1
|
Moosavi M, Soukhaklari R, Bagheri-Mohammadi S, Firouzan B, Javadpour P, Ghasemi R. Nanocurcumin prevents memory impairment, hippocampal apoptosis, Akt and CaMKII-α signaling disruption in the central STZ model of Alzheimer's disease in rat. Behav Brain Res 2024; 471:115129. [PMID: 38942084 DOI: 10.1016/j.bbr.2024.115129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
The central route of streptozotocin (STZ) administration has been introduced as a rat model of sporadic Alzheimer's disease (AD). Curcumin was suggested to possess possible neuroprotective effects, which may be profitable in AD. However, the low bioavailability of curcumin hinders its beneficial effects in clinical studies. Earlier studies suggested that a bovine serum albumin-based nanocurcumin, produces superior neuroprotective effects compared to natural curcumin. In the present study, the protective effect of nanocurcumin in rat model of central STZ induced memory impairment was assessed. In addition, due to the importance of the hippocampus in memory, the amounts of hippocampal active caspase-3, Akt, and CaMKII-α were evaluated. Adult male Wistar rats weighing 250-300 g were used. STZ (icv) was injected during days 1 and 3 (3 mg/kg in divided), and nanocurcumin or curcumin 50 mg/kg/oral gavage was administered daily during days 4-14. Morris water maze training was performed on days 15-17, and the retention memory test was achieved on the 18th day. Following memory assessment, the rats were sacrificed and the hippocampi were used to assess caspase-3 cleavage, Akt, and CaMKII-α signaling. The findings revealed that nanocurcumin ingestion (but not natural curcumin) in the dose of 50 mg/kg was capable to prevent the impairment of water maze learning and memory induced by central STZ. Molecular assessments indicated that STZ treatment increased the caspase-3 cleavage in the hippocampus while deactivating Akt and CaMKII-α. Nanocurcumin reduced caspase-3 cleavage to a non-significant level compared to control group and restored Akt and CaMKII-α within the hippocampus while natural curcumin exerted no significant effect. These findings might suggest that nanocurcumin can restore memory deficit, hippocampal apoptosis as well as Akt and CaMKII-α signaling disruption associated with brain insulin resistance.
Collapse
Affiliation(s)
- Maryam Moosavi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Roksana Soukhaklari
- Shiraz Neuroscience Research Centre, Shiraz University of Medical sciences, Shiraz, Iran; Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Bita Firouzan
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Wang YZ, Zhao W, Moorjani P, Gross AL, Zhou X, Dey AB, Lee J, Smith JA, Kardia SLR. Effect of apolipoprotein E ε4 and its modification by sociodemographic characteristics on cognitive measures in South Asians from LASI-DAD. Alzheimers Dement 2024; 20:4854-4867. [PMID: 38889280 PMCID: PMC11247697 DOI: 10.1002/alz.14052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND We investigated the effects of apolipoprotein E (APOE) ε4 and its interactions with sociodemographic characteristics on cognitive measures in South Asians from the Diagnostic Assessment of Dementia for the Longitudinal Aging Study of India (LASI-DAD). METHODS Linear regression was used to assess the association between APOE ε4 and global- and domain-specific cognitive function in 2563 participants (mean age 69.6 ± 7.3 years; 53% female). Effect modification by age, sex, and education were explored using interaction terms and subgroup analyses. RESULTS APOE ε4 was inversely associated with most cognitive measures (p < 0.05). This association was stronger with advancing age for the Hindi Mental State Examination (HMSE) score (βε4×age = -0.44, p = 0.03), orientation (βε4×age = -0.07, p = 0.01), and language/fluency (βε4×age = -0.07, p = 0.01), as well as in females for memory (βε4×male = 0.17, p = 0.02) and language/fluency (βε4×male = 0.12, p = 0.03). DISCUSSION APOE ε4 is associated with lower cognitive function in South Asians from India, with a more pronounced impact observed in females and older individuals. HIGHLIGHTS APOE ε4 carriers had lower global and domain-specific cognitive performance. Females and older individuals may be more susceptible to ε4 effects. For most cognitive measures, there was no interaction between ε4 and education.
Collapse
Affiliation(s)
- Yi Zhe Wang
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Wei Zhao
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
- Survey Research CenterInstitute for Social ResearchUniversity of MichiganAnn ArborMichiganUSA
| | - Priya Moorjani
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Center for Computational BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Alden L. Gross
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Xiang Zhou
- Department of BiostatisticsSchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Aparajit B. Dey
- Department of Geriatric MedicineAll India Institute of Medical Sciences, Ansari NagarNew DelhiIndia
| | - Jinkook Lee
- Department of Economics and Center for Social ResearchUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jennifer A. Smith
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
- Survey Research CenterInstitute for Social ResearchUniversity of MichiganAnn ArborMichiganUSA
| | - Sharon L. R. Kardia
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
3
|
Zhang Y, Yang J, Gong Y, He S, Wen P, Jiang Y, He J, Zhu B, Li L. In Vitro and In Vivo Supplementation with Curcumin Promotes Hippocampal Neuronal Synapses Development in Rats by Inhibiting GSK-3β and Activating β-catenin. Mol Neurobiol 2024; 61:2390-2410. [PMID: 37875709 DOI: 10.1007/s12035-023-03665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023]
Abstract
The human fetal thyroid gland is not capable of producing thyroid hormones independently until 20 weeks of gestation, and if maternal thyroid hormone synthesis is inadequate in early pregnancy, fetal brain and nerve development may be affected by maternal hypothyroidism. Curcumin, which is isolated from turmeric (Curcuma longa), has been shown to be effective in repairing neurological disorders and is effective in relieving nerve damage when consumed over a long period of time. In this experiment, we investigated the effect of curcumin supplementation on synaptic development of rat hippocampal neurons. A cell model of oxidative damage and a young rat model of hypothyroidism were constructed, and model cells and rats were treated with triiodothyronine (T3), tetraiodothyronine (T4), and curcumin, respectively. Damage of nerve cells and animal brain tissues was examined, and the effect of curcumin in alleviating the blocked neurodevelopment was investigated. Further modulation of GSK-3β/β-catenin was performed to investigate the mechanism of action of curcumin. Ultimately, we found that T3-, T4-, and curcumin-treated model cells and young rats had increased numbers of synapses and good neurodevelopment. At the same time, we found that curcumin inhibited the production of GSK-3β and Axin to activate β-catenin. The inhibition of β-catenin weakened the therapeutic effect of curcumin, and the differences between the indicators and the model group disappeared. Both cellular and animal experiments supported that curcumin effectively alleviated the oxidative cell damage caused by thyroxine deficiency and activated the synaptogenic ability of nerve synapses by inhibiting GSK-3β and protecting β-catenin activity.
Collapse
Affiliation(s)
- Yinhong Zhang
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, 650500, China
- Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, China
- School of Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jinghui Yang
- Department of Pediatrics, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Yanling Gong
- School of Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shan He
- Department of Pediatrics, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Ping Wen
- Department of Pediatrics, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Yan Jiang
- Department of Prevention and Healthcare, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Jing He
- Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Baosheng Zhu
- Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, China.
| | - Li Li
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, 650500, China.
- School of Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
- Department of Pediatrics, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, China.
| |
Collapse
|
4
|
Katunina EA, Semenova AM, Katunin DA. [The complex effect of polyphenols on the gut microbiota and triggers of neurodegeneration in Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:38-44. [PMID: 38261282 DOI: 10.17116/jnevro202412401138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Intestinal dysfunction and microbiome changes are actively discussed in the modern literature as the most important link in the development of neurodegenerative changes in Parkinson's disease. The article discusses the pathogenetic chain «microbiome- intestine-brain», as well as factors that affect the development of intestinal dysbiosis. A promising direction for influencing microflora and inflammatory changes in the intestine is the use of polyphenols, primarily curcumin. The review of experimental, laboratory, clinical research proving the pleiotropic effect of curcumin, including its antioxidant, anti-inflammatory, neuroprotective effects, realized both through peripheral and central mechanisms is presented.
Collapse
Affiliation(s)
- E A Katunina
- Federal Center of Brain and Neurotechnologies, Moscow, Russia
- Pirogov Russian National Research Medical University Ministry of Health of Russia, Moscow, Russia
| | - A M Semenova
- Federal Center of Brain and Neurotechnologies, Moscow, Russia
| | - D A Katunin
- Federal Center of Brain and Neurotechnologies, Moscow, Russia
| |
Collapse
|
5
|
Koul B, Farooq U, Yadav D, Song M. Phytochemicals: A Promising Alternative for the Prevention of Alzheimer's Disease. Life (Basel) 2023; 13:life13040999. [PMID: 37109528 PMCID: PMC10144079 DOI: 10.3390/life13040999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is a neurological condition that worsens with ageing and affects memory and cognitive function. Presently more than 55 million individuals are affected by AD all over the world, and it is a leading cause of death in old age. The main purpose of this paper is to review the phytochemical constituents of different plants that are used for the treatment of AD. A thorough and organized review of the existing literature was conducted, and the data under the different sections were found using a computerized bibliographic search through the use of databases such as PubMed, Web of Science, Google Scholar, Scopus, CAB Abstracts, MEDLINE, EMBASE, INMEDPLAN, NATTS, and numerous other websites. Around 360 papers were screened, and, out of that, 258 papers were selected on the basis of keywords and relevant information that needed to be included in this review. A total of 55 plants belonging to different families have been reported to possess different bioactive compounds (galantamine, curcumin, silymarin, and many more) that play a significant role in the treatment of AD. These plants possess anti-inflammatory, antioxidant, anticholinesterase, and anti-amyloid properties and are safe for consumption. This paper focuses on the taxonomic details of the plants, the mode of action of their phytochemicals, their safety, future prospects, limitations, and sustainability criteria for the effective treatment of AD.
Collapse
Affiliation(s)
- Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Usma Farooq
- Department of Botany, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Dhananjay Yadav
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
6
|
Kommaddi RP, Verma A, Muniz-Terrera G, Tiwari V, Chithanathan K, Diwakar L, Gowaikar R, Karunakaran S, Malo PK, Graff-Radford NR, Day GS, Laske C, Vöglein J, Nübling G, Ikeuchi T, Kasuga K, Ravindranath V. Sex difference in evolution of cognitive decline: studies on mouse model and the Dominantly Inherited Alzheimer Network cohort. Transl Psychiatry 2023; 13:123. [PMID: 37045867 PMCID: PMC10097702 DOI: 10.1038/s41398-023-02411-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Women carry a higher burden of Alzheimer's disease (AD) compared to men, which is not accounted entirely by differences in lifespan. To identify the mechanisms underlying this effect, we investigated sex-specific differences in the progression of familial AD in humans and in APPswe/PS1ΔE9 mice. Activity dependent protein translation and associative learning and memory deficits were examined in APPswe/PS1ΔE9 mice and wild-type mice. As a human comparator group, progression of cognitive dysfunction was assessed in mutation carriers and non-carriers from DIAN (Dominantly Inherited Alzheimer Network) cohort. Female APPswe/PS1ΔE9 mice did not show recall deficits after contextual fear conditioning until 8 months of age. Further, activity dependent protein translation and Akt1-mTOR signaling at the synapse were impaired in male but not in female mice until 8 months of age. Ovariectomized APPswe/PS1ΔE9 mice displayed recall deficits at 4 months of age and these were sustained until 8 months of age. Moreover, activity dependent protein translation was also impaired in 4 months old ovariectomized APPswe/PS1ΔE9 mice compared with sham female APPswe/PS1ΔE9 mice. Progression of memory impairment differed between men and women in the DIAN cohort as analyzed using linear mixed effects model, wherein men showed steeper cognitive decline irrespective of the age of entry in the study, while women showed significantly greater performance and slower decline in immediate recall (LOGIMEM) and delayed recall (MEMUNITS) than men. However, when the performance of men and women in several cognitive tasks (such as Wechsler's logical memory) are compared with the estimated year from expected symptom onset (EYO) we found no significant differences between men and women. We conclude that in familial AD patients and mouse models, females are protected, and the onset of disease is delayed as long as estrogen levels are intact.
Collapse
Affiliation(s)
- Reddy Peera Kommaddi
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India.
| | - Aditi Verma
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Graciela Muniz-Terrera
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- The Department of Social Medicine, Ohio University, Athens, OH, 45701, USA
| | - Vivek Tiwari
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | | | - Latha Diwakar
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | - Ruturaj Gowaikar
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Smitha Karunakaran
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Palash Kumar Malo
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | - Neill R Graff-Radford
- Department of Neurology, Mayo Clinic Florida, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic Florida, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
| | - Christoph Laske
- German Center for Neurodegenerative Diseases, Munich, Germany
- Section for Dementia Research, Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Jonathan Vöglein
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Georg Nübling
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Center for Bioresources, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8585, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Center for Bioresources, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8585, Japan
| | - Vijayalakshmi Ravindranath
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
7
|
Sharma S, Singh G, Patwardhan K. Effects of two Ayurvedic formulations, Dhanwantaram Kashaya and Saraswatarishta on life history parameters and toxic aggregates in Drosophila models of Huntington's and Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116080. [PMID: 36603787 DOI: 10.1016/j.jep.2022.116080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ayurveda, the traditional healthcare system native to India, employs dosage forms containing multiple herbs in treating various clinical conditions. Dhanwantaram Kashaya (DK) and Saraswatarishta (SA) are two such formulations containing multiple herbs in varied proportions. Kashaya is a liquid decoction while Arishta is fermented liquid with permissible quantity of self-generated alcohol in it. Both the formulations have been reported to have clinical efficacy in age-related memory impairment. Other mental disorders having clinical presentations similar to psychoses are the other indications for these tested formulations. AIM OF THE STUDY The present study was performed to evaluate the efficacy of two Rasayana formulations i.e., DK and SA, used by clinicians in different neurodegenerative conditions. We tested these formulations in Alzheimer's (AD) and Huntington's disease (HD) models of Drosophila melanogaster. MATERIALS AND METHOD Initial experiments looking for life-history parameters in wild-type larvae were carried out in three sets with hundred larvae in each set. These parameters were also studied in diseased models in four sets with eighty larvae in each set. Aβ plaques and polyQ aggregates were looked at with the help of immunostaining technique and images were captured using confocal microscopy. RESULTS The results revealed that 0.25% concentration of both the formulations improve longevity in wild-type flies. Larval development and adult lifespan in Eye-GAL4>Aβ42 (AD) and GMR-GAL4>127Q (HD) larvae/flies reared on 0.25% & 0.50% DK and 0.25% & 1.00% SA improved substantially. Reduced Aβ plaques and polyQ aggregates indicate disease suppression. CONCLUSION DK and SA enhanced longevity in Drosophila melanogaster. Suppression of disease aggregates suggests their potential utility in treating AD and HD. Further clinical and pharmaceutical studies are required to confirm these results, however, this is a workable model to test multi-herbal formulations of Ayurveda in the forms they are clinically used.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Kriya Sharir, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| | - Girish Singh
- Centre of Biostatistics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| | - Kishor Patwardhan
- Department of Kriya Sharir, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
8
|
Bhattacharya S, Heidler P, Varshney S. Incorporating neglected non-communicable diseases into the national health program-A review. Front Public Health 2023; 10:1093170. [PMID: 36703821 PMCID: PMC9871457 DOI: 10.3389/fpubh.2022.1093170] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 01/12/2023] Open
Abstract
Poor nations are already facing the heat of double burden of communicable and non-communicable diseases (NCDs), often known as chronic illnesses, which are characterized by a protracted course and are multifactorial in causation. In addition to this, neglected non-communicable diseases (NNCD) in the form of gout, sickle cell disease, accidents and many more are likely to be one of the biggest public health challenges soon. Nearly three-quarters (31.4 million) of all NCD-related fatalities occur in developing nations. In terms of morbidity and mortality, the "BIG FOUR" NCDs-diabetes, cancer, chronic respiratory diseases, and cardiovascular diseases-are widely acknowledged as the main contributors to global health loss. However, other NCDs account for 55% of the global burden of NCDs and are frequently neglected in terms of premature death, increased Disability Adjusted Life Years (DALY), and decreased Quality-Adjusted Life Year (QALY). We have briefly discussed the disease burden of a few significant, yet neglected NCDs in this paper.
Collapse
Affiliation(s)
- Sudip Bhattacharya
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Deoghar, Jharkhand, India
| | - Petra Heidler
- Department for Economy and Health, University for Continuing Education Krems, Krems an der Donau, Austria
- Department of International Business and Export Management, IMC University of Applied Sciences Krems, Krems an der Donau, Austria
- Department of Health Sciences, St. Pölten University of Applied Sciences, Sankt Pölten, Austria
| | - Saurabh Varshney
- Department of ENT (Otorhinolaryngology), All India Institute of Medical Sciences, Deoghar (AIIMS Deoghar), Deoghar, India
| |
Collapse
|
9
|
Agunloye OM, Oboh G. Fermented seeds of Pentaclethra macrophylla mitigate against memory deficit and restored altered enzymatic activity in the brain of streptozotocin-diabetic rats. Metab Brain Dis 2022; 38:973-981. [PMID: 36585563 DOI: 10.1007/s11011-022-01141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/03/2022] [Indexed: 01/01/2023]
Abstract
Memory deficit has been reported as one of the complications of diabetes. Fermented seeds of Pentaclethra Macrophylla (P. macrophylla) have been used in folklore for the management of metabolic diseases. The research aims to evaluate the impact of diets with the inclusion of the fermented seed of P. macrophylla on memory deficit in diabetic rats and its underlying mechanisms. Before the induction, the rats were subjected to training sessions. Thereafter, streptozotocin (50 mg/kg body weight) was administered to the trained rats via intraperitoneal (i.p). 72 hours after, the rats blood glucose level was checked, rats with blood glucose level greater than 250 mg/dl were selected for the memory index evaluation study. The induced rats were randomly distributed into groups: Normal rats (group 1), untreated diabetic rat (Group 2), acarbose treated diabetic rats (group 3); diabetic rats placed on diet supplemented with fermented seed of P. macrophylla (10 & 20% inclusion) were allotted to group 4 & 5. Then, evaluation of memory retention capacity was performed on the day 14 of the experiment. Thereafter, experimental rats were sacrificed, tissue of interest (brain) was excised, homogenized and homogenates were used for biochemical analysis. The cholinergic, angiotensin-1-converting enzyme (ACE), arginase activity and biomarkers for oxidative stress were significantly altered in untreated diabetic rats when compared with non-diabetes rats. Also, the memory capacity of the diabetic rats was significantly reduced when compared with the non-diabetes rats. Meanwhile, diabetic rats placed on diet with fermented seeds of P. macrophylla (10 & 20% inclusion) exhibited significantly higher memory capacity, lower activity of cholinergic, ACE, arginase activity in relation to untreated diabetic rats while the antioxidant status of the brain was enhanced. Nevertheless, fermented seeds of P. macrophylla ameliorated memory deficit in STZ induced diabetes rats. This gave credence to P. macrophylla nutraceutical potential as claimed in folk medicine.
Collapse
Affiliation(s)
- Odunayo Michael Agunloye
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.
| | - Ganiyu Oboh
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
10
|
da Rosa MM, de Amorim LC, Alves JVDO, Aguiar IFDS, Oliveira FGDS, da Silva MV, dos Santos MTC. The promising role of natural products in Alzheimer's disease. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
11
|
Joshi P, Bisht A, Joshi S, Semwal D, Nema NK, Dwivedi J, Sharma S. Ameliorating potential of curcumin and its analogue in central nervous system disorders and related conditions: A review of molecular pathways. Phytother Res 2022; 36:3143-3180. [PMID: 35790042 DOI: 10.1002/ptr.7522] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Curcumin, isolated from turmeric (Curcuma longa L.) is one of the broadly studied phytomolecule owing to its strong antioxidant and anti-inflammatory potential and has been considered a promising therapeutic candidate in a wide range of disorders. Considering, its low bioavailability, different curcumin analogs have been developed to afford desired pharmacokinetic profile and therapeutic outcome in varied pathological states. Several preclinical and clinical studies have indicated that curcumin ameliorates mitochondrial dysfunction, inflammation, oxidative stress apoptosis-mediated neural cell degeneration and could effectively be utilized in the treatment of different neurodegenerative diseases. Hence, in this review, we have summarized key findings of experimental and clinical studies conducted on curcumin and its analogues with special emphasis on molecular pathways, viz. NF-kB, Nrf2-ARE, glial activation, apoptosis, angiogenesis, SOCS/JAK/STAT, PI3K/Akt, ERK1/2 /MyD88 /p38 MAPK, JNK, iNOS/NO, and MMP pathways involved in imparting ameliorative effects in the therapy of neurodegenerative disorders and associated conditions.
Collapse
Affiliation(s)
- Priyanka Joshi
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.,R & D, Patanjali Ayurved Ltd, Patanjali Food and Herbal Park, Haridwar, Uttarakhand, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Sushil Joshi
- R & D, Patanjali Ayurved Ltd, Patanjali Food and Herbal Park, Haridwar, Uttarakhand, India
| | - Deepak Semwal
- Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | - Neelesh Kumar Nema
- Paramount Kumkum Private Limited, Prestige Meridian-1, Bangalore, Karnataka, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| |
Collapse
|
12
|
Harper JD, Fan KH, Aslam MM, Snitz BE, DeKosky ST, Lopez OL, Feingold E, Kamboh MI. Genome-Wide Association Study of Incident Dementia in a Community-Based Sample of Older Subjects. J Alzheimers Dis 2022; 88:787-798. [PMID: 35694926 PMCID: PMC9359180 DOI: 10.3233/jad-220293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Alzheimer’s disease (AD) is a complex disease influenced by the environment and genetics; however, much of the genetic component remains unaccounted for. Objective: The purpose of this work was to use genome-wide association analyses to detect genetic associations with incident AD in a sample of older adults aged 75 and above. Methods: We performed a genome-wide association study (GWAS) on genome-wide genotyped and imputed data (14,072,053 variants) on the Gingko Evaluation of Memory (GEM) study sample consisting of 424 incident dementia (mean age = 84.46±3.91) and 2,206 non-demented (mean age = 84.55±3.23) subjects. Results: The established association of APOE*4 carriers with AD was confirmed in this community-based sample of older subjects (odds ratio (OR) = 2.22; p = 9.36E-14) and was stronger in females (OR = 2.72; p = 1.74E-10) than in males (OR = 1.88; p = 2.43E-05). We observed a novel genome-wide significant (GWS) locus on chromosome 12 near ncRNA LOC105369711/rs148377161 (OR = 3.31; p = 1.66E-08). In addition, sex-stratified analyses identified two novel associations in males: one near ncRNA LOC729987/rs140076909 on chromosome 1 (OR = 4.51; p = 3.72E-08) and the other approaching GWS near ncRNA LOC105375138/rs117803234 on chromosome 7 (OR = 3.76; p = 6.93E-08). Conclusion: The use of community-based samples of older individuals and incident dementia as a phenotype may be a helpful approach for the identification of novel genes for AD, which may not be detected in standard case-control studies. Replication of these signals and further studies of these regions and genes will help to provide a clearer picture for their role in AD.
Collapse
Affiliation(s)
- Jordan D Harper
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kang-Hsien Fan
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Muaaz Aslam
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beth E Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven T DeKosky
- Department of Neurology, College of Medicine, University of Florida, FL, USA
| | - Oscar L Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Tomaras S, Keyßer G, Feist E. Curcumin: Useful add-on for Rheumatic Diseases? J Clin Med 2022; 11:2908. [PMID: 35629033 PMCID: PMC9143911 DOI: 10.3390/jcm11102908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 01/12/2023] Open
Abstract
Plant-derived nutraceuticals are proposed as new key instruments to represent a profound "back to basics" shift in medical treatment. Data accumulated over the past ten years suggest that curcumin, the major active compound of the turmeric plant, has anti-inflammatory properties. It has yet to be determined whether the anti-inflammatory profile of curcumin is potent enough to justify the application of this substance as a nutritional supplement for patients with rheumatic diseases. To address this question, the most relevant in vitro studies that investigate the mechanism of action of curcumin were reviewed in this article. In addition, a total of 18 animal and human trials were evaluated. The pleiotropic, anti-inflammatory and immunomodulatory effects of curcumin were observed in animal studies. In addition, human trials demonstrated promising findings. In these studies, curcumin was able to reduce the expression of proinflammatory cytokines, lower the level of the C-reactive protein and improve clinical parameters. A limiting factor of the application of curcumin is the inconsistent bioavailability of the substance. Therefore, new formulations have been developed to improve the pharmacodynamic profile of curcumin. The future acceptance of the substance is dependent on new controlled clinical trials with a standardised formulation of curcumin administered as well as standard of care.
Collapse
Affiliation(s)
- Stylianos Tomaras
- Department of Rheumatology, HELIOS Clinic Vogelsang-Gommern, 39245 Vogelsang-Gommern, Germany;
| | - Gernot Keyßer
- Clinic for Internal Medicine II, Department of Internal Medicine, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, 06120 Halle, Germany;
| | - Eugen Feist
- Department of Rheumatology, HELIOS Clinic Vogelsang-Gommern, 39245 Vogelsang-Gommern, Germany;
| |
Collapse
|
14
|
Bioactive Compounds and Their Derivatives: An Insight into Prospective Phytotherapeutic Approach against Alzheimer’s Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5100904. [PMID: 35450410 PMCID: PMC9017558 DOI: 10.1155/2022/5100904] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative brain disorder that causes cellular response alterations, such as impaired cholinergic mechanism, amyloid-beta (Aβ) AD aggregation, neuroinflammation, and several other pathways. AD is still the most prevalent form of dementia and affects many individuals across the globe. The exact cause of the disorder is obscure. There are yet no effective medications for halting, preventing, or curing AD's progress. Plenty of natural products are isolated from several sources and analyzed in preclinical and clinical settings for neuroprotective effects in preventing and treating AD. In addition, natural products and their derivatives have been promising in treating and preventing AD. Natural bioactive compounds play an active modulatory role in the pathological molecular mechanisms of AD development. This review focuses on natural products from plant sources and their derivatives that have demonstrated neuroprotective activities and maybe promising to treat and prevent AD. In addition, this article summarizes the literature pertaining to natural products as agents in the treatment of AD. Rapid metabolism, nonspecific targeting, low solubility, lack of BBB permeability, and limited bioavailability are shortcomings of most bioactive molecules in treating AD. We can use nanotechnology and nanocarriers based on different types of approaches.
Collapse
|
15
|
Bukhari SNA. Dietary Polyphenols as Therapeutic Intervention for Alzheimer’s Disease: A Mechanistic Insight. Antioxidants (Basel) 2022; 11:antiox11030554. [PMID: 35326204 PMCID: PMC8945272 DOI: 10.3390/antiox11030554] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Dietary polyphenols encompass a diverse range of secondary metabolites found in nature, such as fruits, vegetables, herbal teas, wine, and cocoa products, etc. Structurally, they are either derivatives or isomers of phenol acid, isoflavonoids and possess hidden health promoting characteristics, such as antioxidative, anti-aging, anti-cancerous and many more. The use of such polyphenols in combating the neuropathological war raging in this generation is currently a hotly debated topic. Lately, Alzheimer’s disease (AD) is emerging as the most common neuropathological disease, destroying the livelihoods of millions in one way or another. Any therapeutic intervention to curtail its advancement in the generation to come has been in vain to date. Using dietary polyphenols to construct the barricade around it is going to be an effective strategy, taking into account their hidden potential to counter multifactorial events taking place under such pathology. Besides their strong antioxidant properties, naturally occurring polyphenols are reported to have neuroprotective effects by modulating the Aβ biogenesis pathway in Alzheimer’s disease. Thus, in this review, I am focusing on unlocking the hidden secrets of dietary polyphenols and their mechanistic advantages to fight the war with AD and related pathology.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf 2014, Saudi Arabia
| |
Collapse
|
16
|
Mukherjee S, Mishra AK, Peer GDG, Bagabir SA, Haque S, Pandey RP, Raj VS, Jain N, Pandey A, Kar SK. The Interplay of the Unfolded Protein Response in Neurodegenerative Diseases: A Therapeutic Role of Curcumin. Front Aging Neurosci 2021; 13:767493. [PMID: 34867295 PMCID: PMC8640216 DOI: 10.3389/fnagi.2021.767493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 12/25/2022] Open
Abstract
Abnormal accumulation of misfolded proteins in the endoplasmic reticulum and their aggregation causes inflammation and endoplasmic reticulum stress. This promotes accumulation of toxic proteins in the body tissues especially brain leading to manifestation of neurodegenerative diseases. The studies suggest that deregulation of proteostasis, particularly aberrant unfolded protein response (UPR) signaling, may be a common morbific process in the development of neurodegeneration. Curcumin, the mixture of low molecular weight polyphenolic compounds from turmeric, Curcuma longa has shown promising response to prevents many diseases including current global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and neurodegenerative disorders. The UPR which correlates positively with neurodegenerative disorders were found affected by curcumin. In this review, we examine the evidence from many model systems illustrating how curcumin interacts with UPR and slows down the development of various neurodegenerative disorders (ND), e.g., Alzheimer's and Parkinson's diseases. The recent global increase in ND patients indicates that researchers and practitioners will need to develop a new pharmacological drug or treatment to manage and cure these neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - G D Ghouse Peer
- Department of Biotechnology, Sri Ramaswamy Memorial (SRM) University, Sonepat, India
| | - Sali Abubaker Bagabir
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.,Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Ramendra Pati Pandey
- Department of Biotechnology, Sri Ramaswamy Memorial (SRM) University, Sonepat, India
| | - V Samuel Raj
- Department of Biotechnology, Sri Ramaswamy Memorial (SRM) University, Sonepat, India
| | - Neeraj Jain
- Division of Cancer Biology, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Atul Pandey
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States.,Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Santosh Kumar Kar
- Nano Herb Research Laboratory, Kalinga Institute of Industrial Technology (KIIT) Technology Business Incubator, KIIT University, Bhubaneswar, India
| |
Collapse
|
17
|
Dominguez LJ, Veronese N, Vernuccio L, Catanese G, Inzerillo F, Salemi G, Barbagallo M. Nutrition, Physical Activity, and Other Lifestyle Factors in the Prevention of Cognitive Decline and Dementia. Nutrients 2021; 13:nu13114080. [PMID: 34836334 PMCID: PMC8624903 DOI: 10.3390/nu13114080] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple factors combined are currently recognized as contributors to cognitive decline. The main independent risk factor for cognitive impairment and dementia is advanced age followed by other determinants such as genetic, socioeconomic, and environmental factors, including nutrition and physical activity. In the next decades, a rise in dementia cases is expected due largely to the aging of the world population. There are no hitherto effective pharmaceutical therapies to treat age-associated cognitive impairment and dementia, which underscores the crucial role of prevention. A relationship among diet, physical activity, and other lifestyle factors with cognitive function has been intensively studied with mounting evidence supporting the role of these determinants in the development of cognitive decline and dementia, which is a chief cause of disability globally. Several dietary patterns, foods, and nutrients have been investigated in this regard, with some encouraging and other disappointing results. This review presents the current evidence for the effects of dietary patterns, dietary components, some supplements, physical activity, sleep patterns, and social engagement on the prevention or delay of the onset of age-related cognitive decline and dementia.
Collapse
Affiliation(s)
- Ligia J. Dominguez
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
- Faculty of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy
- Correspondence: ; +39-0916554828
| | - Nicola Veronese
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Laura Vernuccio
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Giuseppina Catanese
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Flora Inzerillo
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Giuseppe Salemi
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy;
- UOC of Neurology, University Hospital “Paolo Giaccone”, 90100 Palermo, Italy
| | - Mario Barbagallo
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| |
Collapse
|
18
|
Neuroprotective Role of Polyphenols in Treatment of Neurological Disorders: A Review. Neuromodulation 2021. [DOI: 10.5812/ipmn.117170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
: The most frequent illnesses characterized by the gradual malfunctioning of brain neurons are neurodegenerative disorders (NDs). Genetic mutations and a range of biological processes can produce NDs. Alzheimer's disease (AD), Parkinson's disease (PD), and Multiple Sclerosis (MS) are all related to oxidative stress (OS). Reduced brain activity has become a greater health threat with a growing elderly population. It causes some pathophysiological alterations and is an important risk factor for a range of neurodegenerative illnesses. An increase in reactive oxygen species (ROS) can cause neuronal cell death, and it is thus essential to control ROS levels to maintain normal neuronal activity. Synthetic medicines are often used to treat neurological disorders; however, harmful effects have been reported. Multiple bodies of research have shown the effectiveness of polyphenols in the treatment of various NDs due to their negligible side effects. This review article describes the neuroprotection effects of polyphenols such as resveratrol, epigallocatechin-3-gallate, curcumin, and quercetin, as well as the signaling pathways and immune response controls through polyphenols.
Collapse
|
19
|
Diagnosis Test Meta-Analysis for Apolipoprotein E in Alzheimer's Disease. DISEASE MARKERS 2021; 2020:6486031. [PMID: 33101544 PMCID: PMC7569444 DOI: 10.1155/2020/6486031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/17/2020] [Accepted: 09/13/2020] [Indexed: 11/25/2022]
Abstract
Objective To evaluate the diagnostic value of apolipoprotein E (APOE) gene in Alzheimer's disease (AD). Methods Databases including PubMed, EMBASE, Google Scholar, Wanfang Med online, China National Knowledge Infrastructure (CNKI), and China Biomedical Literature Database (CBM) were searched for literatures in English or Chinese. No limitations on the date. The sensitivity, specificity, likelihood ratio, and diagnostic odds ratio were pooled for meta-analysis. The symmetric receiver operator characteristic curve (SROC) and Fagan's Nomogram were drawn, and metaregression and subgroup analysis were used to explore the source of heterogeneity. Results A total of 13 studies, including 2662 cases and 8843 controls, were analyzed. The combined sensitivity (SEN) was 0.62 (95% CI (0.58-0.66)), specificity (SPE) was 0.84 (95% CI (0.81-0.86)), the positive likelihood ratio was 3.8 (95% CI (3.3-4.3)), and the negative likelihood ratio was 0.45 (95% CI (0.41-0.49)). The area under the ROC curve was 0.80, and the diagnostic ratio (DOR) was 8. Neither publication bias was detected in Deeks' funnel plot, nor threshold effect was shown in the SROC. Metaregression analysis showed that the diagnostic methods, experimental design, and sample size contributed to the heterogeneity in SEN, while the diagnostic methods, experimental design, blind evaluation on test results, and sample size contributed to the heterogeneity in SPE. When the pretest probability was set as 50%, the posterior probability in Fagan's Nomogram was 79%, the positive likelihood ratio (LRP) was 5, and the negative likelihood ratio (LRN) was 0.42. Conclusions AD could neither be confirmed nor excluded by the APOE genotype test. The sensitivity and specificity of the APOE gene test were relatively low in the diagnosis of AD. The diagnostic value of APOE ε4 gene in AD was moderate; it might play an important role in the prevention of AD.
Collapse
|
20
|
Liu Y, Cong L, Han C, Li B, Dai R. Recent Progress in the Drug Development for the Treatment of Alzheimer's Disease Especially on Inhibition of Amyloid-peptide Aggregation. Mini Rev Med Chem 2021; 21:969-990. [PMID: 33245270 DOI: 10.2174/1389557520666201127104539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
As the world 's population is aging, Alzheimer's disease (AD) has become a big concern since AD has started affecting younger people and the population of AD patients is increasing worldwide. It has been revealed that the neuropathological hallmarks of AD are typically characterized by the presence of neurotoxic extracellular amyloid plaques in the brain, which are surrounded by tangles of neuronal fibers. However, the causes of AD have not been completely understood yet. Currently, there is no drug to effectively prevent AD or to completely reserve the symptoms in the patients. This article reviews the pathological features associated with AD, the recent progress in research on the drug development to treat AD, especially on the discovery of natural product derivatives to inhibit Aβ peptide aggregation as well as the design and synthesis of Aβ peptide aggregation inhibitors to treat AD.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lin Cong
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 10081, China
| | - Chu Han
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bo Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 10081, China
| |
Collapse
|
21
|
Chetty D, Abrahams S, van Coller R, Carr J, Kenyon C, Bardien S. Movement of prion-like α-synuclein along the gut-brain axis in Parkinson's disease: A potential target of curcumin treatment. Eur J Neurosci 2021; 54:4695-4711. [PMID: 34043864 DOI: 10.1111/ejn.15324] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/06/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022]
Abstract
A pathological hallmark of the neurodegenerative disorder, Parkinson's disease (PD), is aggregation of toxic forms of the presynaptic protein, α-synuclein in structures known as Lewy bodies. α-Synuclein pathology is found in both the brain and gastrointestinal tracts of affected individuals, possibly due to the movement of this protein along the vagus nerve that connects the brain to the gut. In this review, we discuss current insights into the spread of α-synuclein pathology along the gut-brain axis, which could be targeted for therapeutic interventions. The prion-like propagation of α-synuclein, and the clinical manifestations of gastrointestinal dysfunction in individuals living with PD, are discussed. There is currently insufficient evidence that surgical alteration of the vagus nerve, or removal of gut-associated lymphoid tissues, such as the appendix and tonsils, are protective against PD. Furthermore, we propose curcumin as a potential candidate to prevent the spread of α-synuclein pathology in the body by curcumin binding to α-synuclein's non-amyloid β-component (NAC) domain. Curcumin is an active component of the food spice turmeric and is known for its antioxidant, anti-inflammatory, and potentially neuroprotective properties. We hypothesize that once α-synuclein is bound to curcumin, both molecules are subsequently excreted from the body. Therefore, dietary supplementation with curcumin over one's lifetime has potential as a novel approach to complement existing PD treatment and/or prevention strategies. Future studies are required to validate this hypothesis, but if successful, this could represent a significant step towards improved nutrient-based therapeutic interventions and preventative strategies for this debilitating and currently incurable disorder.
Collapse
Affiliation(s)
- Devina Chetty
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Shameemah Abrahams
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Riaan van Coller
- Faculty of Health Sciences, School of Medicine, Department of Neurology, University of Pretoria, Pretoria, South Africa
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Colin Kenyon
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
22
|
Firdaus Z, Singh TD. An Insight in Pathophysiological Mechanism of Alzheimer's Disease and its Management Using Plant Natural Products. Mini Rev Med Chem 2021; 21:35-57. [PMID: 32744972 DOI: 10.2174/1389557520666200730155928] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is an age-associated nervous system disorder and a leading cause of dementia worldwide. Clinically, it is described by cognitive impairment and pathophysiologically by deposition of amyloid plaques and neurofibrillary tangles in the brain and neurodegeneration. This article reviews the pathophysiology, course of neuronal degeneration, and the various possible hypothesis of AD progression. These hypotheses include amyloid cascade, tau hyperphosphorylation, cholinergic disruption, metal dysregulation, vascular dysfunction, oxidative stress, and neuroinflammation. There is an exponential increase in the occurrence of AD in the recent few years that indicate an urgent need to develop some effective treatment. Currently, only 2 classes of drugs are available for AD treatment, namely acetylcholinesterase inhibitor and NMDA receptor antagonist. Since AD is a complex neurological disorder and these drugs use a single target approach, alternatives are needed due to limited effectiveness and unpleasant side-effects of these drugs. Currently, plants have been used for drug development research especially because of their multiple sites of action and fewer side effects. Uses of some herbs and phytoconstituents for the management of neuronal disorders like AD have been documented in this article. Phytochemical screening of these plants shows the presence of many beneficial constituents like flavonoids, triterpenes, alkaloids, sterols, polyphenols, and tannins. These compounds show a wide array of pharmacological activities, such as anti-amyloidogenic, anticholinesterase, and antioxidants. This article summarizes the present understanding of AD progression and gathers biochemical evidence from various works on natural products that can be useful in the management of this disease.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi - 221005, India
| | - Tryambak Deo Singh
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi - 221005, India
| |
Collapse
|
23
|
Chen X, Drew J, Berney W, Lei W. Neuroprotective Natural Products for Alzheimer's Disease. Cells 2021; 10:1309. [PMID: 34070275 PMCID: PMC8225186 DOI: 10.3390/cells10061309] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the number one neurovegetative disease, but its treatment options are relatively few and ineffective. In efforts to discover new strategies for AD therapy, natural products have aroused interest in the research community and in the pharmaceutical industry for their neuroprotective activity, targeting different pathological mechanisms associated with AD. A wide variety of natural products from different origins have been evaluated preclinically and clinically for their neuroprotective mechanisms in preventing and attenuating the multifactorial pathologies of AD. This review mainly focuses on the possible neuroprotective mechanisms from natural products that may be beneficial in AD treatment and the natural product mixtures or extracts from different sources that have demonstrated neuroprotective activity in preclinical and/or clinical studies. It is believed that natural product mixtures or extracts containing multiple bioactive compounds that can work additively or synergistically to exhibit multiple neuroprotective mechanisms might be an effective approach in AD drug discovery.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Joshua Drew
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Wren Berney
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Presbyterian College, Clinton, SC 29325, USA
| |
Collapse
|
24
|
Rackova L, Mach M, Brnoliakova Z. An update in toxicology of ageing. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103611. [PMID: 33581363 DOI: 10.1016/j.etap.2021.103611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The field of ageing research has been rapidly advancing in recent decades and it had provided insight into the complexity of ageing phenomenon. However, as the organism-environment interaction appears to significantly affect the organismal pace of ageing, the systematic approach for gerontogenic risk assessment of environmental factors has yet to be established. This puts demand on development of effective biomarker of ageing, as a relevant tool to quantify effects of gerontogenic exposures, contingent on multidisciplinary research approach. Here we review the current knowledge regarding the main endogenous gerontogenic pathways involved in acceleration of ageing through environmental exposures. These include inflammatory and oxidative stress-triggered processes, dysregulation of maintenance of cellular anabolism and catabolism and loss of protein homeostasis. The most effective biomarkers showing specificity and relevancy to ageing phenotypes are summarized, as well. The crucial part of this review was dedicated to the comprehensive overview of environmental gerontogens including various types of radiation, certain types of pesticides, heavy metals, drugs and addictive substances, unhealthy dietary patterns, and sedentary life as well as psychosocial stress. The reported effects in vitro and in vivo of both recognized and potential gerontogens are described with respect to the up-to-date knowledge in geroscience. Finally, hormetic and ageing decelerating effects of environmental factors are briefly discussed, as well.
Collapse
Affiliation(s)
- Lucia Rackova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia.
| | - Mojmir Mach
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| | - Zuzana Brnoliakova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
25
|
Zou X, Himbert S, Dujardin A, Juhasz J, Ros S, Stöver HDH, Rheinstädter MC. Curcumin and Homotaurine Suppress Amyloid-β 25-35 Aggregation in Synthetic Brain Membranes. ACS Chem Neurosci 2021; 12:1395-1405. [PMID: 33826295 DOI: 10.1021/acschemneuro.1c00057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Amyloid-β (Aβ) peptides spontaneously aggregate into β- and cross-β-sheets in model brain membranes. These nanometer sized can fuse into larger micrometer sized clusters and become extracellular and serve as nuclei for further plaque and fibril growth. Curcumin and homotaurine represent two different types of Aβ aggregation inhibitors. While homotaurine is a peptic antiaggregant that binds to amyloid peptides, curcumin is a nonpeptic molecule that can inhibit aggregation by changing membrane properties. By using optical and fluorescent microscopy, X-ray diffraction, and UV-vis spectroscopy, we study the effect of curcumin and homotaurine on Aβ25-35 aggregates in synthetic brain membranes. Both molecules partition spontaneously and uniformly in membranes and do not lead to observable membrane defects or disruption in our experiments. Both curcumin and homotaurine were found to significantly reduce the number of small, nanoscopic Aβ aggregates and the corresponding β- and cross-β-sheet signals. While a number of research projects focus on potential drug candidates that target Aβ peptides directly, membrane-lipid therapy explores membrane-mediated pathways to suppress peptide aggregation. Based on the results obtained, we conclude that membrane active drugs can be as efficient as peptide targeting drugs in inhibiting amyloid aggregation in vitro.
Collapse
Affiliation(s)
- Xingyuan Zou
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Alix Dujardin
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Janos Juhasz
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Department of Medical Physics, Juravinski Cancer Centre, Hamilton, ON L8V 5C2, Canada
| | - Samantha Ros
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Harald D. H. Stöver
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
26
|
Alzobaidi N, Quasimi H, Emad NA, Alhalmi A, Naqvi M. Bioactive Compounds and Traditional Herbal Medicine: Promising Approaches for the Treatment of Dementia. Degener Neurol Neuromuscul Dis 2021; 11:1-14. [PMID: 33880073 PMCID: PMC8051957 DOI: 10.2147/dnnd.s299589] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Dementia is a term that encompasses a group of clinical symptoms affecting memory, thinking and social abilities, characterized by progressive impairment of memory performance and cognitive functions. There are several factors involved in the pathogenesis and progression of dementia, such as old age, brain ischemia, toxin exposure, and oxidative stress. There are extensive similarities between dementia and Alzheimer's disease (AD) either in clinical manifestations or experimental animal models. AD is the most dominant form of dementia, characterized by the accumulation of beta-amyloid protein and cholinergic neurotransmission deficits in the brain. Currently available medications for the treatment of dementia, such as choline esterase inhibitors, N-methyl-D-aspartate (NMDA) antagonists (memantine), have short-term efficacy and only relieve symptoms rather than targeting the main underlying pathogenesis. Several animal studies and clinical trials are being conducted to provide a rational approach to these medicinal plants in the prevention or treatment of memory deficits. This review highlights the potential effects of medicinal plants and their derived lead molecules, and explains the related mechanisms and effects reviewed from published literature as major thrust aspects and hopeful strategies in the prevention or treatment of dementia.
Collapse
Affiliation(s)
- Nafaa Alzobaidi
- Department of Pharmacology, Hamdard Institute of Medical Sciences and Research (HIMSR), Jamia Hamdard, New Delhi, India
| | - Huma Quasimi
- Department of Physiology, Hamdard Institute of Medical Sciences and Research (HIMSR), Jamia Hamdard, New Delhi, India
| | - Nasr A Emad
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, College of Pharmacy, Aden University, Aden, Yemen
| | - Maaz Naqvi
- Department of Pharmacology, Hamdard Institute of Medical Sciences and Research (HIMSR), Jamia Hamdard, New Delhi, India
| |
Collapse
|
27
|
A State of the Art of Antioxidant Properties of Curcuminoids in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22063168. [PMID: 33804658 PMCID: PMC8003642 DOI: 10.3390/ijms22063168] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/07/2023] Open
Abstract
Neurodegenerative diseases represent a set of pathologies characterized by an irreversible and progressive, and a loss of neuronal cells in specific areas of the brain. Oxidative phosphorylation is a source of energy production by which many cells, such as the neuronal cells, meet their energy needs. Dysregulations of oxidative phosphorylation induce oxidative stress, which plays a key role in the onset of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). To date, for most neurodegenerative diseases, there are no resolute treatments, but only interventions capable of alleviating the symptoms or slowing the course of the disease. Therefore, effective neuroprotection strategies are needed. In recent years, natural products, such as curcuminoids, have been intensively explored and studied for their therapeutic potentials in several neurodegenerative diseases. Curcuminoids are, nutraceutical compouns, that owen several therapeutic properties such as anti-oxidant, anti-inflammatory and neuroprotective effects. In this context, the aim of this review was to provide an overview of preclinical and clinical evidence aimed to illustrate the antioxidant effects of curcuminoids in neurodegenerative diseases. Promising results from preclinical studies encourage the use of curcuminoids for neurodegeneration prevention and treatment.
Collapse
|
28
|
The role of curcumin in aging and senescence: Molecular mechanisms. Biomed Pharmacother 2021; 134:111119. [DOI: 10.1016/j.biopha.2020.111119] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
|
29
|
Wang M, Kou J, Wang C, Yu X, Xie X, Pang X. Curcumin inhibits APOE4-induced injury by activating peroxisome proliferator-activated receptor-γ (PPARγ) in SH-SY5Y cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 23:1576-1583. [PMID: 33489032 PMCID: PMC7811813 DOI: 10.22038/ijbms.2020.47184.10858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective(s): The human apolipoprotein E4 (APOE4) is associated with various brain injuries and neurodegenerative changes. Curcumin is an active ingredient isolated from the root of turmeric and is believed to have therapeutic effects on neurodegenerative diseases. The aim of this study was to investigate the effects of curcumin on APOE4-induced neurological damage and explore its molecular mechanisms. Materials and Methods: SH-SY5Y cells were pretreated with curcumin for 24 hr and transfected with human APOE4 gene using Lipofectamine 2000. Then, the effect of curcumin on the transfected cells was detected by ELISA, immunofluorescence staining and Western blot. Results: The production or expression of proinflammatory cytokines and proteins, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was significantly increased in SH-SY5Y cells transfected with APOE4, and curcumin inhibited APOE4-induced cellular inflammatory damage. Western blot analysis showed that, after transfection with APOE4, the expression of total nuclear factor kappa B (NF-κB) p65 and p-NF-κB p65 in the nucleus was increased, and curcumin inhibited the nuclear translocation of p65. The overexpression of APOE4 inhibited the expression of peroxisome proliferator-activated receptor-γ (PPARγ), whereas curcumin reversed and increased the expression of PPARγ protein. Down-regulating PPAR-γ with the inhibitor GW9662 and the shPPARγ gene confirmed that the NF-κB signaling pathway was inhibited by PPARγ. Conclusion: This study suggests that APOE4 overexpression can induce cellular inflammatory damage, and pretreatment of curcumin could exert an anti-inflammatory effect by upregulating the expression of PPARγ to inhibit the activation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Minghui Wang
- Pharmaceutical Institute, Pharmaceutical College of Henan University, Kaifeng 475004, China
| | - Jiejian Kou
- Pharmaceutical Institute, Pharmaceutical College of Henan University, Kaifeng 475004, China
| | - Chunli Wang
- Pharmaceutical Institute, Pharmaceutical College of Henan University, Kaifeng 475004, China
| | - Xiuying Yu
- Agricultural College of Inner Mongolia University for Nationalities, Tongliao, 028043, China
| | - Xinmei Xie
- Pharmaceutical Institute, Pharmaceutical College of Henan University, Kaifeng 475004, China
| | - Xiaobin Pang
- Pharmaceutical Institute, Pharmaceutical College of Henan University, Kaifeng 475004, China
| |
Collapse
|
30
|
Fukutomi R, Ohishi T, Koyama Y, Pervin M, Nakamura Y, Isemura M. Beneficial Effects of Epigallocatechin-3- O-Gallate, Chlorogenic Acid, Resveratrol, and Curcumin on Neurodegenerative Diseases. Molecules 2021; 26:E415. [PMID: 33466849 PMCID: PMC7829779 DOI: 10.3390/molecules26020415] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Many observational and clinical studies have shown that consumption of diets rich in plant polyphenols have beneficial effects on various diseases such as cancer, obesity, diabetes, cardiovascular diseases, and neurodegenerative diseases (NDDs). Animal and cellular studies have indicated that these polyphenolic compounds contribute to such effects. The representative polyphenols are epigallocatechin-3-O-gallate in tea, chlorogenic acids in coffee, resveratrol in wine, and curcumin in curry. The results of human studies have suggested the beneficial effects of consumption of these foods on NDDs including Alzheimer's and Parkinson's diseases, and cellular animal experiments have provided molecular basis to indicate contribution of these representative polyphenols to these effects. This article provides updated information on the effects of these foods and their polyphenols on NDDs with discussions on mechanistic aspects of their actions mainly based on the findings derived from basic experiments.
Collapse
Affiliation(s)
- Ryuuta Fukutomi
- Quality Management Division, Higuchi Inc. Minato-ku, Tokyo 108-0075, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Numazu, Shizuoka 410-0301, Japan;
| | - Yu Koyama
- Shizuoka Eiwa Gakuin University Junior College, Suruga-ku, Shizuoka 422-8545, Japan;
| | - Monira Pervin
- Tea Science Research Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan; (M.P.); (Y.N.)
| | - Yoriyuki Nakamura
- Tea Science Research Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan; (M.P.); (Y.N.)
| | - Mamoru Isemura
- Tea Science Research Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan; (M.P.); (Y.N.)
| |
Collapse
|
31
|
Abstract
In India, increasing lifespan and decreasing fertility rates have resulted in a growing number of older persons. By 2050, people over 60 years of age are predicted to constitute 19.1% of the total population. This ageing of the population is expected to be accompanied by a dramatic increase in the prevalence of dementia. The aetiopathogenesis of dementia has been the subject of a number of prospective longitudinal studies in North America and Europe; however, the findings from these studies cannot simply be translated to the Indian population. The population of India is extremely diverse in terms of socio-economic, cultural, linguistic, geographical, lifestyle-related and genetic factors. Indeed, preliminary data from recently initiated longitudinal studies in India indicate that the prevalence of vascular and metabolic risk factors, as well as white matter hyperintensities, differs between urban and rural cohorts. More information on the complex role of vascular risk factors, gender and genetic influences on dementia prevalence and progression in Indian populations is urgently needed. Low-cost, culturally appropriate and scalable interventions need to be developed expeditiously and implemented through public health measures to reduce the growing burden of dementia. Here, we review the literature concerning dementia epidemiology and risk factors in the Indian population and discuss the future work that needs to be performed to put in place public health interventions to mitigate the burden of dementia.
Collapse
|
32
|
Nose-to-Brain Delivery of Antioxidants as a Potential Tool for the Therapy of Neurological Diseases. Pharmaceutics 2020; 12:pharmaceutics12121246. [PMID: 33371285 PMCID: PMC7766211 DOI: 10.3390/pharmaceutics12121246] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/13/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress has a key role in the pathogenesis of neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases and can be an important cause of the damages in cerebral ischemia. Oxidative stress arises from high levels of reactive oxygen species (ROS). Consequently, on this rational base, antioxidants (many of natural origin) are proposed as potential drugs to prevent ROS noxious actions because they can protect the target tissues from the oxidative stress. However, the potential of antioxidants is limited, owing to the presence of the blood-brain barrier (BBB), which is difficult to cross with a consequent low bioavailability of the drug into the brain after systemic (intravenous, intraperitoneal, oral) administrations. One strategy to improve the delivery of antioxidants to the brain involves the use of the so-called nose-to-brain route, with the administration of the antioxidant in specific nasal formulations and its passage to the central nervous system (CNS) mainly through the olfactory nerve way. In the current literature, many examples show encouraging results in studies carried out in cell cultures and in animal models about the potential neuroprotective effects of antioxidants when administered through the nose. This review concerns the nose-to-brain route for the brain targeting of antioxidants as a potential tool for the therapy of neurological diseases.
Collapse
|
33
|
Yang Y, Zhang L. The effects of caloric restriction and its mimetics in Alzheimer's disease through autophagy pathways. Food Funct 2020; 11:1211-1224. [PMID: 32068753 DOI: 10.1039/c9fo02611h] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that commonly occurs among older individuals. Increasing evidence suggests that a low-caloric diet might be a promising adjuvant therapeutic strategy for slowing or preventing the pathogenesis and progression of AD through the induction of autophagy. Several intracellular pathways have been implicated in caloric restriction (CR)-induced autophagy. In this review, we summarized the efficacy of CR as well as its mimetics (resveratrol, spermidine, aspirin, rapamycin, metformin, and curcumin) in improving cognitive function of rodent models of AD. On the basis of recent in vitro and animal studies, the beneficial effects of CR- or caloric restriction mimetics-induced autophagy in alleviating amyloid burden and tau pathology of AD were also discussed.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pharmacology, Hangzhou Key Laboratory of Medical Neurobiology, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China.
| | - Lihui Zhang
- Department of Pharmacology, Hangzhou Key Laboratory of Medical Neurobiology, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
34
|
Khan A, Jahan S, Imtiyaz Z, Alshahrani S, Antar Makeen H, Mohammed Alshehri B, Kumar A, Arafah A, Rehman MU. Neuroprotection: Targeting Multiple Pathways by Naturally Occurring Phytochemicals. Biomedicines 2020; 8:E284. [PMID: 32806490 PMCID: PMC7459826 DOI: 10.3390/biomedicines8080284] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022] Open
Abstract
With the increase in the expectancy of the life span of humans, neurodegenerative diseases (NDs) have imposed a considerable burden on the family, society, and nation. In defiance of the breakthroughs in the knowledge of the pathogenesis and underlying mechanisms of various NDs, very little success has been achieved in developing effective therapies. This review draws a bead on the availability of the nutraceuticals to date for various NDs (Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Huntington's disease, vascular cognitive impairment, Prion disease, Spinocerebellar ataxia, Spinal muscular atrophy, Frontotemporal dementia, and Pick's disease) focusing on their various mechanisms of action in various in vivo and in vitro models of NDs. This review is distinctive in its compilation to critically review preclinical and clinical studies of the maximum phytochemicals in amelioration and prevention of almost all kinds of neurodegenerative diseases and address their possible mechanism of action. PubMed, Embase, and Cochrane Library searches were used for preclinical studies, while ClinicalTrials.gov and PubMed were searched for clinical updates. The results from preclinical studies demonstrate the efficacious effects of the phytochemicals in various NDs while clinical reports showing mixed results with promise for phytochemical use as an adjunct to the conventional treatment in various NDs. These studies together suggest that phytochemicals can significantly act upon different mechanisms of disease such as oxidative stress, inflammation, apoptotic pathways, and gene regulation. However, further clinical studies are needed that should include the appropriate biomarkers of NDs and the effect of phytochemicals on them as well as targeting the appropriate population.
Collapse
Affiliation(s)
- Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Sadaf Jahan
- Medical Laboratories Department, College of Applied Medical Sciences, Majmaah University, Majmaah 15341, Saudi Arabia; (S.J.); (B.M.A.)
| | - Zuha Imtiyaz
- Clinical Drug Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Hafiz Antar Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Bader Mohammed Alshehri
- Medical Laboratories Department, College of Applied Medical Sciences, Majmaah University, Majmaah 15341, Saudi Arabia; (S.J.); (B.M.A.)
| | - Ajay Kumar
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, India;
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.U.R.)
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.U.R.)
| |
Collapse
|
35
|
Sullivan P. Influence of Western diet and APOE genotype on Alzheimer's disease risk. Neurobiol Dis 2020; 138:104790. [DOI: 10.1016/j.nbd.2020.104790] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022] Open
|
36
|
Wu J, Hasselgren C, Zettergren A, Zetterberg H, Blennow K, Skoog I, Halleröd B. The impact of social networks and APOE ε4 on dementia among older adults: tests of possible interactions. Aging Ment Health 2020; 24:395-404. [PMID: 30587010 DOI: 10.1080/13607863.2018.1531368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objectives: Emerging evidence suggests that social networks may protect against the development of dementia among older adults. In this study we analysed the association between social networks, the apolipoprotein E (APOE) ε4 allele, and dementia. We also investigated whether there were gender-specific patterns in this respect.Method: The analyses used population-based longitudinal data from Gothenburg, Sweden: the H70 Birth Cohort Study and the Prospective Population Study on Women (PPSW). A total of 580 individuals born in 1930 underwent semi-structured neuropsychiatric examinations in 2000-2001. Follow-up examinations were carried out in 2005-2006 and 2009-2010. The timing of dementia onset was analysed using Cox proportional hazards regression.Results: The presence of the APOE ε4 allele affected the risk of developing dementia in both genders. Among women, distant social networks had a protective effect on dementia, while among men the significant associations between close social networks and dementia did not remain after controlling for covariates. Significant interactions between social networks and the APOE ε4 allele were not found.Conclusion: Strong social networks do not seem to moderate the increased risk of dementia implied by the APOE ε4 allele. Nevertheless, our results underline the importance of strong social networks in postponing dementia onset and indicate that their impact may differ among men and women.
Collapse
Affiliation(s)
- Jing Wu
- Department of Sociology and Work Science, University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Mölndal, Sweden
| | - Caroline Hasselgren
- Department of Sociology and Work Science, University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Mölndal, Sweden
| | - Anna Zettergren
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ingmar Skoog
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Mölndal, Sweden
| | - Björn Halleröd
- Department of Sociology and Work Science, University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
37
|
Pogačnik L, Ota A, Poklar Ulrih N. An Overview of Crucial Dietary Substances and Their Modes of Action for Prevention of Neurodegenerative Diseases. Cells 2020; 9:E576. [PMID: 32121302 PMCID: PMC7140513 DOI: 10.3390/cells9030576] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/16/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative diseases, namely Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis are becoming one of the main health concerns due to the increasing aging of the world's population. These diseases often share the same biological mechanisms, including neuroinflammation, oxidative stress, and/or protein fibrillation. Recently, there have been many studies published pointing out the possibilities to reduce and postpone the clinical manifestation of these deadly diseases through lifelong consumption of some crucial dietary substances, among which phytochemicals (e.g., polyphenols) and endogenous substances (e.g., acetyl-L-carnitine, coenzyme Q10, n-3 poysaturated fatty acids) showed the most promising results. Another important issue that has been pointed out recently is the availability of these substances to the central nervous system, where they have to be present in high enough concentrations in order to exhibit their neuroprotective properties. As so, such the aim of this review is to summarize the recent findings regarding neuroprotective substances, their mechanisms of action, as well as to point out therapeutic considerations, including their bioavailability and safety for humans.
Collapse
Affiliation(s)
| | | | - Nataša Poklar Ulrih
- Department of Food Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.P.); (A.O.)
| |
Collapse
|
38
|
Liu L, Wu Q, Zhong W, Chen Y, Zhang W, Ren H, Sun L, Sun J. Microarray Analysis of Differential Gene Expression in Alzheimer's Disease Identifies Potential Biomarkers with Diagnostic Value. Med Sci Monit 2020; 26:e919249. [PMID: 31984950 PMCID: PMC7001516 DOI: 10.12659/msm.919249] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/04/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Alzheimer disease (AD) is a common and fatal subtype of dementia that remains a challenge to diagnose and treat. This study aimed to identify potential biomarkers that influence the prognosis of AD. MATERIAL AND METHODS A total of 6 gene expression profiles from the Gene Expression Omnibus (GEO) database were assessed for their potential as AD biomarkers. We identified differentially expressed genes (DEGs) using the prediction analysis for microarray (PAM) algorithm and obtained hub genes through the analysis of the protein-protein interaction (PPI) network and module analysis. RESULTS We identified 6 gene expression profiles from the GEO database and assessed their potential as AD biomarkers. Shared gene sets were extracted and integrated into large expression profile matrices. We identified 2514 DEGs including 68 upregulated- and 2446 downregulated genes through analysis of the limma package. We screened 379 significant DEGs including 68 upregulated and 307 downregulated genes for their ability to distinguish AD from control samples using PAM algorithm. Functional enrichment of the 379 target genes was produced from Database for Annotation, Visualization and Integrated Discovery.(DAVID) and included histone function, beta receptor signaling, cell growth, and angiogenesis. The downregulated genes were significantly enriched in MAPK signaling, synaptic signaling, neuronal apoptosis and AD associated pathways. Upon analysis of the PPI network, 32 hub genes including ENO2, CCT2, CALM2, ACACB, ATP5B, MDH1, and PP2CA were screened. Of these hub genes, NFKBIA and ACACB were upregulated and 29 genes were downregulated in AD patients. CONCLUSIONS We screened 379 significant DEGs as potential biomarkers of AD using PAM and obtained 32 hub genes through PPI network and module analysis. These findings reveal new potential AD biomarkers with prognostic and therapeutic value.
Collapse
Affiliation(s)
- Liping Liu
- Pharmaceutical College, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, P.R. China
| | - Qin Wu
- Medical Technology College, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, P.R. China
| | - Weiwei Zhong
- School of Public Foundation, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, P.R. China
| | - Yuping Chen
- School of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, P.R. China
| | - Wenying Zhang
- Institute of Biotechnology, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, P.R. China
| | - Huiling Ren
- Pharmaceutical College, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, P.R. China
| | - Ling Sun
- Pharmaceutical College, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, P.R. China
| | - Jihu Sun
- Department of Science and Technology, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, P.R. China
| |
Collapse
|
39
|
Bhatti GK, Reddy AP, Reddy PH, Bhatti JS. Lifestyle Modifications and Nutritional Interventions in Aging-Associated Cognitive Decline and Alzheimer's Disease. Front Aging Neurosci 2020; 11:369. [PMID: 31998117 PMCID: PMC6966236 DOI: 10.3389/fnagi.2019.00369] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a type of incurable neurodegenerative disease that is characterized by the accumulation of amyloid-β (Aβ; plaques) and tau hyperphosphorylation as neurofibrillary tangles (NFTs) in the brain followed by neuronal death, cognitive decline, and memory loss. The high prevalence of AD in the developed world has become a major public health challenge associated with social and economic burdens on individuals and society. Due to there being limited options for early diagnosis and determining the exact pathophysiology of AD, finding effective therapeutic strategies has become a great challenge. Several possible risk factors associated with AD pathology have been identified; however, their roles are still inconclusive. Recent clinical trials of the drugs targeting Aβ and tau have failed to find a cure for the AD pathology. Therefore, effective preventive strategies should be followed to reduce the exponential increase in the prevalence of cognitive decline and dementia, especially AD. Although the search for new therapeutic targets is a great challenge for the scientific community, the roles of lifestyle interventions and nutraceuticals in the prevention of many metabolic and neurodegenerative diseases are highly appreciated in the literature. In this article, we summarize the molecular mechanisms involved in AD pathology and the possible ameliorative action of lifestyle and nutritional interventions including diet, exercise, Calorie restriction (CR), and various bioactive compounds on cognitive decline and dementia. This article will provide insights into the role of non-pharmacologic interventions in the modulation of AD pathology, which may offer the benefit of improving quality of life by reducing cognitive decline and incident AD.
Collapse
Affiliation(s)
- Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Arubala P. Reddy
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - P. Hemachandra Reddy
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Speech, Language and Hearing Sciences Department, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jasvinder Singh Bhatti
- Department of Biotechnology and Microbial Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| |
Collapse
|
40
|
Chandra V, Mehta VS. Five Hundred Patients with Memory Loss in One Clinic in India: Does the Prevalence Vary Between Communities? J Alzheimers Dis Rep 2019; 3:313-317. [PMID: 31970324 PMCID: PMC6971816 DOI: 10.3233/adr-190140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This observational study reports on the cause of memory loss in 500 consecutive patients. It confirms the previously reported finding in a smaller sample of 100 patients. There have been several publications suggesting that the prevalence of dementia is lower in certain communities but the reason is not known. This study was conducted to see if it could explain the variation between communities. Also, the observation that dementia with Lewy bodies (24.4%) outnumbers cases of Alzheimer’s disease (5.8%) has not been reported by any other investigators and needs to be verified. This finding could open a new topic of research and also help in the management of patients.
Collapse
Affiliation(s)
- Vijay Chandra
- Primus Hospital, New Delhi, India.,Paras Hospitals, Gurgaon, Haryana, India
| | - Veer Singh Mehta
- Primus Hospital, New Delhi, India.,Paras Hospitals, Gurgaon, Haryana, India
| |
Collapse
|
41
|
J B, Das A, Sakthivel KM. Anthraquinone from Edible Fungi Pleurotus ostreatus Protects Human SH-SY5Y Neuroblastoma Cells Against 6-Hydroxydopamine-Induced Cell Death-Preclinical Validation of Gene Knockout Possibilities of PARK7, PINK1, and SNCA1 Using CRISPR SpCas9. Appl Biochem Biotechnol 2019; 191:555-566. [PMID: 31820379 DOI: 10.1007/s12010-019-03188-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
Parkinson's disease (PD) results from the degeneration of the nervous tissue brought about by ecological and hereditary components which affects nerve cells in the brain. It is the world's second most normal neurodegenerative issue, which can essentially weaken the personal satisfaction, make reliance, and trigger untimely mortality of affected people. The commonness pace of PD is 0.5-1% among individuals in the age group of 65-69 years and 1-3% among those 80 or more. Clinical appearances incorporate bradykinesia, tremors, unbending nature, and postural unsteadiness; spectrums of non-motor symptoms include psychological hindrance and passionate and behavioral brokenness. In this study, 6-OHDA-induced neurotoxicity was analyzed for various cytotoxicity analyses. The genes identified were PINK1 (PTEN-induced kinase 1), PARK7 (Parkinsonism-associated deglycase) and SNCA 1 (alpha synuclein1) validated using CRISPR spcas9 genome editing tool. In this study, Anthraquinone isolated from Pleurotus ostreatus was treated against a dopaminergic neurotoxin, 6-hydroxydopamine (6-OHDA), which induced neurotoxicity in SH-SY5Y cells. Experimental groups in SH-SY5Y neuroblastoma cells were treated with anthraquinone (50 nM) and 6-OHDA (100 nM). MTT and ROS assays were performed to assess the cell viability and oxidative stress within the cells, followed by mixed-member proportional (Mitochondrial membrane potential), dual staining, and immunoblotting. 6-OHDA-induced cell death in SH-SY5Y cells was dose-dependently attenuated by treatment with anthraquinone. The genes responsible for mutation were studied and the mutated RNAs knockout possibilities was studied using CRISPR spcas9 genome editing tool. Treatment with anthraquinone attenuated the level of oxidative stress and reduced the mitochondrial dysfunction associated with 6-OHDA treatment. Immunoblot analysis carried out with apoptotic markers showed that cytochrome C and caspase-3 expression increased significantly in anthraquinone-treated cells, whereas 6-OHDA-treated group showed a significant decrease when compared with an experimental control group. The mutated genes PARK7, PINK1, and SNCA1 were analyzed and found to exhibit four gene knock possibilities to treat PD. Reports demonstrate that other than following up on the biosynthesis of dopamine and its metabolites, these mixes counteract D2 receptors' extreme touchiness. It is proposed that further examinations need be directed to better understand the activity of the bioactive mixes circulated in these edible fungi Pleurotus ostreatus. The gene knockout possibilities identified by CRISPR SpCas9 will pave a way for better research for PD treatment.
Collapse
Affiliation(s)
- Bindhu J
- Molecular Diagnostics and Bacterial Pathogenomics Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, India
| | - Arunava Das
- Molecular Diagnostics and Bacterial Pathogenomics Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, India.
| | - K M Sakthivel
- Department of Biochemistry, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore, 641014, India
| |
Collapse
|
42
|
SoukhakLari R, Moezi L, Pirsalami F, Abkar M, Moosavi M. Curcumin-Loaded BSA Nanoparticles Protect More Efficiently Than Natural Curcumin Against Scopolamine-Induced Memory Retrieval Deficit. Basic Clin Neurosci 2019; 10:157-164. [PMID: 31031902 PMCID: PMC6484189 DOI: 10.32598/bcn.9.10.255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 03/27/2018] [Accepted: 10/13/2018] [Indexed: 11/20/2022] Open
Abstract
Introduction: There is evidence indicating that the rate of AD is lower in curry consuming populations. Then, there is an effort to elucidate if curcumin -as the main ingredient of turmeric-might affect the process of AD. However, in clinical trials of AD, a six-month curcumin treatment failed to show any progress, which might be attributable to its low bioavailability. In this line, a recent human study revealed that a more bioavailable solid lipid curcumin enhances cognition in aged adults. By the application of Bovine Serum Albumin (BSA), the current study aimed at converting curcumin to nano sizes and assessing its protective effects against scopolamine-induced passive avoidance memory retrieval deficit. Methods: Nanocurcumin was prepared via dissolution method. Male NMRI mice (20–25 g body weight) were used. The effective doses of nanocurcumin were selected according to the initial pilot test. The mice were treated with nanocurcumin 15 or 20 mg/kg/p.o or distilled water for 10 days. The animals were habituated and trained in passive avoidance apparatus on the day 10. The retention test was performed 24 hours later. Scopolamine (1 mg/kg/i.p.) or saline was injected 30 minutes before memory retention trial. Results: The findings indicated that nanocurcumin in doses 15 or 20 mg/kg/p.o prevented the retrieval deficit induced by scopolamine while natural curcumin in its equivalent doses did not have such an effect. Furthermore, nanocurcumin by itself improved memory retention comparing with the control group. Conclusion: These findings implied that the potential anti-amnesic effects of curcumin might be observed by producing and using its nanoformulation form.
Collapse
Affiliation(s)
- Roksana SoukhakLari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Moezi
- Nanobiology and Nanomedicine Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatema Pirsalami
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Abkar
- Nanobiology and Nanomedicine Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Moosavi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Nanobiology and Nanomedicine Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
43
|
Yang J, Cheng R, Fu H, Yang J, Kumar M, Lu J, Xu Y, Liang SH, Cui M, Ran C. Half-curcumin analogues as PET imaging probes for amyloid beta species. Chem Commun (Camb) 2019; 55:3630-3633. [PMID: 30849141 DOI: 10.1039/c8cc10166c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this report, we demonstrate that half-curcuminoid could be a better scaffold for PET tracer development. F-CRANAD-101 was designed and found to show significant response to both soluble and insoluble Aβs in the fluorescent spectral tests. PET imaging results indicated that 14 month and 5 month old APP/PS1 AD mice had higher signals in the brain than age-matched wild type mice.
Collapse
Affiliation(s)
- Jian Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Farkhondeh T, Samarghandian S, Pourbagher-Shahri AM, Sedaghat M. The impact of curcumin and its modified formulations on Alzheimer's disease. J Cell Physiol 2019; 234:16953-16965. [PMID: 30847942 DOI: 10.1002/jcp.28411] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/02/2019] [Accepted: 02/14/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a major health problem worldwide, with no effective treatment approach. Curcumin is the main ingredient of turmeric traditionally used in Asian medicine. Several experimental studies have indicated the protective effect of curcumin and its novel formulations in AD. Curcumin has antioxidant, anti-inflammatory and neurotrophic activities, proposing a strong potential to prevent neurodegenerative diseases. However, there are no sufficient clinical trials to confirm curcumin use in AD patients. Low bioavailability following oral administration of curcumin limits its usage in human. The present study was designed to gather the effects of curcumin and its modified formulations in human and experimental models of AD.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | | | - Mahshid Sedaghat
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
45
|
Dominguez LJ, Barbagallo M. Dietary Strategies and Supplements for the Prevention of Cognitive Decline and Alzheimer’s Disease. OMEGA FATTY ACIDS IN BRAIN AND NEUROLOGICAL HEALTH 2019:231-247. [DOI: 10.1016/b978-0-12-815238-6.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
46
|
Nabavi SF, Sureda A, Dehpour AR, Shirooie S, Silva AS, Devi KP, Ahmed T, Ishaq N, Hashim R, Sobarzo-Sánchez E, Daglia M, Braidy N, Volpicella M, Vacca RA, Nabavi SM. Regulation of autophagy by polyphenols: Paving the road for treatment of neurodegeneration. Biotechnol Adv 2018; 36:1768-1778. [DOI: 10.1016/j.biotechadv.2017.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 12/11/2022]
|
47
|
The passive avoidance memory improving effect of curcumin in young adult mice: Considering hippocampal MMP-2, MMP-9 and Akt/GSK3β. PHARMANUTRITION 2018. [DOI: 10.1016/j.phanu.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
48
|
Dominguez LJ, Barbagallo M. Nutritional prevention of cognitive decline and dementia. ACTA BIO-MEDICA : ATENEI PARMENSIS 2018; 89:276-290. [PMID: 29957766 PMCID: PMC6179018 DOI: 10.23750/abm.v89i2.7401] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 04/28/2018] [Indexed: 12/28/2022]
Abstract
Cognitive impairment results from a complex interplay of many factors. The most important independent predictor of cognitive decline is age but other contributing factors include demographic, genetic, socio-economic, and environmental parameters, including nutrition. The number of persons with cognitive decline and dementia will increase in the next decades in parallel with aging of the world population. Effective pharmaceutical treatments for age-related cognitive decline are lacking, emphasizing the importance of prevention strategies. There is extensive evidence supporting a relationship between diet and cognitive functions. Thus, nutritional approaches to prevent or slow cognitive decline could have a remarkable public health impact. Several dietary components and supplements have been examined in relation to their association with the development of cognitive decline. A number of studies have examined the role of dietary patterns on late-life cognition, with accumulating evidence that combinations of foods and nutrients may act synergistically to provide stronger benefit than those conferred by individual dietary components. Higher adherence to the Mediterranean dietary pattern has been associated with decreased cognitive decline and incident AD. Another dietary pattern with neuroprotective actions is the Dietary Approach to Stop Hypertension (DASH). The combination of these two dietary patterns has been associated with slower rates of cognitive decline and significant reduction in incident AD. This review evaluates the evidence for the effects of some dietary components, supplements, and dietary patterns as neuroprotective, with potential to delay cognitive decline and the onset of dementia.
Collapse
Affiliation(s)
- Ligia J Dominguez
- Geriatric Unit, Dept. of Internal Medicine and Geriatrics, University of Palermo, Palermo, Italy.
| | - Mario Barbagallo
- Geriatric Unit, Dept. of Internal Medicine and Geriatrics, University of Palermo, Palermo, Italy.
| |
Collapse
|
49
|
Protective effects of curcumin on acrolein-induced neurotoxicity in HT22 mouse hippocampal cells. Pharmacol Rep 2018; 70:1040-1046. [PMID: 32002947 DOI: 10.1016/j.pharep.2018.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/07/2018] [Accepted: 05/16/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aging is one of the most important inevitable risk factors of Alzheimer disease (AD). Oxidative stress plays a critical role in the process of aging. Curcumin has been proposed to improve neural damage, especially neurodegenerative injury, through its antioxidant and anti-inflammatory properties. Therefore, we investigated the effects of curcumin on acrolein-induced AD-like pathologies in HT22 cells. METHODS HT22 murine hippocampal neuronal cells were treated with 25 μM acrolein for 24 h with or without pre-treating with curcumin at the selected optimum concentration (5 μg/mL) for 30 min. Cell viability and apoptosis were measured by CCK8 assay and flow cytometric analysis. Levels of glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) were detected by a GSH assay kit or commercial assay kits, respectively. Alterations in the expression of BDNF/TrkB and key enzymes involved in amyloid precursor protein (APP) metabolism were assessed by western blotting. RESULTS Data showed that curcumin significantly reversed acrolein-induced oxidative stress indicated by depletion of GSH and SOD, and elevation of MDA. The findings also suggested curcumin's potential in protecting HT22 cells against acrolein through regulating the BDNF/TrkB signaling. In addition, acrolein-induced reduction in A-disintegrin and metalloprotease, and the increase of amyloid precursor protein, β-secretase, and receptor for advanced glycation end products were reversed either, and most of them were nearly restored to the control levels by curcumin. CONCLUSION These findings demonstrate the protective effects of curcumin on acrolein-induced neurotoxicity in vitro, which further suggests its potential role in the treatment of AD.
Collapse
|
50
|
Hemmati AA, Alboghobeish S, Ahangarpour A. Effects of cinnamic acid on memory deficits and brain oxidative stress in streptozotocin-induced diabetic mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:257-267. [PMID: 29719448 PMCID: PMC5928339 DOI: 10.4196/kjpp.2018.22.3.257] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/18/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022]
Abstract
The present study aimed to evaluate the cinnamic acid effect on memory impairment, oxidative stress, and cholinergic dysfunction in streptozotocin (STZ)-induced diabetic model in mice. In this experimental study, 48 male Naval Medical Research Institute (NMRI) mice (30–35 g) were chosen and were randomly divided into six groups: control, cinnamic acid (20 mg/kg day, i.p. ), diabetic, and cinnamic acid-treated diabetic (10, 20 and 40 mg/kg day, i.p. ). Memory was impaired by administering an intraperitoneal STZ injection of 50 mg/kg. Cinnamic acid was injected for 40 days starting from the 21st day after confirming STZ-induced dementia to observe its therapeutic effect. Memory function was assessed using cross-arm maze, morris water maze and passive avoidance test. After the administration, biochemical parameters of oxidative stress and cholinergic function were estimated in the brain. Present data indicated that inducing STZ caused significant memory impairment, whereas administration of cinnamic acid caused significant and dose-dependent memory improvement. Assessment of brain homogenates indicated cholinergic dysfunction, increase in lipid peroxidation and reactive oxygen species (ROS) levels, and decrease in glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities in the diabetic group compared to the control animals, whereas cinnamic acid administration ameliorated these indices in the diabetic mice. The present study demonstrated that cinnamic acid improves memory by reducing the oxidative stress and cholinergic dysfunction in the brain of diabetic mice.
Collapse
Affiliation(s)
- Ali Asghar Hemmati
- Department of Pharmacology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Soheila Alboghobeish
- Department of Pharmacology, School of Medicine, Student Research Committee of Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Akram Ahangarpour
- Health Research Institute, Diabetes Research Center, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| |
Collapse
|