1
|
Emili M, Stagni F, Bonasoni MP, Guidi S, Bartesaghi R. Cellularity Defects Are Not Ubiquitous in the Brains of Fetuses With Down Syndrome. Dev Neurobiol 2024; 84:264-273. [PMID: 39344402 DOI: 10.1002/dneu.22953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Down syndrome (DS) is a genetic pathology characterized by various developmental defects. Unlike other clinical problems, intellectual disability is an invariant clinical trait of DS. Impairment of neurogenesis accompanied by brain hypotrophy is a typical neurodevelopmental phenotype of DS, suggesting that a reduction in the number of cells forming the brain may be a key determinant of intellectual disability. Previous evidence showed that fetuses with DS exhibit widespread hypocellularity in brain regions belonging to the temporal lobe memory systems, which may account for the typical explicit memory impairment that characterizes DS. In the current study, we have examined the basal ganglia, the insular cortex (INS), and the cingulate cortex (CCX) of fetuses with DS and age-matched controls (18-22 weeks of gestation), to establish whether cellularity defects involve regions that are not primarily involved in explicit memory. We found that fetuses with DS exhibit a notable hypocellularity in the putamen (-30%) and globus pallidus (-35%). In contrast, no cellularity differences were found in the INS and CCX, indicating that hypocellularity is not ubiquitous in the DS brain. The hypocellularity found in the basal ganglia, which are critically implicated in the control of movement, suggests that such alterations may contribute to the motor abnormalities of DS. The normal cytoarchitecture of the INS and CCX suggests that the alterations exhibited by people with DS in functions in which these regions are involved are not attributable to neuron paucity.
Collapse
Affiliation(s)
- Marco Emili
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | | | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Levman J, McCann B, Baumer N, Lam MY, Shiohama T, Cogger L, MacDonald A, Takahashi E. Structural Magnetic Resonance Imaging-Based Surface Morphometry Analysis of Pediatric Down Syndrome. BIOLOGY 2024; 13:575. [PMID: 39194513 DOI: 10.3390/biology13080575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Down syndrome (DS) is a genetic disorder characterized by intellectual disability whose etiology includes an additional partial or full copy of chromosome 21. Brain surface morphometry analyses can potentially assist in providing a better understanding of structural brain differences, and may help characterize DS-specific neurodevelopment. We performed a retrospective surface morphometry study of 73 magnetic resonance imaging (MRI) examinations of DS patients (aged 1 day to 22 years) and compared them to a large cohort of 993 brain MRI examinations of neurotypical participants, aged 1 day to 32 years. Surface curvature measurements, absolute surface area measurements, and surface areas as a percentage of total brain surface area (%TBSA) were extracted from each brain region in each examination. Results demonstrate broad reductions in surface area and abnormalities of surface curvature measurements across the brain in DS. After adjusting our regional surface area measurements as %TBSA, abnormally increased presentation in DS relative to neurotypical controls was observed in the left precentral, bilateral entorhinal, left parahippocampal, and bilateral perirhinal cortices, as well as Brodmann's area 44 (left), and the right temporal pole. Findings suggest the presence of developmental abnormalities of regional %TBSA in DS that can be characterized from clinical MRI examinations.
Collapse
Affiliation(s)
- Jacob Levman
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Boston, MA 02129, USA
- Nova Scotia Health Authority, Halifax, NS B3H 1V8, Canada
| | - Bernadette McCann
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Nicole Baumer
- Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Melanie Y Lam
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Liam Cogger
- Department of Education, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Allissa MacDonald
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Emi Takahashi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Boston, MA 02129, USA
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA 02215, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Hamadelseed O, Skutella T. Correlating MRI-based brain volumetry and cognitive assessment in people with Down syndrome. Brain Behav 2023; 13:e3186. [PMID: 37496380 PMCID: PMC10570489 DOI: 10.1002/brb3.3186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
INTRODUCTION Down syndrome (DS) is the most common genetic cause of intellectual disability. Children and adults with DS show deficits in language performance and explicit memory. Here, we used magnetic resonance imaging (MRI) on children and adults with DS to characterize changes in the volume of specific brain structures involved in memory and language and their relationship to features of cognitive-behavioral phenotypes. METHODS Thirteen children and adults with the DS phenotype and 12 age- and gender-matched healthy controls (age range 4-25) underwent an assessment by MRI and a psychological evaluation for language and cognitive abilities. RESULTS The cognitive profile of people with DS showed deficits in different cognition and language domains correlating with reduced volumes of specific regional and subregional brain structures, confirming previous related studies. Interestingly, in our study, people with DS also showed more significant parahippocampal gyrus volumes, in agreement with the results found in earlier reports. CONCLUSIONS The memory functions and language skills affected in studied individuals with DS correlate significantly with the reduced volume of specific brain regions, allowing us to understand DS's cognitive-behavioral phenotype. Our results provide an essential basis for early intervention and the design of rehabilitation management protocols.
Collapse
Affiliation(s)
- Osama Hamadelseed
- Department of Neuroanatomy, Institute of Anatomy and Cell BiologyUniversity of HeidelbergHeidelbergGermany
| | - Thomas Skutella
- Department of Neuroanatomy, Institute of Anatomy and Cell BiologyUniversity of HeidelbergHeidelbergGermany
| |
Collapse
|
4
|
Shaikh A, Li YQ, Lu J. Perspectives on pain in Down syndrome. Med Res Rev 2023; 43:1411-1437. [PMID: 36924439 DOI: 10.1002/med.21954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/08/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Down syndrome (DS) or trisomy 21 is a genetic condition often accompanied by chronic pain caused by congenital abnormalities and/or conditions, such as osteoarthritis, recurrent infections, and leukemia. Although DS patients are more susceptible to chronic pain as compared to the general population, the pain experience in these individuals may vary, attributed to the heterogenous structural and functional differences in the central nervous system, which might result in abnormal pain sensory information transduction, transmission, modulation, and perception. We tried to elaborate on some key questions and possible explanations in this review. Further clarification of the mechanisms underlying such abnormal conditions induced by the structural and functional differences is needed to help pain management in DS patients.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Yun-Qing Li
- Department of Anatomy, Histology, and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
5
|
Hamadelseed O, Chan MKS, Wong MBF, Skutella T. Distinct neuroanatomical and neuropsychological features of Down syndrome compared to related neurodevelopmental disorders: a systematic review. Front Neurosci 2023; 17:1225228. [PMID: 37600012 PMCID: PMC10436105 DOI: 10.3389/fnins.2023.1225228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Objectives We critically review research findings on the unique changes in brain structure and cognitive function characteristic of Down syndrome (DS) and summarize the similarities and differences with other neurodevelopmental disorders such as Williams syndrome, 22q11.2 deletion syndrome, and fragile X syndrome. Methods We conducted a meta-analysis and systematic literature review of 84 studies identified by searching PubMed, Google Scholar, and Web of Science from 1977 to October 2022. This review focuses on the following issues: (1) specific neuroanatomic and histopathological features of DS as revealed by autopsy and modern neuroimaging modalities, (2) language and memory deficits in DS, (3) the relationships between these neuroanatomical and neuropsychological features, and (4) neuroanatomic and neuropsychological differences between DS and related neurodevelopmental syndromes. Results Numerous post-mortem and morphometric neuroimaging investigations of individuals with DS have reported complex changes in regional brain volumes, most notably in the hippocampal formation, temporal lobe, frontal lobe, parietal lobe, and cerebellum. Moreover, neuropsychological assessments have revealed deficits in language development, emotional regulation, and memory that reflect these structural changes and are more severe than expected from general cognitive dysfunction. Individuals with DS also show relative preservation of multiple cognitive, linguistic, and social domains compared to normally developed controls and individuals with other neurodevelopmental disorders. However, all these neurodevelopment disorders exhibit substantial heterogeneity among individuals. Conclusion People with Down syndrome demonstrate unique neurodevelopmental abnormalities but cannot be regarded as a homogenous group. A comprehensive evaluation of individual intellectual skills is essential for all individuals with neurodevelopment disorders to develop personalized care programs.
Collapse
Affiliation(s)
- Osama Hamadelseed
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Mike K. S. Chan
- EW European Wellness Academy GmbH, Edenkoben, Germany
- Baden R&D Laboratories GmbH, Edenkoben, Germany
| | - Michelle B. F. Wong
- EW European Wellness Academy GmbH, Edenkoben, Germany
- Baden R&D Laboratories GmbH, Edenkoben, Germany
- Stellar Biomolecular Research GmbH, Edenkoben, Germany
| | - Thomas Skutella
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Fukami-Gartner A, Baburamani AA, Dimitrova R, Patkee PA, Ojinaga-Alfageme O, Bonthrone AF, Cromb D, Uus AU, Counsell SJ, Hajnal JV, O’Muircheartaigh J, Rutherford MA. Comprehensive volumetric phenotyping of the neonatal brain in Down syndrome. Cereb Cortex 2023; 33:8921-8941. [PMID: 37254801 PMCID: PMC10350827 DOI: 10.1093/cercor/bhad171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 06/01/2023] Open
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual disability with a wide range of neurodevelopmental outcomes. To date, there have been very few in vivo neuroimaging studies of the neonatal brain in DS. In this study we used a cross-sectional sample of 493 preterm- to term-born control neonates from the developing Human Connectome Project to perform normative modeling of regional brain tissue volumes from 32 to 46 weeks postmenstrual age, accounting for sex and age variables. Deviation from the normative mean was quantified in 25 neonates with DS with postnatally confirmed karyotypes from the Early Brain Imaging in DS study. Here, we provide the first comprehensive volumetric phenotyping of the neonatal brain in DS, which is characterized by significantly reduced whole brain, cerebral white matter, and cerebellar volumes; reduced relative frontal and occipital lobar volumes, in contrast with enlarged relative temporal and parietal lobar volumes; enlarged relative deep gray matter volume (particularly the lentiform nuclei); and enlargement of the lateral ventricles, amongst other features. In future, the ability to assess phenotypic severity at the neonatal stage may help guide early interventions and, ultimately, help improve neurodevelopmental outcomes in children with DS.
Collapse
Affiliation(s)
- Abi Fukami-Gartner
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, United Kingdom
| | - Ana A Baburamani
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Ralica Dimitrova
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, United Kingdom
| | - Prachi A Patkee
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Olatz Ojinaga-Alfageme
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| | - Alexandra F Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Alena U Uus
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, United Kingdom
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, United Kingdom
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, United Kingdom
| |
Collapse
|
7
|
Utrobičić DK, Karlica H, Jerončić A, Borjan I, Mudnić I. Is the prolongation latency of visual evoked potentials a pathological sign in children with Down’s syndrome without ocular abnormalities? Case–control study of children with Down’s syndrome. BMJ Open Ophthalmol 2023. [DOI: 10.1136/bmjophth-2022-001074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
ObjectiveTo evaluate retino-cortical function in children with Down’s syndrome (DS) and no evident ocular abnormalities beyond mild refractive error, by recording visual evoked potentials (VEP) in response to pattern-reversal stimuli and comparing to those of age-matched healthy controls.Methods and analysisAll the children with DS registered at Split-Dalmatia County who met inclusion criteria of no ocular abnormalities and with refraction error between −0.5 and +2.0 D, and their age-matched healthy controls were included in the study (n=36 children, N=72 eyes, for both groups, respectively, with the same age of 9±2 years). Transient VEP was recorded and the waves with a positive peak as a response to a pattern-reversal stimulus, were analysed. The peak P100 latency, defined as the time from the stimulus onset to the main positive peak, and peak to peak amplitudes were measured.ResultsWhile P100 wave amplitudes were comparable between two groups (p=0.804), P100 latencies were from 4.3 to 28.5 ms longer in children with DS (p<0.001). Interocular latency difference between a VEP dominant and an inferior eye was pronounced in healthy (1.2 ms (0.2–4.0), but was almost diminished in children with DS (0.3 ms (0.1–0.5), p<0.001).ConclusionOur study has demonstrated that VEP response is divergent in children with DS compared with their age-matched healthy controls, indicating possible structural or functional abnormalities of the visual cortex. As VEP results are helpful in the diagnosis and treatment planning of vision-related disorders, we should reconsider the use of common VEP diagnostic criteria in subpopulation of children with DS.
Collapse
|
8
|
Campbell NB, Patel Y, Moore TL, Medalla M, Zeldich E. Extracellular Vesicle Treatment Alleviates Neurodevelopmental and Neurodegenerative Pathology in Cortical Spheroid Model of Down Syndrome. Int J Mol Sci 2023; 24:3477. [PMID: 36834891 PMCID: PMC9960302 DOI: 10.3390/ijms24043477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Down syndrome (DS), or trisomy 21, is manifested in a variety of anatomical and cellular abnormalities resulting in intellectual deficits and early onset of Alzheimer's disease (AD) with no effective treatments available to alleviate the pathologies associated with the disorder. The therapeutic potential of extracellular vesicles (EVs) has emerged recently in relation to various neurological conditions. We have previously demonstrated the therapeutic efficacy of mesenchymal stromal cell-derived EVs (MSC-EVs) in cellular and functional recovery in a rhesus monkey model of cortical injury. In the current study, we evaluated the therapeutic effect of MSC-EVs in a cortical spheroid (CS) model of DS generated from patient-derived induced pluripotent stem cells (iPSCs). Compared to euploid controls, trisomic CS display smaller size, deficient neurogenesis, and AD-related pathological features, such as enhanced cell death and depositions of amyloid beta (Aβ) and hyperphosphorylated tau (p-tau). EV-treated trisomic CS demonstrated preserved size, partial rescue in the production of neurons, significantly decreased levels of Aβ and p-tau, and a reduction in the extent of cell death as compared to the untreated trisomic CS. Together, these results show the efficacy of EVs in mitigating DS and AD-related cellular phenotypes and pathological depositions in human CS.
Collapse
Affiliation(s)
- Natalie Baker Campbell
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedesian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Yesha Patel
- Commonwealth Honors College, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Tara L. Moore
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedesian School of Medicine, Boston University, Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02115, USA
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedesian School of Medicine, Boston University, Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02115, USA
| | - Ella Zeldich
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedesian School of Medicine, Boston University, Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02115, USA
| |
Collapse
|
9
|
McCann B, Levman J, Baumer N, Lam MY, Shiohama T, Cogger L, MacDonald A, Ijner P, Takahashi E. Structural magnetic resonance imaging demonstrates volumetric brain abnormalities in down syndrome: Newborns to young adults. Neuroimage Clin 2021; 32:102815. [PMID: 34520978 PMCID: PMC8441087 DOI: 10.1016/j.nicl.2021.102815] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/29/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022]
Abstract
Down syndrome (DS) is a genetic disorder caused by the presence of an extra full or partial copy of chromosome 21 and characterized by intellectual disability. We hypothesize that performing a retrospective analysis of 73 magnetic resonance imaging (MRI) examinations of participants with DS (aged 0 to 22 years) and comparing them to a large cohort of 993 brain MRI examinations of neurotypical participants (aged 0 to 32 years), will assist in better understanding what brain differences may explain phenotypic developmental features in DS, as well as to provide valuable confirmation of prospective literature findings clinically. Measurements for both absolute volumes and volumes corrected as a percentage of estimated total intracranial volume (%ETIV) were extracted from each examination. Our results presented novel findings such as volume increases (%ETIV) in the perirhinal cortex, entorhinal cortex, choroid plexus, and Brodmann's areas (BA) 3a, 3b, and 44, as well as volume decreases (%ETIV) in the white matter of the cuneus, the paracentral lobule, the postcentral gyrus, and the supramarginal gyrus. We also confirmed volumetric brain abnormalities previously discussed in the literature. Findings suggest the presence of volumetric brain abnormalities in DS that can be detected clinically with MRI.
Collapse
Affiliation(s)
- Bernadette McCann
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Jacob Levman
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada.
| | - Nicole Baumer
- Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Melanie Y Lam
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Liam Cogger
- Department of Education, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Allissa MacDonald
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Prahar Ijner
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, 401 Park Dr., Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129, USA
| |
Collapse
|
10
|
Miguel JC, Perez SE, Malek-Ahmadi M, Mufson EJ. Cerebellar Calcium-Binding Protein and Neurotrophin Receptor Defects in Down Syndrome and Alzheimer's Disease. Front Aging Neurosci 2021; 13:645334. [PMID: 33776745 PMCID: PMC7994928 DOI: 10.3389/fnagi.2021.645334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cerebellar hypoplasia is a major characteristic of the Down syndrome (DS) brain. However, the consequences of trisomy upon cerebellar Purkinje cells (PC) and interneurons in DS are unclear. The present study performed a quantitative and qualitative analysis of cerebellar neurons immunostained with antibodies against calbindin D-28k (Calb), parvalbumin (Parv), and calretinin (Calr), phosphorylated and non-phosphorylated intermediate neurofilaments (SMI-34 and SMI-32), and high (TrkA) and low (p75NTR) affinity nerve growth factor (NGF) receptors as well as tau and amyloid in DS (n = 12), Alzheimer's disease (AD) (n = 10), and healthy non-dementia control (HC) (n = 8) cases. Our findings revealed higher Aβ42 plaque load in DS compared to AD and HC but no differences in APP/Aβ plaque load between HC, AD, and DS. The cerebellar cortex neither displayed Aβ40 containing plaques nor pathologic phosphorylated tau in any of the cases examined. The number and optical density (OD) measurements of Calb immunoreactive (-ir) PC soma and dendrites were similar between groups, while the number of PCs positive for Parv and SMI-32 were significantly reduced in AD and DS compared to HC. By contrast, the number of SMI-34-ir PC dystrophic axonal swellings, termed torpedoes, was significantly greater in AD compared to DS. No differences in SMI-32- and Parv-ir PC OD measurements were observed between groups. Conversely, total number of Parv- (stellate/basket) and Calr (Lugaro, brush, and Golgi)-positive interneurons were significantly reduced in DS compared to AD and HC. A strong negative correlation was found between counts for Parv-ir interneurons, Calr-ir Golgi and brush cells, and Aβ42 plaque load. Number of TrkA and p75NTR positive PCs were reduced in AD compared to HC. These findings suggest that disturbances in calcium binding proteins play a critical role in cerebellar neuronal dysfunction in adults with DS.
Collapse
Affiliation(s)
- Jennifer C. Miguel
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Sylvia E. Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Michael Malek-Ahmadi
- Department of Biomedical Informatics, Banner Alzheimer's Institute, Phoenix, AZ, United States
| | - Elliott J. Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
11
|
Niego A, Benítez-Burraco A. Autism and Williams syndrome: Dissimilar socio-cognitive profiles with similar patterns of abnormal gene expression in the blood. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2020; 25:464-489. [PMID: 33143449 DOI: 10.1177/1362361320965074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
LAY ABSTRACT Autism spectrum disorders and Williams syndrome are complex cognitive conditions exhibiting quite opposite features in the social domain: whereas people with autism spectrum disorders are mostly hyposocial, subjects with Williams syndrome are usually reported as hypersocial. At the same time, autism spectrum disorders and Williams syndrome share some common underlying behavioral and cognitive deficits. It is not clear, however, which genes account for the attested differences (and similarities) in the socio-cognitive domain. In this article, we adopted a comparative molecular approach and looked for genes that might be differentially (or similarly) regulated in the blood of people with these conditions. We found a significant overlap between genes dysregulated in the blood of patients compared to neurotypical controls, with most of them being upregulated or, in some cases, downregulated. Still, genes with similar expression trends can exhibit quantitative differences between conditions, with most of them being more dysregulated in Williams syndrome than in autism spectrum disorders. Differentially expressed genes are involved in aspects of brain development and function (particularly dendritogenesis) and are expressed in brain areas (particularly the cerebellum, the thalamus, and the striatum) of relevance for the autism spectrum disorder and the Williams syndrome etiopathogenesis. Overall, these genes emerge as promising candidates for the similarities and differences between the autism spectrum disorder and the Williams syndrome socio-cognitive profiles.
Collapse
|
12
|
Genes dysregulated in the blood of people with Williams syndrome are enriched in protein-coding genes positively selected in humans. Eur J Med Genet 2020; 63:103828. [DOI: 10.1016/j.ejmg.2019.103828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/09/2019] [Accepted: 12/21/2019] [Indexed: 12/29/2022]
|
13
|
Lukowski AF, Slonecker EM, Milojevich HM. Sleep problems and recall memory in children with Down syndrome and typically developing controls. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 96:103512. [PMID: 31743853 PMCID: PMC7316139 DOI: 10.1016/j.ridd.2019.103512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Research conducted with typically developing (TD) infants and children generally indicates that better habitual sleep and sleep after learning are related to enhanced memory. Less is known, however, about associations between sleep and recall memory in children with Down syndrome (DS). AIMS The present study was conducted to determine whether parent-reported sleep problems were differentially associated with encoding, 1-month delayed recall memory, and forgetting over time in children with DS and those who were TD. METHODS AND PROCEDURES Ten children with DS (mean age = 33 months, 5 days) and 10 TD children (mean age = 21 months, 6 days) participated in a two-session study. At each session, recall memory was assessed using an elicited imitation paradigm. Immediate imitation was permitted at the first session as an index of encoding, and delayed recall was assessed 1 month later. In addition, parents provided demographic information and reported on child sleep problems. OUTCOMES AND RESULTS Although parents did not report more frequent sleep problems for children with DS relative to TD children, regression-based moderation analyses revealed that more frequent sleep problems were associated with increased forgetting of individual target actions and their order by children with DS. Evidence of moderation was not found when examining encoding or delayed recall. CONCLUSIONS AND IMPLICATIONS Although group differences were not found when considering parent-reported sleep problems, more frequent sleep problems were positively associated with increased forgetting by children with DS relative to those who were TD. Although future experimental work is needed to determine causality, these results suggest that improved sleep in children with DS might reduce forgetting, ultimately improving long-term recall memory.
Collapse
|
14
|
Niego A, Benítez-Burraco A. Williams Syndrome, Human Self-Domestication, and Language Evolution. Front Psychol 2019; 10:521. [PMID: 30936846 PMCID: PMC6431629 DOI: 10.3389/fpsyg.2019.00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/22/2019] [Indexed: 01/06/2023] Open
Abstract
Language evolution resulted from changes in our biology, behavior, and culture. One source of these changes might be human self-domestication. Williams syndrome (WS) is a clinical condition with a clearly defined genetic basis which results in a distinctive behavioral and cognitive profile, including enhanced sociability. In this paper we show evidence that the WS phenotype can be satisfactorily construed as a hyper-domesticated human phenotype, plausibly resulting from the effect of the WS hemideletion on selected candidates for domestication and neural crest (NC) function. Specifically, we show that genes involved in animal domestication and NC development and function are significantly dysregulated in the blood of subjects with WS. We also discuss the consequences of this link between domestication and WS for our current understanding of language evolution.
Collapse
Affiliation(s)
- Amy Niego
- Ph.D. Program, Faculty of Humanities, University of Huelva, Huelva, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature, Faculty of Philology, University of Seville, Seville, Spain
| |
Collapse
|
15
|
Brain Development Measured With MRI in Children With Down Syndrome Correlates With Blood Biochemical Biomarkers. Pediatr Neurol 2019; 92:43-47. [PMID: 30612744 DOI: 10.1016/j.pediatrneurol.2018.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/17/2018] [Accepted: 10/14/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Down syndrome (DS) is a neurodegenerative disease with unknown mechanisms. β-Amyloid peptide (Aβ) and tau protein (Tau) are known to play a role, while vitamin A (VA) has an effect on normal neurological function. In a case-control study, we quantitatively evaluated whole brain and hippocampal volumes of DS children and analyzed the correlation of hippocampal volumes with blood levels of Aβ, Tau and VA. METHODS All subjects underwent magnetic resonance imaging (MRI) of the brain. The whole brain and hippocampal volumes were quantitatively analyzed using voxel-based morphometry (VBM) and stereology respectively. The blood levels of Aβ, Tau, and VA were detected by enzyme-linked immunosorbent assay and high-performance liquid chromatography, respectively. RESULTS Thirty DS children and twenty healthy controls were recruited. Whole brain and hippocampal volumes were significantly smaller in individuals with DS than in healthy controls. In both groups, whole brain and hippocampal volumes increased in accordance with age. The results of correlation analysis suggested that Aβ42/Aβ40 and VA are associated with hippocampal volume in DS patients. CONCLUSION DS children exhibited neurodevelopmental defects, even at an early age. Aβ42/Aβ40 and VA may affect hippocampal volume in DS patients.
Collapse
|
16
|
Lukowski AF, Milojevich HM, Eales L. Cognitive Functioning in Children with Down Syndrome: Current Knowledge and Future Directions. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2019; 56:257-289. [PMID: 30846049 DOI: 10.1016/bs.acdb.2019.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infants and children with Down syndrome (DS) can look forward toward bright futures, as individuals with DS are living healthier, more productive lives than ever due to medical advances, opportunities for early and continued intervention, and inclusive education. Despite these advances, infants and children with DS experience challenges in specific domains of cognitive functioning relative to their typically developing (TD) peers. Over the long term, individuals with DS are also more likely to develop Alzheimer's disease relative to the general population. Understanding cognitive functioning early in life may be important in charting cognitive decline over time. This chapter synthesizes the literature on cognitive functioning in infants and children with DS specific to general intelligence or IQ, language development, recall memory, and executive functioning, with additional focus on critical issues and future directions. These research findings provide important information for understanding cognitive competencies and intervention opportunities for children with DS and also serves to provide a foundation from which to plan longitudinal studies examining stability and change in cognitive functioning over time.
Collapse
Affiliation(s)
- Angela F Lukowski
- Department of Psychological Science, UC Irvine, Irvine, CA, United States.
| | - Helen M Milojevich
- Center for Developmental Science, UNC Chapel Hill, Chapel Hill, NC, United States
| | - Lauren Eales
- Institute of Child Development, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
17
|
Barisnikov K, Thomasson M, Stutzmann J, Lejeune F. Relation between processing facial identity and emotional expression in typically developing school-age children and those with Down syndrome. APPLIED NEUROPSYCHOLOGY-CHILD 2019; 9:179-192. [PMID: 30646753 DOI: 10.1080/21622965.2018.1552867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The main purposes of this research were to examine the relation between the processing of face identity and emotion expressions and then discern the significance of emotional expressions using Bruce et al. tasks. Two studies were conducted. Study 1 examined 225 typically developing (TD) children age 4 to 12. Results suggested that early recognition of complete faces and interpretation of emotional expression might depend on local processing abilities, while the recognition of masked faces and emotion expression matching seemed to share configural processing. Study 2 compared 22 children with Down syndrome (DS) to two TD groups matched on mental age (MA group) and chronological age (CA group). Results showed that children with DS processed the identity of complete faces (local processing) similarly to the MA and CA groups. In contrast, their performances for masked faces (configural processing) indicated a developmental delay as they were only comparable to the MA group. Children with DS were also able to identify the emotion expressions according to labels as well as the two control groups, while they had more difficulties on the matching condition. Furthermore, specific difficulties in processing the surprise expression were observed, rather than general difficulties in encoding emotion expressions. Finally, their performances on emotion matching tasks seemed to be supported by local information processing, which might explain their lower scores compared to CA controls that mainly used configural information. These results could aid in the development of targeted interventions for DS to improve their social skills.
Collapse
Affiliation(s)
- Koviljka Barisnikov
- Child Clinical Neuropsychology Unit, FPSE, University of Geneva, Geneva, Switzerland
| | - Marine Thomasson
- Child Clinical Neuropsychology Unit, FPSE, University of Geneva, Geneva, Switzerland
| | - Jennyfer Stutzmann
- Child Clinical Neuropsychology Unit, FPSE, University of Geneva, Geneva, Switzerland
| | - Fleur Lejeune
- Child Clinical Neuropsychology Unit, FPSE, University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Kurabayashi N, Nguyen MD, Sanada K. Triple play of DYRK1A kinase in cortical progenitor cells of Trisomy 21. Neurosci Res 2019; 138:19-25. [PMID: 30227164 DOI: 10.1016/j.neures.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/11/2018] [Accepted: 08/11/2018] [Indexed: 12/29/2022]
Abstract
Down syndrome (DS) also known as Trisomy 21 is a genetic disorder that occurs in ∼1 in 800 live births. The disorder is caused by the triplication of all or part of human chromosome 21 and therefore, is thought to arise from the increased dosage of genes found within chromosome 21. The manifestations of the disease include among others physical growth delays and intellectual disability. A prominent anatomical feature of DS is the microcephaly that results from altered brain development. Recent studies using mouse models of DS have shed new light on DYRK1A (dual-specificity tyrosine-phosphorylation-regulated kinase 1A), a gene located on human chromosome 21 that plays a critical role in neocortical development. The present review summarizes effects of the increased dosage of DYRK1A on the proliferative, neurogenic and astrogliogenic potentials of cortical neural progenitor cells, and relates these findings to the clinical manifestations of the disease.
Collapse
Affiliation(s)
- Nobuhiro Kurabayashi
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, University of Calgary, Departments of Clinical Neurosciences, Cell Biology & Anatomy, Biochemistry & Molecular Biology, 3330 Hospital Drive NW, HMR 151, Calgary, Alberta T2N4N1, Canada
| | - Kamon Sanada
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
19
|
On the Design of Broad-Based Neuropsychological Test Batteries to Assess the Cognitive Abilities of Individuals with Down Syndrome in the Context of Clinical Trials. Brain Sci 2018; 8:brainsci8120205. [PMID: 30486228 PMCID: PMC6315396 DOI: 10.3390/brainsci8120205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 12/29/2022] Open
Abstract
Down syndrome (DS) is the most common genetically-defined cause of intellectual disability. Neurodevelopmental deficits displayed by individuals with DS are generally global, however, disproportionate deficits in cognitive processes that depend heavily on the hippocampus and prefrontal cortex are also well documented. Additionally, DS is associated with relative strengths in visual processing and visuospatial short-term memory, and weaknesses in the verbal domain. Although reports of pharmacological rescuing of learning and memory deficits in mouse models of DS abound in the literature, proving the principle that cognitive ability of persons with DS can be boosted through pharmacological means is still an elusive goal. The design of customized batteries of neuropsychological efficacy outcome measures is essential for the successful implementation of clinical trials of potential cognitive enhancing strategies. Here, we review the neurocognitive phenotype of individuals with DS and major broad-based test batteries designed to quantify specific cognitive domains in these individuals, including the one used in a pilot trial of the drug memantine. The main goal is to illustrate the essential considerations in planning trials to enhance cognitive functions in individuals with DS, which should also have implications for the design of similar studies in individuals with other forms of intellectual disability.
Collapse
|
20
|
Perry JC, Pakkenberg B, Vann SD. Striking reduction in neurons and glial cells in anterior thalamic nuclei of older patients with Down syndrome. Neurobiol Aging 2018; 75:54-61. [PMID: 30550978 PMCID: PMC6357872 DOI: 10.1016/j.neurobiolaging.2018.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 02/09/2023]
Abstract
The anterior thalamic nuclei are important for spatial and episodic memory, however, surprisingly little is known about the status of these nuclei in neurological conditions that present with memory impairments, such as Down syndrome. We quantified neurons and glial cells in the anterior thalamic nuclei of four older patients with Down syndrome. There was a striking reduction in the volume of the anterior thalamic nuclei and this appeared to reflect the loss of approximately 70% of neurons. The number of glial cells was also reduced but to a lesser degree than neurons. The anterior thalamic nuclei appear to be particularly sensitive to effects of aging in Down syndrome and the pathology in this region likely contributes to the memory impairments observed. These findings reaffirm the importance of examining the status of the anterior thalamic nuclei in conditions where memory impairments have been principally assigned to pathology in the medial temporal lobe. Volume of anterior thalamus is markedly reduced in older patients with Down syndrome. Number of neurons in anterior thalamus are substantially reduced. Number of glial cells in anterior thalamus are substantially reduced.
Collapse
Affiliation(s)
- James C Perry
- School of Psychology, Cardiff University, Cardiff, UK
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Copenhagen University Hospital, Denmark and Institute of Clinical Medicine, Faculty of Health, University of Copenhagen, Bispebjerg, Copenhagen, Denmark
| | | |
Collapse
|
21
|
Abstract
OBJECTIVES As surprisingly little is known about the developing brain studied in vivo in youth with Down syndrome (DS), the current review summarizes the small DS pediatric structural neuroimaging literature and begins to contextualize existing research within a developmental framework. METHODS A systematic review of the literature was completed, effect sizes from published studies were reviewed, and results are presented with respect to the DS cognitive behavioral phenotype and typical brain development. RESULTS The majority of DS structural neuroimaging studies describe gross differences in brain morphometry and do not use advanced neuroimaging methods to provide nuanced descriptions of the brain. There is evidence for smaller total brain volume (TBV), total gray matter (GM) and white matter, cortical lobar, hippocampal, and cerebellar volumes. When reductions in TBV are accounted for, specific reductions are noted in subregions of the frontal lobe, temporal lobe, cerebellum, and hippocampus. A review of cortical lobar effect sizes reveals mostly large effect sizes from early childhood through adolescence. However, deviance is smaller in adolescence. Despite these smaller effects, frontal GM continues to be largely deviant in adolescence. An examination of age-frontal GM relations using effect sizes from published studies and data from Lee et al. (2016) reveals that while there is a strong inverse relationship between age and frontal GM volume in controls across childhood and adolescence, this is not observed in DS. CONCLUSIONS Further developmentally focused research, ideally using longitudinal neuroimaging, is needed to elucidate the nature of the DS neuroanatomic phenotype during childhood and adolescence. (JINS, 2018, 24, 966-976).
Collapse
|
22
|
Aziz NM, Guedj F, Pennings JLA, Olmos-Serrano JL, Siegel A, Haydar TF, Bianchi DW. Lifespan analysis of brain development, gene expression and behavioral phenotypes in the Ts1Cje, Ts65Dn and Dp(16)1/Yey mouse models of Down syndrome. Dis Model Mech 2018; 11:dmm031013. [PMID: 29716957 PMCID: PMC6031353 DOI: 10.1242/dmm.031013] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
Down syndrome (DS) results from triplication of human chromosome 21. Neuropathological hallmarks of DS include atypical central nervous system development that manifests prenatally and extends throughout life. As a result, individuals with DS exhibit cognitive and motor deficits, and have delays in achieving developmental milestones. To determine whether different mouse models of DS recapitulate the human prenatal and postnatal phenotypes, here, we directly compared brain histogenesis, gene expression and behavior over the lifespan of three cytogenetically distinct mouse models of DS: Ts1Cje, Ts65Dn and Dp(16)1/Yey. Histological data indicated that Ts65Dn mice were the most consistently affected with respect to somatic growth, neurogenesis and brain morphogenesis. Embryonic and adult gene expression results showed that Ts1Cje and Ts65Dn brains had considerably more differentially expressed (DEX) genes compared with Dp(16)1/Yey mice, despite the larger number of triplicated genes in the latter model. In addition, DEX genes showed little overlap in identity and chromosomal distribution in the three models, leading to dissimilarities in affected functional pathways. Perinatal and adult behavioral testing also highlighted differences among the models in their abilities to achieve various developmental milestones and perform hippocampal- and motor-based tasks. Interestingly, Dp(16)1/Yey mice showed no abnormalities in prenatal brain phenotypes, yet they manifested behavioral deficits starting at postnatal day 15 that continued through adulthood. In contrast, Ts1Cje mice showed mildly abnormal embryonic brain phenotypes, but only select behavioral deficits as neonates and adults. Altogether, our data showed widespread and unexpected fundamental differences in behavioral, gene expression and brain development phenotypes between these three mouse models. Our findings illustrate unique limitations of each model when studying aspects of brain development and function in DS. This work helps to inform model selection in future studies investigating how observed neurodevelopmental abnormalities arise, how they contribute to cognitive impairment, and when testing therapeutic molecules to ameliorate the intellectual disability associated with DS.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nadine M Aziz
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Faycal Guedj
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeroen L A Pennings
- Center for Health Protection, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - Jose Luis Olmos-Serrano
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ashley Siegel
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tarik F Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Diana W Bianchi
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Fan CC, Schork AJ, Brown TT, Spencer BE, Akshoomoff N, Chen CH, Kuperman JM, Hagler DJ, Steen VM, Le Hellard S, Håberg AK, Espeseth T, Andreassen OA, Dale AM, Jernigan TL, Halgren E. Williams Syndrome neuroanatomical score associates with GTF2IRD1 in large-scale magnetic resonance imaging cohorts: a proof of concept for multivariate endophenotypes. Transl Psychiatry 2018; 8:114. [PMID: 29884845 PMCID: PMC5993783 DOI: 10.1038/s41398-018-0166-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/11/2018] [Accepted: 04/22/2018] [Indexed: 12/15/2022] Open
Abstract
Despite great interest in using magnetic resonance imaging (MRI) for studying the effects of genes on brain structure in humans, current approaches have focused almost entirely on predefined regions of interest and had limited success. Here, we used multivariate methods to define a single neuroanatomical score of how William's Syndrome (WS) brains deviate structurally from controls. The score is trained and validated on measures of T1 structural brain imaging in two WS cohorts (training, n = 38; validating, n = 60). We then associated this score with single nucleotide polymorphisms (SNPs) in the WS hemi-deleted region in five cohorts of neurologically and psychiatrically typical individuals (healthy European descendants, n = 1863). Among 110 SNPs within the 7q11.23 WS chromosomal region, we found one associated locus (p = 5e-5) located at GTF2IRD1, which has been implicated in animal models of WS. Furthermore, the genetic signals of neuroanatomical scores are highly enriched locally in the 7q11.23 compared with summary statistics based on regions of interest, such as hippocampal volumes (n = 12,596), and also globally (SNP-heritability = 0.82, se = 0.25, p = 5e-4). The role of genetic variability in GTF2IRD1 during neurodevelopment extends to healthy subjects. Our approach of learning MRI-derived phenotypes from clinical populations with well-established brain abnormalities characterized by known genetic lesions may be a powerful alternative to traditional region of interest-based studies for identifying genetic variants regulating typical brain development.
Collapse
Affiliation(s)
- Chun Chieh Fan
- Department of Cognitive Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, 92093, USA
| | - Andrew J Schork
- Institute for Biological Psychiatry, Mental Health Center Sct. Hans, Capital Region of Denmark, Roskilde, Denmark
| | - Timothy T Brown
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, 92093, USA
- Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92037, USA
- Center for Human Development, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Barbara E Spencer
- Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92037, USA
| | - Natacha Akshoomoff
- Center for Human Development, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Chi-Hua Chen
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92037, USA
| | - Joshua M Kuperman
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, 92093, USA
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92037, USA
| | - Vidar M Steen
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. E. Martens Research Group of Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Stephanie Le Hellard
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. E. Martens Research Group of Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Asta Kristine Håberg
- Department of Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Radiology, St. Olav University Hospital, Trondheim, Norway
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders M Dale
- Department of Cognitive Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, 92093, USA
- Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92037, USA
- Department of Radiology, University of California San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92037, USA
| | - Terry L Jernigan
- Department of Cognitive Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Center for Human Development, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92037, USA
- Department of Psychiatry, University of California San Diego, La Jolla, School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92037, USA
| | - Eric Halgren
- Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92037, USA.
- Center for Human Brain Activity Mapping, University of California San Diego, School of Medicine, 3510 Dunhill Street, San Diego, CA, 92121, USA.
| |
Collapse
|
24
|
de Knegt NC, Lobbezoo F, Schuengel C, Evenhuis HM, Scherder EJA. Self-Reported Presence and Experience of Pain in Adults with Down Syndrome. PAIN MEDICINE 2018; 18:1247-1263. [PMID: 27694149 DOI: 10.1093/pm/pnw226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective The aim was to examine whether the presence of pain (based on physical conditions and participants' report) and self-reported pain experience in adults with Down syndrome (DS) differ from general population controls. Design Cross-sectional study of 224 adults with DS (mean age = 38.1 years, mild-severe intellectual disabilities) and 142 age-matched controls (median age = 40.5 years, mean estimated IQ = 105.7) in the Netherlands. Methods File-based medical information was evaluated. Self-reported presence and experience of pain were assessed in rest and after movement during a test session (affect with facial affective scale (FAS: 0.04-0.97), intensity assessed with numeric rating scale (NRS: 0-10). Results Compared with controls, more DS participants had physical conditions that may cause pain and/or discomfort ( p = .004, 50% vs 35%), but fewer DS participants reported pain during the test session ( p = .003, 58% vs 73%). Of the participants who indicated pain and comprehended self-reporting scales ( n = 198 FAS, n = 161 NRS), the DS group reported a higher pain affect and intensity than the controls ( p < .001, FAS: 0.75-0.85 vs 0.50-0.59, NRS: 6.00-7.94 vs 2.00-3.73). Conclusions Not all adults with DS and painful/discomforting physical conditions reported pain. Those who did indicated a higher pain experience than adults from the general population. Research into spontaneous self-report of pain, repeated pain assessment, and acute pain is needed in people with DS for more insight into pain experience and mismatches between self-report and medical information.
Collapse
Affiliation(s)
- Nanda C de Knegt
- Department of Clinical Neuropsychology, VU University, Amsterdam, the Netherlands
| | - Frank Lobbezoo
- Department of Oral Kinesiology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, the Netherlands
| | - Carlo Schuengel
- Department of Clinical Child and Family Studies and EMGO+ Institute for Health and Care Research
| | - Heleen M Evenhuis
- Department of General Practice, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Erik J A Scherder
- Department of Clinical Neuropsychology, VU University, Amsterdam, the Netherlands
| |
Collapse
|
25
|
Foti F, Menghini D, Alfieri P, Costanzo F, Mandolesi L, Petrosini L, Vicari S. Learning by observation and learning by doing in Down and Williams syndromes. Dev Sci 2017; 21:e12642. [PMID: 29280247 DOI: 10.1111/desc.12642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/19/2017] [Indexed: 12/15/2022]
Abstract
New skills may be learned by active experience (experiential learning or learning by doing) or by observation of others' experience (learning by observation). In general, learning by observation reduces the time and the attempts needed to learn complex actions and behaviors. The present research aimed to compare learning by observation and learning by doing in two clinical populations with different etiology of intellectual disability (ID), as individuals with Down syndrome (DS) and individuals with Williams syndrome (WS), with the hypothesis that specific profiles of learning may be found in each syndrome. To this end, we used a mixture of new and existing data to compare the performances of 24 individuals with DS, 24 individuals with WS and 24 typically developing children on computerized tasks of learning by observation or learning by doing. The main result was that the two groups with ID exhibited distinct patterns of learning by observation. Thus, individuals with DS were impaired in reproducing the previously observed visuo-motor sequence, while they were as efficient as TD children in the experiential learning task. On the other hand, individuals with WS benefited from the observational training while they were severely impaired in detecting the visuo-motor sequence in the experiential learning task (when presented first). The present findings reinforce the syndrome-specific hypothesis and the view of ID as a variety of conditions in which some cognitive functions are more disrupted than others because of the differences in genetic profile and brain morphology and functionality. These findings have important implications for clinicians, who should take into account the genetic etiology of ID in developing learning programs for treatment and education.
Collapse
Affiliation(s)
- Francesca Foti
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.,Department of Psychology, "Sapienza" University of Rome, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Deny Menghini
- Child Neuropsychiatry Unit, Neuroscience Department, Children's Hospital Bambino Gesù, Rome, Italy
| | - Paolo Alfieri
- Child Neuropsychiatry Unit, Neuroscience Department, Children's Hospital Bambino Gesù, Rome, Italy
| | - Floriana Costanzo
- Child Neuropsychiatry Unit, Neuroscience Department, Children's Hospital Bambino Gesù, Rome, Italy
| | - Laura Mandolesi
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Motor Science and Wellness, University Parthenope, Naples, Italy
| | - Laura Petrosini
- Department of Psychology, "Sapienza" University of Rome, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Stefano Vicari
- Child Neuropsychiatry Unit, Neuroscience Department, Children's Hospital Bambino Gesù, Rome, Italy
| |
Collapse
|
26
|
Benromano T, Pick CG, Granovsky Y, Defrin R. Increased Evoked Potentials and Behavioral Indices in Response to Pain Among Individuals with Intellectual Disability. PAIN MEDICINE 2017; 18:1715-1730. [DOI: 10.1093/pm/pnw349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Gunbey HP, Bilgici MC, Aslan K, Has AC, Ogur MG, Alhan A, Incesu L. Structural brain alterations of Down's syndrome in early childhood evaluation by DTI and volumetric analyses. Eur Radiol 2016; 27:3013-3021. [PMID: 27798752 DOI: 10.1007/s00330-016-4626-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/26/2016] [Accepted: 09/29/2016] [Indexed: 01/31/2023]
Abstract
OBJECTIVES To provide an initial assessment of white matter (WM) integrity with diffusion tensor imaging (DTI) and the accompanying volumetric changes in WM and grey matter (GM) through volumetric analyses of young children with Down's syndrome (DS). METHODS Ten children with DS and eight healthy control subjects were included in the study. Tract-based spatial statistics (TBSS) were used in the DTI study for whole-brain voxelwise analysis of fractional anisotropy (FA) and mean diffusivity (MD) of WM. Volumetric analyses were performed with an automated segmentation method to obtain regional measurements of cortical volumes. RESULTS Children with DS showed significantly reduced FA in association tracts of the fronto-temporo-occipital regions as well as the corpus callosum (CC) and anterior limb of the internal capsule (p < 0.05). Volumetric reductions included total cortical GM, cerebellar GM and WM volume, basal ganglia, thalamus, brainstem and CC in DS compared with controls (p < 0.05). CONCLUSION These preliminary results suggest that DTI and volumetric analyses may reflect the earliest complementary changes of the neurodevelopmental delay in children with DS and can serve as surrogate biomarkers of the specific elements of WM and GM integrity for cognitive development. KEY POINTS • DS is the most common genetic cause of intellectual disability. • WM and GM structural alterations represent the neurological features of DS. • DTI may identify the earliest aging process changes. • DTI-volumetric analyses can serve as surrogate biomarkers of neurodevelopment in DS.
Collapse
Affiliation(s)
- Hediye Pınar Gunbey
- Faculty of Medicine, Department of Radiology, Ondokuz Mayıs University, Neuroradiology Section, 55139, Kurupelit, Samsun, Turkey.
| | - Meltem Ceyhan Bilgici
- Faculty of Medicine, Department of Radiology, Ondokuz Mayıs University, Neuroradiology Section, 55139, Kurupelit, Samsun, Turkey
| | - Kerim Aslan
- Faculty of Medicine, Department of Radiology, Ondokuz Mayıs University, Neuroradiology Section, 55139, Kurupelit, Samsun, Turkey
| | - Arzu Ceylan Has
- National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey
| | | | - Aslıhan Alhan
- Department of Statistics, Ufuk University, Ankara, Turkey
| | - Lutfi Incesu
- Faculty of Medicine, Department of Radiology, Ondokuz Mayıs University, Neuroradiology Section, 55139, Kurupelit, Samsun, Turkey
| |
Collapse
|
28
|
Ruiz-Mejias M, Martinez de Lagran M, Mattia M, Castano-Prat P, Perez-Mendez L, Ciria-Suarez L, Gener T, Sancristobal B, García-Ojalvo J, Gruart A, Delgado-García JM, Sanchez-Vives MV, Dierssen M. Overexpression of Dyrk1A, a Down Syndrome Candidate, Decreases Excitability and Impairs Gamma Oscillations in the Prefrontal Cortex. J Neurosci 2016; 36:3648-59. [PMID: 27030752 PMCID: PMC6601739 DOI: 10.1523/jneurosci.2517-15.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 11/21/2022] Open
Abstract
The dual-specificity tyrosine phosphorylation-regulated kinase DYRK1A is a serine/threonine kinase involved in neuronal differentiation and synaptic plasticity and a major candidate of Down syndrome brain alterations and cognitive deficits. DYRK1A is strongly expressed in the cerebral cortex, and its overexpression leads to defective cortical pyramidal cell morphology, synaptic plasticity deficits, and altered excitation/inhibition balance. These previous observations, however, do not allow predicting how the behavior of the prefrontal cortex (PFC) network and the resulting properties of its emergent activity are affected. Here, we integrate functional, anatomical, and computational data describing the prefrontal network alterations in transgenic mice overexpressingDyrk1A(TgDyrk1A). Usingin vivoextracellular recordings, we show decreased firing rate and gamma frequency power in the prefrontal network of anesthetized and awakeTgDyrk1Amice. Immunohistochemical analysis identified a selective reduction of vesicular GABA transporter punctae on parvalbumin positive neurons, without changes in the number of cortical GABAergic neurons in the PFC ofTgDyrk1Amice, which suggests that selective disinhibition of parvalbumin interneurons would result in an overinhibited functional network. Using a conductance-based computational model, we quantitatively demonstrate that this alteration could explain the observed functional deficits including decreased gamma power and firing rate. Our results suggest that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of Down syndrome. SIGNIFICANCE STATEMENT DYRK1Ais a major candidate gene in Down syndrome. Its overexpression results into altered cognitive abilities, explained by defective cortical microarchitecture and excitation/inhibition imbalance. An open question is how these deficits impact the functionality of the prefrontal cortex network. Combining functional, anatomical, and computational approaches, we identified decreased neuronal firing rate and deficits in gamma frequency in the prefrontal cortices of transgenic mice overexpressingDyrk1A We also identified a reduction of vesicular GABA transporter punctae specifically on parvalbumin positive interneurons. Using a conductance-based computational model, we demonstrate that this decreased inhibition on interneurons recapitulates the observed functional deficits, including decreased gamma power and firing rate. Our results suggest that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of Down syndrome.
Collapse
Affiliation(s)
- Marcel Ruiz-Mejias
- Systems Neuroscience, August Pi i Sunyer Biomedical research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Maria Martinez de Lagran
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Spain, Pompeu Fabra University (UPF), 08003 Barcelona, Spain, Centre for Biomedical Research on Rare Diseases (CIBERER) 08003 Barcelona, Spain
| | | | - Patricia Castano-Prat
- Systems Neuroscience, August Pi i Sunyer Biomedical research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Lorena Perez-Mendez
- Systems Neuroscience, August Pi i Sunyer Biomedical research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Laura Ciria-Suarez
- Systems Neuroscience, August Pi i Sunyer Biomedical research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Thomas Gener
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Spain, Pompeu Fabra University (UPF), 08003 Barcelona, Spain, Centre for Biomedical Research on Rare Diseases (CIBERER) 08003 Barcelona, Spain
| | - Belen Sancristobal
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Spain, Pompeu Fabra University (UPF), 08003 Barcelona, Spain, Centre for Biomedical Research on Rare Diseases (CIBERER) 08003 Barcelona, Spain
| | | | - Agnès Gruart
- Neuroscience Department, Pablo de Olavide University 41013 Seville, Spain, and
| | | | - Maria V Sanchez-Vives
- Systems Neuroscience, August Pi i Sunyer Biomedical research Institute (IDIBAPS), 08036 Barcelona, Spain, Catalan Institution for Research and Advanced Studies (ICREA) 08010 Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Spain, Pompeu Fabra University (UPF), 08003 Barcelona, Spain, Centre for Biomedical Research on Rare Diseases (CIBERER) 08003 Barcelona, Spain,
| |
Collapse
|
29
|
Milojevich H, Lukowski A. Recall memory in children with Down syndrome and typically developing peers matched on developmental age. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2016; 60:89-100. [PMID: 26604184 DOI: 10.1111/jir.12242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 09/10/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Whereas research has indicated that children with Down syndrome (DS) imitate demonstrated actions over short delays, it is presently unknown whether children with DS recall information over lengthy delays at levels comparable with typically developing (TD) children matched on developmental age. METHOD In the present research, 10 children with DS and 10 TD children participated in a two-session study to examine basic processes associated with hippocampus-dependent recall memory. At the first session, the researcher demonstrated how to complete a three-step action sequence with novel stimuli; immediate imitation was permitted as an index of encoding. At the second session, recall memory was assessed for previously modelled sequences; children were also presented with two novel three-step control sequences. RESULTS The results indicated that group differences were not apparent in the encoding of the events or the forgetting of information over time. Group differences were also not observed when considering the recall of individual target actions at the 1-month delay, although TD children produced more target actions overall at the second session relative to children with DS. Group differences were found when considering memory for temporal order information, such that TD children evidenced recall relative to novel control sequences, whereas children with DS did not. CONCLUSIONS These findings suggest that children with DS may have difficulty with mnemonic processes associated with consolidation/storage and/or retrieval processes relative to TD children.
Collapse
Affiliation(s)
- H Milojevich
- Psychology and Social Behavior, University of California, Irvine, Irvine, CA, USA
| | - A Lukowski
- Psychology and Social Behavior, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
30
|
Adeyemi EI, Giedd JN, Lee NR. A case study of brain morphometry in triplets discordant for Down syndrome. Am J Med Genet A 2015; 167A:1107-10. [PMID: 25820455 DOI: 10.1002/ajmg.a.36820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Down syndrome, the most common genetic cause of intellectual disability, offers the opportunity to explore the associations between genetics and both neuroanatomic and neuropsychological phenotypes. This case report summarizes the findings of a neuroimaging and neuropsychology study of two adolescent females with Down syndrome and their same-sex discordant triplet siblings (one from each family; n = 4). Using high-resolution magnetic resonance imaging and surface based morphometric approaches, we offer the first in vivo report of cortical surface area reductions and increases in the thickness of the cortical sheet in youth with Down syndrome relative to their typically developing same-sex triplet siblings.
Collapse
Affiliation(s)
- Elizabeth I Adeyemi
- Section on Brain Imaging, Child Psychiatry Branch, National Institute of Mental Health, NIH, Bethesda, Maryland
| | | | | |
Collapse
|
31
|
Fernandez F, Reeves RH. Assessing cognitive improvement in people with Down syndrome: important considerations for drug-efficacy trials. Handb Exp Pharmacol 2015; 228:335-80. [PMID: 25977089 DOI: 10.1007/978-3-319-16522-6_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Experimental research over just the past decade has raised the possibility that learning deficits connected to Down syndrome (DS) might be effectively managed by medication. In the current chapter, we touch on some of the work that paved the way for these advances and discuss the challenges associated with translating them. In particular, we highlight sources of phenotypic variability in the DS population that are likely to impact performance assessments. Throughout, suggestions are made on how to detect meaningful changes in cognitive-adaptive function in people with DS during drug treatment. The importance of within-subjects evaluation is emphasized.
Collapse
Affiliation(s)
- Fabian Fernandez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA,
| | | |
Collapse
|
32
|
Roberts LV, Richmond JL. Preschoolers with Down syndrome do not yet show the learning and memory impairments seen in adults with Down syndrome. Dev Sci 2014; 18:404-19. [PMID: 25283764 DOI: 10.1111/desc.12225] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 06/04/2014] [Indexed: 12/01/2022]
Abstract
Individuals with Down syndrome (DS) exhibit a behavioral phenotype of specific strengths and weaknesses, in addition to a generalized cognitive delay. In particular, adults with DS exhibit specific deficits in learning and memory processes that depend on the hippocampus, and there is some suggestion of impairments on executive function tasks that depend on the prefrontal cortex. While these functions have been investigated in adults with DS, it is largely unclear how these processes develop in young children with DS. Here we tested preschoolers with DS and typically developing children, age-matched on either receptive language or non-verbal scores as a proxy for mental age (MA), on a battery of eye-tracking and behavioral measures that have been shown to depend on the hippocampus or the prefrontal cortex. Preschoolers with DS performed equivalently to MA-matched controls, suggesting that the disability-specific memory deficits documented in adults with DS, in addition to a cognitive delay, are not yet evident in preschoolers with DS, and likely emerge progressively with age. Our results reinforce the idea that early childhood may be a critical time frame for targeted early intervention. A video abstract of this article can be viewed at https://www.youtube.com/watch?v=r6GUA6my22Q&list=UU3FIcom6UpITHZOIEa8Onnw.
Collapse
Affiliation(s)
- Lynette V Roberts
- School of Psychology, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
33
|
Karlsen A, Korbo S, Uylings H, Pakkenberg B. A stereological study of the mediodorsal thalamic nucleus in Down syndrome. Neuroscience 2014; 279:253-9. [DOI: 10.1016/j.neuroscience.2014.08.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/15/2014] [Accepted: 08/31/2014] [Indexed: 11/28/2022]
|
34
|
Martínez-Castilla P, Burt M, Borgatti R, Gagliardi C. Facial emotion recognition in Williams syndrome and Down syndrome: A matching and developmental study. Child Neuropsychol 2014; 21:668-92. [DOI: 10.1080/09297049.2014.945408] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Clinical use of structural magnetic resonance imaging in the diagnosis of dementia in adults with Down's syndrome. Ir J Psychol Med 2014. [DOI: 10.1017/s0790966700006984] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractObjectives: Magnetic Resonance Imaging (MRI) has been used to assist the diagnosis of Alzheimer's Disease (AD) in adults with Down's syndrome (DS). However, the interpretation of the scans is difficult and clinical usefulness is uncertain. We aimed to summarise the current knowledge of MRI studies in adults with Down's syndrome with and without dementia and to discuss its implications for clinical practice.Method: We identified MRI studies in DS by a computerised literature search with Medline, Embase, and Psychlit from 1986 to 2001. We examined the references of identified articles and hand searched relevant journals. Structural MRI studies were selected as this type of imaging is most frequently used in clinical practice.Results: We included eight volumetric studies in adults with DS. Four of these included adults with DS and dementia. Overall, the size of brain structures such as cerebellum, hippocampus and cortex of adults with DS without dementia was significantly smaller than in normal controls. The basal ganglia were similar in size, and ventricles were enlarged. Furthermore, the size of brain structures in adults with DS and dementia was significantly different than in DS without dementia. In particular, ventricular and hippocampal volumes were affected.Conclusions: The change in brain structure associated with dementia can be detected on MRI of adults with DS. However, these may be difficult to interpret given the extent to which brain appearance in DS differs from that in the general population. Implications for clinical practice and future research directions are discussed.
Collapse
|
36
|
Phillips BA, Conners FA, Merrill E, Klinger MR. Rule-based category learning in Down syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2014; 119:220-34. [PMID: 24871791 PMCID: PMC5866920 DOI: 10.1352/1944-7558-119.3.220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Rule-based category learning was examined in youths with Down syndrome (DS), youths with intellectual disability (ID), and typically developing (TD) youths. Two tasks measured category learning: the Modified Card Sort task (MCST) and the Concept Formation test of the Woodcock-Johnson-III ( Woodock, McGrew, & Mather, 2001 ). In regression-based analyses, DS and ID groups performed below the level expected for their nonverbal ability. In cross-sectional developmental trajectory analyses, results depended on the task. On the MCST, the DS and ID groups were similar to the TD group. On the Concept Formation test, the DS group had slower cross-sectional change than the other 2 groups. Category learning may be an area of difficulty for those with ID, but task-related factors may affect trajectories for youths with DS.
Collapse
|
37
|
Koran MEI, Hohman TJ, Edwards CM, Vega JN, Pryweller JR, Slosky LE, Crockett G, Villa de Rey L, Meda SA, Dankner N, Avery SN, Blackford JU, Dykens EM, Thornton-Wells TA. Differences in age-related effects on brain volume in Down syndrome as compared to Williams syndrome and typical development. J Neurodev Disord 2014; 6:8. [PMID: 24713364 PMCID: PMC4022321 DOI: 10.1186/1866-1955-6-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/20/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Individuals with Down Syndrome (DS) are reported to experience early onset of brain aging. However, it is not well understood how pre-existing neurodevelopmental effects versus neurodegenerative processes might be contributing to the observed pattern of brain atrophy in younger adults with DS. The aims of the current study were to: (1) to confirm previous findings of age-related changes in DS compared to adults with typical development (TD), (2) to test for an effect of these age-related changes in a second neurodevelopmental disorder, Williams syndrome (WS), and (3) to identify a pattern of regional age-related effects that are unique to DS. METHODS High-resolution T1-weighted MRI of the brains of subjects with DS, WS, and TD controls were segmented, and estimates of regional brain volume were derived using FreeSurfer. A general linear model was employed to test for age-related effects on volume between groups. Secondary analyses in the DS group explored the relationship between brain volume and neuropsychological tests and APOE. RESULTS Consistent with previous findings, the DS group showed significantly greater age-related effects relative to TD controls in total gray matter and in regions of the orbitofrontal cortex and the parietal cortex. Individuals with DS also showed significantly greater age-related effects on volume of the left and right inferior lateral ventricles (LILV and RILV, respectively). There were no significant differences in age-related effects on volume when comparing the WS and TD groups. In the DS group, cognitive tests scores measuring signs of dementia and APOE ϵ4 carrier status were associated with LILV and RILV volume. CONCLUSIONS Individuals with DS demonstrated a unique pattern of age-related effects on gray matter and ventricular volume, the latter of which was associated with dementia rating scores in the DS group. Results may indicate that early onset of brain aging in DS is primarily due to DS-specific neurodegenerative processes, as opposed to general atypical neurodevelopment.
Collapse
Affiliation(s)
- Mary Ellen I Koran
- Center for Human Genetics and Research, Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 37232-0700, 519 Light Hall, Nashville, TN, USA ; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Timothy J Hohman
- Center for Human Genetics and Research, Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 37232-0700, 519 Light Hall, Nashville, TN, USA
| | - Courtney M Edwards
- Center for Human Genetics and Research, Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 37232-0700, 519 Light Hall, Nashville, TN, USA ; Short-Term Training Program Undergraduate Research Fellow, Vanderbilt University, Nashville, TN, USA
| | - Jennifer N Vega
- Center for Human Genetics and Research, Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 37232-0700, 519 Light Hall, Nashville, TN, USA ; Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
| | - Jennifer R Pryweller
- Center for Human Genetics and Research, Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 37232-0700, 519 Light Hall, Nashville, TN, USA ; Interdisciplinary Studies in Neuroimaging of Neurodevelopmental Disorders, The Graduate School, Vanderbilt University, Nashville, USA
| | - Laura E Slosky
- Center for Human Genetics and Research, Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 37232-0700, 519 Light Hall, Nashville, TN, USA
| | - Genea Crockett
- Center for Human Genetics and Research, Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 37232-0700, 519 Light Hall, Nashville, TN, USA
| | - Lynette Villa de Rey
- Center for Human Genetics and Research, Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 37232-0700, 519 Light Hall, Nashville, TN, USA
| | - Shashwath A Meda
- Center for Human Genetics and Research, Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 37232-0700, 519 Light Hall, Nashville, TN, USA
| | - Nathan Dankner
- Graduate Program in Clinical Psychological Sciences, Department of Psychology, Vanderbilt University, Nashville, TN, USA ; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| | - Suzanne N Avery
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA ; Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jennifer U Blackford
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA ; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| | - Elisabeth M Dykens
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA ; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA ; Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| | - Tricia A Thornton-Wells
- Center for Human Genetics and Research, Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 37232-0700, 519 Light Hall, Nashville, TN, USA ; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA ; Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
38
|
Osório A, Soares JM, Prieto MF, Vasconcelos C, Fernandes C, Sousa S, Carracedo A, Gonçalves OF, Sampaio A. Cerebral and cerebellar MRI volumes in Williams syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2014; 35:922-928. [PMID: 24529862 DOI: 10.1016/j.ridd.2013.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/26/2013] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
Individuals with Williams syndrome (WS) present a set of cognitive, affective and motor symptoms that resemble those of patients with lesions to the cerebellum. Although there is some evidence for overall structural alterations in this brain region in WS, explorations on cerebellar white matter and cerebellar cortex volumes remain rather neglected. We aimed to compare absolute and relative cerebellar volumes, as well as patterns of white matter to cortex volumes in this brain region, between a group of individuals with WS and a group of healthy controls. T1-weighted magnetic resonance images were acquired in 17 individuals with WS and in 15 typically developing individuals. Our results showed that even though individuals from the clinical group had significantly smaller cerebrums (and cerebellums), cerebellar volumes relative to intracranial volumes were significantly enlarged. In addition, while gray matter was relatively spared and white matter disproportionately reduced in the cerebrum in WS, relative cerebellar cortex and white matter volumes were preserved. These findings support the hypothesis that volume alterations in the cerebellum are associated with the cognitive, affective and motor profiles in WS.
Collapse
Affiliation(s)
- Ana Osório
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| | - José Miguel Soares
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Minho, Portugal; ICVS/3B's-PT Government Associated Laboratory, Guimarães, Braga, Portugal; Clinical Academic Center, Braga, Portugal
| | - Montse Fernández Prieto
- Biomedical Research Center Network for Rare Diseases (CIBERER), University of Santiago of Compostela, Santiago de Compostela, Spain; Genetic Molecular Unit, Galician Public Foundation of Genomic Medicine, Galicia, Spain
| | | | - Catarina Fernandes
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Sónia Sousa
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Angel Carracedo
- Biomedical Research Center Network for Rare Diseases (CIBERER), University of Santiago of Compostela, Santiago de Compostela, Spain; Genetic Molecular Unit, Galician Public Foundation of Genomic Medicine, Galicia, Spain
| | - Oscar F Gonçalves
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; Department of Counseling and Educational Psychology, Bouvé College of Health Sciences, Northeastern University, Boston, USA
| | - Adriana Sampaio
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
39
|
Hocking DR, Menant JC, Kirk HE, Lord S, Porter MA. Gait profiles as indicators of domain-specific impairments in executive control across neurodevelopmental disorders. RESEARCH IN DEVELOPMENTAL DISABILITIES 2014; 35:203-214. [PMID: 24176260 DOI: 10.1016/j.ridd.2013.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 06/02/2023]
Abstract
In neurodevelopmental disorders, unique profiles of executive control and attention appear to co-occur with poor motor coordination. However, less is known about how syndrome-specific cognitive profiles interact with motor control and impact behavioural outcomes in neurodevelopmental disorders such as Williams syndrome (WS) and Down syndrome (DS). Here we aimed to examine the extent to which specific components of executive function interact with gait control when performing cognitive dual-tasks (verbal fluency, digit span) in WS and DS. Spatiotemporal gait characteristics and intra-individual variability of gait were assessed in individuals with WS who were matched on spatial ability to individuals with DS, and chronologically age (CA) matched controls. During the concurrent verbal fluency task, the WS group had greater dual-task costs on spatiotemporal gait parameters and variability than CA controls. Conversely, individuals with DS had selective gait interference during the concurrent digit span task when compared to CA controls, but only under increased demands on cognitive control where there was greater variability in step timing in DS. The interrelationships between cognitive-motor interference and behavioural measures of executive functioning appeared to differentiate between WS and DS, and emphasise the importance of task modality in unpacking the executive control profile in these neurodevelopmental disorders. These findings support the notion that associated cerebellar-cortico abnormalities may produce quite distinct profiles of executive control across cognitive and motor domains that impact on behavioural outcomes in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Darren R Hocking
- School of Psychology and Psychiatry, Faculty of Medicine, Melbourne, Australia; Olga Tennison Autism Research Centre, School of Psychological Science, La Trobe University, Bundoora, Australia.
| | | | | | | | | |
Collapse
|
40
|
Abstract
AbstractWilliams syndrome is a neurodevelopmental genetic disorder caused by a hemizygous deletion on chromosome 7q11.23, resulting in atypical brain structure and function, including abnormal morphology of the corpus callosum. An influence of handedness on the size of the corpus callosum has been observed in studies of typical individuals, but handedness has not been taken into account in studies of callosal morphology in Williams syndrome. We hypothesized that callosal area is smaller and the size of the splenium and isthmus is reduced in individuals with Williams syndrome compared to healthy controls, and examined age, sex, and handedness effects on corpus callosal area. Structural magnetic resonance imaging scans were obtained on 25 individuals with Williams syndrome (18 right-handed, 7 left-handed) and 25 matched controls. We found that callosal thickness was significantly reduced in the splenium of Williams syndrome individuals compared to controls. We also found novel evidence that the callosal area was smaller in left-handed participants with Williams syndrome than their right-handed counterparts, with opposite findings observed in the control group. This novel finding may be associated with LIM-kinase hemizygosity, a characteristic of Williams syndrome. The findings may have significant clinical implications in future explorations of the Williams syndrome cognitive phenotype.
Collapse
|
41
|
Abstract
Down syndrome is the most common form of intellectual disability and results from one of the most complex genetic perturbations that is compatible with survival, trisomy 21. The study of brain dysfunction in this disorder has largely been based on a gene discovery approach, but we are now moving into an era of functional genome exploration, in which the effects of individual genes are being studied alongside the effects of deregulated non-coding genetic elements and epigenetic influences. Also, new data from functional neuroimaging studies are challenging our views of the cognitive phenotypes associated with Down syndrome and their pathophysiological correlates. These advances hold promise for the development of treatments for intellectual disability.
Collapse
Affiliation(s)
- Mara Dierssen
- Genes and Disease Programme, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Centro de Investigación Biomédica en Red de Enfermedades Raras, E-08003 Barcelona, Spain.
| |
Collapse
|
42
|
Fernandez F, Edgin JO. Poor Sleep as a Precursor to Cognitive Decline in Down Syndrome : A Hypothesis. ACTA ACUST UNITED AC 2013; 3:124. [PMID: 24558640 PMCID: PMC3928031 DOI: 10.4172/2161-0460.1000124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose that sleep disruption is a lever arm that influences how cognition emerges in development and then declines in response to Alzheimer disease in people with Down syndrome. Addressing sleep disruptions might be an overlooked way to improve cognitive outcomes in this population. This article is a contribution to a Special Issue on Down Syndrome curated by the editors of the Journal of Alzheimer’s Disease & Parkinsonism.
Collapse
Affiliation(s)
- Fabian Fernandez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jamie O Edgin
- Department of Psychology and Cognitive Science Program, Sonoran University, Center for Excellence in Developmental Disabilities, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
43
|
Virji-Babul N, Moiseev A, Sun W, Feng T, Moiseeva N, Watt KJ, Huotilainen M. Neural correlates of music recognition in Down syndrome. Brain Cogn 2013; 81:256-62. [PMID: 23274514 DOI: 10.1016/j.bandc.2012.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 10/12/2012] [Accepted: 11/25/2012] [Indexed: 10/27/2022]
Abstract
The brain mechanisms that subserve music recognition remain unclear despite increasing interest in this process. Here we report the results of a magnetoencephalography experiment to determine the temporal dynamics and spatial distribution of brain regions activated during listening to a familiar and unfamiliar instrumental melody in control adults and adults with Down syndrome (DS). In the control group, listening to the familiar melody relative to the unfamiliar melody, revealed early and significant activations in the left primary auditory cortex, followed by activity in the limbic and sensory-motor regions and finally, activation in the motor related areas. In the DS group, listening to the familiar melody relative to the unfamiliar melody revealed increased significant activations in only three regions. Activity began in the left primary auditory cortex and the superior temporal gyrus and was followed by enhanced activity in the right precentral gyrus. These data suggest that familiar music is associated with auditory-motor coupling but does not activate brain areas involved in emotional processing in DS. These findings reveal new insights on the neural basis of music perception in DS as well as the temporal course of neural activity in control adults.
Collapse
Affiliation(s)
- N Virji-Babul
- Department of Physical Therapy, University of British Columbia, Canada.
| | | | | | | | | | | | | |
Collapse
|
44
|
Fahim C, Yoon U, Nashaat NH, Khalil AK, El-Belbesy M, Mancini-Marie A, Evans AC, Meguid N. Williams syndrome: a relationship between genetics, brain morphology and behaviour. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2012; 56:879-894. [PMID: 22044458 DOI: 10.1111/j.1365-2788.2011.01490.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Genetically Williams syndrome (WS) promises to provide essential insight into the pathophysiology of cortical development because its ∼28 deleted genes are crucial for cortical neuronal migration and maturation. Phenotypically, WS is one of the most puzzling childhood neurodevelopmental disorders affecting most intellectual deficiencies (i.e. low-moderate intelligence quotient, visuospatial deficits) yet relatively preserving what is uniquely human (i.e. language and social-emotional cognition). Therefore, WS provides a privileged setting for investigating the relationship between genes, brain and the consequent complex human behaviour. METHODS We used in vivo anatomical magnetic resonance imaging analysing cortical surface-based morphometry, (i.e. surface area, cortical volume, cortical thickness, gyrification index) and cortical complexity, which is of particular relevance to the WS genotype-phenotype relationship in 22 children (2.27-14.6 years) to compare whole hemisphere and lobar surface-based morphometry between WS (n = 10) and gender/age matched normal controls healthy controls (n = 12). RESULTS Compared to healthy controls, WS children had a (1) relatively preserved Cth; (2) significantly reduced SA and CV; (3) significantly increased GI mostly in the parietal lobe; and (4) decreased CC specifically in the frontal and parietal lobes. CONCLUSION Our findings are then discussed with reference to the Rakic radial-unit hypothesis of cortical development, arguing that WS gene deletions may spare Cth yet affecting the number of founder cells/columns/radial units, hence decreasing the SA and CV. In essence, cortical brain structure in WS may be shaped by gene-dosage abnormalities.
Collapse
Affiliation(s)
- C Fahim
- Institute of Psychology, Faculty of Social Sciences and Politics, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Anxious, hypoactive phenotype combined with motor deficits in Gtf2ird1 null mouse model relevant to Williams syndrome. Behav Brain Res 2012; 233:458-73. [DOI: 10.1016/j.bbr.2012.05.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/03/2012] [Accepted: 05/10/2012] [Indexed: 01/07/2023]
|
46
|
Mouse models of Down syndrome as a tool to unravel the causes of mental disabilities. Neural Plast 2012; 2012:584071. [PMID: 22685678 PMCID: PMC3364589 DOI: 10.1155/2012/584071] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/23/2012] [Accepted: 03/24/2012] [Indexed: 12/16/2022] Open
Abstract
Down syndrome (DS) is the most common genetic cause of mental disability. Based on the homology of Hsa21 and the murine chromosomes Mmu16, Mmu17 and Mmu10, several mouse models of DS have been developed. The most commonly used model, the Ts65Dn mouse, has been widely used to investigate the neural mechanisms underlying the mental disabilities seen in DS individuals. A wide array of neuromorphological alterations appears to compromise cognitive performance in trisomic mice. Enhanced inhibition due to alterations in GABA(A)-mediated transmission and disturbances in the glutamatergic, noradrenergic and cholinergic systems, among others, has also been demonstrated. DS cognitive dysfunction caused by neurodevelopmental alterations is worsened in later life stages by neurodegenerative processes. A number of pharmacological therapies have been shown to partially restore morphological anomalies concomitantly with cognition in these mice. In conclusion, the use of mouse models is enormously effective in the study of the neurobiological substrates of mental disabilities in DS and in the testing of therapies that rescue these alterations. These studies provide the basis for developing clinical trials in DS individuals and sustain the hope that some of these drugs will be useful in rescuing mental disabilities in DS individuals.
Collapse
|
47
|
Carvajal F, Fernández-Alcaraz C, Rueda M, Sarrión L. Processing of facial expressions of emotions by adults with Down syndrome and moderate intellectual disability. RESEARCH IN DEVELOPMENTAL DISABILITIES 2012; 33:783-790. [PMID: 22240141 DOI: 10.1016/j.ridd.2011.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/02/2011] [Accepted: 12/02/2011] [Indexed: 05/31/2023]
Abstract
The processing of facial expressions of emotions by 23 adults with Down syndrome and moderate intellectual disability was compared with that of adults with intellectual disability of other etiologies (24 matched in cognitive level and 26 with mild intellectual disability). Each participant performed 4 tasks of the Florida Affect Battery and an original task in which they had to match facial expressions after observing the complete face or one of its halves. Adults with Down syndrome did not show any specific difficulties in recognizing facial expressions in spite of showing a poorer discrimination between facial expressions and tended to take more notice of the lower half of the face.
Collapse
|
48
|
Johns A, Homewood J, Stevenson R, Taylor A. Implicit and explicit olfactory memory in people with and without Down syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2012; 33:583-593. [PMID: 22138497 DOI: 10.1016/j.ridd.2011.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 10/27/2011] [Accepted: 11/02/2011] [Indexed: 05/31/2023]
Abstract
This study examined differences in implicit and explicit memory performance between people with Down syndrome (DS), their siblings, children matched on mental age, and university undergraduates, using olfactory stimuli. The DS and mental-age matched participants were also compared on two tasks of executive function. The data revealed implicit memory for olfactory stimuli. Further, people with DS performed similarly to each control group on the implicit memory task, but performed significantly poorer than all control groups on the explicit memory task. Impairment to executive functioning was identified as a possible cause of this deficit in explicit memory as people with DS performed more poorly than the mental-age matched controls on both tasks of executive function.
Collapse
Affiliation(s)
- Adam Johns
- Department of Psychology, Macquarie University, Sydney, NSW 2109, Australia.
| | | | | | | |
Collapse
|
49
|
Capossela S, Muzio L, Bertolo A, Bianchi V, Dati G, Chaabane L, Godi C, Politi LS, Biffo S, D'Adamo P, Mallamaci A, Pannese M. Growth defects and impaired cognitive-behavioral abilities in mice with knockout for Eif4h, a gene located in the mouse homolog of the Williams-Beuren syndrome critical region. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1121-1135. [PMID: 22234171 DOI: 10.1016/j.ajpath.2011.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/14/2011] [Accepted: 12/02/2011] [Indexed: 01/09/2023]
Abstract
Protein synthesis is a tightly regulated, energy-consuming process. The control of mRNA translation into protein is fundamentally important for the fine-tuning of gene expression; additionally, precise translational control plays a critical role in many cellular processes, including development, cellular growth, proliferation, differentiation, synaptic plasticity, memory, and learning. Eukaryotic translation initiation factor 4h (Eif4h) encodes a protein involved in the process of protein synthesis, at the level of initiation phase. Its human homolog, WBSCR1, maps on 7q11.23, inside the 1.6 Mb region that is commonly deleted in patients affected by the Williams-Beuren syndrome, which is a complex neurodevelopmental disorder characterized by cardiovascular defects, cerebral dysplasias and a peculiar cognitive-behavioral profile. In this study, we generated knockout mice deficient in Eif4h. These mice displayed growth retardation with a significant reduction of body weight that began from the first week of postnatal development. Neuroanatomical profiling results generated by magnetic resonance imaging analysis revealed a smaller brain volume in null mice compared with controls as well as altered brain morphology, where anterior and posterior brain regions were differentially affected. The inactivation of Eif4h also led to a reduction in both the number and complexity of neurons. Behavioral studies revealed severe impairments of fear-related associative learning and memory formation. These alterations suggest that Eif4h might contribute to certain deficits associated with Williams-Beuren syndrome.
Collapse
Affiliation(s)
- Simona Capossela
- Gene Expression Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Luca Muzio
- Neuroimmunology Unit - INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Bertolo
- Gene Expression Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Veronica Bianchi
- Molecular Genetics of Mental Retardation Unit, Division of Neuroscience, Dulbecco Telethon Institute, San Raffaele Scientific Institute, Milan, Italy
| | - Gabriele Dati
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Linda Chaabane
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Godi
- Neuroradiology Research Group, Center for Imaging, San Raffaele Scientific Institute, Milan, Italy
| | - Letterio S Politi
- Neuroradiology Research Group, Center for Imaging, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Biffo
- Molecular Histology and Cell Growth Unit, Division of Molecular Oncology, San Raffaele Scientific Institute, Milan, Italy; Department of Science of Environment and Life (DISAV), University of Eastern Piedmont, Alessandria, Italy
| | - Patrizia D'Adamo
- Molecular Genetics of Mental Retardation Unit, Division of Neuroscience, Dulbecco Telethon Institute, San Raffaele Scientific Institute, Milan, Italy
| | | | - Maria Pannese
- Gene Expression Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
50
|
A volumetric magnetic resonance imaging study of brain structures in children with Down syndrome. Neurol Neurochir Pol 2011; 45:363-9. [PMID: 22101997 DOI: 10.1016/s0028-3843(14)60107-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE Down syndrome (DS) is the most common genetic cause of mental retardation with deficits in language and memory. Mental retardation of varying degrees is the most consistent feature of DS. The objective of this study was to use high-resolution magnetic resonance imaging (MRI) techniques to investigate the volumes of the hippocampus, amygdala, and temporal and frontal lobes in children with DS compared with healthy children. MATERIAL AND METHODS MRI of 49 patients was reviewed prospectively. The study included 23 children with DS (9 girls and 14 boys, mean age 6.7 ± 3.7 years) and 26 healthy children (11 girls and 15 boys, mean age 8.3 ± 2.4 years). Volumes of the right and left hippocampus, the right and left amygdala, temporal and frontal lobes and the total brain volume were measured by a radiologist who was unaware of the diagnosis. RESULTS Total brain volume in children with DS was significantly lower compared with controls. It was associated with significantly lower volume of the frontal and temporal lobes. Children with DS had a significantly smaller right and left hippocampus volume and a significantly smaller right and left amygdala volume than did the control group. We also found a negative correlation between mental retardation and volume of the right hippocampus. CONCLUSIONS The presence of these abnormalities from an early age contributes to the specific cognitive and developmental deficits seen in children with DS.
Collapse
|