1
|
Zhang Y, Zeng J, Bao S, Zhang B, Li X, Wang H, Cheng Y, Zhang H, Zu L, Xu X, Xu S, Song Z. Cancer progression and tumor hypercoagulability: a platelet perspective. J Thromb Thrombolysis 2024; 57:959-972. [PMID: 38760535 DOI: 10.1007/s11239-024-02993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Venous thromboembolism, which is common in cancer patients and accompanies or even precedes malignant tumors, is known as cancer-related thrombosis and is an important cause of cancer- associated death. At present, the exact etiology of the elevated incidence of venous thrombosis in cancer patients remains elusive. Platelets play a crucial role in blood coagulation, which is intimately linked to the development of arterial thrombosis. Additionally, platelets contribute to tumor progression and facilitate immune evasion by tumors. Tumor cells can interact with the coagulation system through various mechanisms, such as producing hemostatic proteins, activating platelets, and directly adhering to normal cells. The relationship between platelets and malignant tumors is also significant. In this review article, we will explore these connections.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingtong Zeng
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shihao Bao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xianjie Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hanqing Wang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Cheng
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingling Zu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohong Xu
- Colleges of Nursing, Tianjin Medical University, Tianjin, China
| | - Song Xu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
2
|
Liu H, Welburn JPI. A circle of life: platelet and megakaryocyte cytoskeleton dynamics in health and disease. Open Biol 2024; 14:240041. [PMID: 38835242 DOI: 10.1098/rsob.240041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/24/2024] [Indexed: 06/06/2024] Open
Abstract
Platelets are blood cells derived from megakaryocytes that play a central role in regulating haemostasis and vascular integrity. The microtubule cytoskeleton of megakaryocytes undergoes a critical dynamic reorganization during cycles of endomitosis and platelet biogenesis. Quiescent platelets have a discoid shape maintained by a marginal band composed of microtubule bundles, which undergoes remarkable remodelling during platelet activation, driving shape change and platelet function. Disrupting or enhancing this process can cause platelet dysfunction such as bleeding disorders or thrombosis. However, little is known about the molecular mechanisms underlying the reorganization of the cytoskeleton in the platelet lineage. Recent studies indicate that the emergence of a unique platelet tubulin code and specific pathogenic tubulin mutations cause platelet defects and bleeding disorders. Frequently, these mutations exhibit dominant negative effects, offering valuable insights into both platelet disease mechanisms and the functioning of tubulins. This review will highlight our current understanding of the role of the microtubule cytoskeleton in the life and death of platelets, along with its relevance to platelet disorders.
Collapse
Affiliation(s)
- Haonan Liu
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
3
|
Tatsumi K. The pathogenesis of cancer-associated thrombosis. Int J Hematol 2024; 119:495-504. [PMID: 38421488 DOI: 10.1007/s12185-024-03735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Patients with cancer have a higher risk of venous thromboembolism (VTE), including deep vein thrombosis (DVT) and pulmonary embolism (PE), compared to the general population. Cancer-associated thrombosis (CAT) is a thrombotic event that occurs as a complication of cancer or cancer therapy. Major factors determining VTE risk in cancer patients include not only treatment history and patient characteristics, but also cancer type and site. Cancer types can be broadly divided into three groups based on VTE risk: high risk (pancreatic, ovarian, brain, stomach, gynecologic, and hematologic), intermediate risk (colon and lung), and low risk (breast and prostate). This implies that the mechanism of VTE differs between cancer types and that specific VTE pathways may exist for different cancer types. This review summarizes the specific pathways that contribute to VTE in cancer patients, with a particular focus on leukocytosis, neutrophil extracellular traps (NETs), tissue factor (TF), thrombocytosis, podoplanin (PDPN), plasminogen activator inhibitor-1 (PAI-1), the intrinsic coagulation pathway, and von Willebrand factor (VWF).
Collapse
Affiliation(s)
- Kohei Tatsumi
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan.
| |
Collapse
|
4
|
Tavares V, Marques IS, Melo IGD, Assis J, Pereira D, Medeiros R. Paradigm Shift: A Comprehensive Review of Ovarian Cancer Management in an Era of Advancements. Int J Mol Sci 2024; 25:1845. [PMID: 38339123 PMCID: PMC10856127 DOI: 10.3390/ijms25031845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Ovarian cancer (OC) is the female genital malignancy with the highest lethality. Patients present a poor prognosis mainly due to the late clinical presentation allied with the common acquisition of chemoresistance and a high rate of tumour recurrence. Effective screening, accurate diagnosis, and personalised multidisciplinary treatments are crucial for improving patients' survival and quality of life. This comprehensive narrative review aims to describe the current knowledge on the aetiology, prevention, diagnosis, and treatment of OC, highlighting the latest significant advancements and future directions. Traditionally, OC treatment involves the combination of cytoreductive surgery and platinum-based chemotherapy. Although more therapeutical approaches have been developed, the lack of established predictive biomarkers to guide disease management has led to only marginal improvements in progression-free survival (PFS) while patients face an increasing level of toxicity. Fortunately, because of a better overall understanding of ovarian tumourigenesis and advancements in the disease's (epi)genetic and molecular profiling, a paradigm shift has emerged with the identification of new disease biomarkers and the proposal of targeted therapeutic approaches to postpone disease recurrence and decrease side effects, while increasing patients' survival. Despite this progress, several challenges in disease management, including disease heterogeneity and drug resistance, still need to be overcome.
Collapse
Affiliation(s)
- Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Inês Guerra de Melo
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
5
|
Li S, Lu Z, Wu S, Chu T, Li B, Qi F, Zhao Y, Nie G. The dynamic role of platelets in cancer progression and their therapeutic implications. Nat Rev Cancer 2024; 24:72-87. [PMID: 38040850 DOI: 10.1038/s41568-023-00639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 12/03/2023]
Abstract
Systemic antiplatelet treatment represents a promising option to improve the therapeutic outcomes and therapeutic efficacy of chemotherapy and immunotherapy due to the critical contribution of platelets to tumour progression. However, until recently, targeting platelets as a cancer therapeutic has been hampered by the elevated risk of haemorrhagic and thrombocytopenic (low platelet count) complications owing to the lack of specificity for tumour-associated platelets. Recent work has advanced our understanding of the molecular mechanisms responsible for the contribution of platelets to tumour progression and metastasis. This has led to the identification of the biological changes in platelets in the presence of tumours, the complex interactions between platelets and tumour cells during tumour progression, and the effects of platelets on antitumour therapeutic response. In this Review, we present a detailed picture of the dynamic roles of platelets in tumour development and progression as well as their use in diagnosis, prognosis and monitoring response to therapy. We also provide our view on how to overcome challenges faced by the development of precise antiplatelet strategies for safe and efficient clinical cancer therapy.
Collapse
Affiliation(s)
- Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Zefang Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Suying Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Tianjiao Chu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- College of Pharmaceutical Science, Jilin University, Changchun, China
| | - Bozhao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Feilong Qi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Fukui S, Wada H, Ikeda K, Kobayashi M, Shimada Y, Nakazawa Y, Mizutani H, Ichikawa Y, Nishiura Y, Moritani I, Yamanaka Y, Inoue H, Shimaoka M, Shimpo H, Shiraki K. Detection of a Prethrombotic State in Patients with Hepatocellular Carcinoma, Using a Clot Waveform Analysis. Clin Appl Thromb Hemost 2024; 30:10760296241246002. [PMID: 38591954 PMCID: PMC11005492 DOI: 10.1177/10760296241246002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Although hepatocellular carcinoma (HCC) is frequently associated with thrombosis, it is also associated with liver cirrhosis (LC) which causes hemostatic abnormalities. Therefore, hemostatic abnormalities in patients with HCC were examined using a clot waveform analysis (CWA). Methods: Hemostatic abnormalities in 88 samples from HCC patients, 48 samples from LC patients and 153 samples from patients with chronic liver diseases (CH) were examined using a CWA-activated partial thromboplastin time (APTT) and small amount of tissue factor induced FIX activation (sTF/FIXa) assay. Results: There were no significant differences in the peak time on CWA-APTT among HCC, LC, and CH, and the peak heights of CWA-APTT were significantly higher in HCC and CH than in HVs and LC. The peak heights of the CWA-sTF/FIXa were significantly higher in HCC than in LC. The peak times of the CWA-APTT were significantly longer in stages B, C, and D than in stage A or cases of response. In the receiver operating characteristic (ROC) curve, the fibrin formation height (FFH) of the CWA-APTT and CWA-sTF/FIXa showed the highest diagnostic ability for HCC and LC, respectively. Thrombosis was observed in 13 HCC patients, and arterial thrombosis and portal vein thrombosis were frequently associated with HCC without LC and HCC with LC, respectively. In ROC, the peak time×peak height of the first derivative on the CWA-sTF/FIXa showed the highest diagnostic ability for thrombosis. Conclusion: The CWA-APTT and CWA-sTF/FIXa can increase the evaluability of HCC including the association with LC and thrombotic complications.
Collapse
Affiliation(s)
- Shunsuke Fukui
- Research Center, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Hideo Wada
- Research Center, Mie Prefectural General Medical Center, Yokkaichi, Japan
- Department of General and Laboratory Medicine, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Kohei Ikeda
- Research Center, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Mayu Kobayashi
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Yasuaki Shimada
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Yuuichi Nakazawa
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Hiroki Mizutani
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Yuhuko Ichikawa
- Department of Central Laboratory Medicine, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Yuuki Nishiura
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Isao Moritani
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Yutaka Yamanaka
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Hidekazu Inoue
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hideto Shimpo
- Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Katsuya Shiraki
- Research Center, Mie Prefectural General Medical Center, Yokkaichi, Japan
- Department of General and Laboratory Medicine, Mie Prefectural General Medical Center, Yokkaichi, Japan
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| |
Collapse
|
7
|
Zhou L, Wu D, Zhou Y, Wang D, Fu H, Huang Q, Qin G, Chen J, Lv J, Lai S, Zhang H, Tang K, Ma J, Fiskesund R, Zhang Y, Zhang X, Huang B. Tumor cell-released kynurenine biases MEP differentiation into megakaryocytes in individuals with cancer by activating AhR-RUNX1. Nat Immunol 2023; 24:2042-2052. [PMID: 37919525 PMCID: PMC10681900 DOI: 10.1038/s41590-023-01662-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023]
Abstract
Tumor-derived factors are thought to regulate thrombocytosis and erythrocytopenia in individuals with cancer; however, such factors have not yet been identified. Here we show that tumor cell-released kynurenine (Kyn) biases megakaryocytic-erythroid progenitor cell (MEP) differentiation into megakaryocytes in individuals with cancer by activating the aryl hydrocarbon receptor-Runt-related transcription factor 1 (AhR-RUNX1) axis. During tumor growth, large amounts of Kyn from tumor cells are released into the periphery, where they are taken up by MEPs via the transporter SLC7A8. In the cytosol, Kyn binds to and activates AhR, leading to its translocation into the nucleus where AhR transactivates RUNX1, thus regulating MEP differentiation into megakaryocytes. In addition, activated AhR upregulates SLC7A8 in MEPs to induce positive feedback. Importantly, Kyn-AhR-RUNX1-regulated MEP differentiation was demonstrated in both humanized mice and individuals with cancer, providing potential strategies for the prevention of thrombocytosis and erythrocytopenia.
Collapse
Affiliation(s)
- Li Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Dongxiao Wu
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Yabo Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Dianheng Wang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Haixia Fu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Qiusha Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Chen
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Jiadi Lv
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Shaoyang Lai
- The Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwei Ma
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Roland Fiskesund
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China.
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Liao K, Zhang X, Liu J, Teng F, He Y, Cheng J, Yang Q, Zhang W, Xie Y, Guo D, Cao G, Xu Y, Huang B, Wang X. The role of platelets in the regulation of tumor growth and metastasis: the mechanisms and targeted therapy. MedComm (Beijing) 2023; 4:e350. [PMID: 37719444 PMCID: PMC10501337 DOI: 10.1002/mco2.350] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 09/19/2023] Open
Abstract
Platelets are a class of pluripotent cells that, in addition to hemostasis and maintaining vascular endothelial integrity, are also involved in tumor growth and distant metastasis. The tumor microenvironment is a complex and comprehensive system composed of tumor cells and their surrounding immune and inflammatory cells, tumor-related fibroblasts, nearby interstitial tissues, microvessels, and various cytokines and chemokines. As an important member of the tumor microenvironment, platelets can promote tumor invasion and metastasis through various mechanisms. Understanding the role of platelets in tumor metastasis is important for diagnosing the risk of metastasis and prolonging survival. In this study, we more fully elucidate the underlying mechanisms by which platelets promote tumor growth and metastasis by modulating processes, such as immune escape, angiogenesis, tumor cell homing, and tumor cell exudation, and further summarize the effects of platelet-tumor cell interactions in the tumor microenvironment and possible tumor treatment strategies based on platelet studies. Our summary will more comprehensively and clearly demonstrate the role of platelets in tumor metastasis, so as to help clinical judgment of the potential risk of metastasis in cancer patients, with a view to improving the prognosis of patients.
Collapse
Affiliation(s)
- Kaili Liao
- Jiangxi Province Key Laboratory of Laboratory MedicineJiangxi Provincial Clinical Research Center for Laboratory MedicineDepartment of Clinical LaboratoryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Xue Zhang
- Queen Mary College of Nanchang UniversityNanchangChina
| | - Jie Liu
- School of Public HealthNanchang UniversityNanchangChina
| | - Feifei Teng
- School of Public HealthNanchang UniversityNanchangChina
| | - Yingcheng He
- Queen Mary College of Nanchang UniversityNanchangChina
| | - Jinting Cheng
- School of Public HealthNanchang UniversityNanchangChina
| | - Qijun Yang
- Queen Mary College of Nanchang UniversityNanchangChina
| | - Wenyige Zhang
- Queen Mary College of Nanchang UniversityNanchangChina
| | - Yuxuan Xie
- The Second Clinical Medical CollegeNanchang UniversityNanchangChina
| | - Daixin Guo
- School of Public HealthNanchang UniversityNanchangChina
| | - Gaoquan Cao
- The Fourth Clinical Medical CollegeNanchang UniversityNanchangChina
| | - Yanmei Xu
- Jiangxi Province Key Laboratory of Laboratory MedicineJiangxi Provincial Clinical Research Center for Laboratory MedicineDepartment of Clinical LaboratoryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory MedicineJiangxi Provincial Clinical Research Center for Laboratory MedicineDepartment of Clinical LaboratoryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Laboratory MedicineJiangxi Provincial Clinical Research Center for Laboratory MedicineDepartment of Clinical LaboratoryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
9
|
Poenou G, Heestermans M, Lafaie L, Accassat S, Moulin N, Rodière A, Petit B, Duvillard C, Mismetti P, Bertoletti L. Inhibition of Factor XI: A New Era in the Treatment of Venous Thromboembolism in Cancer Patients? Int J Mol Sci 2023; 24:14433. [PMID: 37833881 PMCID: PMC10572808 DOI: 10.3390/ijms241914433] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
Direct oral anticoagulants against activated factor X and thrombin were the last milestone in thrombosis treatment. Step by step, they replaced antivitamin K and heparins in most of their therapeutic indications. As effective as the previous anticoagulant, the decreased but persistent risk of bleeding while using direct oral anticoagulants has created space for new therapeutics aiming to provide the same efficacy with better safety. On this basis, drug targeting factor XI emerged as an option. In particular, cancer patients might be one of the populations that will most benefit from this technical advance. In this review, after a brief presentation of the different factor IX inhibitors, we explore the potential benefit of this new treatment for cancer patients.
Collapse
Affiliation(s)
- Géraldine Poenou
- Therapeutic and Vascular Medecine Department, Saint-Etienne Universitary Hospital Center, F-42270 Saint-Priest en Jarez, France (C.D.)
- INSERM, U 1059 SAINBIOSE, Jean Monnet University, Mines Saint-Étienne, F-42023 Saint Priest en Jarez, France
| | - Marco Heestermans
- INSERM, U 1059 SAINBIOSE, Jean Monnet University, Mines Saint-Étienne, F-42023 Saint Priest en Jarez, France
- French Blood Establishement Auvergne-Rhône-Alpes, Research Department, F-42023 Saint-Etienne, France
| | - Ludovic Lafaie
- INSERM, U 1059 SAINBIOSE, Jean Monnet University, Mines Saint-Étienne, F-42023 Saint Priest en Jarez, France
- Geriatry Department, Saint-Etienne Universitary Hospital Center, F-42000 Saint-Etienne, France
| | - Sandrine Accassat
- Therapeutic and Vascular Medecine Department, Saint-Etienne Universitary Hospital Center, F-42270 Saint-Priest en Jarez, France (C.D.)
- INSERM, CIC-1408, Saint-Etienne Universitary Hospital Center, F-42055 Saint Priest en Jarez, France
| | - Nathalie Moulin
- Therapeutic and Vascular Medecine Department, Saint-Etienne Universitary Hospital Center, F-42270 Saint-Priest en Jarez, France (C.D.)
| | - Alexandre Rodière
- Therapeutic and Vascular Medecine Department, Saint-Etienne Universitary Hospital Center, F-42270 Saint-Priest en Jarez, France (C.D.)
| | - Bastien Petit
- Therapeutic and Vascular Medecine Department, Saint-Etienne Universitary Hospital Center, F-42270 Saint-Priest en Jarez, France (C.D.)
| | - Cécile Duvillard
- Therapeutic and Vascular Medecine Department, Saint-Etienne Universitary Hospital Center, F-42270 Saint-Priest en Jarez, France (C.D.)
| | - Patrick Mismetti
- Therapeutic and Vascular Medecine Department, Saint-Etienne Universitary Hospital Center, F-42270 Saint-Priest en Jarez, France (C.D.)
- INSERM, U 1059 SAINBIOSE, Jean Monnet University, Mines Saint-Étienne, F-42023 Saint Priest en Jarez, France
- INSERM, CIC-1408, Saint-Etienne Universitary Hospital Center, F-42055 Saint Priest en Jarez, France
- F-CRIN INNOVTE Network, F-42000 Saint-Etienne, France
| | - Laurent Bertoletti
- Therapeutic and Vascular Medecine Department, Saint-Etienne Universitary Hospital Center, F-42270 Saint-Priest en Jarez, France (C.D.)
- INSERM, U 1059 SAINBIOSE, Jean Monnet University, Mines Saint-Étienne, F-42023 Saint Priest en Jarez, France
- INSERM, CIC-1408, Saint-Etienne Universitary Hospital Center, F-42055 Saint Priest en Jarez, France
- F-CRIN INNOVTE Network, F-42000 Saint-Etienne, France
| |
Collapse
|
10
|
Razzaghi H, Khabbazpour M, Heidary Z, Heiat M, Shirzad Moghaddam Z, Derogar P, Khoncheh A, Zaki-Dizaji M. Emerging Role of Tumor-Educated Platelets as a New Liquid Biopsy Tool for Colorectal Cancer. ARCHIVES OF IRANIAN MEDICINE 2023; 26:447-454. [PMID: 38301107 PMCID: PMC10685733 DOI: 10.34172/aim.2023.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/03/2023] [Indexed: 02/03/2024]
Abstract
Colorectal cancer (CRC) is a major cause of cancer-associated death universally. Currently, the diagnosis, prognosis, and treatment monitoring of CRC mostly depends on endoscopy integrated with tissue biopsy. Recently, liquid biopsy has gained more and more attention in the area of molecular detection and monitoring of tumors due to ease of sampling, and its safe, non-invasive, and dynamic nature. Platelets, despite their role in hemostasis and thrombosis, are known to have an active, bifacial relationship with cancers. Platelets are the second most common type of cell in the blood and are one of the wealthy liquid biopsy biosources. These cells have the potential to absorb nucleic acids and proteins and modify their transcriptome with regard to external signals, which are termed tumor-educated platelets (TEPs). Liquid biopsies depend on TEPs' biomarkers which can be used to screen and also detect cancer in terms of prognosis, personalized treatment, monitoring, and prediction of recurrence. The value of TEPs as an origin of tumor biomarkers is relatively new, but platelets are commonly isolated using formidable and rapid techniques in clinical practice. Numerous preclinical researches have emphasized the potential of platelets as a new liquid biopsy biosource for detecting several types of tumors. This review discusses the potential use of platelets as a liquid biopsy for CRC.
Collapse
Affiliation(s)
- Hossein Razzaghi
- Department of Laboratory Sciences, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran
| | - Milad Khabbazpour
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zohreh Heidary
- Vali-e-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirzad Moghaddam
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Derogar
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ahmad Khoncheh
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Majid Zaki-Dizaji
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Willems RAL, Michiels N, Lanting VR, Bouwense S, van den Broek BLJ, Graus M, Klok FA, Groot Koerkamp B, de Laat B, Roest M, Wilmink JW, van Es N, Mieog JSD, Ten Cate H, de Vos-Geelen J. Venous Thromboembolism and Primary Thromboprophylaxis in Perioperative Pancreatic Cancer Care. Cancers (Basel) 2023; 15:3546. [PMID: 37509209 PMCID: PMC10376958 DOI: 10.3390/cancers15143546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Recent studies have shown that patients with pancreatic ductal adenocarcinoma (PDAC) treated with neoadjuvant chemo(radio)therapy followed by surgery have an improved outcome compared to patients treated with upfront surgery. Hence, patients with PDAC are more and more frequently treated with chemotherapy in the neoadjuvant setting. PDAC patients are at a high risk of developing venous thromboembolism (VTE), which is associated with decreased survival rates. As patients with PDAC were historically offered immediate surgical resection, data on VTE incidence and associated preoperative risk factors are scarce. Current guidelines recommend primary prophylactic anticoagulation in selected groups of patients with advanced PDAC. However, recommendations for patients with (borderline) resectable PDAC treated with chemotherapy in the neoadjuvant setting are lacking. Nevertheless, the prevention of complications is crucial to maintain the best possible condition for surgery. This narrative review summarizes current literature on VTE incidence, associated risk factors, risk assessment tools, and primary thromboprophylaxis in PDAC patients treated with neoadjuvant chemo(radio)therapy.
Collapse
Affiliation(s)
- R A L Willems
- Department of Functional Coagulation, Synapse Research Institute, 6217 KD Maastricht, The Netherlands
- Thrombosis Expert Center Maastricht, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
- Department of Internal Medicine, Section Vascular Medicine, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
- Department of Internal Medicine, Section Medical Oncology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
- CARIM, School for Cardiovascular Diseases, 6229 ER Maastricht, The Netherlands
| | - N Michiels
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - V R Lanting
- Department of Internal Medicine, Section Vascular Medicine, University of Amsterdam, Amsterdam UMC Location, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, 1081 HV Amsterdam, The Netherlands
- Tergooi Hospitals, Internal Medicine, 1201 DA Hilversum, The Netherlands
| | - S Bouwense
- Department of Surgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
- NUTRIM, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands
| | - B L J van den Broek
- Department of Surgery, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - M Graus
- Department of Internal Medicine, Section Medical Oncology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
- GROW, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands
| | - F A Klok
- Department of Medicine-Thrombosis and Hemostasis, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - B Groot Koerkamp
- Department of Surgery, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - B de Laat
- Department of Functional Coagulation, Synapse Research Institute, 6217 KD Maastricht, The Netherlands
- CARIM, School for Cardiovascular Diseases, 6229 ER Maastricht, The Netherlands
- Department of Platelet Pathophysiology, Synapse Research Institute, 6217 KD Maastricht, The Netherlands
| | - M Roest
- Department of Platelet Pathophysiology, Synapse Research Institute, 6217 KD Maastricht, The Netherlands
| | - J W Wilmink
- Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam University Medical Center, Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - N van Es
- Department of Internal Medicine, Section Vascular Medicine, University of Amsterdam, Amsterdam UMC Location, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, 1081 HV Amsterdam, The Netherlands
| | - J S D Mieog
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - H Ten Cate
- Thrombosis Expert Center Maastricht, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
- Department of Internal Medicine, Section Vascular Medicine, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
- CARIM, School for Cardiovascular Diseases, 6229 ER Maastricht, The Netherlands
| | - J de Vos-Geelen
- Department of Internal Medicine, Section Medical Oncology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
- GROW, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
12
|
Fan T, Kuang G, Long R, Han Y, Wang J. The overall process of metastasis: From initiation to a new tumor. Biochim Biophys Acta Rev Cancer 2022; 1877:188750. [PMID: 35728735 DOI: 10.1016/j.bbcan.2022.188750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Metastasis-a process that involves the migration of cells from the primary site to distant organs-is the leading cause of cancer-associated death. Improved technology and in-depth research on tumors have furthered our understanding of the various mechanisms involved in tumor metastasis. Metastasis is initiated by cancer cells of a specific phenotype, which migrate with the assistance of extracellular components and metastatic traits conferred via epigenetic regulation while modifying their behavior in response to the complex and dynamic human internal environment. In this review, we have summarized the general steps involved in tumor metastasis and their characteristics, incorporating recent studies and topical issues, including epithelial-mesenchymal transition, cancer stem cells, neutrophil extracellular traps, pre-metastatic niche, extracellular vesicles, and dormancy. Several feasible treatment directions have also been summarized. In addition, the correlation between cancer metastasis and lifestyle factors, such as obesity and circadian rhythm, has been illustrated.
Collapse
Affiliation(s)
- Tianyue Fan
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Guicheng Kuang
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Runmin Long
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jing Wang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
13
|
Abstract
Cancer-associated thrombosis (including venous thromboembolism (VTE) and arterial events) is highly consequential for patients with cancer and is associated with worsened survival. Despite substantial improvements in cancer treatment, the risk of VTE has increased in recent years; VTE rates additionally depend on the type of cancer (with pancreas, stomach and primary brain tumours having the highest risk) as well as on individual patient's and cancer treatment factors. Multiple cancer-specific mechanisms of VTE have been identified and can be classified as mechanisms in which the tumour expresses proteins that alter host systems, such as levels of platelets and leukocytes, and in which the tumour expresses procoagulant proteins released into the circulation that directly activate the coagulation cascade or platelets, such as tissue factor and podoplanin, respectively. As signs and symptoms of VTE may be non-specific, diagnosis requires clinical assessment, evaluation of pre-test probability, and objective diagnostic testing with ultrasonography or CT. Risk assessment tools have been validated to identify patients at risk of VTE. Primary prevention of VTE (thromboprophylaxis) has long been recommended in the inpatient and post-surgical settings, and is now an option in the outpatient setting for individuals with high-risk cancer. Anticoagulant therapy is the cornerstone of therapy, with low molecular weight heparin or newer options such as direct oral anticoagulants. Personalized treatment incorporating risk of bleeding and patient preferences is essential, especially as a diagnosis of VTE is often considered by patients even more distressing than their cancer diagnosis, and can severely affect the quality of life. Future research should focus on current knowledge gaps including optimizing risk assessment tools, biomarker discovery, next-generation anticoagulant development and implementation science.
Collapse
|
14
|
Abstract
IMPORTANCE Individuals with newly diagnosed cancer often have a high platelet count (thrombocytosis). Whether thrombocytosis is associated with the presence of an undiagnosed cancer remains unknown. OBJECTIVE To assess whether a new diagnosis of thrombocytosis is associated with a subsequent risk of cancer among adults. DESIGN, SETTING, AND PARTICIPANTS This population-based retrospective cohort study was conducted using linked laboratory data from Ontario, Canada, from January 1, 2007, to December 31, 2017, with follow-up until December 31, 2018. The study cohort included adults aged 40 to 75 years on the date of a routine complete blood count (CBC) test (index test) who had a normal platelet count in the 2 previous years and no history of cancer. Data analysis was performed in December 2020. EXPOSURES Exposed individuals were those with a platelet count greater than 450 × 109/L. Matched unexposed control individuals had a platelet count within the reference range (150 × 109/L to 450 × 109/L) reported within 30 days of the exposure. MAIN OUTCOMES AND MEASURES Incident cancers within 5 years after diagnosis of thrombocytosis. Absolute and relative risks for cancer associated with thrombocytosis were estimated for all cancers and for cancers at specific sites. RESULTS Of the 3 386 716 Ontario residents with a recorded routine CBC test result, 53 339 (1.6%) had thrombocytosis and a prior normal platelet count. Among individuals with thrombocytosis, the median age was 59.7 years (interquartile range, 50.2-67.4 years) and 37 349 (70.0%) were women. Among the 51 624 individuals with thrombocytosis included in the matched analysis, 2844 (5.5%) had received a diagnosis of a solid cancer in the 2-year follow-up period and 3869 (7.5%) had received a diagnosis within 5 years. The relative risk (RR) for developing any solid cancer within 2 years was 2.67 (95% CI, 2.56-2.79). Associations were found between thrombocytosis and cancers of the ovary (RR, 7.11; 95% CI, 5.59-9.03), stomach (RR, 5.53; 95% CI, 4.12-7.41), colon (RR, 5.41; 95% CI, 4.80-6.10), lung (RR, 4.41; 95% CI, 4.02-4.85), kidney (RR, 3.64; 95% CI, 2.94-4.51), and esophagus (RR, 3.64; 95% CI, 2.46-5.40). CONCLUSIONS AND RELEVANCE In this cohort study, an increased platelet count was associated with an increased risk of cancer for at least 2 years. The results suggest that individuals with unexplained thrombocytosis should be offered screening for several cancers.
Collapse
Affiliation(s)
- Vasily Giannakeas
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Kanikarla Marie P, Fowlkes NW, Afshar-Kharghan V, Martch SL, Sorokin A, Shen JP, Morris VK, Dasari A, You N, Sood AK, Overman MJ, Kopetz S, Menter DG. The Provocative Roles of Platelets in Liver Disease and Cancer. Front Oncol 2021; 11:643815. [PMID: 34367949 PMCID: PMC8335590 DOI: 10.3389/fonc.2021.643815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Both platelets and the liver play important roles in the processes of coagulation and innate immunity. Platelet responses at the site of an injury are rapid; their immediate activation and structural changes minimize the loss of blood. The majority of coagulation proteins are produced by the liver—a multifunctional organ that also plays a critical role in many processes: removal of toxins and metabolism of fats, proteins, carbohydrates, and drugs. Chronic inflammation, trauma, or other causes of irreversible damage to the liver can dysregulate these pathways leading to organ and systemic abnormalities. In some cases, platelet-to-lymphocyte ratios can also be a predictor of disease outcome. An example is cirrhosis, which increases the risk of bleeding and prothrombotic events followed by activation of platelets. Along with a triggered coagulation cascade, the platelets increase the risk of pro-thrombotic events and contribute to cancer progression and metastasis. This progression and the resulting tissue destruction is physiologically comparable to a persistent, chronic wound. Various cancers, including colorectal cancer, have been associated with increased thrombocytosis, platelet activation, platelet-storage granule release, and thrombosis; anti-platelet agents can reduce cancer risk and progression. However, in cancer patients with pre-existing liver disease who are undergoing chemotherapy, the risk of thrombotic events becomes challenging to manage due to their inherent risk for bleeding. Chemotherapy, also known to induce damage to the liver, further increases the frequency of thrombotic events. Depending on individual patient risks, these factors acting together can disrupt the fragile balance between pro- and anti-coagulant processes, heightening liver thrombogenesis, and possibly providing a niche for circulating tumor cells to adhere to—thus promoting both liver metastasis and cancer-cell survival following treatment (that is, with minimal residual disease in the liver).
Collapse
Affiliation(s)
- Preeti Kanikarla Marie
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalie W Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephanie L Martch
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexey Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Van K Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nancy You
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David George Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
16
|
Sabrkhany S, Kuijpers MJE, Oude Egbrink MGA, Griffioen AW. Platelets as messengers of early-stage cancer. Cancer Metastasis Rev 2021; 40:563-573. [PMID: 33634328 PMCID: PMC8213673 DOI: 10.1007/s10555-021-09956-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Platelets have an important role in tumor angiogenesis, growth, and metastasis. The reciprocal interaction between cancer and platelets results in changes of several platelet characteristics. It is becoming clear that analysis of these platelet features could offer a new strategy in the search for biomarkers of cancer. Here, we review the human studies in which platelet characteristics (e.g., count, volume, protein, and mRNA content) are investigated in early-stage cancer. The main focus of this paper is to evaluate which platelet features are suitable for the development of a blood test that could detect cancer in its early stages.
Collapse
Affiliation(s)
- Siamack Sabrkhany
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Mirjam G A Oude Egbrink
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Cancer Center Amsterdam, Department of Medical Oncology, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Abstract
Platelets have long been known to play important roles beyond hemostasis and thrombosis. Now recognized as a bona fide mediator of malignant disease, platelets influence various aspects of cancer progression, most notably tumor cell metastasis. Interestingly, platelets isolated from cancer patients often display distinct RNA and protein profiles, with no clear alterations in hemostatic activity. This phenotypically distinct population, termed tumor-educated platelets, now receive significant attention for their potential use as a readily available liquid biopsy for early cancer detection. Although the mechanisms underpinning platelet education are still being defined, direct uptake and storage of tumor-derived factors, signal-dependent changes in platelet RNA processing, and differential platelet production by tumor-educated megakaryocytes are the most prominent scenarios. This article aims to cover the various modalities of platelet education by tumors, in addition to assessing their diagnostic potential.
Collapse
|
18
|
Hong SK, Lee KW, Hong SY, Suh S, Hong K, Han ES, Lee JM, Choi Y, Yi NJ, Suh KS. Efficacy of Liver Resection for Single Large Hepatocellular Carcinoma in Child-Pugh A Cirrhosis: Analysis of a Nationwide Cancer Registry Database. Front Oncol 2021; 11:674603. [PMID: 33996606 PMCID: PMC8121000 DOI: 10.3389/fonc.2021.674603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/12/2021] [Indexed: 01/27/2023] Open
Abstract
Background Therapeutic strategies and good prognostic factors are important for patients with single large hepatocellular carcinoma (HCC). This retrospective study aimed to identify the prognostic factors in patients with single large HCC with good performance status and Child-Pugh A cirrhosis using a large national cancer registry database and to recommend therapeutic strategies. Methods Among 12139 HCC patients registered at the Korean Primary Liver Cancer Registry between 2008 and 2015, single large (≥ 5 cm) HCC patients with Eastern Cooperative Oncology Group (ECOG) performance status 0 and Child-Pugh score A were selected. Results Overall, 466 patients were analyzed. The 1-,2-,3-, and 5-year survival rates after initial treatment were 84.9%, 71.0%, 60.1%, and 51.6%, respectively, and progression-free survival rates were 43.6%, 33.0%, 29.0%, and 26.8%, respectively. Platelet count < 100 × 109/L (P < 0.001), sodium level < 135 mmol/L (P = 0.002), maximum tumor diameter ≥ 10 cm (P = 0.001), and treatment other than resection (transarterial therapy vs. resection: P < 0.001, others vs. resection: P = 0.002) were significantly associated with poorer overall survival; sodium < 135 mmol/L (P = 0.015), maximum tumor diameter ≥ 10 cm (P < 0.001), and treatment other than resection (transarterial therapy vs. resection: P < 0.001, others vs. resection: P = 0.001) were independently associated with poorer progression-free survival. Conclusion Resection as an initial treatment should be considered when possible, even in patients with single large HCC with good performance status and mild cirrhosis. Caution should be exercised in patients with low platelet level (< 100 × 109/L), low serum sodium level (< 135 mmol/L), and maximum tumor diameter ≥ 10 cm.
Collapse
Affiliation(s)
- Suk Kyun Hong
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Kwang-Woong Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Su Young Hong
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Sanggyun Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Kwangpyo Hong
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Eui Soo Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeong-Moo Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - YoungRok Choi
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Nam-Joon Yi
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung-Suk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
19
|
Okunade KS, Dawodu O, Adenekan M, Nwogu CM, Awofeso O, Ugwu AO, Salako O, John-Olabode S, Olowoselu OF, Anorlu RI. Prognostic impact of pretreatment thrombocytosis in epithelial ovarian cancer. Niger J Clin Pract 2020; 23:1141-1147. [PMID: 32788493 PMCID: PMC8104071 DOI: 10.4103/njcp.njcp_134_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aims This study was aimed at investigating the prognostic impact of pretreatment thrombocytosis in epithelial ovarian cancer (EOC) patients in Lagos, Nigeria. Methods This was a retrospective cohort study involving the review of the clinical record of 72 patients with histologically confirmed EOC who were managed at the Lagos University Teaching Hospital, Lagos, Nigeria over a 7-year period from January 2010 to December 2016. Information on the sociodemographic data and platelet counts at diagnosis of EOC were retrieved from the patients' medical records. Descriptive statistics were then computed for all baseline patients' characteristics. Survival analyses were carried out using the Kaplan-Meier estimates. Multivariate analysis of these data was performed with the Cox proportional hazards model. Results This study revealed that the prevalence of pretreatment thrombocytosis was 41.7% among the women with EOC. Fifty-three (73.6%) of the women had the advanced-stage disease (FIGO stage III-IV) while 52 (72.2%) had high-grade disease (II-III). The majority (66.7%) of the women had a serous histological type of EOC while 76.4% had documented recurrence. Pretreatment thrombocytosis was significantly associated with the women's parity (P = 0.009), serum carbohydrate antigen 125 levels (P = 0.018), median progression-free survival (PFS) (P < 0.001), 3-year median overall survival (OS) (P < 0.001), type of primary treatment (P = 0.002), extent of cytoreduction (P < 0.001), presence of ascites (P = 0.002), International Federation of Gynecology and Obstetrics (FIGO) stage (P = 0.008), and histological type (P = 0.011). Pretreatment thrombocytosis was negatively associated with PFS (hazard ratio [HR] = 0.25; 95% CI 0.83, 0.75; P = 0.014) and 3-year OS (HR = 0.03; 95% CI 0.03, 0.27; P = 0.002). Conclusions The study suggests that pretreatment thrombocytosis may be a useful predictor of survivals in EOC patients.
Collapse
Affiliation(s)
- K S Okunade
- Department of Obstetrics and Gynaecology, College of Medicine, University of Lagos; Department of Obstetrics and Gynaecology, Lagos University Teaching Hospital, Lagos, Nigeria
| | - O Dawodu
- Department of Anatomic and Molecular Pathology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - M Adenekan
- Department of Obstetrics and Gynaecology, Lagos University Teaching Hospital, Lagos, Nigeria
| | - C M Nwogu
- Department of Obstetrics and Gynaecology, Lagos University Teaching Hospital, Lagos, Nigeria
| | - O Awofeso
- Department of Obstetrics and Gynaecology, Lagos University Teaching Hospital, Lagos, Nigeria
| | - A O Ugwu
- Department of Obstetrics and Gynaecology, Lagos University Teaching Hospital, Lagos, Nigeria
| | - O Salako
- Department of Radiotherapy and Radiation Oncology, Lagos University Teaching Hospital, Lagos, Nigeria
| | - S John-Olabode
- Department of Haematology and Blood Transfusion, College of Medicine, University of Lagos, Lagos, Nigeria
| | - O F Olowoselu
- Department of Haematology and Blood Transfusion, College of Medicine, University of Lagos, Lagos, Nigeria
| | - R I Anorlu
- Department of Obstetrics and Gynaecology, College of Medicine, University of Lagos; Department of Obstetrics and Gynaecology, Lagos University Teaching Hospital, Lagos, Nigeria
| |
Collapse
|
20
|
Bussies P, Eta A, Pinto A, George S, Schlumbrecht M. Thrombocytosis as a Biomarker in Type II, Non-Endometrioid Endometrial Cancer. Cancers (Basel) 2020; 12:cancers12092379. [PMID: 32842701 PMCID: PMC7563482 DOI: 10.3390/cancers12092379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 11/16/2022] Open
Abstract
Thrombocytosis (platelets ≥ 400K) is a common hematologic finding in gynecologic malignancies and associated with worse outcomes. Limited data exist on the prognostic capability of thrombocytosis in women with high-grade endometrial cancer (EC). Our objective was to describe the associations between elevated platelets at diagnosis, clinicopathologic features, and survival outcomes among women with high-grade, non-endometrioid EC. A review of the institutional cancer registry was performed to identify these women treated between 2005 and 2017. Sociodemographic, clinical, and outcomes data were collected. Analyses were performed using chi-square tests, Cox proportional hazards models, and the Kaplan–Meier method. A total of 271 women were included in the analysis. A total of 19.3% of women had thrombocytosis at diagnosis. Thrombocytosis was associated with reduced median overall survival (OS) compared with those not displaying thrombocytosis (29.4 months vs. 60 months, p < 0.01). This finding was most pronounced in uterine serous carcinoma (16.4 months with thrombocytosis vs. 34.4 months without, p < 0.01). While non-White women had shorter median OS for the whole cohort in the setting of thrombocytosis (29.4 months vs. 39.6 months, p < 0.01), among those with uterine serous carcinoma (USC), this finding was reversed, with decreased median OS in White women (22.1 vs. 16.4 months, p = 0.01). Thrombocytosis is concluded to have negative associations with OS and patient race.
Collapse
Affiliation(s)
- Parker Bussies
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (P.B.); (A.E.)
| | - Ayi Eta
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (P.B.); (A.E.)
| | - Andre Pinto
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA;
| | - Sophia George
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA;
- Department of Obstetrics, Gynecology, and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Matthew Schlumbrecht
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA;
- Department of Obstetrics, Gynecology, and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Correspondence:
| |
Collapse
|
21
|
Hyslop SR, Alexander M, Thai AA, Kersbergen A, Kueh AJ, Herold MJ, Corbin J, Gangatirkar P, Ng AP, Solomon BJ, Alexander WS, Sutherland KD, Josefsson EC. Targeting platelets for improved outcome in KRAS-driven lung adenocarcinoma. Oncogene 2020; 39:5177-5186. [PMID: 32535617 DOI: 10.1038/s41388-020-1357-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022]
Abstract
Elevated platelet count is associated with poor survival in certain solid cancers, including lung cancer. In addition, experimental transplantation of cancer cell lines has uncovered a role for platelets in blood-borne metastasis. These studies, however, do not account for heterogeneity between lung cancer subtypes. Subsequently, the role of platelets in the major subtypes of non-small cell lung cancer (adenocarcinoma (ADC) and squamous cell carcinoma (SqCC)) is not fully understood. We utilised an autochthonous KrasLSL-G12D/+;p53flox/flox mouse model of lung ADC together with genetic models of thrombocytopenia to interrogate the role of platelets in lung cancer growth and progression. While thrombocytopenia failed to impact primary tumour growth, in experimental metastatic models however, thrombocytopenic mice displayed significantly extended survival. Utilising a novel thrombocytopenic immunocompromised mouse, the importance of platelets in metastatic dissemination was confirmed with human KRAS-mutant ADC cell lines. Finally, retrospective analysis of a NSCLC patient cohort revealed thrombocytosis was predictive of poor survival in ADC patients with metastatic disease. Interestingly, this association was not apparent in SqCC patients. Overall, these data highlight the possibility of patient stratification using thrombocytosis as a biomarker, and indicates opportunities for potential novel treatment strategies that combine anti-platelet and lung cancer therapies.
Collapse
Affiliation(s)
- Stephanie R Hyslop
- ACRF Cancer Biology & Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Marliese Alexander
- Pharmacy Department, Peter MacCallum Cancer Centre, University of Melbourne, Parkville, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Alesha A Thai
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ariena Kersbergen
- ACRF Cancer Biology & Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Andrew J Kueh
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.,Blood Cells & Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Marco J Herold
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.,Blood Cells & Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Jason Corbin
- ACRF Cancer Biology & Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Pradnya Gangatirkar
- ACRF Cancer Biology & Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Ashley P Ng
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.,Blood Cells & Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Benjamin J Solomon
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Warren S Alexander
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.,Blood Cells & Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Kate D Sutherland
- ACRF Cancer Biology & Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Emma C Josefsson
- ACRF Cancer Biology & Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
22
|
Abelardo E, Davies G, Kamhieh Y, Prabhu V. Are Inflammatory Markers Significant Prognostic Factors for Head and Neck Cancer Patients? ORL J Otorhinolaryngol Relat Spec 2020; 82:235-244. [DOI: 10.1159/000507027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/04/2020] [Indexed: 11/19/2022]
|
23
|
Canzler U, Lück HJ, Neuser P, Sehouli J, Burges A, Harter P, Schmalfeldt B, Aminossadati B, Mahner S, Kommoss S, Wimberger P, Pfisterer J, de Gregorio N, Hasenburg A, Gropp-Meier M, El-Balat A, Jackisch C, du Bois A, Meier W, Wagner U. Prognostic role of thrombocytosis in recurrent ovarian cancer: a pooled analysis of the AGO Study Group. Arch Gynecol Obstet 2020; 301:1267-1274. [PMID: 32277253 DOI: 10.1007/s00404-020-05529-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/28/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Although thrombocytosis in patients with primary ovarian cancer has been widely investigated, there are only very few data about the role of thrombocytosis in recurrent ovarian cancer. The aim of our study was to investigate the impact of pretreatment thrombocytosis prior to chemotherapy on clinical outcome in patients with recurrent platinum eligible ovarian cancer. METHODS In our retrospective analysis we included 300 patients who were treated by AGO Study Group Centers within three prospective, randomized phase-III-trials. All patients included had been treatment-free for at least 6 months after platinum-based chemotherapy. We excluded patients who underwent secondary cytoreductive surgery before randomization to the trial. Thrombocytosis was defined as a platelet count of ≥ 400⋅109/L. RESULTS Pretreatment thrombocytosis was present in 37 out of 300 (12.3%) patients. Patients with thrombocytosis responded statistically significantly less to chemotherapy (overall response rate 35.3% and 41.6%, P = 0.046). The median progression-free survival (PFS) for patients with thrombocytosis was 6.36 months compared to 9.00 months for patients without thrombocytosis (hazard ratio [HR] = 1.19, 95% confidence interval [CI] = 0.84-1.69, P = 0.336). Median overall survival (OS) of patients with thrombocytosis was 16.33 months compared to 23.92 months of patients with a normal platelet count (HR = 1.46, 95% CI = 1.00-2.14, P = 0.047). CONCLUSIONS The present analysis suggests that pretreatment thrombocytosis is associated with unfavorable outcome with regard to response to chemotherapy and overall survival in recurrent ovarian cancer.
Collapse
Affiliation(s)
- Ulrich Canzler
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany. .,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.
| | | | - Petra Neuser
- Coordinating Center for Clinical Trials, Philipps University Marburg, Marburg, Germany
| | - Jalid Sehouli
- Department for Gynecology and Center for Oncological Surgery, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Philipp Harter
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Evangelische Huyssens-Stiftung, Essen, Germany
| | - Barbara Schmalfeldt
- Department of Gynecology and Obstetrics, Klinikum rechts der Isar München, Munich, Germany.,Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Behnaz Aminossadati
- Coordinating Center for Clinical Trials, Philipps University Marburg, Marburg, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Kommoss
- Department of Obstetrics and Gynecology, University of Tübingen, Tübingen, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Jacobus Pfisterer
- Department of Gynecology and Obstetrics, Universitätsklinikum Schleswig-Holstein, Kiel, Germany.,Gynecologic Oncology Center, Kiel, Germany
| | | | - Annette Hasenburg
- Department of Gynecology and Gynecologic Oncology, University Hospital Freiburg, Freiburg im Breisgau, Germany.,Department of Obstetrics and Gynecology, University Medical Center, Mainz, Germany
| | - Martina Gropp-Meier
- Department of Gynecology and Obstetrics, Oberschwabenklinik, Krankenhaus St. Elisabeth, Ravensburg, Germany
| | - Ahmed El-Balat
- Department of Gynecology, University of Frankfurt, Frankfurt, Germany
| | - Christian Jackisch
- Department of Obstetrics and Gynecology, Sana Klinikum Offenbach GmbH, Offenbach, Germany
| | - Andreas du Bois
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Evangelische Huyssens-Stiftung, Essen, Germany
| | - Werner Meier
- Department of Obstetrics and Gynecology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Uwe Wagner
- Department of Gynecology and Obstetrics, University Hospital Giessen and Marburg, Marburg, Germany
| |
Collapse
|
24
|
Abstract
Tumour vasculature supports the growth and progression of solid cancers with both angiogenesis (endothelial cell proliferation) and vasculogenic mimicry (VM, the formation of vascular structures by cancer cells themselves) predictors of poor patient outcomes. Increased circulating platelet counts also predict poor outcome for cancer patients but the influence of platelets on tumour vasculature is incompletely understood. Herein, we show with in vitro assays that platelets did not influence angiogenesis but did actively inhibit VM formation by cancer cell lines. Both platelet sized beads and the releasates from platelets were partially effective at inhibiting VM formation suggesting that direct contact maximises the effect. Platelets also promoted cancer cell invasion in vitro. B16F10 melanomas in Bcl-xPlt20/Plt20 thrombocytopenic mice showed a higher content of VM than their wildtype counterparts while angiogenesis did not differ. In a xenograft mouse model of breast cancer with low-dose aspirin to inactivate the platelets, the burden of MDA-MB-231-LM2 breast cancer cells was reduced and the gene expression profile of the cancer cells was altered; but no effect on tumour vasculature was observed. Taken together, this study provides new insights into the action of platelets on VM formation and their involvement in cancer progression.
Collapse
|
25
|
Catani MV, Savini I, Tullio V, Gasperi V. The "Janus Face" of Platelets in Cancer. Int J Mol Sci 2020; 21:ijms21030788. [PMID: 31991775 PMCID: PMC7037171 DOI: 10.3390/ijms21030788] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Besides their vital role in hemostasis and thrombosis, platelets are also recognized to be involved in cancer, where they play an unexpected central role: They actively influence cancer cell behavior, but, on the other hand, platelet physiology and phenotype are impacted by tumor cells. The existence of this platelet-cancer loop is supported by a large number of experimental and human studies reporting an association between alterations in platelet number and functions and cancer, often in a way dependent on patient, cancer type and treatment. Herein, we shall report on an update on platelet-cancer relationships, with a particular emphasis on how platelets might exert either a protective or a deleterious action in all steps of cancer progression. To this end, we will describe the impact of (i) platelet count, (ii) bioactive molecules secreted upon platelet activation, and (iii) microvesicle-derived miRNAs on cancer behavior. Potential explanations of conflicting results are also reported: Both intrinsic (heterogeneity in platelet-derived bioactive molecules with either inhibitory or stimulatory properties; features of cancer cell types, such as aggressiveness and/or tumour stage) and extrinsic (heterogeneous characteristics of cancer patients, study design and sample preparation) factors, together with other confounding elements, contribute to “the Janus face” of platelets in cancer. Given the difficulty to establish the univocal role of platelets in a tumor, a better understanding of their exact contribution is warranted, in order to identify an efficient therapeutic strategy for cancer management, as well as for better prevention, screening and risk assessment protocols.
Collapse
Affiliation(s)
- Maria Valeria Catani
- Correspondence: (M.V.C.); (V.G.); Tel.: +39-06-72596465 (M.V.C.); +39-06-72596465 (V.G.)
| | | | | | - Valeria Gasperi
- Correspondence: (M.V.C.); (V.G.); Tel.: +39-06-72596465 (M.V.C.); +39-06-72596465 (V.G.)
| |
Collapse
|
26
|
Zuo XX, Yang Y, Zhang Y, Zhang ZG, Wang XF, Shi YG. Platelets promote breast cancer cell MCF-7 metastasis by direct interaction: surface integrin α2β1-contacting-mediated activation of Wnt-β-catenin pathway. Cell Commun Signal 2019; 17:142. [PMID: 31699102 PMCID: PMC6836423 DOI: 10.1186/s12964-019-0464-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022] Open
Abstract
Background Integrin-mediated platelet-tumor cell contacting plays an important role in promoting epithelial-mesenchymal transition (EMT) transformation of tumor cells and cancer metastasis, but whether it occurs in breast cancer cells is not completely clear. Objective The purpose of this study was to investigate the role of integrin α2β1 in platelet contacting to human breast cancer cell line MCF-7 and its effect on the EMT and the invasion of MCF-7 cells. Methods Human platelets were activated by thrombin, and separated into pellets and releasates before the co-incubation with MCF-7 cells. Cell invasion was evaluated by transwell assay. The surface integrins on pellets and MCF-7 cells were inhibited by antibodies. The effect of integrin α2β1 on Wnt-β-catenin pathway was assessed by integrin α2β1-silencing and Wnt-β-catenin inhibitor XAV. The therapeutic effect of integrin α2β1-silencing was confirmed in the xenograft mouse model. Results Pellets promote the invasion and EMT of MCF-7 cells via direct contacting of surface integrin α2β1. The integrin α2β1 contacting activates Wnt-β-catenin pathway and promotes the expression of EMT proteins in MCF-7 cells. The activated Wnt-β-catenin pathway also promotes the autocrine of TGF-β1 in MCF-7 cells. Both Wnt-β-catenin and TGF-β1/pSmad3 pathways promote the expression of EMT proteins. Integrin α2β1-silencing inhibits breast cancer metastasis in vivo. Conclusions The direct interaction between platelets and tumor cells exerts its pro-metastatic function via surface integrin α2β1 contacting and Wnt-β-catenin activation. Integrin α2β1-silencing has the potential effect of inhibiting breast cancer metastasis.
Collapse
Affiliation(s)
- Xiao-Xiao Zuo
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, Henan Province, 450000, People's Republic of China
| | - Ya Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, Henan Province, 450000, People's Republic of China
| | - Yue Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, Henan Province, 450000, People's Republic of China
| | - Zhi-Gang Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, Henan Province, 450000, People's Republic of China
| | - Xiao-Fei Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, Henan Province, 450000, People's Republic of China
| | - Yong-Gang Shi
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, Henan Province, 450000, People's Republic of China.
| |
Collapse
|
27
|
Noetzli LJ, French SL, Machlus KR. New Insights Into the Differentiation of Megakaryocytes From Hematopoietic Progenitors. Arterioscler Thromb Vasc Biol 2019; 39:1288-1300. [PMID: 31043076 PMCID: PMC6594866 DOI: 10.1161/atvbaha.119.312129] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
Abstract
Megakaryocytes are hematopoietic cells, which are responsible for the production of blood platelets. The traditional view of megakaryopoiesis describes the cellular journey from hematopoietic stem cells, through a hierarchical series of progenitor cells, ultimately to a mature megakaryocyte. Once mature, the megakaryocyte then undergoes a terminal maturation process involving multiple rounds of endomitosis and cytoplasmic restructuring to allow platelet formation. However, recent studies have begun to redefine this hierarchy and shed new light on alternative routes by which hematopoietic stem cells are differentiated into megakaryocytes. In particular, the origin of megakaryocytes, including the existence and hierarchy of megakaryocyte progenitors, has been redefined, as new studies are suggesting that hematopoietic stem cells originate as megakaryocyte-primed and can bypass traditional lineage checkpoints. Overall, it is becoming evident that megakaryopoiesis does not only occur as a stepwise process, but is dynamic and adaptive to biological needs. In this review, we will reexamine the canonical dogmas of megakaryopoiesis and provide an updated framework for interpreting the roles of traditional pathways in the context of new megakaryocyte biology. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Leila J Noetzli
- Division of Hematology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Shauna L French
- Division of Hematology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Kellie R Machlus
- Division of Hematology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
28
|
Abstract
Liquid biopsies have been considered the holy grail in achieving effective cancer management, with blood tests offering a minimally invasive, safe, and sensitive alternative or complementary approach for tissue biopsies. Currently, blood-based liquid biopsy measurements focus on the evaluation of biomarker types, including circulating tumor DNA, circulating tumor cells, extracellular vesicles (exosomes and oncosomes), and tumor-educated platelets (TEPs). Despite the potential of individual techniques, each has its own advantages and disadvantages. Here, we provide further insight into TEPs.
Collapse
|
29
|
Rachidi S, Kaur M, Lautenschlaeger T, Li Z. Platelet count correlates with stage and predicts survival in melanoma. Platelets 2019; 30:1042-1046. [DOI: 10.1080/09537104.2019.1572879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Saleh Rachidi
- Resident Physician, Department of Dermatology, Johns Hopkins University, Baltimore, MD, USA
| | - Maneet Kaur
- PhD student in Biostatistics and Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
30
|
Abstract
Venous thromboembolism is known to be associated with an increase in morbidity and mortality in patients with malignancy. Predictive laboratory biomarkers of venous thromboembolism (VTE) have long been sought after to improve outcomes and help guide clinical decision making. Previously studied biomarkers include C reactive protein (CRP), tissue factor expressing microparticles (TF MP), D-dimer, soluble P-selectin (sP-selectin), plasminogen activator inhibitor 1 (PAI-1), factor VIII, platelet count, and leukocyte counts. This chapter will focus on these possible biomarkers for cancer-associated thrombosis (CAT) with particular emphasis on the pathophysiology behind thrombosis formation as well as data from clinical studies in patients with malignancy. The incorporation of the above biomarkers into risk assessment tools to predict CAT will also be reviewed, as will risk factors for recurrent VTE in patients with malignancy. Further studies are ongoing to develop readily available biomarkers that can be incorporated into future risk assessment models with the goal of reducing morbidity and mortality due to cancer-associated thrombosis.
Collapse
Affiliation(s)
- Anjlee Mahajan
- Division of Hematology and Oncology, UC Davis School of Medicine, UC Davis Cancer Center, 4501 X Street, Sacramento, CA, 95817, USA.
| | - Ted Wun
- Division of Hematology and Oncology, UC Davis School of Medicine, UC Davis Cancer Center, 4501 X Street, Sacramento, CA, 95817, USA
- UC Davis School of Medicine, Clinical and Translational Sciences Center (CTSC), Sacramento, USA
| |
Collapse
|
31
|
Li Z, Riesenberg B, Metelli A, Li A, Wu BX. The Role of Platelets in Tumor Growth, Metastasis, and Immune Evasion. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00030-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Cancer-Associated Thrombosis in Cirrhotic Patients with Hepatocellular Carcinoma. Cancers (Basel) 2018; 10:cancers10110450. [PMID: 30453547 PMCID: PMC6266984 DOI: 10.3390/cancers10110450] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/02/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022] Open
Abstract
It is common knowledge that cancer patients are more prone to develop venous thromboembolic complications (VTE). It is therefore not surprising that patients with hepatocellular carcinoma (HCC) present with a significant risk of VTE, with the portal vein being the most frequent site (PVT). However, patients with HCC are peculiar as both cancer and liver cirrhosis are conditions that can perturb the hemostatic balance towards a prothrombotic state. Because HCC-related hypercoagulability is not clarified at all, the aim of the present review is to summarize the currently available knowledge on epidemiology and pathogenesis of non-malignant thrombotic complications in patients with liver cirrhosis and HCC. They are at increased risk to develop both PVT and non-splanchnic VTE, indicating that both local and systemic factors can foster the development of site-specific thrombosis. Recent studies have suggested multiple and often interrelated mechanisms through which HCC can tip the hemostatic balance of liver cirrhosis towards hypercoagulability. Described mechanisms include increased fibrinogen concentration/polymerization, thrombocytosis, and release of tissue factor-expressing extracellular vesicles. Currently, there are no specific guidelines on the use of thromboprophylaxis in this unique population. There is the urgent need of prospective studies assessing which patients have the highest prothrombotic profile and would therefore benefit from early thromboprophylaxis.
Collapse
|
33
|
Haemmerle M, Stone RL, Menter DG, Afshar-Kharghan V, Sood AK. The Platelet Lifeline to Cancer: Challenges and Opportunities. Cancer Cell 2018; 33:965-983. [PMID: 29657130 PMCID: PMC5997503 DOI: 10.1016/j.ccell.2018.03.002] [Citation(s) in RCA: 388] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 01/08/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022]
Abstract
Besides their function in limiting blood loss and promoting wound healing, experimental evidence has highlighted platelets as active players in all steps of tumorigenesis including tumor growth, tumor cell extravasation, and metastasis. Additionally, thrombocytosis in cancer patients is associated with adverse patient survival. Due to the secretion of large amounts of microparticles and exosomes, platelets are well positioned to coordinate both local and distant tumor-host crosstalk. Here, we present a review of recent discoveries in the field of platelet biology and the role of platelets in cancer progression as well as challenges in targeting platelets for cancer treatment.
Collapse
Affiliation(s)
- Monika Haemmerle
- Department of Gynecologic Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany
| | - Rebecca L Stone
- Department of Obstetrics and Gynecology, Johns Hopkins Hospital, Baltimore, MD 21287-1281, USA
| | - David G Menter
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Anil K Sood
- Department of Gynecologic Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Abstract
The prevalence of thrombocytosis (defined as a platelet count above 400,000/mm3 in at least two examinations) and the prevalence of thromboembolism were retrospectively investigated in a series of 41 patients with malignant pleural mesothelioma and in 40 subjects with non small cell lung carcinoma. All the patients were examined at necropsy. The mesothelioma patients showed a higher prevalence of thrombocytosis (56.8% vs 24.2%; p < 0.01). However, the prevalences of thromboembolism were similar in the two groups of patients (36.6% and 32.5% respectively). Among those with mesothelioma the prevalence of thrombocytosis varied widely from one histological type to another (76.9% in mixed type, 57.1% in the epithelial, and 30% in the sarcomatous type), the difference between mixed and sarcomatous being statistically significant (p < 0.01). Moreover, the mesothelioma patients of under 70 years had thrombocytosis more often than those over 70 (80% vs 29.4%; p < 0.01).
Collapse
|
35
|
Laghi F, Di Roberto PF, Panici PB, Margariti PA, Scribano D, Cudillo L, Villani L, Bizzi B. Coagulation Disorders in Patients with Tumors of the Uterus. TUMORI JOURNAL 2018; 69:349-53. [PMID: 6623659 DOI: 10.1177/030089168306900413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sixty-eight previously untreated female subjects were studied: 26 patients with cervical carcinoma, 22 with endometrial carcinoma, and 20 with benign uterine diseases. These patients, together with 25 healthy female control subjects, underwent several coagulation tests, including beta-thromboglobulin (beta-TG) and platelet factor 4 (PF4) plasma levels. Of all the parameters considered, the variations in beta-TG and PF4 were the most interesting. They were increased in patients with cervical and endometrial carcinoma. The sensitivity of the two tests reached 79% (15/19) for patients with invasive cervical carcinoma and 74% (16/22) for all patients with endometrial carcinoma. Our data demonstrate that among the investigated parameters beta-TG and PF4 are the earliest disorders of the hemostatic system and are more frequently increased in the gynecologic malignancies.
Collapse
|
36
|
Aldapt MB, Kassem N, Al-Okka R, Ghasoub R, Soliman D, Abdulla MA, Mudawi D, Ibrahim F, Yassin MA. Thrombocytosis in a male patient with acute promyelocytic leukaemia during all-trans retinoic (ATRA) acid treatment. ACTA BIO-MEDICA : ATENEI PARMENSIS 2018; 89:33-37. [PMID: 29633731 PMCID: PMC6179098 DOI: 10.23750/abm.v89i3-s.7218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 12/26/2022]
Abstract
We present a rather uncommon side effect observed in a 20-year-old man with acute promyelocytic leukemia during treatment with ATRA. He developed a high platelet counts reaching up to 1655×10⁹/L on day 29 of ATRA treatment, and started to recover spontaneously on day 33 of treatment, without any change in ATRA, or adding any cytoreduction therapy. No complications associated with thrombocytosis were observed. IL-6 seems to play an important role in the pathogenesis of the thrombocytosis induced by ATRA. However, it is unclear what are the precipitating factors for this rare phenomenon and whether it is caused by certain predisposing factors that might be related to patient's, disease pathogenesis or other unknown factors.
Collapse
Affiliation(s)
- Mohmood B Aldapt
- Resident, Internal Medicine, Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Nancy Kassem
- Clinical Pharmacist, National Center for Cancer Care and Research, Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Randa Al-Okka
- Clinical Pharmacist, National Center for Cancer Care and Research, Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Rula Ghasoub
- Clinical Pharmacist, National Center for Cancer Care and Research, Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Dina Soliman
- Specialist, Hematopathology, Laboratory Medicine, Hamad Medical Corporation (HMC) and National Cancer Institute Cairo University, Cairo, Egypt.
| | - Mohammad A Abdulla
- Clinical Fellow, Hematology, National Center for Cancer Care and Research, Hamad Medical Corporation (HMC), Doha.
| | - Deena Mudawi
- Clinical Fellow, Hematology, National Center for Cancer Care and Research, Hamad Medical Corporation (HMC), Doha.
| | - Feryal Ibrahim
- 5 Consultant Hematopathologist Department of Laboratory Medicine and Pathology, National Center for Cancer Care and Research, Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Mohamed A Yassin
- Consultant, Hematology, National Center for Cancer Care and Research, Hamad Medical Corporation, (HMC), Doha, Qatar.
| |
Collapse
|
37
|
Cheng J, Zeng Z, Ye Q, Zhang Y, Yan R, Liang C, Wang J, Li M, Yi M. The association of pretreatment thrombocytosis with prognosis and clinicopathological significance in cervical cancer: a systematic review and meta-analysis. Oncotarget 2018; 8:24327-24336. [PMID: 28212582 PMCID: PMC5421850 DOI: 10.18632/oncotarget.15358] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/14/2016] [Indexed: 02/05/2023] Open
Abstract
Previous studies reported inconsistent findings about the relationship between pretreatment thrombocytosis and survival in patients with cervical cancer. This study aimed to evaluate the prognostic significance of thrombocytosis in cervical cancer. We searched databases to identify relevant articles. Pooled hazard ratios (HRs), odds ratios (ORs), and 95% confidence intervals (CIs) were calculated. Fourteen studies including 3,394 patients were eligible for the meta-analysis. Overall, an elevated platelet count was significantly associated with inferior overall survival (OS, hazard ratio [HR]: 1.66, 95% confidence interval [CI]: 1.42–1.95, P < 0.001) and recurrence-free survival (RFS, HR: 1.67, 95% CI: 1.15–2.42, P = 0.007) but not progression-free survival (PFS, HR: 1.21, 95% CI: 0.89–1.64; P = 0.235). The results were similar for low stage patients treated with surgery alone. Moreover, a pretreatment thrombocytosis status was significantly associated with higher clinical stage (odd ratio [OR]: 2.39, 95% CI: 1.68–3.38, P < 0.001), positive pelvic node status (OR: 1.58, 95% CI: 1.01– 2.45, P = 0.044) and larger tumor size (OR: 2.32, 95% CI: 1.39–3.87, P = 0.001). Pretreatment thrombocytosis is an independent prognosis predictor in cervical cancer patients. It may be used as a readily available biomarker to refine clinical outcome prediction for cervical cancer patients.
Collapse
Affiliation(s)
- Juan Cheng
- Department of Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, P.R. China
| | - Zhi Zeng
- Reproductive Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong Province, P.R. China
| | - Qingjian Ye
- Department of Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, P.R. China
| | - Yu Zhang
- Department of Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, P.R. China
| | - Ronghua Yan
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, P.R. China
| | - Changyan Liang
- Department of Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, P.R. China
| | - Jia Wang
- Department of Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, P.R. China
| | - Mengxiong Li
- Department of Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, P.R. China
| | - Mixuan Yi
- Department of nephrology, The Second Xiangya Hospital, Central South University, Changsha 410001, Hunan Province, P.R. China
| |
Collapse
|
38
|
Qi Y, Zhang Y, Fu X, Wang A, Yang Y, Shang Y, Gao Q. Platelet-to-lymphocyte ratio in peripheral blood: A novel independent prognostic factor in patients with melanoma. Int Immunopharmacol 2018; 56:143-147. [DOI: 10.1016/j.intimp.2018.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/25/2017] [Accepted: 01/16/2018] [Indexed: 12/26/2022]
|
39
|
Mitrugno A, Sylman JL, Rigg RA, Tassi Yunga S, Shatzel JJ, Williams CD, McCarty OJT. Carpe low-dose aspirin: the new anti-cancer face of an old anti-platelet drug. Platelets 2017; 29:773-778. [PMID: 29265902 DOI: 10.1080/09537104.2017.1416076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cancer metastasis is a dynamic process during which cancer cells separate from a primary tumor, migrate through the vessel wall into the bloodstream, and extravasate at distant sites to form secondary colonies. During this process, circulating tumor cells are subjected to shear stress forces from blood flow, and in contact with plasma proteins and blood cells of the immune and hemostatic system, including platelets. Many studies have shown an association between high platelet count and cancer metastasis, suggesting that platelets may play an occult role in tumorigenesis. This mini-review summarizes recent and emerging discoveries of mechanisms by which cancer cells activate platelets and the role of activated platelets in promoting tumor growth and metastasis. Moreover, the review discusses how aspirin has the potential for being clinically used as an adjuvant in cancer therapy.
Collapse
Affiliation(s)
- Annachiara Mitrugno
- a Department of Biomedical Engineering , Oregon Health & Science University, Portland, OR, USA.,b Cell, Developmental & Cancer Biology , Oregon Health & Science University, Portland, OR, USA.,c Division of Hematology & Medical Oncology , Oregon Health & Science University, Portland, OR, USA.,e Knight Cancer Institute, School of Medicine , Oregon Health & Science University , Portland , OR , USA
| | - Joanna L Sylman
- a Department of Biomedical Engineering , Oregon Health & Science University, Portland, OR, USA.,f VA Palo Alto Health Care System , Palo Alto , CA , USA.,g Department of Radiology, Canary Center at Stanford , Stanford University School of Medicine , Stanford , CA , USA
| | - Rachel A Rigg
- a Department of Biomedical Engineering , Oregon Health & Science University, Portland, OR, USA.,b Cell, Developmental & Cancer Biology , Oregon Health & Science University, Portland, OR, USA.,c Division of Hematology & Medical Oncology , Oregon Health & Science University, Portland, OR, USA
| | - Samuel Tassi Yunga
- d Cancer Early Detection & Advanced Research Center , Oregon Health & Science University, Portland, OR, USA.,e Knight Cancer Institute, School of Medicine , Oregon Health & Science University , Portland , OR , USA
| | - Joseph J Shatzel
- c Division of Hematology & Medical Oncology , Oregon Health & Science University, Portland, OR, USA.,e Knight Cancer Institute, School of Medicine , Oregon Health & Science University , Portland , OR , USA
| | - Craig D Williams
- h School of Pharmacy , Oregon State University , Portland , OR , USA
| | - Owen J T McCarty
- a Department of Biomedical Engineering , Oregon Health & Science University, Portland, OR, USA.,b Cell, Developmental & Cancer Biology , Oregon Health & Science University, Portland, OR, USA.,c Division of Hematology & Medical Oncology , Oregon Health & Science University, Portland, OR, USA.,e Knight Cancer Institute, School of Medicine , Oregon Health & Science University , Portland , OR , USA
| |
Collapse
|
40
|
Næser E, Møller H, Fredberg U, Frystyk J, Vedsted P. Routine blood tests and probability of cancer in patients referred with non-specific serious symptoms: a cohort study. BMC Cancer 2017; 17:817. [PMID: 29202799 PMCID: PMC5715646 DOI: 10.1186/s12885-017-3845-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 11/24/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Danish cancer patients have lower survival rates than patients in many other western countries. Half of the patients present with non-alarm symptoms and thus have a long diagnostic pathway. Consequently, an urgent referral pathway for patients with non-specific serious symptoms was implemented throughout Denmark in 2011-2012. As part of the diagnostic workup, a panel of blood tests are performed for all patients referred by their general practitioner (GP) to the urgent referral pathway. In this study, we analysed the probability of being diagnosed with cancer in GP-referred patients with abnormal blood test results. METHOD We performed a cohort study that included all patients aged 18 years or older referred by their GP to Silkeborg Regional Hospital for analysis of a panel of blood tests. All patients were followed for 3 months for a cancer diagnosis in the Danish Cancer Registry. The likelihood ratio and post-test probability of subsequently finding cancer were calculated in relation to abnormal blood test results. RESULTS Among the 1499 patients included in the study, 12.2% were subsequently diagnosed with cancer. The probability of cancer increased with the number of abnormal blood tests. Patients with specific combinations of two abnormal blood tests had a 23-62% probability of cancer. Only a few single abnormal blood tests were linked with a high post-test probability of cancer, and most abnormalities were not specific to cancer. CONCLUSIONS A number of specific abnormal blood tests and combinations of abnormal blood tests markedly increased the probability of cancer being diagnosed. Still, abnormal blood test results should be interpreted cautiously as most are non-specific to cancer. Thus, results from the blood test panel may strengthen the suspicion of cancer, but blood tests cannot be used as a stand-alone tool to rule out cancer.
Collapse
Affiliation(s)
- Esben Næser
- Department of Public Health, Research Unit for General Practice, Aarhus University, Bartholins Allé 2, 8000, Aarhus C, Denmark. .,Department of Public Health, Research Centre for Cancer Diagnosis in Primary Care, Aarhus University, Bartholins Allé 2, 8000, Aarhus C, Denmark. .,Diagnostic Centre, University Research Clinic for Innovative Patient Pathways, Silkeborg Regional Hospital, Falkevej 1-3, 8600, Silkeborg, Denmark.
| | - Henrik Møller
- Department of Public Health, Research Unit for General Practice, Aarhus University, Bartholins Allé 2, 8000, Aarhus C, Denmark.,Department of Public Health, Research Centre for Cancer Diagnosis in Primary Care, Aarhus University, Bartholins Allé 2, 8000, Aarhus C, Denmark.,Cancer Epidemiology and Population Health, Kings College London, Great Maze Pond, London, SE1 9RT, UK
| | - Ulrich Fredberg
- Diagnostic Centre, University Research Clinic for Innovative Patient Pathways, Silkeborg Regional Hospital, Falkevej 1-3, 8600, Silkeborg, Denmark
| | - Jan Frystyk
- Department of Clinical Medicine, Medical Research Laboratory, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark
| | - Peter Vedsted
- Department of Public Health, Research Unit for General Practice, Aarhus University, Bartholins Allé 2, 8000, Aarhus C, Denmark.,Department of Public Health, Research Centre for Cancer Diagnosis in Primary Care, Aarhus University, Bartholins Allé 2, 8000, Aarhus C, Denmark.,Diagnostic Centre, University Research Clinic for Innovative Patient Pathways, Silkeborg Regional Hospital, Falkevej 1-3, 8600, Silkeborg, Denmark
| |
Collapse
|
41
|
Cancer-associated pathways and biomarkers of venous thrombosis. Blood 2017; 130:1499-1506. [PMID: 28807983 DOI: 10.1182/blood-2017-03-743211] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer patients have an increased risk of venous thromboembolism (VTE). In this review, we summarize common and cancer type-specific pathways of VTE in cancer patients. Increased levels of leukocytes, platelets, and tissue factor-positive (TF+) microvesicles (MVs) are all potential factors that alone or in combination increase cancer-associated thrombosis. Patients with lung or colorectal cancer often exhibit leukocytosis. Neutrophils could increase VTE in cancer patients by releasing neutrophil extracellular traps whereas monocytes may express TF. Thrombocytosis is often observed in gastrointestinal, lung, breast, and ovarian cancer and this could decrease the threshold required for VTE. Soluble P-selectin has been identified as a biomarker of cancer-associated thrombosis in a general cancer population and may reflect activation of the endothelium. P-selectin expression by the endothelium may enhance VTE by increasing the recruitment of leukocytes. Studies in patients with pancreatic or brain cancer suggest that elevated levels of PAI-1 may contribute to VTE. Although elevated levels of TF+ MVs have been observed in patients with different types of cancer, an association between TF+ MVs and VTE has been observed only in pancreatic cancer. Podoplanin expression is associated with VTE in patients with brain cancer and may activate platelets. Future studies should measure multiple biomarkers in each cancer type to determine whether combinations of biomarkers can be used as predictors of VTE. A better understanding of the pathways that increase VTE in cancer patients may lead to the development of new therapies to reduce the morbidity and mortality associated with thrombosis.
Collapse
|
42
|
The potential role of platelets in the consensus molecular subtypes of colorectal cancer. Cancer Metastasis Rev 2017; 36:273-288. [DOI: 10.1007/s10555-017-9678-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Cai D, Wu X, Hong T, Mao Y, Ge X, Hua D. CD61+ and CAF+ were found to be good prognosis factors for invasive breast cancer patients. Pathol Res Pract 2017; 213:1296-1301. [PMID: 28935175 DOI: 10.1016/j.prp.2017.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/01/2017] [Accepted: 06/24/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND During the epithelial tumor development process, changes in tumor cell genes are an important driving factor for tumorigenesis. Recently, however, studies have shown that the tumor microenvironment, especially for cancer-associated fibroblasts (CAFs) and the infiltration of platelets into tumors, plays an essential role in the progression of human malignant disease. METHODS In this study, we investigated the presence and prognostic role of podoplanin-expressing CAFs (CAF+), the infiltration of platelets into tumors (CD61+) and platelet count before surgery in a large sample of patients with breast cancer. Podoplanin expression and platelet infiltration were evaluated by immunohistochemistry in 164 patients with breast cancer. RESULTS Seventy-two patients (44%) showed CAF+, while fifty-seven patients (35%) showed CD61+. Several strong positive correlations were found, including CD61+ with blood platelet count before surgery (P=0.004), and CAF+ with CD61+ (P=0.048). Patients with CAF+, CD61+ or platelet count >280×109/L before surgery had a significantly shorter disease-free survival according to univariate analysis. Multivariable analysis showed that CAF+ was an independent prognostic factor (Hazard ratio=3.928; p=0.005). CONCLUSIONS CAF+ and CD61+ were found to be good negative prognosis factors for invasive breast cancer patients. CD61+ also had strong positive correlation with blood platelet count before surgery. These targets may be used as strategies for the treatment of breast cancer in the future.
Collapse
Affiliation(s)
- Dongyan Cai
- Department of Oncology, The Fourth People's Hospital of Wuxi, No. 200, Huihe road, Wuxi 214062, China
| | - Xiaohong Wu
- Department of Oncology, The Fourth People's Hospital of Wuxi, No. 200, Huihe road, Wuxi 214062, China
| | - Tingting Hong
- Department of Oncology, The Fourth People's Hospital of Wuxi, No. 200, Huihe road, Wuxi 214062, China
| | - Yong Mao
- Department of Oncology, The Fourth People's Hospital of Wuxi, No. 200, Huihe road, Wuxi 214062, China
| | - Xiaosong Ge
- Department of Oncology, The Fourth People's Hospital of Wuxi, No. 200, Huihe road, Wuxi 214062, China
| | - Dong Hua
- Department of Oncology, The Fourth People's Hospital of Wuxi, No. 200, Huihe road, Wuxi 214062, China.
| |
Collapse
|
44
|
Yap ML, McFadyen JD, Wang X, Zia NA, Hohmann JD, Ziegler M, Yao Y, Pham A, Harris M, Donnelly PS, Hogarth PM, Pietersz GA, Lim B, Peter K. Targeting Activated Platelets: A Unique and Potentially Universal Approach for Cancer Imaging. Am J Cancer Res 2017; 7:2565-2574. [PMID: 28819447 PMCID: PMC5558553 DOI: 10.7150/thno.19900] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/26/2017] [Indexed: 12/27/2022] Open
Abstract
Rationale The early detection of primary tumours and metastatic disease is vital for successful therapy and is contingent upon highly specific molecular markers and sensitive, non-invasive imaging techniques. We hypothesized that the accumulation of activated platelets within tumours is a general phenomenon and thus represents a novel means for the molecular imaging of cancer. Here we investigate a unique single chain antibody (scFv), which specifically targets activated platelets, as a novel biotechnological tool for molecular imaging of cancer. Methods The scFvGPIIb/IIIa, which binds specifically to the activated form of the platelet integrin receptor GPIIb/IIIa present on activated platelets, was conjugated to either Cy7, 64Cu or ultrasound-enhancing microbubbles. Using the Cy7 labelled scFvGPIIb/IIIa, fluorescence imaging was performed in mice bearing four different human tumour xenograft models; SKBr3, MDA-MB-231, Ramos and HT-1080 cells. Molecular imaging via PET and ultrasound was performed using the scFvGPIIb/IIIa-64Cu and scFvGPIIb/IIIa-microbubbles, respectively, to further confirm specific targeting of scFvGPIIb/IIIa to activated platelets in the tumour stroma. Results Using scFvGPIIb/IIIa we successfully showed specific targeting of activated platelets within the microenvironment of human tumour xenografts models via three different molecular imaging modalities. The presence of platelets within the tumour microenvironment, and as such their relevance as a molecular target epitope in cancer was further confirmed via immunofluorescence of human tumour sections of various cancer types, thus validating the translational importance of our novel approach to human disease. Conclusion Our study provides proof of concept for imaging and localization of tumours by molecular targeting activated platelets. We illustrate the utility of a unique scFv as a versatile biotechnological tool which can be conjugated to various contrast agents for molecular imaging of cancer using three different imaging modalities. These findings warrant further development of this activated platelet specific scFvGPIIb/IIIa, potentially as a universal marker for cancer diagnosis and ultimately for drug delivery in an innovative theranostic approach.
Collapse
|
45
|
Menter DG, Kopetz S, Hawk E, Sood AK, Loree JM, Gresele P, Honn KV. Platelet "first responders" in wound response, cancer, and metastasis. Cancer Metastasis Rev 2017; 36:199-213. [PMID: 28730545 PMCID: PMC5709140 DOI: 10.1007/s10555-017-9682-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Platelets serve as "first responders" during normal wounding and homeostasis. Arising from bone marrow stem cell lineage megakaryocytes, anucleate platelets can influence inflammation and immune regulation. Biophysically, platelets are optimized due to size and discoid morphology to distribute near vessel walls, monitor vascular integrity, and initiate quick responses to vascular lesions. Adhesion receptors linked to a highly reactive filopodia-generating cytoskeleton maximizes their vascular surface contact allowing rapid response capabilities. Functionally, platelets normally initiate rapid clotting, vasoconstriction, inflammation, and wound biology that leads to sterilization, tissue repair, and resolution. Platelets also are among the first to sense, phagocytize, decorate, or react to pathogens in the circulation. These platelet first responder properties are commandeered during chronic inflammation, cancer progression, and metastasis. Leaky or inflammatory reaction blood vessel genesis during carcinogenesis provides opportunities for platelet invasion into tumors. Cancer is thought of as a non-healing or chronic wound that can be actively aided by platelet mitogenic properties to stimulate tumor growth. This growth ultimately outstrips circulatory support leads to angiogenesis and intravasation of tumor cells into the blood stream. Circulating tumor cells reengage additional platelets, which facilitates tumor cell adhesion, arrest and extravasation, and metastasis. This process, along with the hypercoagulable states associated with malignancy, is amplified by IL6 production in tumors that stimulate liver thrombopoietin production and elevates circulating platelet numbers by thrombopoiesis in the bone marrow. These complex interactions and the "first responder" role of platelets during diverse physiologic stresses provide a useful therapeutic target that deserves further exploration.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA.
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - Ernest Hawk
- Office of the Vice President Cancer Prevention & Population Science, M. D. Anderson Cancer Center, Unit 1370, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
| | - Anil K Sood
- Gynocologic Oncology & Reproductive Medicine, M. D. Anderson Cancer Center, Unit 1362, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
- Department of Cancer Biology, M. D. Anderson Cancer Center, Unit 1362, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
- Center for RNA Interference and Non-Coding RNA The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Jonathan M Loree
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Via E. Dal Pozzo, 06126, Perugia, Italy
| | - Kenneth V Honn
- Bioactive Lipids Research Program, Department of Pathology, Wayne State University, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
- Department of Pathology, Wayne State University, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
- Cancer Biology Division, Wayne State University School of Medicine, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
46
|
Thromboelastometry hypercoagulable profiles and portal vein thrombosis in cirrhotic patients with hepatocellular carcinoma. Dig Liver Dis 2017; 49:440-445. [PMID: 28109767 DOI: 10.1016/j.dld.2016.12.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/04/2016] [Accepted: 12/07/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cirrhotic patients with hepatocellular carcinoma (HCC) exhibit hypercoagulability. AIM We investigated whether thromboelastometry can detect hypercoagulability in these patients and the association with portal vein thrombosis (PVT). METHODS At baseline, cirrhotic patients with and without HCC underwent thromboelastometry. PVT onset was recorded over a 12-month follow-up period. RESULTS Seventy-six patients (41 with and 35 without HCC) were included. Vital tumor volume (VTV) was >5cm3 in 18 patients. Fibrinogen was higher in HCC patients with VTV>5cm3 as compared to those with VTV≤5cm3 and those without HCC. Mean platelet count was significantly increased in HCC patients compared with non-HCC. At baseline thromboelastometry, HCC patients showed shorter CTF and higher MCF than non-HCC. PVT incidence was 24,4% and 11.4% in patients with (10/41) and without (4/35) HCC, respectively. Among HCC, 50% of PVT occurred in Child A patients. In HCC, FIBTEM MCF>25mm was associated with a 5-fold increased PVT risk [RR: 4.8 (2-11.3); p=0.0001]. Cox multivariate analysis confirmed HCC and increased MCF (FIBTEM) to be independently associated with increased PVT risk. CONCLUSIONS Hypercoagulability in HCC which can be detected by thromboelastometry is associated with increased risk of PVT even in Child A patients. The clinical implication of these findings deserves further investigation.
Collapse
|
47
|
Thrombopoietin Secretion by Human Ovarian Cancer Cells. Int J Cell Biol 2017; 2017:1873834. [PMID: 28465688 PMCID: PMC5390644 DOI: 10.1155/2017/1873834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/23/2017] [Accepted: 02/14/2017] [Indexed: 11/18/2022] Open
Abstract
The thrombopoietin (TPO) gene expression in human ovary and cancer cells from patients with ovarian carcinomatosis, as well as several cancer cell lines including MDA-MB231 (breast cancer), K562 and HL60 (Leukemic cells), OVCAR-3NIH and SKOV-3 (ovarian cancer), was performed using RT PCR, real-time PCR, and gene sequencing. Human liver tissues are used as controls. The presence of TPO in the cells and its regulation by activated protein C were explored by flow cytometry. TPO content of cell extract as well as plasma of a patient with ovarian cancer was evaluated by ELISA. The functionality of TPO was performed in coculture on the basis of the viability of a TPO-dependent cell line (Ba/F3), MTT assay, and Annexin-V labeling. As in liver, ovarian tissues and all cancer cells lines except the MDA-MB231 express the three TPO-1 (full length TPO), TPO-2 (12 bp deletion), and TPO-3 (116 pb deletion) variants. Primary ovarian cancer cells as well as cancer cell lines produce TPO. The thrombopoietin production by OVCAR-3 increased when cells are stimulated by aPC. OVCAR-3 cell's supernatant can replace exogenous TPO and inhibited TPO-dependent cell line (Ba/F3) apoptosis. The thrombopoietin produced by tumor may have a direct effect on thrombocytosis/thrombosis occurrence in patients with ovarian cancer.
Collapse
|
48
|
Hyslop SR, Josefsson EC. Undercover Agents: Targeting Tumours with Modified Platelets. Trends Cancer 2017; 3:235-246. [PMID: 28718434 DOI: 10.1016/j.trecan.2017.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 02/03/2023]
Abstract
Platelets have long been recognised to colocalise with tumour cells throughout haematogenous metastasis. Interactions between these cells contribute to tumour cell survival and motility through the vasculature into other tissues. Now, the research focus is shifting towards developing means to exploit this relationship to provide accurate diagnostics and therapies. Alterations to platelet count, RNA profile, and platelet ultrastructure are associated with the presence of certain malignancies, and may be used for cancer detection. Additionally, nanoparticle-based drug delivery systems are enhanced through the use of platelet membranes to specifically target cancer cells and camouflage the foreign particles from the immune system. This review discusses the development of platelets into highly powerful tools for cancer diagnostics and therapies.
Collapse
Affiliation(s)
- Stephanie R Hyslop
- Cancer & Haematology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia; Department of Medical Biology, University of Melbourne 1G Royal Parade VIC 3052, Australia
| | - Emma C Josefsson
- Cancer & Haematology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia; Department of Medical Biology, University of Melbourne 1G Royal Parade VIC 3052, Australia.
| |
Collapse
|
49
|
Ashrafganjoei T, Mohamadianamiri M, Farzaneh F, Hosseini MS, Arab M. Investigating Preoperative Hematologic Markers for Prediction of Ovarian Cancer Surgical Outcome. Asian Pac J Cancer Prev 2017; 17:1445-8. [PMID: 27039787 DOI: 10.7314/apjcp.2016.17.3.1445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The current study aimed at assessing the association between neutrophil-lymphocyte ratio (NLR) and platelet lymphocyte ratio (PLR) for the prognosis of the surgical outcome of epithelial ovarian cancer (EOC). MATERIALS AND METHODS EOC patient medical records of surgical operations between January, 2005 and December, 2015 were reviewed and their data of clinicopathological complete blood counts (CBCs) and surgical outcomes were collected. To assess their effects on surgical outcomes, PLR and NLR optimal predictive values were determined and then compared with each other. RESULTS A statistically significant relation was found between surgical outcomes and NLR and PLR (p<0.001 and p<0.001), for which new cutoff points were gained (PLR: 192,3,293; NLR: 3). The sensitivity and specificity were 0.74 and 0.67, respectively for PLR and 0.74 and 0.58, for NLR. CONCLUSIONS NLR and PLR seem to be useful methods for the prediction of surgical outcomes in patients with EOCs. Increased NLR and PLR proved to be beneficial for poor surgical outcomes. Moreover, PLR increase showed further help in the predicting outcome of EOC suboptimal debulking.
Collapse
Affiliation(s)
- Tahereh Ashrafganjoei
- Gyneco-Oncology, Preventative Gynecology Research Center (PGRC). Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran E-mail :
| | | | | | | | | |
Collapse
|
50
|
Steele M, Voutsadakis IA. Pre-treatment platelet counts as a prognostic and predictive factor in stage II and III rectal adenocarcinoma. World J Gastrointest Oncol 2017; 9:42-49. [PMID: 28144399 PMCID: PMC5241527 DOI: 10.4251/wjgo.v9.i1.42] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/20/2016] [Accepted: 11/02/2016] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate if pre-treatment platelet counts could provide prognostic information in patients with rectal adenocarcinoma that received neo-adjuvant treatment.
METHODS Platelet number on diagnosis of stage II and III rectal cancer was evaluated in 51 patients receiving neo-adjuvant treatment and for whom there were complete follow-up data on progression and survival, as well as pathologic outcome at the time of surgery. Pathologic responses on the surgical specimen of patients with lower platelet counts (150-300 × 109/L) were compared with these of patients with higher platelet counts (> 300 × 109/L) by the χ2 test. Overall and progression free survival Kaplan-Meier curves of the two groups were constructed and compared with the Log-Rank test.
RESULTS A significant difference was present between the two groups in regards to pathologic response with patients with lower platelet counts being more likely to exhibit a good or complete response to neo-adjuvant treatment than patients with higher platelet counts (P = 0.015). Among other factors evaluated, there was also a significant difference between the carcinoembryonic antigen (CEA) at presentation of patients that exhibited a good or complete response and those that had no response or a minimal to moderate response. Patients with a good or complete response were more likely to present with a CEA of less than 5 μg/L (P = 0.00066). There was no significant difference in overall and progression free survival between the two platelet count groups (Log-Rank tests P = 0.42 and P = 0.35, respectively).
CONCLUSION In this retrospective analysis of stage II and III rectal cancer patients, platelet counts at the time of diagnosis had prognostic value for neo-adjuvant treatment pathologic response. Pre-treatment CEA also held prognostic value in regards to treatment effect.
Collapse
|