4851
|
Graff JR, Konicek BW, McNulty AM, Wang Z, Houck K, Allen S, Paul JD, Hbaiu A, Goode RG, Sandusky GE, Vessella RL, Neubauer BL. Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression. J Biol Chem 2000; 275:24500-5. [PMID: 10827191 DOI: 10.1074/jbc.m003145200] [Citation(s) in RCA: 268] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PTEN tumor suppressor gene is frequently inactivated in human prostate cancers, particularly in more advanced cancers, suggesting that the AKT/protein kinase B (PKB) kinase, which is negatively regulated by PTEN, may be involved in human prostate cancer progression. We now show that AKT activation and activity are markedly increased in androgen-independent, prostate-specific antigen-positive prostate cancer cells (LNAI cells) established from xenograft tumors of the androgen-dependent LNCaP cell line. These LNAI cells show increased expression of integrin-linked kinase, which is putatively responsible for AKT activation/Ser-473 phosphorylation, as well as for increased phosphorylation of the AKT target protein, BAD. Furthermore, expression of the p27(Kip1) cell cycle regulator was diminished in LNAI cells, consistent with the notion that AKT directly inhibits AFX/Forkhead-mediated transcription of p27(Kip1). To assess directly the impact of increased AKT activity on prostate cancer progression, an activated hAKT1 mutant was overexpressed in LNCaP cells, resulting in a 6-fold increase in xenograft tumor growth. Like LNAI cells, these transfectants showed dramatically reduced p27(Kip1) expression. Together, these data implicate increased AKT activity in prostate tumor progression and androgen independence and suggest that diminished p27(Kip1) expression, which has been repeatedly associated with prostate cancer progression, may be a consequence of increased AKT activity.
Collapse
Affiliation(s)
- J R Graff
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4852
|
Polunovsky VA, Gingras AC, Sonenberg N, Peterson M, Tan A, Rubins JB, Manivel JC, Bitterman PB. Translational control of the antiapoptotic function of Ras. J Biol Chem 2000; 275:24776-80. [PMID: 10811643 DOI: 10.1074/jbc.m001938200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activated Ras has been shown to provide powerful antiapoptotic signals to cells through well defined transcriptional and post- translational pathways, whereas translational control as a mechanism of Ras survival signaling remains unexplored. Here we show a direct relationship between assembly of the cap-dependent translation initiation apparatus and suppression of apoptosis by oncogenic Ras in vitro and in vivo. Decreasing protein synthesis with rapamycin, which is known to inhibit cap-dependent translation, increases the susceptibility of Ras-transformed fibroblasts to cytostatic drug-induced apoptosis. In contrast, suppressing global protein synthesis with equipotent concentrations of cycloheximide actually prevents apoptosis. Enforced expression of the cap-dependent translational repressor, the eukaryotic translation initiation factor (eIF) 4E-binding protein (4E-BPI), sensitizes fibroblasts to apoptosis in a manner strictly dependent on its ability to sequester eIF4E from a translationally active complex with eIF4GI and the co-expression of oncogenic Ras. Ectopic expression of 4E-BP1 also promotes apoptosis of Ras-transformed cells injected into immunodeficient mice and markedly diminishes their tumorigenicity. These results establish that eIF4E-dependent protein synthesis is essential for survival of fibroblasts bearing oncogenic Ras and support the concept that activation of cap-dependent translation by extracellular ligands or intrinsic survival signaling molecules suppresses apoptosis, whereas synthesis of proteins mediating apoptosis can occur independently of the cap.
Collapse
Affiliation(s)
- V A Polunovsky
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
4853
|
Tilton B, Ho L, Oberlin E, Loetscher P, Baleux F, Clark-Lewis I, Thelen M. Signal transduction by CXC chemokine receptor 4. Stromal cell-derived factor 1 stimulates prolonged protein kinase B and extracellular signal-regulated kinase 2 activation in T lymphocytes. J Exp Med 2000; 192:313-24. [PMID: 10934220 PMCID: PMC2193218 DOI: 10.1084/jem.192.3.313] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We report that stromal cell-derived factor (SDF)-1 has the remarkable capacity to induce sustained signaling through CXC chemokine receptor 4 (CXCR4). In contrast to other chemokines, such as monocyte chemotactic protein 1 (CC chemokine receptor 2 [CCR2]), macrophage inflammatory protein 1beta (CCR5), liver and activation-regulated chemokine (LARC [CCR6]), Epstein-Barr virus-induced molecule 1 ligand chemokine (ELC [CCR7]), and IP10 (CXCR3), SDF-1 stimulates the prolonged activation of protein kinase B and extracellular signal-regulated kinase (ERK)-2. Activation of protein kinase B is reversed by displacement of SDF-1 from CXCR4 or inhibition of phosphatidylinositol 3-kinase. Although increasing concentrations of SDF-1 enhance CXCR4 internalization, kinase activation is prolonged. In addition, restimulation yields >60% of initial protein kinase B activity, indicating that the remaining receptors are not desensitized. Furthermore, activation is prolonged by inhibiting SDF-1 degradation. The sustained activation of cell survival and mitogenic pathways may account for the unique role of SDF-1 and CXCR4 in embryogenesis and lymphopoiesis.
Collapse
Affiliation(s)
- Bettina Tilton
- Theodor Kocher-Institute, University of Bern, CH-3000 Bern 9, Switzerland
| | - Liza Ho
- Theodor Kocher-Institute, University of Bern, CH-3000 Bern 9, Switzerland
| | - Estelle Oberlin
- Theodor Kocher-Institute, University of Bern, CH-3000 Bern 9, Switzerland
| | - Pius Loetscher
- Theodor Kocher-Institute, University of Bern, CH-3000 Bern 9, Switzerland
| | | | - Ian Clark-Lewis
- Biomedical Research Centre and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Marcus Thelen
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland
| |
Collapse
|
4854
|
Ingley E, Hemmings BA. PKB/Akt interacts with inosine-5' monophosphate dehydrogenase through its pleckstrin homology domain. FEBS Lett 2000; 478:253-9. [PMID: 10930578 DOI: 10.1016/s0014-5793(00)01866-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The pleckstrin homology (PH) domain of the protooncogenic serine/threonine protein kinase PKB/Akt can bind phosphoinositides. A yeast-based two-hybrid system was employed which identified inosine-5' monophosphate dehydrogenase (IMPDH) type II as specifically interacting with PKB/Akts PH domain. IMPDH catalyzes the rate-limiting step of de novo guanosine-triphosphate (GTP) biosynthesis. Using purified fusion proteins, PKB/Akts PH domain and IMPDH associated in vitro and this association moderately activated IMPDH. Purified PKB/Akt also associated with IMPDH in vitro. We could specifically pull-down PKB/Akt or IMPDH from mammalian cell lysates using glutathione-S-transferase (GST)-IMPDH or GST-PH domain fusion proteins, respectively. Additionally, PKB/Akt and IMPDH could be co-immunoprecipitated from COS cell lysates and active PKB/Akt could phosphorylate IMPDH in vitro. These results implicate PKB/Akt in the regulation of GTP biosynthesis through its interaction with IMPDH, which is involved in providing the GTP pool used by signal transducing G-proteins.
Collapse
Affiliation(s)
- E Ingley
- Friedrich Miescher-Institut, Basel, Switzerland
| | | |
Collapse
|
4855
|
Chen Y, Li X, Eswarakumar VP, Seger R, Lonai P. Fibroblast growth factor (FGF) signaling through PI 3-kinase and Akt/PKB is required for embryoid body differentiation. Oncogene 2000; 19:3750-6. [PMID: 10949929 DOI: 10.1038/sj.onc.1203726] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of FGF signaling in early epithelial differentiation was investigated in ES (embryonic stem) cell derived embryoid bodies. A dominant negative fibroblast growth factor receptor (FGFR) mutation was created by stably introducing into ES cells an Fgfr2 cDNA, truncated in its enzymatic domains. These cells failed to differentiate into cystic embryoid bodies. No epithelial differentiation and cavitation morphogenesis could be observed, in the mutant, although its rate of cell proliferation remained unchanged. This phenotype was associated with a significant decrease in the activation of Akt/PKB and PLCgamma-1, as compared to the wild type, while the activation of MAPK/Erk was less affected. Requirement for PI 3-kinase signaling in embryoid body differentiation was demonstrated by specific inhibitors. Akt/PKB activation was abrogated by wortmannin in short-term experiments. In long-term cultures Ly294002 inhibited the differentiation of ES cells into embryoid bodies. Our data demonstrate that for early epithelial differentiation FGF signaling is required through the PI 3-kinase-Akt/ PKB pathway.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Enzyme Activation
- Epithelium
- Fibroblast Growth Factors/metabolism
- Gene Expression
- Isoenzymes/metabolism
- Mutagenesis
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Phospholipase C gamma
- Protein Serine-Threonine Kinases
- Protein-Tyrosine Kinases
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 2
- Receptor, Fibroblast Growth Factor, Type 3
- Receptor, Fibroblast Growth Factor, Type 4
- Receptors, Fibroblast Growth Factor/biosynthesis
- Receptors, Fibroblast Growth Factor/genetics
- Signal Transduction
- Stem Cells/cytology
- Stem Cells/metabolism
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Y Chen
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
4856
|
Abstract
Disruption of integrin-extracellular matrix interactions in normal epithelial cells induces apoptosis, a process termed anoikis. Reduced sensitivity to anoikis appears to be an important hallmark of oncogenic transformation, particularly in the process of metastasis. Several pathways have been implicated in the suppression of anoikis, however, the events which take place proximal to the integrin receptors remain unclear. Integrin-linked kinase (ILK) is an integrin-interacting protein kinase which has been identified as a potential PDK-2, as it is capable of phosphorylating PKB/Akt on Ser-473, and stimulating its activity. Here, we show that ILK activity is stimulated upon adhesion of SCP2 mouse mammary epithelial cells to fibronectin, and inhibited in suspended cells. Overexpression of ILK in the anoikis-sensitive SCP2 cells results in a profound inhibition of anoikis, as determined by annexin V binding and activation of caspases 8 and 3. This effect is reversible by the transfection and expression of a dominant-negative, kinase deficient ILK (ILK KD), as well as by a dominant negative PKB/Akt (PKB AAA). On the other hand, transfection of a dominant negative form of FAK (FRNK) failed to reverse the suppression of anoikis by ILK. Furthermore, inhibition of ILK activity induced anoikis in two anoikis-resistant human breast cancer cell lines. These findings suggest that ILK plays a major role in the suppression of anoikis.
Collapse
Affiliation(s)
- S Attwell
- British Columbia Cancer Agency and Jack Bell Research Centre, Vancouver, Canada
| | | | | |
Collapse
|
4857
|
A member of Forkhead family transcription factor, FKHRL1, is one of the downstream molecules of phosphatidylinositol 3-kinase-Akt activation pathway in erythropoietin signal transduction. Blood 2000. [DOI: 10.1182/blood.v96.3.941] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe phosphatidylinositol 3-kinase (PI3K) signaling pathway is important for the regulation of a number of cellular responses. Serine/threonine kinase Akt (protein kinase B; PKB) is downstream of PI3K and activated by growth factors. This study found that erythropoietin (EPO) induced tyrosine phosphorylation of Akt in a time- and dose-dependent manner in EPO-dependent human leukemia cell line UT-7/EPO. In vitro kinase assay using histone H2B and glucose synthase kinase as substrates demonstrated that Akt was actually activated by EPO. EPO-induced phosphorylation of Akt was completely blocked by a PI3K-specific inhibitor, LY294002, at 10 μmol/L, indicating that activation of Akt by EPO is dependent on PI3K activity. In addition, overexpression of the constitutively active form of Akt on UT-7/EPO cells partially blocked apoptosis induced by withdrawal of EPO from the culture medium. This finding suggested that the PI3K-Akt activation pathway plays some role in the antiapoptotic effect of EPO. EPO induced phosphorylation of a member of the trancription factor Forkhead family, FKHRL1, at threonine 32 and serine 253 in a dose- and time-dependent manner in UT-7/EPO cells. Moreover, results showed that Akt kinase activated by EPO directly phosphorylated FKHRL1 protein and that FKHRL1 phosphorylation was completely dependent on PI3K activity as is the case for Akt. In conjunction with the evidence that FKHRL1 is expressed in normal human erythroid progenitor cells and erythroblasts, the results suggest that FKHRL1 plays an important role in erythropoiesis as one of the downstream target molecules of PI3K-Akt.
Collapse
|
4858
|
Fadeel B, Orrenius S, Zhivotovsky B. The most unkindest cut of all: on the multiple roles of mammalian caspases. Leukemia 2000; 14:1514-25. [PMID: 10942252 DOI: 10.1038/sj.leu.2401871] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The caspases, first discovered almost a decade ago, are intracellular cysteine proteases which have been shown to play an essential role in the initiation and execution phases of apoptotic cell death. Numerous strategies for the activation and inhibition of these 'killer' proteases have evolved, including the regulation of caspase expression and function at the transcriptional and post-translational level, as well as the expression of viral and cellular inhibitors of caspases. Emerging evidence in recent years has also implicated the caspases in various, nonapoptotic aspects of cellular physiology, such as cytokine processing during inflammation, differentiation of progenitor cells during erythropoiesis and lens fiber development, and proliferation of T lymphocytes, thus attesting to the pleiotropic functions of these proteases. The present review aims to discuss the multiple roles of the mammalian caspases with particular emphasis on their activation and regulation in cells of leukemic origin and the attendant possibilities of therapeutic intervention.
Collapse
Affiliation(s)
- B Fadeel
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
4859
|
Eliopoulos AG, Davies C, Knox PG, Gallagher NJ, Afford SC, Adams DH, Young LS. CD40 induces apoptosis in carcinoma cells through activation of cytotoxic ligands of the tumor necrosis factor superfamily. Mol Cell Biol 2000; 20:5503-15. [PMID: 10891490 PMCID: PMC86001 DOI: 10.1128/mcb.20.15.5503-5515.2000] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/1999] [Accepted: 05/08/2000] [Indexed: 11/20/2022] Open
Abstract
CD40, a tumor necrosis factor (TNF) receptor (TNFR) family member, conveys signals regulating diverse cellular responses, ranging from proliferation and differentiation to growth suppression and cell death. The ability of CD40 to mediate apoptosis in carcinoma cells is intriguing given the fact that the CD40 cytoplasmic C terminus lacks a death domain homology with the cytotoxic members of the TNFR superfamily, such as Fas, TNFR1, and TNF-related apoptosis-inducing ligand (TRAIL) receptors. In this study, we have probed the mechanism by which CD40 transduces death signals. Using a trimeric recombinant soluble CD40 ligand to activate CD40, we have found that this phenomenon critically depends on the membrane proximal domain (amino acids 216 to 239) but not the TNFR-associated factor-interacting PXQXT motif in the CD40 cytoplasmic tail. CD40-mediated cytotoxicity is blocked by caspase inhibitors, such as zVAD-fmk and crmA, and involves activation of caspase 8 and caspase 3. Interestingly, CD40 ligation was found to induce functional Fas ligand, TRAIL (Apo-2L) and TNF in apoptosis-susceptible carcinoma cells and to up-regulate expression of Fas. These findings identify a novel proapoptotic mechanism which is induced by CD40 in carcinoma cells and depends on the endogenous production of cytotoxic cytokines and autocrine or paracrine induction of cell death.
Collapse
Affiliation(s)
- A G Eliopoulos
- CRC Institute for Cancer Studies, The University of Birmingham Medical School, Birmingham B15 2TT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
4860
|
Singleton JR, Baker BL, Thorburn A. Dexamethasone inhibits insulin-like growth factor signaling and potentiates myoblast apoptosis. Endocrinology 2000; 141:2945-50. [PMID: 10919283 DOI: 10.1210/endo.141.8.7621] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the critically ill, glucocorticoids induce myopathy, combining profound protein catabolism and mild myotubular death. Insulin-like growth factors (IGFs) inhibit muscle catabolism through activation of phosphatidylinositol 3-kinase (PI3K). Using rat L6 myoblasts, we show that IGF-I also acts through PI3K to inhibit apoptosis induced by hyperosmolar metabolic stress with 300 mM mannitol. We find that the glucocorticoid dexamethasone inhibits this antiapoptotic effect of IGF-I by impairing PI3K signaling. Dexamethasone induces overexpression of the PI3K subunit p85alpha, which, in turn, competes with the complete PI3K heterodimer for binding at insulin receptor substrate-1, inhibiting PI3K activation. Dexamethasone blocks IGF-I-induced phosphorylation of Akt, a PI3K-dependent process. Increased cellular p85alpha abundance, induced by either 10 microM dexamethasone or transient transfection with a plasmid coding for p85alpha, significantly inhibits IGF-I rescue from apoptosis induced by mannitol, as indicated by both loss of cell viability and increased activity of caspase-3 by fluorogenic assay. Conversely, constitutively active PI3K inhibits death induced by mannitol, even in the presence of dexamethasone. These findings may have particular relevance in the pathogenesis of acute steroid myopathy in critical illness, in which catabolic glucocorticoid effects combine with acute metabolic stressors, including sepsis, fasting, and chemical denervation.
Collapse
Affiliation(s)
- J R Singleton
- Department of Neurology, University of Utah Medical School, Salt Lake City 84132, USA.
| | | | | |
Collapse
|
4861
|
Abstract
Human T cell prolymphocytic leukemia can result from chromosomal translocations involving 14q32.1 or Xq28 regions. The regions encode a family of protooncogenes (TCL1, MTCP1, and TCL1b) of unknown function. In yeast two-hybrid screening, we found that TCL1 interacts with Akt. All TCL1 isoforms bind to the Akt pleckstrin homology domain. Both in vitro and in vivo TCL1 increases Akt kinase activity and as a consequence enhances substrate phosphorylation. In vivo, TCL1 stabilizes the mitochondrial transmembrane potential and enhances cell proliferation and survival. In vivo, TCL1 forms trimers, which associate with Akt. TCL1 facilitates the oligomerization and activation of Akt. Our data show that TCL1 is a novel Akt kinase coactivator, which promotes Akt-induced cell survival and proliferation.
Collapse
Affiliation(s)
- J Laine
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
4862
|
A member of Forkhead family transcription factor, FKHRL1, is one of the downstream molecules of phosphatidylinositol 3-kinase-Akt activation pathway in erythropoietin signal transduction. Blood 2000. [DOI: 10.1182/blood.v96.3.941.015k14_941_949] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is important for the regulation of a number of cellular responses. Serine/threonine kinase Akt (protein kinase B; PKB) is downstream of PI3K and activated by growth factors. This study found that erythropoietin (EPO) induced tyrosine phosphorylation of Akt in a time- and dose-dependent manner in EPO-dependent human leukemia cell line UT-7/EPO. In vitro kinase assay using histone H2B and glucose synthase kinase as substrates demonstrated that Akt was actually activated by EPO. EPO-induced phosphorylation of Akt was completely blocked by a PI3K-specific inhibitor, LY294002, at 10 μmol/L, indicating that activation of Akt by EPO is dependent on PI3K activity. In addition, overexpression of the constitutively active form of Akt on UT-7/EPO cells partially blocked apoptosis induced by withdrawal of EPO from the culture medium. This finding suggested that the PI3K-Akt activation pathway plays some role in the antiapoptotic effect of EPO. EPO induced phosphorylation of a member of the trancription factor Forkhead family, FKHRL1, at threonine 32 and serine 253 in a dose- and time-dependent manner in UT-7/EPO cells. Moreover, results showed that Akt kinase activated by EPO directly phosphorylated FKHRL1 protein and that FKHRL1 phosphorylation was completely dependent on PI3K activity as is the case for Akt. In conjunction with the evidence that FKHRL1 is expressed in normal human erythroid progenitor cells and erythroblasts, the results suggest that FKHRL1 plays an important role in erythropoiesis as one of the downstream target molecules of PI3K-Akt.
Collapse
|
4863
|
Sellers LA, Alderton F, Carruthers AM, Schindler M, Humphrey PP. Receptor isoforms mediate opposing proliferative effects through gbetagamma-activated p38 or Akt pathways. Mol Cell Biol 2000; 20:5974-85. [PMID: 10913180 PMCID: PMC86074 DOI: 10.1128/mcb.20.16.5974-5985.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The opposing effects on proliferation mediated by G-protein-coupled receptor isoforms differing in their COOH termini could be correlated with the abilities of the receptors to differentially activate p38, implicated in apoptotic events, or phosphatidylinositol 3-kinase (PI 3-K), which provides a source of survival signals. These contrasting growth responses of the somatostatin sst(2) receptor isoforms, which couple to identical Galpha subunit pools (Galpha(i3) > Galpha(i2) >> Galpha(0)), were both inhibited following betagamma sequestration. The sst(2(a)) receptor-mediated ATF-2 activation and inhibition of proliferation induced by basic fibroblast growth factor (bFGF) were dependent on prolonged phosphorylation of p38. In contrast, cell proliferation and the associated transient phosphorylation of Akt and p70(rsk) induced by sst(2(b)) receptors were blocked by the PI 3-K inhibitor LY 294002. Stimulation with bFGF alone had no effect on the activity of either p38 or Akt but markedly enhanced p38 phosphorylation mediated by sst(2(a)) receptors, suggesting that a complex interplay exists between the transduction cascades activated by these distinct receptor types. In addition, although all receptors mediated a sustained activation of extracellular signal-regulated kinases (ERK1 and ERK2), induction of the tumor suppressor p21(cip1) was detected only following amplification of ERK and p38 phosphorylation by concomitant bFGF and sst(2(a)) receptor activation. Expression of constitutively active Akt in the presence of a p38 inhibitor enabled a proliferative response to be detected in sst(2(a)) receptor-expressing cells. These findings demonstrate that the duration of activation and a critical balance between the mitogen-activated protein kinase and PI 3-K pathways are important for controlling cell proliferation and that the COOH termini of the sst(2) receptor isoforms may determine the selection of appropriate betagamma-pairings necessary for interaction with distinct kinase cascades.
Collapse
Affiliation(s)
- L A Sellers
- Glaxo Institute of Applied Pharmacology, Department of Pharmacology, University of Cambridge, Cambridge CB2 1QJ, United Kingdom
| | | | | | | | | |
Collapse
|
4864
|
Atwal JK, Massie B, Miller FD, Kaplan DR. The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase. Neuron 2000; 27:265-77. [PMID: 10985347 DOI: 10.1016/s0896-6273(00)00035-0] [Citation(s) in RCA: 326] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To determine how signals emanating from Trk transmit neurotrophin actions in primary neurons, we tested the ability of TrkB mutated at defined effector binding sites to promote sympathetic neuron survival or local axon growth. TrkB stimulated signaling proteins and induced survival and growth in a manner similar to TrkA. TrkB mutated at the Shc binding site supported survival and growth poorly relative to wild-type TrkB, whereas TrkB mutated at the PLC-gamma1 binding site supported growth and survival well. TrkB-mediated neuronal survival was dependent on P13-kinase and to a lesser extent MEK activity, while growth depended upon both MEK and P13-kinase activities. These results indicate that the TrkB-Shc site mediates both neuronal survival and axonal outgrowth by activating the P13-kinase and MEK signaling pathways.
Collapse
Affiliation(s)
- J K Atwal
- Center for Neuronal Survival, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
4865
|
Collado M, Medema RH, Garcia-Cao I, Dubuisson ML, Barradas M, Glassford J, Rivas C, Burgering BM, Serrano M, Lam EW. Inhibition of the phosphoinositide 3-kinase pathway induces a senescence-like arrest mediated by p27Kip1. J Biol Chem 2000; 275:21960-8. [PMID: 10791951 DOI: 10.1074/jbc.m000759200] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A senescence-like growth arrest is induced in mouse primary embryo fibroblasts by inhibitors of phosphoinositide 3-kinase (PI3K). We observed that senescence-like growth arrest is correlated with an increase in p27(Kip1) but that down-regulation of other cyclin-dependent kinase (CDK) inhibitors, including p15(INK4b), p16(INK4a), p19( INK4d), and p21(Cip1) as well as other negative cell cycle regulators such as p53 and p19(ARF), implies that this senescence-related growth arrest is independent of the activity of p53, p19(ARF), p16(INK4a), and p21(Cip1), which are associated with replicative senescence. The p27(Kip1) binds to the cyclin/CDK2 complexes and causes a decrease in CDK2 kinase activity. We demonstrated that ectopic expression of p27(Kip1) can induce permanent cell cycle arrest and a senescence-like phenotype in wild-type mouse embryo fibroblasts. We also obtained results suggesting that the kinase inhibitors LY294002 and Wortmannin arrest cell growth and induce a senescence-like phenotype, at least partially, through inhibition of PI3K and protein kinase B/Akt, activation of the forkhead protein AFX, and up-regulation of p27(Kip1)expression. In summary, these observations taken together suggest that p27(Kip1) is an important mediator of the permanent cell cycle arrest induced by PI3K inhibitors. Our data suggest that repression of CDK2 activity by p27(Kip1) is required for the PI3K-induced senescence, yet mouse embryo fibroblasts derived from p27(Kip1-/-) mice entered cell cycle arrest after treatment with LY294002. We show that this is due to a compensatory mechanism by which p130 functionally substitutes for the loss of p27(Kip1). This is the first description that p130 may have a role in inhibiting CDK activity during senescence.
Collapse
Affiliation(s)
- M Collado
- Ludwig Institute for Cancer Research and Section of Virology and Cell Biology, Imperial College School of Medicine at St. Mary's Campus, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4866
|
Furuyama T, Nakazawa T, Nakano I, Mori N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem J 2000; 349:629-34. [PMID: 10880363 PMCID: PMC1221187 DOI: 10.1042/0264-6021:3490629] [Citation(s) in RCA: 357] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
daf-16 is a forkhead-type transcription factor, functioning downstream of insulin-like signals, and is known to be critical to the regulation of life span in Caenorhabditis elegans. Mammalian DAF-16 homologues include AFX, FKHR and FKHRL1, which contain a conserved forkhead domain and three putative phosphorylation sites for the Ser/Thr kinase Akt/protein kinase B (PKB), as well as for DAF-16. To assess the function of the homologues, we examined tissue distribution patterns of mRNAs for DAF-16 homologues in mice. In the embryos, expressions of AFX, FKHR and FKHRL1 mRNAs were complementary to each other and were highest in muscle, adipose tissue and embryonic liver. The characteristic expression pattern remained in the adult, except that signals of FKHRL1 became evident in more tissues, including the brain. In order to clarify whether each DAF-16 homologue had different target genes, we determined the consensus sequences for the binding of DAF-16 and the mouse homologues. The binding sequences for all four proteins shared a core sequence, TTGTTTAC, daf-16 family protein-binding element (DBE) binding protein. However, electrophoretic mobility shift assay showed that the binding affinity of DAF-16 homologues to the core sequence was stronger than that to the insulin-responsive element in the insulin-like growth factor binding protein-1 promoter region, which has been identified as a binding sequence for them. We identified one copy of the DBE upstream of the first exon of sod-3 by searching the genomic database of C. elegans. Taken together, DAF-16 homologues can fundamentally regulate the common target genes in insulin-responsive tissues and the specificity to target genes of each protein is partially determined by the differences in their expression patterns.
Collapse
Affiliation(s)
- T Furuyama
- Laboratory of Genetics of Aging, Department of Molecular Genetic Research, National Institute for Longevity Sciences (NILS), 36-3 Gengo, Morioka, Oobu, Aichi 474-8522, Japan.
| | | | | | | |
Collapse
|
4867
|
Meucci O, Fatatis A, Simen AA, Miller RJ. Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc Natl Acad Sci U S A 2000; 97:8075-80. [PMID: 10869418 PMCID: PMC16672 DOI: 10.1073/pnas.090017497] [Citation(s) in RCA: 296] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent in vitro and in vivo studies have shown that the chemokine fractalkine is widely expressed in the brain and localized principally to neurons. Central nervous system expression of CX(3)CR1, the only known receptor for fractalkine, has been demonstrated exclusively on microglia and astrocytes. Thus, it has been proposed that fractalkine regulates cellular communication between neurons (that produce fractalkine) and microglia (that express its receptor). Here we show, for the first time, that hippocampal neurons also express CX(3)CR1. Receptor activation by soluble fractalkine induces activation of the protein kinase Akt, a major component of prosurvival signaling pathways, and nuclear translocation of NF-kappaB, a downstream effector of Akt. Fractalkine protects hippocampal neurons from the neurotoxicity induced by the HIV-1 envelope protein gp120(IIIB), an effect blocked by anti-CX(3)CR1 antibodies. Experiments with two different inhibitors of the phosphatidylinositol 3-kinase, a key enzyme in the activation of Akt, and with a phospholipid activator of Akt demonstrate that Akt activation is responsible for the neuroprotective effects of fractalkine. These data show that neuronal CX(3)CR1 receptors mediate the neurotrophic effects of fractalkine, suggesting that fractalkine and its receptor are involved in a complex network of both paracrine and autocrine interactions between neurons and glia.
Collapse
Affiliation(s)
- O Meucci
- Department of Neurobiology, Pharmacology, and Physiology, and Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
4868
|
Grozinger CM, Schreiber SL. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc Natl Acad Sci U S A 2000; 97:7835-40. [PMID: 10869435 PMCID: PMC16631 DOI: 10.1073/pnas.140199597] [Citation(s) in RCA: 481] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription is controlled in part by the dynamic acetylation and deacetylation of histone proteins. The latter process is mediated by histone deacetylases (HDACs). Previous analysis of the regulation of HDAC activity in transcription has focused primarily on the recruitment of HDAC proteins to specific promoters or chromosomal domains by association with DNA-binding proteins. To characterize the cellular function of the recently identified HDAC4 and HDAC5 proteins, complexes were isolated by immunoprecipitation. Both HDACs were found to interact with14-3-3 proteins at three phosphorylation sites. The association of 14-3-3 with HDAC4 and HDAC5 results in the sequestration of these proteins in the cytoplasm. Loss of this interaction allows HDAC4 and HDAC5 to translocate to the nucleus, interact with HDAC3, and repress gene expression. Regulation of the cellular localization of HDAC4 and HDAC5 by 14-3-3 represents a mechanism for controlling the transcriptional activity of these class II HDAC proteins.
Collapse
Affiliation(s)
- C M Grozinger
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | |
Collapse
|
4869
|
Guthridge MA, Stomski FC, Barry EF, Winnall W, Woodcock JM, McClure BJ, Dottore M, Berndt MC, Lopez AF. Site-Specific Serine Phosphorylation of the IL-3 Receptor Is Required for Hemopoietic Cell Survival. Mol Cell 2000. [DOI: 10.1016/s1097-2765(05)00002-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4870
|
Vielhaber E, Eide E, Rivers A, Gao ZH, Virshup DM. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon. Mol Cell Biol 2000; 20:4888-99. [PMID: 10848614 PMCID: PMC85940 DOI: 10.1128/mcb.20.13.4888-4899.2000] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular oscillator that keeps circadian time is generated by a negative feedback loop. Nuclear entry of circadian regulatory proteins that inhibit transcription from E-box-containing promoters appears to be a critical component of this loop in both Drosophila and mammals. The Drosophila double-time gene product, a casein kinase I epsilon (CKIepsilon) homolog, has been reported to interact with dPER and regulate circadian cycle length. We find that mammalian CKIepsilon binds to and phosphorylates the murine circadian regulator mPER1. Unlike both dPER and mPER2, mPER1 expressed alone in HEK 293 cells is predominantly a nuclear protein. Two distinct mechanisms appear to retard mPER1 nuclear entry. First, coexpression of mPER2 leads to mPER1-mPER2 heterodimer formation and cytoplasmic colocalization. Second, coexpression of CKIepsilon leads to masking of the mPER1 nuclear localization signal and phosphorylation-dependent cytoplasmic retention of both proteins. CKIepsilon may regulate mammalian circadian rhythm by controlling the rate at which mPER1 enters the nucleus.
Collapse
Affiliation(s)
- E Vielhaber
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City 84132, USA
| | | | | | | | | |
Collapse
|
4871
|
Vazquez F, Ramaswamy S, Nakamura N, Sellers WR. Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 2000; 20:5010-8. [PMID: 10866658 PMCID: PMC85951 DOI: 10.1128/mcb.20.14.5010-5018.2000] [Citation(s) in RCA: 622] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PTEN gene is a tumor suppressor localized in the frequently altered chromosomal region 10q23. The tumor suppressor function of the PTEN protein (PTEN) has been linked to its ability to dephosphorylate the lipid second-messenger phosphatidylinositol 3,4, 5-trisphosphate and phosphatidylinositol 3,4-bisphosphate and, by doing so, to antagonize the phosphoinositide 3-kinase pathway. The PTEN protein consists of an amino-terminal phosphatase domain, a lipid binding C2 domain, and a 50-amino-acid C-terminal domain (the "tail") of unknown function. A number of studies have shown that the tail is dispensable for both phosphatase activity and blocking cell growth. Here, we show that the PTEN tail is necessary for maintaining protein stability and that it also acts to inhibit PTEN function. Thus, removing the tail results in a loss of stability but does not result in a loss of function because the resultant protein is more active. Furthermore, tail-dependent regulation of stability and activity is linked to the phosphorylation of three residues (S380, T382, and T383) within the tail. Therefore, the tail is likely to mediate the regulation of PTEN function through phosphorylation.
Collapse
Affiliation(s)
- F Vazquez
- Department of Adult Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
4872
|
Huber M, Hughes MR, Krystal G. Thapsigargin-induced degranulation of mast cells is dependent on transient activation of phosphatidylinositol-3 kinase. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:124-33. [PMID: 10861044 DOI: 10.4049/jimmunol.165.1.124] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thapsigargin, which elevates cytosolic calcium levels by inhibiting the sarcoplasmic/endoplasmic reticulum calcium-dependent ATPase, was tested for its ability to degranulate bone marrow-derived mast cells (BMMCs) from src homology 2-containing inositol phosphatase +/+ (SHIP+/+) and SHIP-/- mice. As was found previously with steel factor, thapsigargin stimulated far more degranulation in SHIP-/- than in SHIP+/+ BMMCs, and this was blocked with the phosphatidylinositol-3 (PI-3) kinase inhibitors, LY294002 and wortmannin. In contrast to steel factor, however, this heightened degranulation of SHIP-/- BMMCs was not due to a greater calcium influx into these cells, nor was the thapsigargin-induced calcium influx inhibited by LY294002, suggesting that the heightened thapsigargin-induced degranulation of SHIP-/- BMMCs was due to a PI-3 kinase-regulated step distinct from that regulating calcium entry. An investigation of thapsigargin-stimulated pathways in both cell types revealed that MAPK was heavily but equally phosphorylated. Interestingly, the protein kinase C inhibitor, bisindolylmaleimide (compound 3), totally blocked thapsigargin-induced degranulation in both SHIP+/+ and SHIP-/- BMMCs. As well, thapsigargin stimulated a PI-3 kinase-dependent, transient activation of protein kinase B, and this activation was far greater in SHIP-/- than in SHIP+/+ BMMCs. Consistent with this, thapsigargin was found to be a potent survival factor, following cytokine withdrawal, for both cell types and was more potent with SHIP-/- cells. These studies have both identified an additional PI-3 kinase-dependent step within the mast cell degranulation process, possibly involving 3-phosphoinositide-dependent protein kinase-1 and a diacylglycerol-independent protein kinase C isoform, and shown that the tumor-promoting activity of thapsigargin may be due to its activation of protein kinase B and subsequent promotion of cell survival.
Collapse
Affiliation(s)
- M Huber
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
4873
|
Sui X, Krantz SB, Zhao ZJ. Stem cell factor and erythropoietin inhibit apoptosis of human erythroid progenitor cells through different signalling pathways. Br J Haematol 2000; 110:63-70. [PMID: 10930980 DOI: 10.1046/j.1365-2141.2000.02145.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Erythropoietin (EPO) and stem cell factor (SCF) are two important factors in human erythropoiesis. We have recently demonstrated that SCF and EPO synergistically activate mitogen-activated protein (MAP) kinase, thereby promoting growth of human erythroid colony-forming cells (ECFCs). In the present study, we have examined the intracellular mechanisms by which SCF and EPO maintain survival of these cells. In the absence of SCF and EPO, human ECFCs underwent rapid apoptosis. The process was significantly inhibited by addition of a single factor and was totally prevented in the presence of both factors. Treatment of ECFCs with wortmannin, a specific inhibitor of phosphoinositide 3-kinase (PI3K), inhibited the antiapoptotic effect of SCF but had no effect on that of EPO, indicating that SCF but not EPO inhibits apoptosis through the PI3K pathway. In contrast, treatment of ECFCs with PD98059, a specific inhibitor of MAP kinase/ERK kinase (MEK), inhibited cell growth but had no effect on the antiapoptotic activity of either SCF or EPO, suggesting that SCF and EPO prevent apoptosis of human ECFCs independent of the extracellular signal-regulated kinase (ERK) pathway. Interestingly, both EPO and SCF induced activation of PI3K. However, through PI3K, SCF caused activation of protein kinase B (PKB), an anti-apoptosis signal, whereas EPO led to activation of ERKs. Furthermore, the SCF- and EPO-maintained expression of antiapoptotic protein Bcl-XL was correlated with the activation of ERKs and was inhibited by PD98059, suggesting that Bcl-XL may not have a major role in preventing apoptosis of human ECFCs. Phosphorylated BAD was not affected by SCF, EPO or wortmannin. Taken together with our previous results, the present study indicates that SCF and EPO support survival and growth of human ECFCs through different signalling pathways and that they transduce distinctly different signals through activation of PI3K.
Collapse
Affiliation(s)
- X Sui
- Hematology/Oncology Division, Department of Medicine, Department of Veterans Affairs Medical Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, USA
| | | | | |
Collapse
|
4874
|
Fleischmann M, Iynedjian PB. Regulation of sterol regulatory-element binding protein 1 gene expression in liver: role of insulin and protein kinase B/cAkt. Biochem J 2000; 349:13-7. [PMID: 10861205 PMCID: PMC1221114 DOI: 10.1042/0264-6021:3490013] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Insulin stimulates the transcription of the sterol regulatory- element binding protein (SREBP) 1/ADD1 gene in liver. Hepatocytes in primary culture were used to delineate the insulin signalling pathway for induction of SREBP1 gene expression. The inhibitors of phosphoinositide 3-kinase (PI 3-kinase), wortmannin and LY 294002, abolished the insulin-dependent increase in SREBP1 mRNA, whereas the inhibitor of the mitogen- activated protein kinase cascade, PD 98059, was without effect. To investigate the role of protein kinase B (PKB)/cAkt downstream of PI 3-kinase, hepatocytes were transduced with an adenovirus encoding a PKB--oestrogen receptor fusion protein. The PKB activity of this recombinant protein was rapidly activated in hepatocytes challenged with 4-hydroxytamoxifen (OHT), as was endogenous PKB in hepatocytes challenged with insulin. The addition of OHT to transduced hepatocytes resulted in accumulation of SREBP1 mRNA, with a time-course and magnitude similar to the effect of insulin in non-transduced cells. The level of SREBP1 mRNA was not increased by OHT in hepatocytes expressing a mutant form of the recombinant protein whose PKB activity was not activated by OHT. Thus acute activation of PKB is sufficient to induce SREBP1 mRNA accumulation in primary hepatocytes, and might be the major signalling event by which insulin induces SREBP1 gene expression in the liver.
Collapse
Affiliation(s)
- M Fleischmann
- Division of Clinical Biochemistry and Experimental Diabetes Research, University of Geneva School of Medicine, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
4875
|
Mizukami Y, Kobayashi S, Uberall F, Hellbert K, Kobayashi N, Yoshida K. Nuclear mitogen-activated protein kinase activation by protein kinase czeta during reoxygenation after ischemic hypoxia. J Biol Chem 2000; 275:19921-7. [PMID: 10777509 DOI: 10.1074/jbc.m907901199] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the upstream kinases for mitogen-activated protein kinase (MAPK) activation during ischemic hypoxia and reoxygenation using H9c2 cells derived from rat cardiomyocytes. Protein kinase C (PKC)zeta, an atypical PKC isoform mainly expressed in rat heart, has been shown to act as an upstream kinase of MAPK during ischemic hypoxia and reoxygenation by analyses with PKC inhibitors, antisense DNA, a dominant negative kinase defective mutant, and constitutively active mutants of PKCzeta. Immunocytochemical observations show PKCzeta staining in the nucleus during ischemic hypoxia and reoxygenation when phosphorylated MAPK is also detected in the nucleus. This nuclear localization of PKCzeta is inhibited by treatment with wortmannin, a phosphoinositide 3-kinase inhibitor that also inhibits MAPK activation in a dose-dependent manner. This is supported by the inhibition of MAPK phosphorylation by another blocker of phosphoinositide 3-kinase, LY294002. An upstream kinase of MAPK, MEK1/2, is significantly phosphorylated 15 min after reoxygenation and observed mainly in the nucleus, whereas it is present in the cytoplasm in serum stimulation. The phosphorylation of MEK is blocked by PKC inhibitors and phosphoinositide 3-kinase inhibitors, as observed in the case of MAPK phosphorylation. These observations indicate that PKCzeta, which is activated by phosphoinositide 3-kinase, induces MAPK activation through MEK in the nucleus during reoxygenation after ischemic hypoxia.
Collapse
Affiliation(s)
- Y Mizukami
- First Department of Physiology and the Department of Legal Medicine, Yamaguchi University School of Medicine, Yamaguchi 755-8505, Japan.
| | | | | | | | | | | |
Collapse
|
4876
|
Axonal regulation of Schwann cell proliferation and survival and the initial events of myelination requires PI 3-kinase activity. J Neurosci 2000. [PMID: 10844033 DOI: 10.1523/jneurosci.20-12-04635.2000] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this report, we have investigated the signaling pathways that are activated by, and mediate the effects of, the neuregulins and axonal contact in Schwann cells. Phosphatidylinositol 3-kinase (PI 3-kinase) and mitogen-activated protein kinase kinase (MAPK kinase) are strongly activated in Schwann cells by glial growth factor (GGF), a soluble neuregulin, and by contact with neurite membranes; both kinase activities are also detected in Schwann cell-DRG neuron cocultures. Inhibition of the PI 3-kinase, but not the MAP kinase, pathway reversibly inhibited Schwann cell proliferation induced by GGF and neurites. Cultured Schwann cells undergo apoptosis after serum deprivation and can be rescued by GGF or contact with neurites; these survival effects were also blocked by inhibition of PI 3-kinase. Finally, we have examined the role of these signaling pathways in Schwann cell differentiation in cocultures. At early stages of coculture, inhibition of PI 3-kinase, but not MAPK kinase, blocked Schwann cell elongation and subsequent myelination but did not affect laminin deposition. Later, after Schwann cells established a one-to-one relationship with axons, inhibition of PI 3-kinase did not block myelin formation, but the myelin sheaths that formed were shorter, and the rate of myelin protein accumulation was markedly decreased. PI 3-kinase inhibition had no observable effect on the maintenance of myelin sheaths in mature myelinated cocultures. These results indicate that activation of PI 3-kinase by axonal factors, including the neuregulins, promotes Schwann cell proliferation and survival and implicate PI 3-kinase in the early events of myelination.
Collapse
|
4877
|
Cotelle V, Meek SE, Provan F, Milne FC, Morrice N, MacKintosh C. 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells. EMBO J 2000; 19:2869-76. [PMID: 10856232 PMCID: PMC203364 DOI: 10.1093/emboj/19.12.2869] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite 14-3-3 proteins being implicated in the control of the eukaryotic cell cycle, metabolism, cell signalling and survival, little is known about the global regulation or functions of the phosphorylation-dependent binding of 14-3-3s to diverse target proteins. We identified Arabidopsis cytosolic proteins that bound 14-3-3s in competition with a 14-3-3-binding phosphopeptide, including nitrate reductase, glyceraldehyde- 3-phosphate dehydrogenase, a calcium-dependent protein kinase, sucrose-phosphate synthase (SPS) and glutamyl-tRNA synthetase. Remarkably, in cells starved of sugars or fed with non-metabolizable glucose analogues, all 14-3-3 binding was lost and the target proteins were selectively cleaved into proteolytic fragments. 14-3-3 binding reappeared after several hours of re-feeding with sugars. Starvation-induced degradation was blocked by 5-amino imidazole-4-carboxamide riboside (which is converted to an AMP-mimetic) or the protease inhibitor MG132 (Cbz-leu-leu-leucinal). Extracts of sugar-starved (but not sugar-fed) Arabidopsis cells contained an ATP-independent, MG132-sensitive, neutral protease that cleaved Arabidopsis SPS, and the mammalian 14-3-3-regulated transcription factor, FKHR. Cleavage of SPS and phosphorylated FKHR in vitro was blocked by binding to 14-3-3s. The finding that 14-3-3s participate in a nutrient-sensing pathway controlling cleavage of many targets may underlie the effects of these proteins on plant development.
Collapse
Affiliation(s)
- V Cotelle
- Medical Research Council Protein Phosphorylation Unit, Department of Biochemistry, MSI/WTB Complex, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
4878
|
Abstract
Neurotrophins use two types of receptors, the Trk tyrosine kinase receptors and the p75 neurotrophin receptor (p75NTR), to regulate the growth, development, survival and repair of the nervous system. These receptors can either collaborate with or inhibit each other's actions to mediate neurotrophin effects. The development and survival of neurons is thus based upon the functional interplay of the signals generated by Trk and p75NTR. In the past two years, the signaling pathways used by these receptors, including Akt and MAPK-induced signaling via Trk, and JNK, p53, and NF-kappaB signaling via p75NTR, have been identified. In addition, a number of novel p75NTR-interacting proteins have been identified that transmit growth, survival, and apoptotic signals.
Collapse
Affiliation(s)
- D R Kaplan
- Brain Tumor Research Center, Montreal Neurological Institute, Montreal, H3A 2B4, Canada.
| | | |
Collapse
|
4879
|
Shioi T, Kang PM, Douglas PS, Hampe J, Yballe CM, Lawitts J, Cantley LC, Izumo S. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J 2000; 19:2537-48. [PMID: 10835352 PMCID: PMC212739 DOI: 10.1093/emboj/19.11.2537] [Citation(s) in RCA: 446] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1999] [Revised: 03/13/2000] [Accepted: 03/16/2000] [Indexed: 12/28/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) has been shown to regulate cell and organ size in Drosophila, but the role of PI3K in vertebrates in vivo is not well understood. To examine the role of PI3K in intact mammalian tissue, we have created and characterized transgenic mice expressing constitutively active or dominant-negative mutants of PI3K in the heart. Cardiac- specific expression of constitutively active PI3K resulted in mice with larger hearts, while dominant-negative PI3K resulted in mice with smaller hearts. The increase or decrease in heart size was associated with comparable increase or decrease in myocyte size. Cardiomyopathic changes, such as myocyte necrosis, apoptosis, interstitial fibrosis or contractile dysfunction, were not observed in either of the transgenic mice. Thus, the PI3K pathway is necessary and sufficient to promote organ growth in mammals.
Collapse
Affiliation(s)
- T Shioi
- Cardiovascular Division, Beth Israel Deaconess Medical Center and Departments of Medicine and Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
4880
|
Lee JW, Juliano RL. alpha5beta1 integrin protects intestinal epithelial cells from apoptosis through a phosphatidylinositol 3-kinase and protein kinase B-dependent pathway. Mol Biol Cell 2000; 11:1973-87. [PMID: 10848623 PMCID: PMC14897 DOI: 10.1091/mbc.11.6.1973] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Renewal of the gastrointestinal epithelium involves a coordinated process of terminal differentiation and programmed cell death. Integrins have been implicated in the control of apoptotic processes in various cell types. Here we examine the role of integrins in the regulation of apoptosis in gastrointestinal epithelial cells with the use of a rat small intestinal epithelial cell line (RIE1) as a model. Overexpression of the integrin alpha5 subunit in RIE1 cells conferred protection against several proapoptotic stimuli. In contrast, overexpression of the integrin alpha2 subunit had no effect on cell survival. The antiapoptotic effect of the alpha5 subunit was partially retained by a mutated version that had a truncation of the cytoplasmic domain. The antiapoptotic effects of the full-length or truncated alpha5 subunit were reversed upon treatment with inhibitors of phosphatidylinositol 3-kinase (PI-3-kinase), suggesting that the alpha5beta1 integrin might interact with the PI-3-kinase/Akt survival pathway. When cells overexpressing alpha5 were allowed to adhere to fibronectin, there was a moderate activation of protein kinase B (PKB)/Akt, whereas no such effect was seen in alpha2-overexpressing cells adhering to collagen. Furthermore, in cells overexpressing alpha5 and adhering to fibronectin, there was a dramatic enhancement of the ability of growth factors to stimulate PKB/Akt; again, this was not seen in cells overexpressing alpha2 subunit and adhering to collagen or fibronectin. Expression of a dominant negative version of PKB/Akt in RIE cells blocked to ability of alpha5 to enhance cell survival. Thus, the alpha5beta1 integrin seems to protect intestinal epithelial cells against proapoptotic stimuli by selectively enhancing the activity of the PI-3-kinase/Akt survival pathway.
Collapse
Affiliation(s)
- J W Lee
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7365, USA
| | | |
Collapse
|
4881
|
Withers DJ, White M. Perspective: The insulin signaling system--a common link in the pathogenesis of type 2 diabetes. Endocrinology 2000; 141:1917-21. [PMID: 10830270 DOI: 10.1210/endo.141.6.7584] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- D J Withers
- Department of Metabolic Medicine, Imperial College School of Medicine, London, United Kingdom
| | | |
Collapse
|
4882
|
Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, Van Obberghen E. SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 2000; 275:15985-91. [PMID: 10821852 DOI: 10.1074/jbc.275.21.15985] [Citation(s) in RCA: 367] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The SOCS proteins are induced by several cytokines and are involved in negative feedback loops. Here we demonstrate that in 3T3-L1 adipocytes, insulin, a hormone whose receptor does not belong to the cytokine receptor family, induces SOCS-3 expression but not CIS or SOCS-2. Using transfection of COS-7 cells, we show that insulin induction of SOCS-3 is enhanced upon Stat5B expression. Moreover, Stat5B from insulin-stimulated cells binds directly to a Stat element present in the SOCS-3 promoter. Once induced, SOCS-3 inhibits insulin activation of Stat5B without modifying the insulin receptor tyrosine kinase activity. Two pieces of evidence suggest that this negative regulation likely results from competition between SOCS-3 and Stat5B binding to the same insulin receptor motif. First, using a yeast two-hybrid system, we show that SOCS-3 binds to the insulin receptor at phosphotyrosine 960, which is precisely where Stat5B binds. Second, using confocal microscopy, we show that insulin induces translocation of SOCS-3 from an intracellular compartment to the cell membrane, leading to colocalization of SOCS-3 with the insulin receptor. This colocalization is dependent upon phosphorylation of insulin receptor tyrosine 960. Indeed, in cells expressing an insulin receptor mutant in which tyrosine 960 has been mutated to phenylalanine, insulin does not modify the cellular localization of SOCS-3. We have thus revealed an insulin target gene of which the expression is potentiated upon Stat5B activation. By inhibiting insulin-stimulated Stat5B, SOCS-3 appears to function as a negative regulator of insulin signaling.
Collapse
Affiliation(s)
- B Emanuelli
- INSERM U145, IFR-50, Faculté de Médecine, 06107 Nice Cédex 2, France
| | | | | | | | | | | |
Collapse
|
4883
|
Madge LA, Pober JS. A phosphatidylinositol 3-kinase/Akt pathway, activated by tumor necrosis factor or interleukin-1, inhibits apoptosis but does not activate NFkappaB in human endothelial cells. J Biol Chem 2000; 275:15458-65. [PMID: 10748004 DOI: 10.1074/jbc.m001237200] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tumor necrosis factor (TNF) and interleukin-1 (IL-1) activate the transcription of both anti-apoptotic and pro-inflammatory gene products in human endothelial cells (EC) via NFkappaB. Here we report that both TNF and IL-1 activate the anti-apoptotic protein kinase Akt in growth factor and serum-deprived EC, assessed by Western blotting for phospho-Akt. Phosphorylation of Akt is blocked by LY294002 or wortmannin, inhibitors of phosphatidylinositol 3-kinase (PI 3-kinase). Consistent with these biochemical observations, TNF and IL-1 reduce apoptosis caused by growth factor and serum deprivation, and this action is also blocked by LY294002. Although Akt has been reported to activate NFkappaB, LY294002 does not prevent TNF- or IL-1-induced degradation of IkappaBalpha, beta, or epsilon, transcription of NFkappaB-dependent E-selectin or ICAM-1 promoter-reporter genes, or surface expression of E-selectin or ICAM-1 in human EC. LY294002 potentiates the activation of mitogen-activated protein kinases and stress-activated protein kinases by TNF and IL-1, suggesting Akt inhibits these responses. We conclude that TNF and IL-1 activate a PI 3-kinase/Akt anti-apoptotic pathway and that the anti-apoptotic effects of Akt are independent of NFkappaB. Moreover, the PI 3-kinase/Akt pathway does not play a major role in the pro-inflammatory responses of EC to TNF or IL-1.
Collapse
Affiliation(s)
- L A Madge
- Interdepartmental Program in Vascular Biology and Transplantation, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
4884
|
Abstract
Glycogen synthase kinase-3beta (GSK3beta) activity is negatively regulated by several signal transduction cascades that protect neurons against apoptosis, including the phosphatidylinositol-3 kinase (PI-3 kinase) pathway. This suggests the interesting possibility that activation of GSK3beta may contribute to neuronal apoptosis. Consequently, we evaluated the role of GSK3beta in apoptosis in cultured cortical neurons induced by trophic factor withdrawal or by PI-3 kinase inhibition. Neurons were subjected to several apoptotic paradigms, including serum deprivation, serum deprivation combined with exposure to NMDA receptor antagonists, or treatment with PI-3 kinase inhibitors. These treatments all led to stimulation of GSK3beta activity in cortical neurons, which preceded the induction of apoptosis. Expression of an inhibitory GSK3beta binding protein or a dominant interfering form of GSK3beta reduced neuronal apoptosis, suggesting that GSK3beta contributes to trophic factor withdrawal-induced apoptosis. Furthermore, overexpression of GSK3beta in neurons increased apoptosis, indicating that activation of this enzyme is sufficient to trigger programmed cell death. Although destabilization of beta-catenin is an important physiological effect of GSK3beta activation, expression of a mutant beta-catenin that is not destabilized by GSK3beta did not protect against apoptosis. We conclude that inhibition of GSK3beta is one of the mechanisms by which PI-3 kinase activation protects neurons from programmed cell death.
Collapse
|
4885
|
Jones RG, Parsons M, Bonnard M, Chan VS, Yeh WC, Woodgett JR, Ohashi PS. Protein kinase B regulates T lymphocyte survival, nuclear factor kappaB activation, and Bcl-X(L) levels in vivo. J Exp Med 2000; 191:1721-34. [PMID: 10811865 PMCID: PMC2193154 DOI: 10.1084/jem.191.10.1721] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The serine/threonine kinase protein kinase B (PKB)/Akt mediates cell survival in a variety of systems. We have generated transgenic mice expressing a constitutively active form of PKB (gag-PKB) to examine the effects of PKB activity on T lymphocyte survival. Thymocytes and mature T cells overexpressing gag-PKB displayed increased active PKB, enhanced viability in culture, and resistance to a variety of apoptotic stimuli. PKB activity prolonged the survival of CD4(+)CD8(+) double positive (DP) thymocytes in fetal thymic organ culture, but was unable to prevent antigen-induced clonal deletion of thymocytes expressing the major histocompatibility complex class I-restricted P14 T cell receptor (TCR). In mature T lymphocytes, PKB can be activated in response to TCR stimulation, and peptide-antigen-specific proliferation is enhanced in T cells expressing the gag-PKB transgene. Both thymocytes and T cells overexpressing gag-PKB displayed elevated levels of the antiapoptotic molecule Bcl-X(L). In addition, the activation of peripheral T cells led to enhanced nuclear factor (NF)-kappaB activation via accelerated degradation of the NF-kappaB inhibitory protein IkappaBalpha. Our data highlight a physiological role for PKB in promoting survival of DP thymocytes and mature T cells, and provide evidence for the direct association of three major survival molecules (PKB, Bcl-X(L), and NF-kappaB) in vivo in T lymphocytes.
Collapse
Affiliation(s)
- Russell G. Jones
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Michael Parsons
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | | - Vera S.F. Chan
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Wen-Chen Yeh
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
- Amgen Institute, Toronto, Ontario M5G 2C1, Canada
| | - James R. Woodgett
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Pamela S. Ohashi
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
- Department of Immunology, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| |
Collapse
|
4886
|
Abstract
Motoneurons require neurotrophic factors for their survival and axonal projection during development, as well as nerve regeneration. By using the axotomy-induced neuronal death paradigm and adenovirus-mediated gene transfer, we attempted to gain insight into the functional significances of major growth factor receptor downstream cascades, Ras-extracellular signal-regulated kinase (Ras-ERK) pathway and phosphatidylinositol-3 kinase-Akt (PI3K-Akt) pathway. After neonatal hypoglossal nerve transection, the constitutively active Akt-overexpressing neurons could survive as well as those overexpressing Bcl-2, whereas the constitutively active ERK kinase (MEK)-overexpressing ones failed to survive. A dominant negative Akt experiment demonstrated that inhibition of Akt pathway hastened axotomy-induced neuronal death in the neonate. In addition, the dominant active Akt-overexpressing adult hypoglossal neurons showed accelerated axonal regeneration after axotomy. These results suggest that Akt plays dual roles in motoneuronal survival and nerve regeneration in vivo and that PI3K-Akt pathway is probably more vital in neuronal survival after injury than Ras-ERK pathway.
Collapse
|
4887
|
Morisco C, Zebrowski D, Condorelli G, Tsichlis P, Vatner SF, Sadoshima J. The Akt-glycogen synthase kinase 3beta pathway regulates transcription of atrial natriuretic factor induced by beta-adrenergic receptor stimulation in cardiac myocytes. J Biol Chem 2000; 275:14466-75. [PMID: 10799529 DOI: 10.1074/jbc.275.19.14466] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the mechanism of atrial natriuretic factor (ANF) transcription by isoproterenol (ISO), an agonist for the beta-adrenergic receptor (betaAR), in cardiac myocytes. ISO only modestly activated members of the mitogen-activated protein kinase family. ISO-induced ANF transcription was not affected by inhibition of mitogen-activated protein kinases, whereas it was significantly inhibited by KN93, an inhibitor of Ca(2+)/calmodulin-dependent kinase (CaM kinase II). Production of 3'-phosphorylated phosphatidylinositides (3 phosphoinositides) was also required for ISO-induced ANF transcription. ISO caused phosphorylation (Ser-473) and activation of Akt through CaM kinase II- and 3 phosphoinositides-dependent mechanisms. Constitutively active Akt increased myocyte surface area, total protein content, and ANF expression, whereas dominant negative Akt blocked ISO-stimulated ANF transcription. ISO caused Ser-9 phosphorylation and decreased activities of GSK3beta. Overexpression of GSK3beta inhibited ANF transcription, which was reversed by ISO. ISO failed to reverse the inhibitory effect of GSK3beta(S9A), an Akt-insensitive mutant. Kinase-inactive GSK3beta increased ANF transcription. Cyclosporin A partially inhibited ISO-stimulated ANF transcription, indicating that calcineurin only partially mediates ANF transcription. These results suggest that both CaM kinase II and 3 phosphoinositides mediate betaAR-induced Akt activation and ANF transcription in cardiac myocytes. Furthermore, betaAR-stimulated ANF transcription is predominantly mediated by activation of Akt and subsequent phosphorylation/inhibition of GSK3beta.
Collapse
Affiliation(s)
- C Morisco
- Weis Center for Research, Department of Molecular Cellular Physiology, Pennsylvania State University College of Medicine, Danville, Pennsylvania 17822, USA
| | | | | | | | | | | |
Collapse
|
4888
|
Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chen ZJ, Wang X, Williams RS. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 2000; 101:389-99. [PMID: 10830166 DOI: 10.1016/s0092-8674(00)80849-1] [Citation(s) in RCA: 395] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cytochrome c released from mitochondria has been proposed to be an essential component of an apoptotic pathway responsive to DNA damage and other forms of cell stress. Murine embryos devoid of cytochrome c die in utero by midgestation, but cell lines established from early cytochrome c null embryos are viable under conditions that compensate for defective oxidative phosphorylation. As compared to cell lines established from wild-type embryos, cells lacking cytochrome c show reduced caspase-3 activation and are resistant to the proapoptotic effects of UV irradiation, serum withdrawal, or staurosporine. In contrast, cells lacking cytochrome c demonstrate increased sensitivity to cell death signals triggered by TNFalpha. These results define the role of cytochrome c in different apoptotic signaling cascades.
Collapse
Affiliation(s)
- K Li
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
4889
|
Wang X, McCullough KD, Franke TF, Holbrook NJ. Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. J Biol Chem 2000; 275:14624-31. [PMID: 10799549 DOI: 10.1074/jbc.275.19.14624] [Citation(s) in RCA: 352] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine/threonine kinase Akt (also known as protein kinase B) is activated in response to various stimuli by a mechanism involving phosphoinositide 3-kinase (PI3-K). Akt provides a survival signal that protects cells from apoptosis induced by growth factor withdrawal, but its function in other forms of stress is less clear. Here we investigated the role of PI3-K/Akt during the cellular response to oxidant injury. H(2)O(2) treatment elevated Akt activity in multiple cell types in a time- (5-30 min) and dose (400 microM-2 mm)-dependent manner. Expression of a dominant negative mutant of p85 (regulatory component of PI3-K) and treatment with inhibitors of PI3-K (wortmannin and LY294002) prevented H(2)O(2)-induced Akt activation. Akt activation by H(2)O(2) also depended on epidermal growth factor receptor (EGFR) signaling; H(2)O(2) treatment led to EGFR phosphorylation, and inhibition of EGFR activation prevented Akt activation by H(2)O(2). As H(2)O(2) causes apoptosis of HeLa cells, we investigated whether alterations of PI3-K/Akt signaling would affect this response. Wortmannin and LY294002 treatment significantly enhanced H(2)O(2)-induced apoptosis, whereas expression of exogenous myristoylated Akt (an activated form) inhibited cell death. Constitutive expression of v-Akt likewise enhanced survival of H(2)O(2)-treated NIH3T3 cells. These results suggest that H(2)O(2) activates Akt via an EGFR/PI3-K-dependent pathway and that elevated Akt activity confers protection against oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- X Wang
- Cell Stress and Aging Section, Laboratory of Biological Chemistry, NIA, National Institutes of Health, Baltimore, Maryland 21224-6825, USA
| | | | | | | |
Collapse
|
4890
|
Lassus P, Roux P, Zugasti O, Philips A, Fort P, Hibner U. Extinction of rac1 and Cdc42Hs signalling defines a novel p53-dependent apoptotic pathway. Oncogene 2000; 19:2377-85. [PMID: 10828879 DOI: 10.1038/sj.onc.1203553] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Apoptosis is a normal physiological process which eliminates cells that do not receive adequate extracellular signals. One of the pathways signalling apoptosis is controlled by the small GTPases of the Rho family, also involved in cell proliferation, differentiation and motility. Another major apoptosis signalling pathway involves the p53 tumour suppressor which is activated by a variety of stress and mediates growth arrest or apoptosis in normal cells. We show here that upon detachment from the extracellular matrix, fibroblasts undergo rapid apoptosis that can be rescued by constitutive activation of Rac1 and Cdc42Hs GTPases. Conversely, inhibition of Rac1 and Cdc42Hs efficiently triggers apoptosis in adherent cells. Interestingly, apoptosis is not observed in p53-/- cells either cultured in suspension or inhibited for Rac1 and Cdc42Hs activity. Moreover, Rac1 and Cdc42Hs extinction in normal cells activates endogenous p53. Using specific inhibitors of MAPK pathways, we demonstrate that, in our experimental system, p38 signals survival, while ERK activity is required for apoptosis. Our data constitute the first demonstration that Rac1 and Cdc42Hs control pathways that require simultaneous signalling through MAPK ERK and p53 to induce apoptosis.
Collapse
Affiliation(s)
- P Lassus
- Institut de Génétique Moléculaire, CNRS UMR5535, IFR 24, 1919 Route de Mende, F-34293 Montpellier cedex 5, France
| | | | | | | | | | | |
Collapse
|
4891
|
Schubert KM, Scheid MP, Duronio V. Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473. J Biol Chem 2000; 275:13330-5. [PMID: 10788440 DOI: 10.1074/jbc.275.18.13330] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The second messenger ceramide (N-alkylsphingosine) has been implicated in a host of cellular processes including growth arrest and apoptosis. Ceramide has been reported to have effects on both protein kinases and phosphatases and may constitute an important component of stress response in various tissues. We have examined in detail the relationship between ceramide signaling and the activation of an important signaling pathway, phosphatidylinositol (PI) 3-kinase and its downstream target, protein kinase B (PKB). PKB activation was observed following stimulation of cells with the cytokine granulocyte-macrophage colony-stimulating factor. Addition of cell-permeable ceramide analogs, C(2)- or C(6)-ceramide, caused a partial loss (50-60%) of PKB activation. This reduction was not a result of decreased PI(3,4,5)P(3) or PI(3,4)P(2) generation by PI 3-kinase. Two residues of PKB (threonine 308 and serine 473) require phosphorylation for maximal PKB activation. Serine 473 phosphorylation was consistently reduced by treatment with ceramide, whereas threonine 308 phosphorylation remained unaffected. In further experiments, ceramide appeared to accelerate serine 473 dephosphorylation, suggesting the activation of a phosphatase. Consistent with this, the reduction in serine 473 phosphorylation was inhibited by the phosphatase inhibitors okadaic acid and calyculin A. Surprisingly, threonine 308 phosphorylation was abolished in cells treated with these inhibitors, revealing a novel mechanism of regulation of threonine 308 phosphorylation. These results demonstrate that PI 3-kinase-dependent kinase 2-catalyzed phosphorylation of serine 473 is the principal target of a ceramide-activated phosphatase.
Collapse
Affiliation(s)
- K M Schubert
- Department of Medicine, University of British Columbia, Vancouver Hospital, Vancouver, British Columbia V6H 3Z6, Canada
| | | | | |
Collapse
|
4892
|
Zheng WH, Kar S, Quirion R. Stimulation of protein kinase C modulates insulin-like growth factor-1-induced akt activation in PC12 cells. J Biol Chem 2000; 275:13377-85. [PMID: 10788447 DOI: 10.1074/jbc.275.18.13377] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of protein kinase C (PKC) plays an important role in the negative regulation of receptor signaling, but its effect on insulin-like growth factor-1 (IGF-1) receptor signaling remains unclear. In this study, we characterized the intracellular pathways involved in IGF-1-induced activation of Akt and evaluated the effects of the PKC activator phorbol 12-myristate 13-acetate (PMA) on the Akt activation by IGF-1. IGF-1 induced a time- and concentration-dependent activation of Akt. The effect of IGF-1 was blocked by the phosphatidylinositide 3-kinase (PI3K) inhibitors LY294002 (50 micrometer) and wortmannin (0.5 micrometer), but not by the MEK inhibitor PD98059 (50 micrometer) or the p70 S6 kinase pathway inhibitor rapamycin (50 nm), suggesting that the stimulation of Akt by IGF-1 is mediated by the PI3K pathway. Interestingly, cotreatment with PMA (400 nm) attenuated IGF-1-induced activation of Akt. The attenuation was blocked completely by the PKC inhibitor GO6983 (0.5 micrometer), but only partially by the MEK inhibitor PD98059 (50 micrometer), indicating that MAPK-dependent and -independent pathways are involved. PMA induced the activation of PKC in PC12 cells, and this induction was blocked by GO6983. These data further support the role of PKC in the effect of PMA. Moreover, PKCdelta is likely involved in the action of PMA on the basis of data obtained using isoform-specific inhibitors such as rottlerin. PMA also decreased IGF-1-induced tyrosine phosphorylation of insulin receptor substrate-1 and its association with PI3K. Taken together, these results suggest, for the first time, that stimulation of PKC modulates IGF-1-induced activation of Akt.
Collapse
Affiliation(s)
- W H Zheng
- Douglas Hospital Research Center, Departments of Psychiatry and of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H4H 1R3, Canada
| | | | | |
Collapse
|
4893
|
Gire V, Marshall C, Wynford-Thomas D. PI-3-kinase is an essential anti-apoptotic effector in the proliferative response of primary human epithelial cells to mutant RAS. Oncogene 2000; 19:2269-76. [PMID: 10822377 DOI: 10.1038/sj.onc.1203544] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In contrast to its growth-inhibitory effect on primary mesenchymal cells, RAS oncogene activation induces a proliferative phenotype in normal human thyroid epithelial cells in vitro, consistent with its putative role in tumour initiation. Using this model, we previously showed that activation of the MAP kinase (MAPK) pathway is necessary, but not sufficient for the proliferative response to mutant (V12) H-RAS. Here we extend this work to show that another major RAS effector-- phosphatidylinositol-3-kinase (PI-3-K)--while also insufficient alone, is able to synergize with MAPK activation to mimic the effect of mutant RAS, albeit at reduced efficiency. Furthermore we show that PI-3-K is an absolute requirement for the proliferative response to RAS in these cells, acting via suppression of RAS-induced apoptosis. These data extend our understanding of RAS signalling in a clinically-relevant cell context and point to the use of PI-3-K inhibitors as potential therapeutic agents for targetting human cancers induced by RAS mutation.
Collapse
Affiliation(s)
- V Gire
- Department of Pathology, University of Wales College of Medicine, Cardiff, UK
| | | | | |
Collapse
|
4894
|
Yuan ZQ, Sun M, Feldman RI, Wang G, Ma X, Jiang C, Coppola D, Nicosia SV, Cheng JQ. Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene 2000; 19:2324-30. [PMID: 10822383 DOI: 10.1038/sj.onc.1203598] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously demonstrated that AKT2, a member of protein kinase B family, is activated by a number of growth factors via Ras and PI 3-kinase signaling pathways. Here, we report the frequent activation of AKT2 in human primary ovarian cancer and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase (PI 3-kinase)/Akt pathway. In vitro AKT2 kinase assay analyses in 91 ovarian cancer specimens revealed elevated levels of AKT2 activity (>3-fold) in 33 cases (36.3%). The majority of tumors displaying activated AKT2 were high grade and stages III and IV. Immunostaining and Western blot analyses using a phospho-ser-473 Akt antibody that detects the activated form of AKT2 (AKT2 phosphorylated at serine-474) confirmed the frequent activation of AKT2 in ovarian cancer specimens. Phosphorylated AKT2 in tumor specimens localized to the cell membrane and cytoplasm but not the nucleus. To address the mechanism of AKT2 activation, we measured in vitro PI 3-kinase activity in 43 ovarian cancer specimens, including the 33 cases displaying elevated AKT2 activation. High levels of PI 3-kinase activity were observed in 20 cases, 15 of which also exhibited AKT2 activation. The remaining five cases displayed elevated AKT1 activation. Among the cases with elevated AKT2, but not PI 3-kinase activity (18 cases), three showed down-regulation of PTEN protein expression. Inhibition of PI 3-kinase/AKT2 by wortmannin or LY294002 induces apoptosis in ovarian cancer cells exhibiting activation of the PI 3-kinase/AKT2 pathway. These findings demonstrate for the first time that activation of AKT2 is a common occurrence in human ovarian cancer and that PI 3-kinase/Akt pathway may be an important target for ovarian cancer intervention.
Collapse
Affiliation(s)
- Z Q Yuan
- Department of Pathology, H Lee Moffitt Cancer Center and Research Institute, University of South Florida College of Medicine, Tampa 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4895
|
Abstract
Phosphoinositide 3-kinases (PI3Ks) generate specific inositol lipids that have been implicated in the regulation of cell growth, proliferation, survival, differentiation and cytoskeletal changes. One of the best characterized targets of PI3K lipid products is the protein kinase Akt or protein kinase B (PKB). In quiescent cells, PKB resides in the cytosol in a low-activity conformation. Upon cellular stimulation, PKB is activated through recruitment to cellular membranes by PI3K lipid products and phosphorylation by 3'-phosphoinositide-dependent kinase-1 (PDK1). Here we review the mechanism by which PKB is activated and the downstream actions of this multifunctional kinase. We also discuss the evidence that PDK1 may be involved in the activation of protein kinases other than PKB, the mechanisms by which this activity of PDK1 could be regulated and the possibility that some of the currently postulated PKB substrates targets might in fact be phosphorylated by PDK1-regulated kinases other than PKB.
Collapse
|
4896
|
|
4897
|
Ahmad F, Cong LN, Stenson Holst L, Wang LM, Rahn Landstrom T, Pierce JH, Quon MJ, Degerman E, Manganiello VC. Cyclic nucleotide phosphodiesterase 3B is a downstream target of protein kinase B and may be involved in regulation of effects of protein kinase B on thymidine incorporation in FDCP2 cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:4678-88. [PMID: 10779773 DOI: 10.4049/jimmunol.164.9.4678] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Wild-type (F/B), constitutively active (F/B*), and three kinase-inactive (F/Ba-, F/Bb-, F/Bc-) forms of Akt/protein kinase B (PKB) were permanently overexpressed in FDCP2 cells. In the absence of insulin-like growth factor-1 (IGF-1), activities of PKB, cyclic nucleotide phosphodiesterase 3B (PDE3B), and PDE4 were similar in nontransfected FDCP2 cells, mock-transfected (F/V) cells, and F/B and F/B- cells. In F/V cells, IGF-1 increased PKB, PDE3B, and PDE4 activities approximately 2-fold. In F/B cells, IGF-1, in a wortmannin-sensitive manner, increased PKB activity approximately 10-fold and PDE3B phosphorylation and activity ( approximately 4-fold), but increased PDE4 to the same extent as in F/V cells. In F/B* cells, in the absence of IGF-1, PKB activity was markedly increased ( approximately 10-fold) and PDE3B was phosphorylated and activated (3- to 4-fold); wortmannin inhibited these effects. In F/B* cells, IGF-1 had little further effect on PKB and activation/phosphorylation of PDE3B. In F/B- cells, IGF-1 activated PDE4, not PDE3B, suggesting that kinase-inactive PKB behaved as a dominant negative with respect to PDE3B activation. Thymidine incorporation was greater in F/B* cells than in F/V cells and was inhibited to a greater extent by PDE3 inhibitors than by rolipram, a PDE4 inhibitor. In F/B cells, IGF-1-induced phosphorylation of the apoptotic protein BAD was inhibited by the PDE3 inhibitor cilostamide. Activated PKB phosphorylated and activated rPDE3B in vitro. These results suggest that PDE3B, not PDE4, is a target of PKB and that activated PDE3B may regulate cAMP pools that modulate effects of PKB on thymidine incorporation and BAD phosphorylation in FDCP2 cells.
Collapse
Affiliation(s)
- F Ahmad
- Pulmonary/Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
4898
|
Gimm O, Perren A, Weng LP, Marsh DJ, Yeh JJ, Ziebold U, Gil E, Hinze R, Delbridge L, Lees JA, Mutter GL, Robinson BG, Komminoth P, Dralle H, Eng C. Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:1693-700. [PMID: 10793080 PMCID: PMC1876937 DOI: 10.1016/s0002-9440(10)65040-7] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Germline mutations in PTEN (MMAC1/TEP1) are found in patients with Cowden syndrome, a familial cancer syndrome which is characterized by a high risk of breast and thyroid neoplasia. Although somatic intragenic PTEN mutations have rarely been found in benign and malignant sporadic thyroid tumors, loss of heterozygosity (LOH) has been reported in up to one fourth of follicular thyroid adenomas (FAs) and carcinomas. In this study, we examined PTEN expression in 139 sporadic nonmedullary thyroid tumors (55 FA, 27 follicular thyroid carcinomas, 35 papillary thyroid carcinomas, and 22 undifferentiated thyroid carcinomas) using immunohistochemistry and correlated this to the results of LOH studies. Normal follicular thyroid cells showed a strong to moderate nuclear or nuclear membrane signal although the cytoplasmic staining was less strong. In FAs the neoplastic nuclei had less intense PTEN staining, although the cytoplasmic PTEN-staining intensity did not differ significantly from that observed in normal follicular cells. In thyroid carcinomas as a group, nuclear PTEN immunostaining was mostly weak in comparison with normal thyroid follicular cells and FAs. The cytoplasmic staining was more intense than the nuclear staining in 35 to 49% of carcinomas, depending on the histological type. Among 81 informative tumors assessed for LOH, there seemed to be an associative trend between decreased nuclear and cytoplasmic staining and 10q23 LOH (P = 0.003, P = 0.008, respectively). These data support a role for PTEN in the pathogenesis of follicular thyroid tumors.
Collapse
Affiliation(s)
- O Gimm
- Clinical Cancer Genetics and Human Cancer Genetics Programs, Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4899
|
Lawlor MA, Feng X, Everding DR, Sieger K, Stewart CE, Rotwein P. Dual control of muscle cell survival by distinct growth factor-regulated signaling pathways. Mol Cell Biol 2000; 20:3256-65. [PMID: 10757809 PMCID: PMC85619 DOI: 10.1128/mcb.20.9.3256-3265.2000] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to their ability to stimulate cell proliferation, polypeptide growth factors are able to maintain cell survival under conditions that otherwise lead to apoptotic death. Growth factors control cell viability through regulation of critical intracellular signal transduction pathways. We previously characterized C2 muscle cell lines that lacked endogenous expression of insulin-like growth factor II (IGF-II). These cells did not differentiate but underwent apoptotic death in low-serum differentiation medium. Death could be prevented by IGF analogues that activated the IGF-I receptor or by unrelated growth factors such as platelet-derived growth factor BB (PDGF-BB). Here we analyze the signaling pathways involved in growth factor-mediated myoblast survival. PDGF treatment caused sustained activation of extracellular-regulated kinases 1 and 2 (ERK1 and -2), while IGF-I only transiently induced these enzymes. Transient transfection of a constitutively active Mek1, a specific upstream activator of ERKs, maintained myoblast viability in the absence of growth factors, while inhibition of Mek1 by the drug UO126 blocked PDGF-mediated but not IGF-stimulated survival. Although both growth factors activated phosphatidylinositol 3-kinase (PI3-kinase) to similar extents, only IGF-I treatment led to sustained stimulation of its downstream kinase, Akt. Transient transfection of a constitutively active PI3-kinase or an inducible Akt promoted myoblast viability in the absence of growth factors, while inhibition of PI3-kinase activity by the drug LY294002 selectively blocked IGF- but not PDGF-mediated muscle cell survival. In aggregate, these observations demonstrate that distinct growth factor-regulated signaling pathways independently control myoblast survival. Since IGF action also stimulates muscle differentiation, these results suggest a means to regulate myogenesis through selective manipulation of different signal transduction pathways.
Collapse
Affiliation(s)
- M A Lawlor
- Molecular Medicine Division, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | | | | | | | | | |
Collapse
|
4900
|
Kamikura DM, Khoury H, Maroun C, Naujokas MA, Park M. Enhanced transformation by a plasma membrane-associated met oncoprotein: activation of a phosphoinositide 3'-kinase-dependent autocrine loop involving hyaluronic acid and CD44. Mol Cell Biol 2000; 20:3482-96. [PMID: 10779338 PMCID: PMC85641 DOI: 10.1128/mcb.20.10.3482-3496.2000] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Met-hepatocyte growth factor receptor oncoprotein, Tpr-Met, generated by chromosomal rearrangement, fuses a protein dimerization motif with the cytoplasmic domain of the Met receptor, producing a cytosolic, constitutively activated tyrosine kinase. Although both the Met receptor and the Tpr-Met oncoprotein associate with the same substrates, activating mutations of the Met receptor in hereditary papillary renal carcinomas have different signaling requirements for transformation than Tpr-Met. This suggests differential activation of membrane-localized pathways by oncogenic forms of the membrane-bound Met receptor but not by the cytoplasmic Tpr-Met oncoprotein. To establish which pathways might be differentially regulated, we have localized the constitutively activated Tpr-Met oncoprotein to the membrane using the c-src myristoylation signal. Membrane localization enhances cellular transformation, focus formation, and anchorage-independent growth and induces tumors with a distinct myxoid phenotype. This correlates with the induction of hyaluronic acid (HA) and the presence of a distinct form of its receptor, CD44. A pharmacological inhibitor of phosphoinositide 3' kinase (PI3'K), inhibits the production of HA, and conversely, an activated, plasma membrane-targeted form of PI3'K is sufficient to enhance HA production. Furthermore, the multisubstrate adapter protein Gab-1, which couples the Met receptor with PI3'K, enhances Met receptor-dependent HA synthesis in a PI3'K-dependent manner. These results provide a positive link to a role for HA and CD44 in Met receptor-mediated oncogenesis and implicate PI3'K in these events.
Collapse
Affiliation(s)
- D M Kamikura
- Molecular Oncology Group, Departments of Medicine, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada H3A-1A1
| | | | | | | | | |
Collapse
|