages and dendritic cells. Macrophages are end effector cells that regulate the steady state and tissue healing, but they can also promote disease. At sites of inflammation, monocytes and macrophages produce inflammatory cytokines, which can exacerbate disease progression. Macrophages can also phagocytose tissue debris and produce pro-healing cytokines. Additionally, macrophages are antigen-presenting cells and can prime T cells. The tissue environment, including cytokines and types of inflammation, instructs macrophage specialization. Understanding monocytosis and its consequences in disease will reveal new therapeutic opportunities without compromising steady state functions.
Collapse
Affiliation(s)
- Partha Dutta
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
426
|
Huston MW, Riegman ARA, Yadak R, van Helsdingen Y, de Boer H, van Til NP, Wagemaker G. Pretransplant mobilization with granulocyte colony-stimulating factor improves B-cell reconstitution by lentiviral vector gene therapy in SCID-X1 mice. Hum Gene Ther 2015; 25:905-14. [PMID: 25222508 DOI: 10.1089/hum.2014.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic stem cell (HSC) gene therapy is a demonstrated effective treatment for X-linked severe combined immunodeficiency (SCID-X1), but B-cell reconstitution and function has been deficient in many of the gene therapy treated patients. Cytoreductive preconditioning is known to improve HSC engraftment, but in general it is not considered for SCID-X1 since the poor health of most of these patients at diagnosis and the risk of toxicity preclude the conditioning used in standard bone marrow stem cell transplantation. We hypothesized that mobilization of HSC by granulocyte colony-stimulating factor (G-CSF) should create temporary space in bone marrow niches to improve engraftment and thereby B-cell reconstitution. In the present pilot study supplementing our earlier preclinical evaluation (Huston et al., 2011), Il2rg(-/-) mice pretreated with G-CSF were transplanted with wild-type lineage negative (Lin(-)) cells or Il2rg(-/-) Lin(-) cells transduced with therapeutic IL2RG lentiviral vectors. Mice were monitored for reconstitution of lymphocyte populations, level of donor cell chimerism, and antibody responses as compared to 2 Gy total body irradiation (TBI), previously found effective in promoting B-cell reconstitution. The results demonstrate that G-CSF promotes B-cell reconstitution similar to low-dose TBI and provides proof of principle for an alternative approach to improve efficacy of gene therapy in SCID patients without adverse effects associated with cytoreductive conditioning.
Collapse
Affiliation(s)
- Marshall W Huston
- 1 Department of Neurology, Erasmus University Medical Center , 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
427
|
Vi L, Baht GS, Whetstone H, Ng A, Wei Q, Poon R, Mylvaganam S, Grynpas M, Alman BA. Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J Bone Miner Res 2015; 30:1090-102. [PMID: 25487241 DOI: 10.1002/jbmr.2422] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 11/21/2014] [Accepted: 12/02/2014] [Indexed: 01/18/2023]
Abstract
Macrophages are activated in inflammation and during early phases of repair processes. Interestingly, they are also present in bone during development, but their function during this process is unclear. Here, we explore the function of macrophages in bone development, growth, and repair using transgenic mice to constitutively or conditionally deplete macrophages. Depletion of macrophages led to early skeletal growth retardation and progressive osteoporosis. By 3 months of age, macrophage-deficient mice displayed a 25% reduction in bone mineral density and a 70% reduction in the number of trabecular bone compared to control littermates. Despite depletion of macrophages, functional osteoclasts were still present in bones, lining trabecular bone and the endosteal surface of the cortical bone. Furthermore, ablation of macrophages led to a 60% reduction in the number of bone marrow mesenchymal progenitor cells and a decrease in the ability of these cells to differentiate to osteoblasts. When macrophages were depleted during fracture repair, bone union was impaired. Calluses from macrophage-deficient animals were smaller, and contained less bone and more fibrotic tissue deposition. Taken together, this shows that macrophages are crucial for maintaining bone homeostasis and promoting fracture repair by enhancing the differentiation of mesenchymal progenitors.
Collapse
Affiliation(s)
- Linda Vi
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| | - Gurpreet S Baht
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Heather Whetstone
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adeline Ng
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Qingxia Wei
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Raymond Poon
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sivakami Mylvaganam
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marc Grynpas
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Benjamin A Alman
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
428
|
Agas D, Marchetti L, Douni E, Sabbieti MG. The unbearable lightness of bone marrow homeostasis. Cytokine Growth Factor Rev 2015; 26:347-59. [DOI: 10.1016/j.cytogfr.2014.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/22/2014] [Accepted: 12/17/2014] [Indexed: 01/10/2023]
|
429
|
Zöller M. CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells. Front Immunol 2015; 6:235. [PMID: 26074915 PMCID: PMC4443741 DOI: 10.3389/fimmu.2015.00235] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022] Open
Abstract
CD44 is an adhesion molecule that varies in size due to glycosylation and insertion of so-called variant exon products. The CD44 standard isoform (CD44s) is highly expressed in many cells and most abundantly in cells of the hematopoietic system, whereas expression of CD44 variant isoforms (CD44v) is more restricted. CD44s and CD44v are known as stem cell markers, first described for hematopoietic stem cells and later on confirmed for cancer- and leukemia-initiating cells. Importantly, both abundantly expressed CD44s as well as CD44v actively contribute to the maintenance of stem cell features, like generating and embedding in a niche, homing into the niche, maintenance of quiescence, and relative apoptosis resistance. This is surprising, as CD44 is not a master stem cell gene. I here will discuss that the functional contribution of CD44 relies on its particular communication skills with neighboring molecules, adjacent cells and, last not least, the surrounding matrix. In fact, it is the interaction of the hyaluronan receptor CD44 with its prime ligand, which strongly assists stem cells to fulfill their special and demanding tasks. Recent fundamental progress in support of this “old” hypothesis, which may soon pave the way for most promising new therapeutics, is presented for both hematopoietic stem cell and leukemia-initiating cell. The contribution of CD44 to the generation of a stem cell niche, to homing of stem cells in their niche, to stem cell quiescence and apoptosis resistance will be in focus.
Collapse
Affiliation(s)
- Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery , Heidelberg , Germany
| |
Collapse
|
430
|
Karpova D, Bonig H. Concise Review: CXCR4/CXCL12 Signaling in Immature Hematopoiesis--Lessons From Pharmacological and Genetic Models. Stem Cells 2015; 33:2391-9. [PMID: 25966814 DOI: 10.1002/stem.2054] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/30/2015] [Accepted: 04/20/2015] [Indexed: 01/07/2023]
Abstract
Dominant, although nonexclusive roles of CXCR4 and its chief ligand CXCL12 in bone marrow (BM) retention and preservation of the relative quiescence of hematopoietic stem/progenitor cells (HSPCs), along with their involvement in human immunodeficiency virus infection, in trafficking of mature hematopoietic cells to sites of inflammation and in orderly migration of nonhematopoietic cells during embryogenesis, explain the significant interest of the scientific community in the mode of action of this receptor-ligand pair. In this focused review, we seek to distil from the large body of information that has become available over the years some of the key findings about the role of CXCR4/CXCL12 in normal immature hematopoiesis. It is hoped that understanding the mechanistic insights gained there from will help generate hypotheses about potential avenues in which cancer/leukemia cell behavior can be modified by interference with this pathway.
Collapse
Affiliation(s)
- Darja Karpova
- Department of Internal Medicine, Division of Oncology, Section of Stem Cell Biology, Washington University Medical School, St. Louis, Missouri, USA
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany.,German Red Cross Blood Service BaWüHe, Institute Frankfurt, Germany.,Department of Medicine, Division of Hematology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
431
|
McCabe A, Zhang Y, Thai V, Jones M, Jordan MB, MacNamara KC. Macrophage-Lineage Cells Negatively Regulate the Hematopoietic Stem Cell Pool in Response to Interferon Gamma at Steady State and During Infection. Stem Cells 2015; 33:2294-305. [PMID: 25880153 DOI: 10.1002/stem.2040] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/21/2015] [Indexed: 12/31/2022]
Abstract
Bone marrow (BM) resident macrophages (Mϕs) regulate hematopoietic stem cell (HSC) mobilization; however, their impact on HSC function has not been investigated. We demonstrate that depletion of BM resident Mϕs increases HSC proliferation as well as the pool of quiescent HSCs. At the same time, during bacterial infection where BM resident Mϕs are selectively increased we observe a decrease in HSC numbers. Moreover, strategies that deplete or reduce Mϕs during infection prevent HSC loss and rescue HSC function. We previously found that the transient loss of HSCs during infection is interferon-gamma (IFNγ)-dependent. We now demonstrate that IFNγ signaling specifically in Mϕs is critical for both the diminished HSC pool and maintenance of BM resident Mϕs during infection. In addition to the IFNγ-dependent loss of BM HSC and progenitor cells (HSPCs) during infection, IFNγ reduced circulating HSPC numbers. Importantly, under infection conditions AMD3100 or G-CSF-induced stem cell mobilization was impaired. Taken together, our data show that IFNγ acts on Mϕs, which are a negative regulator of the HSC pool, to drive the loss in BM and peripheral HSCs during infection. Our findings demonstrate that modulating BM resident Mϕ numbers can impact HSC function in vivo, which may be therapeutically useful for hematologic conditions and refinement of HSC transplantation protocols.
Collapse
Affiliation(s)
- Amanda McCabe
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Yubin Zhang
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Vinh Thai
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Maura Jones
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Michael B Jordan
- Division of Cellular and Molecular Immunology, Cincinnati Children's Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Katherine C MacNamara
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| |
Collapse
|
432
|
Li S, Li T, Chen Y, Nie Y, Li C, Liu L, Li Q, Qiu L. Granulocyte Colony-Stimulating Factor Induces Osteoblast Inhibition by B Lymphocytes and Osteoclast Activation by T Lymphocytes during Hematopoietic Stem/Progenitor Cell Mobilization. Biol Blood Marrow Transplant 2015; 21:1384-91. [PMID: 25985917 DOI: 10.1016/j.bbmt.2015.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/04/2015] [Indexed: 12/18/2022]
Abstract
In the bone marrow (BM), hematopoietic stem and progenitor cells (HSPCs) reside in specialized niches near osteoblast cells at the endosteum. HSPCs that egress to peripheral blood are widely used for transplant, and mobilization is most commonly performed with recombinant human granulocyte colony-stimulating factor (G-CSF). However, the cellular targets of G-CSF that initiate the mobilization cascade and bone remodeling are not completely understood. Here, we examined whether T and B lymphocytes modulate the bone niche and influence HSPC mobilization. We used T and B defective mice to show that G-CSF-induced mobilization of HSPCs correlated with B lymphocytes but poorly with T lymphocytes. In addition, we found that defective B lymphocytes prevent G-CSF-mediated osteoblast disruption, and further study showed BM osteoblasts were reduced coincident with mobilization, induced by elevated expression of dickkopf1 of BM B lymphocytes. BM T cells were also involved in G-CSF-induced osteoclast activation by regulating the Receptor Activator of Nuclear Factor-κ B Ligand/Osteoprotegerin (RANKL/OPG) axis. These data provide evidence that BM B and T lymphocytes play a role in G-CSF-induced HSPC mobilization by regulating bone remodeling.
Collapse
Affiliation(s)
- Sidan Li
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics, Ministry of Education; Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China; State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin, China
| | - Tianshou Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Yongbing Chen
- Department of Hepatobiliary Surgery, General Hospital of Beijing Military Area Command, Beijing, China
| | - Yinchao Nie
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Changhong Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin, China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin, China
| | - Qiaochuan Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin, China
| |
Collapse
|
433
|
Cancer stem cells and tumor-associated macrophages: a roadmap for multitargeting strategies. Oncogene 2015; 35:671-82. [PMID: 25961921 DOI: 10.1038/onc.2015.132] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/16/2015] [Accepted: 03/20/2015] [Indexed: 12/12/2022]
Abstract
The idea that tumor initiation and progression are driven by a subset of cells endowed with stem-like properties was first described by Rudolf Virchow in 1855. 'Cancer stem cells', as they were termed more than a century later, represent a subset of tumor cells that are able to generate all tumorigenic and nontumorigenic cell types within the malignancy. Although their existence was hypothesized >150 years ago, it was only recently that stem-like cells started to be isolated from different neoplastic malignancies. Interestingly, Virchow, in suggesting a correlation between cancer and the inflammatory microenvironment, also paved the way for the 'Seed and Soil' theory proposed by Paget a few years later. Despite the time that has passed since these two important concepts were suggested, the relationships between Virchow's 'stem-like cells' and Paget's 'soil' are far from being fully understood. One emerging topic is the importance of a stem-like niche in modulating the biological properties of stem-like cancer cells and thus in affecting the response of the tumor to drugs. This review aims to summarize the recent molecular data concerning the multilayered relationship between cancer stem cells and tumor-associated macrophages that form a key component of the tumor microenvironment. We also discuss the therapeutic implications of targeting this synergistic interplay.
Collapse
|
434
|
Park MH, Jin HK, Min WK, Lee WW, Lee JE, Akiyama H, Herzog H, Enikolopov GN, Schuchman EH, Bae JS. Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow. EMBO J 2015; 34:1648-60. [PMID: 25916827 DOI: 10.15252/embj.201490174] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 04/01/2015] [Indexed: 01/08/2023] Open
Abstract
Many reports have revealed the importance of the sympathetic nervous system (SNS) in the control of the bone marrow environment. However, the specific role of neuropeptide Y (NPY) in this process has not been systematically studied. Here we show that NPY-deficient mice have significantly reduced hematopoietic stem cell (HSC) numbers and impaired regeneration in bone marrow due to apoptotic destruction of SNS fibers and/or endothelial cells. Furthermore, pharmacological elevation of NPY prevented bone marrow impairments in a mouse model of chemotherapy-induced SNS injury, while NPY injection into conditional knockout mice lacking the Y1 receptor in macrophages did not relieve bone marrow dysfunction. These results indicate that NPY promotes neuroprotection and restores bone marrow dysfunction from chemotherapy-induced SNS injury through the Y1 receptor in macrophages. They also reveal a new role of NPY as a regulator of the bone marrow microenvironment and highlight the potential therapeutic value of this neuropeptide.
Collapse
Affiliation(s)
- Min Hee Park
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, Korea Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Korea
| | - Hee Kyung Jin
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, Korea Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Woo-Kie Min
- Department of Orthopaedic Surgery, Kyungpook National University Hospital, Daegu, Korea
| | - Won Woo Lee
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Eun Lee
- Department of Radiation Oncology, Kyungpook National University Hospital, Daegu, Korea
| | | | - Herbert Herzog
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jae-sung Bae
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, Korea Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Korea
| |
Collapse
|
435
|
Konopleva M, Benton CB, Thall PF, Zeng Z, Shpall E, Ciurea S, Kebriaei P, Alousi A, Popat U, Anderlini P, Nieto Y, Parmar S, Qiao W, Chen J, Rondon G, McMullin B, Wang RY, Lu H, Schober W, Woodworth G, Gulbis A, Cool R, Andreeff M, Champlin R. Leukemia cell mobilization with G-CSF plus plerixafor during busulfan-fludarabine conditioning for allogeneic stem cell transplantation. Bone Marrow Transplant 2015; 50:939-946. [PMID: 25867648 PMCID: PMC4490031 DOI: 10.1038/bmt.2015.58] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/21/2015] [Accepted: 01/29/2015] [Indexed: 12/14/2022]
Abstract
We hypothesized that during conditioning chemotherapy for allogeneic stem cell transplant (allo-SCT), disruption of stromal-leukemia interactions using granulocyte-colony stimulating factor (G-CSF) in combination with the CXCR4-specific inhibitor plerixafor, may promote release of leukemic cells from the niche and increase tumor elimination. In a phase 1/2 investigation, we treated 45 AML/MDS/CML patients (34 AML, 7 MDS, and 4 CML) with G-CSF (10 μg/kg daily for 6 days starting on day −9) plus plerixafor (doses of 0, 80, 160 or 240 μg/kg daily for 4 days starting on day −7) along with the busulfan-fludarabine (Bu-Flu) conditioning regimen. In the phase 1 part, we determined that G-CSF plus plerixafor is safe in this setting. We compared clinical effects and outcomes of AML/MDS study patients (n = 40) to 164 patients from a historical data set who received Bu-Flu alone prior to allo-SCT by stratifying on cytogenetics and disease status to correct for bias. Study patients had increased myeloid chimerism and lower rates of GvHD. There was no significant difference in relapse free survival or overall survival. The G-CSF plus plerixafor combination increased circulating white blood cells, CD34+ cells, and CXCR4+ cells, and preferentially mobilized FISH+ leukemic cells. ClinicalTrials.gov identifier is NCT00822770.
Collapse
Affiliation(s)
- Marina Konopleva
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.,Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Christopher B Benton
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Peter F Thall
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Zhihong Zeng
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth Shpall
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Stefan Ciurea
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Amin Alousi
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Uday Popat
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Paolo Anderlini
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Yago Nieto
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Simrit Parmar
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Wei Qiao
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Julianne Chen
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Gabriela Rondon
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Becky McMullin
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Rui-Yu Wang
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Hongbo Lu
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Wendy Schober
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Glenda Woodworth
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Alison Gulbis
- Division of Pharmacy, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Rita Cool
- Division of Pharmacy, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Michael Andreeff
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.,Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Richard Champlin
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
436
|
Ho MSH, Medcalf RL, Livesey SA, Traianedes K. The dynamics of adult haematopoiesis in the bone and bone marrow environment. Br J Haematol 2015; 170:472-86. [PMID: 25854627 DOI: 10.1111/bjh.13445] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review explores the dynamic relationship between bone and bone marrow in the genesis and regulation of adult haematopoiesis and will provide an overview of the haematopoietic hierarchical system. This will include the haematopoietic stem cell (HSC) and its niches, as well as discuss emerging evidence of the reciprocal interplay between bone and bone marrow, and support of the pleiotropic role played by bone cells in the regulation of HSC proliferation, differentiation and function. In addition, this review will present demineralized bone matrix as a unique acellular matrix platform that permits the generation of ectopic de novo bone and bone marrow and provides a means of investigating the temporal sequence of bone and bone marrow regeneration. It is anticipated that the utilization of this matrix-based approach will help researchers in gaining deeper insights into the major events leading to adult haematopoiesis in the bone marrow. Furthermore, this model may potentially offer new avenues to manipulate the HSC niche and hence influence the functional output of the haematopoietic system.
Collapse
Affiliation(s)
- Miriel S H Ho
- Australian Centre for Blood Diseases, Monash University, The Alfred Hospital Prahran, Prahran, Victoria, Australia.,Clinical Neurosciences, St Vincent's Hospital Melbourne, Prahran, Victoria, Australia
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, Monash University, The Alfred Hospital Prahran, Prahran, Victoria, Australia
| | - Stephen A Livesey
- Clinical Neurosciences, St Vincent's Hospital Melbourne, Prahran, Victoria, Australia
| | - Kathy Traianedes
- Clinical Neurosciences, St Vincent's Hospital Melbourne, Prahran, Victoria, Australia.,Department of Medicine, The University of Melbourne, St Vincent's Hospital Melbourne, Prahran, Victoria, Australia
| |
Collapse
|
437
|
Liu M, Jin X, He X, Pan L, Zhang X, Zhao Y. Macrophages support splenic erythropoiesis in 4T1 tumor-bearing mice. PLoS One 2015; 10:e0121921. [PMID: 25822717 PMCID: PMC4378955 DOI: 10.1371/journal.pone.0121921] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/05/2015] [Indexed: 11/26/2022] Open
Abstract
Anemia is a common complication of cancer; a role of spleen in tumor-stress erythropoiesis has been suggested. However, the molecular mechanisms involved in the splenic erythropoiesis following tumor maintenance remain poorly understood. Here we show that tumor development blocks medullar erythropoiesis by granulocyte colony-stimulating factor (G-CSF) and then causes anemia in murine 4T1 breast tumor-bearing mice. Meanwhile, tumor-stress promotes splenic erythropoiesis. Splenectomy worsened tumor-induced anemia, and reduced tumor volume and tumor weight, indicating the essential role of spleen in tumor-stress erythropoiesis and tumor growth. Tumor progression of these mice led to increased amounts of bone morphogenetic protein 4 (BMP4) in spleen. The in vivo role of macrophages in splenic erythropoiesis under tumor-stress conditions was investigated. Macrophage depletion by injecting liposomal clodronate decreased the expression of BMP4, inhibited splenic erythropoiesis, aggravated the tumor-induced anemia and suppressed tumor growth. Our results provide insight that macrophages and BMP4 are positive regulators of splenic erythropoiesis in tumor pathological situations. These findings reveal that during the tumor-stress period, the microenvironment of the spleen is undergoing changes, which contributes to adopt a stress erythropoietic fate and supports the expansion and differentiation of stress erythroid progenitors, thereby replenishing red blood cells and promoting tumor growth.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, 250012, China
| | - Xing Jin
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, 250012, China
| | - Xigan He
- Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Ling Pan
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, 250012, China
| | - Xiumei Zhang
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, 250012, China
- * E-mail: (XZ); (YZ)
| | - Yunxue Zhao
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, 250012, China
- * E-mail: (XZ); (YZ)
| |
Collapse
|
438
|
Granulocyte colony-stimulating factor reprograms bone marrow stromal cells to actively suppress B lymphopoiesis in mice. Blood 2015; 125:3114-7. [PMID: 25814527 DOI: 10.1182/blood-2015-02-629444] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/19/2015] [Indexed: 11/20/2022] Open
Abstract
The mechanisms that mediate the shift from lymphopoiesis to myelopoiesis in response to infectious stress are largely unknown. We show that treatment with granulocyte colony-stimulating factor (G-CSF), which is often induced during infection, results in marked suppression of B lymphopoiesis at multiple stages of B-cell development. Mesenchymal-lineage stromal cells in the bone marrow, including CXCL12-abundant reticular (CAR) cells and osteoblasts, constitutively support B lymphopoiesis through the production of multiple B trophic factors. G-CSF acting through a monocytic cell intermediate reprograms these stromal cells, altering their capacity to support B lymphopoiesis. G-CSF treatment is associated with an expansion of CAR cells and a shift toward osteogenic lineage commitment. It markedly suppresses the production of multiple B-cell trophic factors by CAR cells and osteoblasts, including CXCL12, kit ligand, interleukin-6, interleukin-7, and insulin-like growth factor-1. Targeting bone marrow stromal cells is one mechanism by which inflammatory cytokines such as G-CSF actively suppress lymphopoiesis.
Collapse
|
439
|
Genêt F, Kulina I, Vaquette C, Torossian F, Millard S, Pettit AR, Sims NA, Anginot A, Guerton B, Winkler IG, Barbier V, Lataillade JJ, Le Bousse-Kerdilès MC, Hutmacher DW, Levesque JP. Neurological heterotopic ossification following spinal cord injury is triggered by macrophage-mediated inflammation in muscle. J Pathol 2015; 236:229-40. [PMID: 25712044 DOI: 10.1002/path.4519] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 12/18/2022]
Abstract
Neurological heterotopic ossification (NHO) is the abnormal formation of bone in soft tissues as a consequence of spinal cord or traumatic brain injury. NHO causes pain, ankyloses, vascular and nerve compression and delays rehabilitation in this high-morbidity patient group. The pathological mechanisms leading to NHO remain unknown and consequently there are no therapeutic options to prevent or reduce NHO. Genetically modified mouse models of rare genetic forms of heterotopic ossification (HO) exist, but their relevance to NHO is questionable. Consequently, we developed the first model of spinal cord injury (SCI)-induced NHO in genetically unmodified mice. Formation of NHO, measured by micro-computed tomography, required the combination of both SCI and localized muscular inflammation. Our NHO model faithfully reproduced many clinical features of NHO in SCI patients and both human and mouse NHO tissues contained macrophages. Muscle-derived mesenchymal progenitors underwent osteoblast differentiation in vitro in response to serum from NHO mice without additional exogenous osteogenic stimuli. Substance P was identified as a candidate NHO systemic neuropeptide, as it was significantly elevated in the serum of NHO patients. However, antagonism of substance P receptor in our NHO model only modestly reduced the volume of NHO. In contrast, ablation of phagocytic macrophages with clodronate-loaded liposomes reduced the size of NHO by 90%, supporting the conclusion that NHO is highly dependent on inflammation and phagocytic macrophages in soft tissues. Overall, we have developed the first clinically relevant model of NHO and demonstrated that a combined insult of neurological injury and soft tissue inflammation drives NHO pathophysiology.
Collapse
Affiliation(s)
- François Genêt
- Blood and Bone Diseases Programme, Mater Research Institute, University of Queensland, Woolloongabba, Australia.,Department of Physical Medicine and Rehabilitation, Hôpital Raymond Poincaré, APHP, CIC-IT 1429, Garches, France.,Université Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR des Sciences de la Santé-Simone Veil, Montigny le Bretonneux, France
| | - Irina Kulina
- Blood and Bone Diseases Programme, Mater Research Institute, University of Queensland, Woolloongabba, Australia.,School of Medicine, University of Queensland, Herston, Australia
| | - Cedryck Vaquette
- Institute of Health Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Frédéric Torossian
- Institut National de la Santé et de la Recherche Médicale, Unité 972, Villejuif, France.,Université Paris-Sud, Institut André Lwoff, Paris, France
| | - Susan Millard
- Blood and Bone Diseases Programme, Mater Research Institute, University of Queensland, Woolloongabba, Australia
| | - Allison R Pettit
- Blood and Bone Diseases Programme, Mater Research Institute, University of Queensland, Woolloongabba, Australia
| | - Natalie A Sims
- St Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Adrienne Anginot
- Institut National de la Santé et de la Recherche Médicale, Unité 972, Villejuif, France.,Université Paris-Sud, Institut André Lwoff, Paris, France
| | - Bernadette Guerton
- Institut National de la Santé et de la Recherche Médicale, Unité 972, Villejuif, France.,Université Paris-Sud, Institut André Lwoff, Paris, France
| | - Ingrid G Winkler
- Blood and Bone Diseases Programme, Mater Research Institute, University of Queensland, Woolloongabba, Australia
| | - Valérie Barbier
- Blood and Bone Diseases Programme, Mater Research Institute, University of Queensland, Woolloongabba, Australia
| | - Jean-Jacques Lataillade
- Institut National de la Santé et de la Recherche Médicale, Unité 972, Villejuif, France.,Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Marie-Caroline Le Bousse-Kerdilès
- Institut National de la Santé et de la Recherche Médicale, Unité 972, Villejuif, France.,Université Paris-Sud, Institut André Lwoff, Paris, France
| | - Dietmar W Hutmacher
- Blood and Bone Diseases Programme, Mater Research Institute, University of Queensland, Woolloongabba, Australia
| | - Jean-Pierre Levesque
- Blood and Bone Diseases Programme, Mater Research Institute, University of Queensland, Woolloongabba, Australia.,School of Medicine, University of Queensland, Herston, Australia
| |
Collapse
|
440
|
Dutta P, Hoyer FF, Grigoryeva LS, Sager HB, Leuschner F, Courties G, Borodovsky A, Novobrantseva T, Ruda VM, Fitzgerald K, Iwamoto Y, Wojtkiewicz G, Sun Y, Da Silva N, Libby P, Anderson DG, Swirski FK, Weissleder R, Nahrendorf M. Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. ACTA ACUST UNITED AC 2015; 212:497-512. [PMID: 25800955 PMCID: PMC4387283 DOI: 10.1084/jem.20141642] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 02/13/2015] [Indexed: 12/21/2022]
Abstract
Dutta et al. show that targeting VACM-1 expression in splenic macrophages impairs extramedullary hematopoiesis, thus reducing inflammation in mouse ischemic heart and atherosclerotic plaques. Splenic myelopoiesis provides a steady flow of leukocytes to inflamed tissues, and leukocytosis correlates with cardiovascular mortality. Yet regulation of hematopoietic stem cell (HSC) activity in the spleen is incompletely understood. Here, we show that red pulp vascular cell adhesion molecule 1 (VCAM-1)+ macrophages are essential to extramedullary myelopoiesis because these macrophages use the adhesion molecule VCAM-1 to retain HSCs in the spleen. Nanoparticle-enabled in vivo RNAi silencing of the receptor for macrophage colony stimulation factor (M-CSFR) blocked splenic macrophage maturation, reduced splenic VCAM-1 expression and compromised splenic HSC retention. Both, depleting macrophages in CD169 iDTR mice or silencing VCAM-1 in macrophages released HSCs from the spleen. When we silenced either VCAM-1 or M-CSFR in mice with myocardial infarction or in ApoE−/− mice with atherosclerosis, nanoparticle-enabled in vivo RNAi mitigated blood leukocytosis, limited inflammation in the ischemic heart, and reduced myeloid cell numbers in atherosclerotic plaques.
Collapse
Affiliation(s)
- Partha Dutta
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Friedrich Felix Hoyer
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Lubov S Grigoryeva
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Hendrik B Sager
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Florian Leuschner
- Department of Cardiology, Medical University Hospital Heidelberg, D-69120 Heidelberg, Germany DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, D-69120 Heidelberg, Germany
| | - Gabriel Courties
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | | | | | - Vera M Ruda
- Alnylam Pharmaceuticals, Cambridge, MA 02142
| | | | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Gregory Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Yuan Sun
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Nicolas Da Silva
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Peter Libby
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142 David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142 David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142 Division of Health Science Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| |
Collapse
|
441
|
Méndez-Ferrer S, Scadden DT, Sánchez-Aguilera A. Bone marrow stem cells: current and emerging concepts. Ann N Y Acad Sci 2015; 1335:32-44. [PMID: 25573321 DOI: 10.1111/nyas.12641] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interactions of stromal cells with hematopoietic cells in the bone marrow have long been a subject of research, but only recently have technologies allowed us to dissect them at the stem cell level. On the other hand, limitations of these technical tools might explain numerous discrepancies in this field. It is becoming increasingly clear that mesenchymal stem cells (MSCs) represent an important component of the hematopoietic stem cell (HSC) niche in the bone marrow. However, there is heterogeneity among HSCs, and many putatively different mesenchymal progenitors identified in the bone marrow using Cre recombinase-driven mouse lines seem to exhibit HSC niche properties. Development of better reporter lines has demonstrated that some of these Cre lines do not always specifically mark the expected cells. Also, characterization of different cell populations has often been partial, and issues of redundancy and compensation might explain apparently contradictory results. Recognizing and overcoming these limitations, while also clearly defining the distinctions between subgroups of mesenchymal cells, will be essential to advance the field.
Collapse
Affiliation(s)
- Simón Méndez-Ferrer
- Stem Cell Niche Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | | |
Collapse
|
442
|
Making sense of hematopoietic stem cell niches. Blood 2015; 125:2621-9. [PMID: 25762174 DOI: 10.1182/blood-2014-09-570192] [Citation(s) in RCA: 308] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/07/2014] [Indexed: 12/29/2022] Open
Abstract
The hematopoietic stem cell (HSC) niche commonly refers to the pairing of hematopoietic and mesenchymal cell populations that regulate HSC self-renewal, differentiation, and proliferation. Anatomic localization of the niche is a dynamic unit from the developmental stage that allows proliferating HSCs to expand before they reach the bone marrow where they adopt a quiescent phenotype that protects their integrity and functions. Recent studies have sought to clarify the complexity behind the HSC niche by assessing the contributions of specific cell populations to HSC maintenance. In particular, perivascular microenvironments in the bone marrow confer distinct vascular niches that regulate HSC quiescence and the supply of lineage-committed progenitors. Here, we review recent data on the cellular constituents and molecular mechanisms involved in the communication between HSCs and putative niches.
Collapse
|
443
|
Scheiermann C, Frenette PS, Hidalgo A. Regulation of leucocyte homeostasis in the circulation. Cardiovasc Res 2015; 107:340-51. [PMID: 25750191 DOI: 10.1093/cvr/cvv099] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/19/2015] [Indexed: 12/24/2022] Open
Abstract
The functions of blood cells extend well beyond the immune functions of leucocytes or the respiratory and hemostatic functions of erythrocytes and platelets. Seen as a whole, the bloodstream is in charge of nurturing and protecting all organs by carrying a mixture of cell populations in transit from one organ to another. To optimize these functions, evolution has provided blood and the vascular system that carries it with various mechanisms that ensure the appropriate influx and egress of cells into and from the circulation where and when needed. How this homeostatic control of blood is achieved has been the object of study for over a century, and although the major mechanisms that govern it are now fairly well understood, several new concepts and mediators have recently emerged that emphasize the dynamism of this liquid tissue. Here we review old and new concepts that relate to the maintenance and regulation of leucocyte homeostasis in blood and briefly discuss the mechanisms for platelets and red blood cells.
Collapse
Affiliation(s)
- Christoph Scheiermann
- Walter-Brendel-Center of Experimental Medicine, Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrés Hidalgo
- Department of Atherothrombosis, Imaging and Epidemiology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten (IPEK), Munich 80336, Germany
| |
Collapse
|
444
|
Primitive macrophages control HSPC mobilization and definitive haematopoiesis. Nat Commun 2015; 6:6227. [DOI: 10.1038/ncomms7227] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/07/2015] [Indexed: 12/28/2022] Open
|
445
|
Klein G, Schmal O, Aicher WK. Matrix metalloproteinases in stem cell mobilization. Matrix Biol 2015; 44-46:175-83. [PMID: 25617493 DOI: 10.1016/j.matbio.2015.01.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 01/05/2023]
Abstract
Hematopoietic stem cells (HSCs) have the capability to migrate back and forth between their preferred microenvironment in bone marrow niches and the peripheral blood, but under steady-state conditions only a marginal number of stem cells can be found in the circulation. Different mobilizing agents, however, which create a highly proteolytic milieu in the bone marrow, can drastically increase the number of circulating HSCs. Among other proteases secreted and membrane-bound matrix metalloproteinases (MMPs) are known to be involved in the induced mobilization process and can digest niche-specific extracellular matrix components and cytokines responsible for stem cell retention to the niches. Iatrogenic stem cell mobilization and stem cell homing to their niches are clinically employed on a routine basis, although the exact mechanisms of both processes are still not fully understood. In this review we provide an overview on the various roles of MMPs in the induced release of HSCs from the bone marrow.
Collapse
Affiliation(s)
- Gerd Klein
- Center for Medical Research, Department of Internal Medicine, Section for Transplantation Immunology and Immunohematology, University of Tübingen, Germany.
| | - Olga Schmal
- Center for Medical Research, Department of Internal Medicine, Section for Transplantation Immunology and Immunohematology, University of Tübingen, Germany
| | | |
Collapse
|
446
|
HIF-1α is required for hematopoietic stem cell mobilization and 4-prolyl hydroxylase inhibitors enhance mobilization by stabilizing HIF-1α. Leukemia 2015; 29:1366-78. [PMID: 25578474 PMCID: PMC4498452 DOI: 10.1038/leu.2015.8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/28/2014] [Accepted: 12/18/2014] [Indexed: 02/07/2023]
Abstract
Many patients with hematological neoplasms fail to mobilize sufficient numbers of hematopoietic stem cells (HSCs) in response to granulocyte colony-stimulating factor (G-CSF) precluding subsequent autologous HSC transplantation. Plerixafor, a specific antagonist of the chemokine receptor CXCR4, can rescue some but not all patients who failed to mobilize with G-CSF alone. These refractory poor mobilizers cannot currently benefit from autologous transplantation. To discover alternative targetable pathways to enhance HSC mobilization, we studied the role of hypoxia-inducible factor-1α (HIF-1α) and the effect of HIF-1α pharmacological stabilization on HSC mobilization in mice. We demonstrate in mice with HSC-specific conditional deletion of the Hif1a gene that the oxygen-labile transcription factor HIF-1α is essential for HSC mobilization in response to G-CSF and Plerixafor. Conversely, pharmacological stabilization of HIF-1α with the 4-prolyl hydroxylase inhibitor FG-4497 synergizes with G-CSF and Plerixafor increasing mobilization of reconstituting HSCs 20-fold compared with G-CSF plus Plerixafor, currently the most potent mobilizing combination used in the clinic.
Collapse
|
447
|
Chan TM, Harn HJ, Lin HP, Chou PW, Chen JYR, Ho TJ, Chiou TW, Chuang HM, Chiu SC, Chen YC, Yen SY, Huang MH, Liang BC, Lin SZ. Improved human mesenchymal stem cell isolation. Cell Transplant 2015; 23:399-406. [PMID: 24816441 DOI: 10.3727/096368914x678292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are currently available for a range of applications and benefits and have become a good material for regenerative medicine, tissue engineering, and disease therapy. Before ex vivo expansion, isolation and characterization of primary hMSCs from peripheral tissues are key steps for obtaining adequate materials for clinical application. The proportion of peripheral stem cells is very low in surrounding tissues and organs; thus the recovery ratio will be a limiting factor. In this review, we summarized current common methods used to isolate peripheral stem cells, as well as the new insights revealed to improve the quantity of stem cells and their stemness. These strategies offer alternative ways to acquire hMSCs in a convenient and/or effective manner, which is important for clinical treatments. Improved isolation and mass amplification of the hMSCs while ensuring their stemness and quantity will be an important step for clinical use. Enlarged suitable hMSCs are more clinically applicable for therapeutic transplants and may help people live longer and better.
Collapse
Affiliation(s)
- Tzu-Min Chan
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
448
|
Influence of Bone Marrow Microenvironment on Leukemic Stem Cells: Breaking Up an Intimate Relationship. Adv Cancer Res 2015; 127:227-52. [PMID: 26093902 DOI: 10.1016/bs.acr.2015.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bone marrow microenvironment (BMM) plays a critical role in hematopoietic stem cells (HSCs) maintenance and regulation. There is increasing interest in the role of the BMM in promoting leukemia stem cell (LSC) maintenance, resistance to conventional chemotherapy and targeted therapies, and ultimately disease relapse. Recent studies have enhanced our understanding of how the BMM regulates quiescence, self-renewal, and differentiation of LSC. In this comprehensive review, we discuss recent advances in our understanding of the crosstalk between the BMM and LSC, and the critical signaling pathways underlying these interactions. We also discuss potential approaches to exploit these observations to create novel strategies for targeting therapy-resistant LSC to achieve relapse-free survival in leukemic patients.
Collapse
|
449
|
Chang KH, Sengupta A, Nayak RC, Duran A, Lee SJ, Pratt RG, Wellendorf AM, Hill SE, Watkins M, Gonzalez-Nieto D, Aronow BJ, Starczynowski DT, Civitelli R, Diaz-Meco MT, Moscat J, Cancelas JA. p62 is required for stem cell/progenitor retention through inhibition of IKK/NF-κB/Ccl4 signaling at the bone marrow macrophage-osteoblast niche. Cell Rep 2014; 9:2084-97. [PMID: 25533346 PMCID: PMC4277497 DOI: 10.1016/j.celrep.2014.11.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/21/2014] [Accepted: 11/19/2014] [Indexed: 12/21/2022] Open
Abstract
In the bone marrow (BM), hematopoietic progenitors (HPs) reside in specific anatomical niches near osteoblasts (Obs), macrophages (MΦs), and other cells forming the BM microenvironment. A connection between immunosurveillance and traffic of HP has been demonstrated, but the regulatory signals that instruct the immune regulation of HP circulation are unknown. We discovered that the BM microenvironment deficiency of p62, an autophagy regulator and signal organizer, results in loss of autophagic repression of macrophage contact-dependent activation of Ob NF-κB signaling. Consequently, Ob p62-deficient mice lose bone, Ob Ccl4 expression, and HP chemotaxis toward Cxcl12, resulting in egress of short-term hematopoietic stem cells and myeloid progenitors. Finally, Ccl4 expression and myeloid progenitor egress are reversed by deficiency of the p62 PB1-binding partner Nbr1. A functional "MΦ-Ob niche" is required for myeloid progenitor/short-term stem cell retention, in which Ob p62 is required to maintain NF-κB signaling repression, osteogenesis, and BM progenitor retention.
Collapse
Affiliation(s)
- Kyung Hee Chang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Hoxworth Blood Center, University of Cincinnati College of Medicine, 3130 Highland Avenue, Cincinnati, OH 45267, USA
| | - Amitava Sengupta
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Stem Cell and Leukemia Lab, Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700032, West Bengal, India
| | - Ramesh C Nayak
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Angeles Duran
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sang Jun Lee
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ronald G Pratt
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ashley M Wellendorf
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Sarah E Hill
- Hoxworth Blood Center, University of Cincinnati College of Medicine, 3130 Highland Avenue, Cincinnati, OH 45267, USA
| | - Marcus Watkins
- Division of Bone and Mineral Diseases, Departments of Internal Medicine and Cell Biology and Physiology, Washington University School of Medicine, One Brookings Drive, St. Louis, MO 63110, USA
| | - Daniel Gonzalez-Nieto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Bioengineering and Telemedicine Group, Center for Biomedical Technology, Universidad-Politécnica de Madrid, Pozuelo de Alarcon 28223, Spain
| | - Bruce J Aronow
- Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Roberto Civitelli
- Division of Bone and Mineral Diseases, Departments of Internal Medicine and Cell Biology and Physiology, Washington University School of Medicine, One Brookings Drive, St. Louis, MO 63110, USA
| | - Maria T Diaz-Meco
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jorge Moscat
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jose A Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Hoxworth Blood Center, University of Cincinnati College of Medicine, 3130 Highland Avenue, Cincinnati, OH 45267, USA.
| |
Collapse
|
450
|
Castellana D, Paus R, Perez-Moreno M. Macrophages contribute to the cyclic activation of adult hair follicle stem cells. PLoS Biol 2014; 12:e1002002. [PMID: 25536657 PMCID: PMC4275176 DOI: 10.1371/journal.pbio.1002002] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 10/10/2014] [Indexed: 12/17/2022] Open
Abstract
Castellana, Paus, and Perez-Moreno discover that skin resident macrophages signal to skin stem cells via Wnt ligands to activate the hair follicle life cycle. Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. The cyclic life of hair follicles consists of recurring phases of growth, decay, and rest. Previous studies have identified signals that prompt a new phase of hair growth through the activation of resting hair follicle stem cells (HF-SCs). In addition to these signals, recent findings have shown that cues arising from the neighboring skin environment, in which hair follicles dwell, also participate in controlling hair follicle growth. Here we show that skin resident macrophages surround and signal to resting HF-SCs, regulating their entry into a new phase of hair follicle growth. This process involves the death and activation of a fraction of resident macrophages— resulting in Wnt ligand release —that in turn activate HF-SCs. These findings reveal additional mechanisms controlling endogenous stem cell pools that are likely to be relevant for modulating stem cell regenerative capabilities. The results provide new insights that may have implications for the development of technologies with potential applications in regeneration, aging, and cancer.
Collapse
Affiliation(s)
- Donatello Castellana
- Epithelial Cell Biology Group, BBVA Foundation-CNIO Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ralf Paus
- Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Department of Dermatology, University of Münster, Münster, Germany
| | - Mirna Perez-Moreno
- Epithelial Cell Biology Group, BBVA Foundation-CNIO Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- * E-mail:
| |
Collapse
|