1
|
Zhang J, Ren R, Ding S, Sa Y, Zhang W, Wang W, Wilson G, Ma X, Gong K. Serum metabolic profile evidence for relationship between schizophrenia and depression: An untargeted metabolomics. Biomed Chromatogr 2024:e6029. [PMID: 39434479 DOI: 10.1002/bmc.6029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Given the genetic and clinical overlap observed between schizophrenia and depression, the present study was to identify the similarities and differences in serum metabolic profiles between patients with schizophrenia and depression. Global metabolomics research methods based on UHPLC-QTOF-MS/MS were performed. A total of 113 and 118 differential metabolites were screened and identified in depression and schizophrenia groups, respectively, as compared to health control; among those, 94 differential metabolites were shared by both. Pathway analysis indicated arginine and proline metabolism, alanine, aspartate, and glutamate metabolism were two significant metabolic pathways both in depression and schizophrenia groups as compared with health control groups, respectively. Similarly, 77 differential metabolites were identified between depression and schizophrenia groups, in which, serum N-acetylglutamine and isovalerylglycine levels showed significant differences between patients with depression and schizophrenia with p values less than 0.001 and without significant outliers. Sphingolipid metabolism was identified as a significant metabolic pathway distinguishing between depression and schizophrenia groups based on pathway analysis. Conclusively, common alterations in arginine and proline metabolism, alanine, aspartate, and glutamate metabolism were observed in patients with schizophrenia and depression; whereas differences in serum N-acetylglutamine and isovalerylglycine levels as well as sphingolipid metabolism were discovered between the two categories of patients.
Collapse
Affiliation(s)
- Jing Zhang
- Traditional Chinese Medicine Hospital of Yinchuan, 231 Jiefang West Street, Yinchuan, 750001, China
| | - Ruru Ren
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Shuqin Ding
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Yuping Sa
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Weiman Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Weibiao Wang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Gidion Wilson
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Xueqin Ma
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Kaimin Gong
- Traditional Chinese Medicine Hospital of Yinchuan, 231 Jiefang West Street, Yinchuan, 750001, China
| |
Collapse
|
2
|
Primak A, Bozov K, Rubina K, Dzhauari S, Neyfeld E, Illarionova M, Semina E, Sheleg D, Tkachuk V, Karagyaur M. Morphogenetic theory of mental and cognitive disorders: the role of neurotrophic and guidance molecules. Front Mol Neurosci 2024; 17:1361764. [PMID: 38646100 PMCID: PMC11027769 DOI: 10.3389/fnmol.2024.1361764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/04/2024] [Indexed: 04/23/2024] Open
Abstract
Mental illness and cognitive disorders represent a serious problem for the modern society. Many studies indicate that mental disorders are polygenic and that impaired brain development may lay the ground for their manifestation. Neural tissue development is a complex and multistage process that involves a large number of distant and contact molecules. In this review, we have considered the key steps of brain morphogenesis, and the major molecule families involved in these process. The review provides many indications of the important contribution of the brain development process and correct functioning of certain genes to human mental health. To our knowledge, this comprehensive review is one of the first in this field. We suppose that this review may be useful to novice researchers and clinicians wishing to navigate the field.
Collapse
Affiliation(s)
- Alexandra Primak
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill Bozov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniya Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Stalik Dzhauari
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Elena Neyfeld
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Federal State Budgetary Educational Institution of the Higher Education “A.I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Maria Illarionova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitriy Sheleg
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Federal State Budgetary Educational Institution of the Higher Education “A.I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Townsend L, Pillinger T, Selvaggi P, Veronese M, Turkheimer F, Howes O. Brain glucose metabolism in schizophrenia: a systematic review and meta-analysis of 18FDG-PET studies in schizophrenia. Psychol Med 2023; 53:4880-4897. [PMID: 35730361 PMCID: PMC10476075 DOI: 10.1017/s003329172200174x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/16/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Impaired brain metabolism may be central to schizophrenia pathophysiology, but the magnitude and consistency of metabolic dysfunction is unknown. METHODS We searched MEDLINE, PsychINFO and EMBASE between 01/01/1980 and 13/05/2021 for studies comparing regional brain glucose metabolism using 18FDG-PET, in schizophrenia/first-episode psychosis v. controls. Effect sizes (Hedges g) were pooled using a random-effects model. Primary measures were regional absolute and relative CMRGlu in frontal, temporal, parietal and occipital lobes, basal ganglia and thalamus. RESULTS Thirty-six studies (1335 subjects) were included. Frontal absolute glucose metabolism (Hedge's g = -0.74 ± 0.54, p = 0.01; I2 = 67%) and metabolism relative to whole brain (g = -0.44 ± 0.34, p = 0.01; I2 = 55%) were lower in schizophrenia v. controls with moderate heterogeneity. Absolute frontal metabolism was lower in chronic (g = -1.18 ± 0.73) v. first-episode patients (g = -0.09 ± 0.88) and controls. Medicated patients showed frontal hypometabolism relative to controls (-1.04 ± 0.26) while metabolism in drug-free patients did not differ significantly from controls. There were no differences in parietal, temporal or occipital lobe or thalamic metabolism in schizophrenia v. controls. Excluding outliers, absolute basal ganglia metabolism was lower in schizophrenia v. controls (-0.25 ± 0.24, p = 0.049; I2 = 5%). Studies identified reporting voxel-based morphometry measures of absolute 18FDG uptake (eight studies) were also analysed using signed differential mapping analysis, finding lower 18FDG uptake in the left anterior cingulate gyrus (Z = -4.143; p = 0.007) and the left inferior orbital frontal gyrus (Z = -4.239; p = 0.02) in schizophrenia. CONCLUSIONS We report evidence for hypometabolism with large effect sizes in the frontal cortex in schizophrenia without consistent evidence for alterations in other brain regions. Our findings support the hypothesis of hypofrontality in schizophrenia.
Collapse
Affiliation(s)
- Leigh Townsend
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| | - Toby Pillinger
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oliver Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
4
|
Farmer CB, Roach EL, Bice LR, Falgout ME, Mata KG, Roche JK, Roberts RC. Excitatory and inhibitory imbalances in the trisynaptic pathway in the hippocampus in schizophrenia: a postmortem ultrastructural study. J Neural Transm (Vienna) 2023; 130:949-965. [PMID: 37193867 DOI: 10.1007/s00702-023-02650-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND A preponderance of evidence suggests that the hippocampus is a key region of dysfunction in schizophrenia. Neuroimaging and other studies indicate a relationship between hippocampal dysfunction and the degree of psychosis. Clinical data indicate hyperactivity in the hippocampus that precedes the onset of psychosis, and is correlated with symptom severity. In this study, we sought to identify circuitry at the electron microscopic level that could contribute to region-specific imbalances in excitation and inhibition in the hippocampus in schizophrenia. We used postmortem tissue from the anterior hippocampus from patients with schizophrenia and matched controls. Using stereological techniques, we counted and measured synapses, postsynaptic densities (PSDs), and evaluated size, number and optical density of mitochondria and parvalbumin-containing interneurons in key nodes of the trisynaptic pathway. Compared to controls, the schizophrenia group had decreased numbers of inhibitory synapses in CA3 and increased numbers of excitatory synapses in CA1; together, this indicates deficits in inhibition and an increase in excitation. The thickness of the PSD was larger in excitatory synapses in CA1, suggesting greater synaptic strength. In the schizophrenia group, there were fewer mitochondria in the dentate gyrus and a decrease in the optical density, a measure of functional integrity, in CA1. The number and optical density of parvalbumin interneurons were lower in CA3. The results suggest region-specific increases in excitatory circuitry, decreases in inhibitory neurotransmission and fewer or damaged mitochondria. These results are consistent with the hyperactivity observed in the hippocampus in schizophrenia in previous studies.
Collapse
Affiliation(s)
- Charlene B Farmer
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Erica L Roach
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Lily R Bice
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Madeleine E Falgout
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Kattia G Mata
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Joy K Roche
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
5
|
Dabiri M, Dehghani Firouzabadi F, Yang K, Barker PB, Lee RR, Yousem DM. Neuroimaging in schizophrenia: A review article. Front Neurosci 2022; 16:1042814. [PMID: 36458043 PMCID: PMC9706110 DOI: 10.3389/fnins.2022.1042814] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
In this review article we have consolidated the imaging literature of patients with schizophrenia across the full spectrum of modalities in radiology including computed tomography (CT), morphologic magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and magnetoencephalography (MEG). We look at the impact of various subtypes of schizophrenia on imaging findings and the changes that occur with medical and transcranial magnetic stimulation (TMS) therapy. Our goal was a comprehensive multimodality summary of the findings of state-of-the-art imaging in untreated and treated patients with schizophrenia. Clinical imaging in schizophrenia is used to exclude structural lesions which may produce symptoms that may mimic those of patients with schizophrenia. Nonetheless one finds global volume loss in the brains of patients with schizophrenia with associated increased cerebrospinal fluid (CSF) volume and decreased gray matter volume. These features may be influenced by the duration of disease and or medication use. For functional studies, be they fluorodeoxyglucose positron emission tomography (FDG PET), rs-fMRI, task-based fMRI, diffusion tensor imaging (DTI) or MEG there generally is hypoactivation and disconnection between brain regions. However, these findings may vary depending upon the negative or positive symptomatology manifested in the patients. MR spectroscopy generally shows low N-acetylaspartate from neuronal loss and low glutamine (a neuroexcitatory marker) but glutathione may be elevated, particularly in non-treatment responders. The literature in schizophrenia is difficult to evaluate because age, gender, symptomatology, comorbidities, therapy use, disease duration, substance abuse, and coexisting other psychiatric disorders have not been adequately controlled for, even in large studies and meta-analyses.
Collapse
Affiliation(s)
- Mona Dabiri
- Department of Radiology, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kun Yang
- Department of Psychiatry, Molecular Psychiatry Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, MD, United States
| | - Roland R. Lee
- Department of Radiology, UCSD/VA Medical Center, San Diego, CA, United States
| | - David M. Yousem
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, MD, United States
| |
Collapse
|
6
|
King VL, Lahti AC, Maximo JO, ver Hoef LW, John S, Kraguljac NV. Contrasting Frontoparietal Network Connectivity in Antipsychotic Medication-Naive First-Episode Psychosis Patients Who Do and Do Not Display Features of the Deficit Syndrome. Schizophr Bull 2022; 48:1344-1353. [PMID: 35869578 PMCID: PMC9673254 DOI: 10.1093/schbul/sbac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The deficit syndrome is a clinical subtype of schizophrenia that is characterized by enduring negative symptoms. Several lines of evidence point to frontoparietal involvement, but the frontoparietal control network (FPCN) and its subsystems (FPCNA and FPCNB) proposed by Yeo et al. have not been systematically characterized at rest in patients with the deficit syndrome. METHODS We used resting-state fMRI to investigate the FPCN and its subnetworks in 72 healthy controls and 65 antipsychotic medication-naive, first-episode psychosis patients (22 displayed deficit syndrome features, 43 did not). To assess whole-brain FPCN connectivity, we used the right posterior parietal cortex as the seed region. We then performed region of interest analyses in FPCN subsystems. RESULTS We found that patterns of FPCN dysconnectivity to the whole brain differed in patients who displayed deficit syndrome features compared with those who did not. Examining the FPCN on a more granular level revealed reduced within-FPCN(A) connectivity only in patients displaying deficit features. FPCNB connectivity did not differ between patient groups. DISCUSSION Here, we describe a neurobiological signature of aberrant FPCN connectivity in antipsychotic-naive, first-episode patients who display clinical features of the deficit syndrome. Importantly, frontoparietal subnetwork connectivity differentiated subgroups, where the FPCNA is selectively involved in patients with deficit features. Our findings add to the growing body of literature supporting a neurobiological distinction between two clinical subtypes of schizophrenia, which has the potential to be leveraged for patient stratification in clinical trials and the development of novel treatments.
Collapse
Affiliation(s)
- Victoria L King
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jose O Maximo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lawrence W ver Hoef
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sooraj John
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina V Kraguljac
- To whom correspondence should be addressed; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, 1720 7th Ave S, Birmingham, AL 35294-0017, USA; tel: 205-996-7171, e-mail:
| |
Collapse
|
7
|
Lorentzen R, Nguyen TD, McGirr A, Hieronymus F, Østergaard SD. The efficacy of transcranial magnetic stimulation (TMS) for negative symptoms in schizophrenia: a systematic review and meta-analysis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:35. [PMID: 35853882 PMCID: PMC9261093 DOI: 10.1038/s41537-022-00248-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/21/2022] [Indexed: 04/20/2023]
Abstract
Several trials have shown preliminary evidence for the efficacy of transcranial magnetic stimulation (TMS) as a treatment for negative symptoms in schizophrenia. Here, we synthesize this literature in a systematic review and quantitative meta-analysis of double-blind randomized controlled trials of TMS in patients with schizophrenia. Specifically, MEDLINE, EMBASE, Web of Science, and PsycINFO were searched for sham-controlled, randomized trials of TMS among patients with schizophrenia. The effect of TMS vs. sham on negative symptoms in each study was quantified by the standardized mean difference (SMD, Cohen's d) with 95% confidence intervals (95%CI) and pooled across studies using an inverse variance random effects model. We identified 57 studies with a total of 2633 participants that were included in the meta-analysis. The pooled analysis showed statistically significant superiority of TMS (SMD = 0.41, 95%CI: 0.26; 0.56, p-value < 0.001), corresponding to a number needed to treat of 5. Furthermore, stratified analyses suggested that TMS targeting the left dorsolateral prefrontal cortex and using a stimulation frequency >1 Hz was most efficacious. There was, however, substantial heterogeneity and high risk of bias among the included studies. In conclusion, TMS appears to be an efficacious treatment option for patients with schizophrenia suffering from negative symptoms, but the optimal TMS parameters are yet to be established.
Collapse
Affiliation(s)
- Rasmus Lorentzen
- Department of Affective Disorders, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tuan D Nguyen
- Department of Affective Disorders, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Alexander McGirr
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada
| | - Fredrik Hieronymus
- Department of Affective Disorders, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Søren D Østergaard
- Department of Affective Disorders, Aarhus University Hospital - Psychiatry, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
8
|
Fuentes-Claramonte P, Ramiro N, Torres L, Argila-Plaza I, Salgado-Pineda P, Soler-Vidal J, García-León MÁ, Albacete A, Bosque C, Panicalli F, Boix E, Munuera J, Tristany J, Sarró S, Bernardo M, Salvador R, McKenna PJ, Pomarol-Clotet E. Negative schizophrenic symptoms as prefrontal cortex dysfunction: Examination using a task measuring goal neglect. NEUROIMAGE: CLINICAL 2022; 35:103119. [PMID: 35870381 PMCID: PMC9421442 DOI: 10.1016/j.nicl.2022.103119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/10/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Negative schizophrenic symptoms have been considered to reflect prefrontal cortex dysfunction. Functional imaging support for this theory is however weak, perhaps due to the tasks used. We examined negative symptom patients using a novel executive task measuring volitional behaviour. Comparison to patients without negative symptoms revealed prefrontal hypoactivation.
Background The negative symptoms of schizophrenia have been proposed to reflect prefrontal cortex dysfunction. However, this proposal has not been consistently supported in functional imaging studies, which have also used executive tasks that may not capture key aspects of negative symptoms such as lack of volition. Method Twenty-four DSM-5 schizophrenic patients with high negative symptoms (HNS), 25 with absent negative symptoms (ANS) and 30 healthy controls underwent fMRI during performance of the Computerized Multiple Elements Test (CMET), a task designed to measure poor organization of goal directed behaviour or ‘goal neglect’. Negative symptoms were rated using the PANSS and the Clinical Assessment Interview for Negative Symptoms (CAINS). Results On whole brain analysis, the ANS patients showed no significant clusters of reduced activation compared to the healthy controls. In contrast, the HNS patients showed hypoactivation compared to the healthy controls in the left anterior frontal cortex, the right dorsolateral prefrontal cortex (DLPFC), the anterior insula bilaterally and the bilateral inferior parietal cortex. When compared to the ANS patients, the HNS patients showed reduced activation in the left anterior frontal cortex, the left DLPFC and the left inferior parietal cortex. After controlling for disorganization scores, differences remained in clusters in the left anterior frontal cortex and the bilateral inferior parietal cortex. Conclusions This study provides evidence that reduced prefrontal activation, perhaps especially in the left anterior frontal cortex, is a brain functional correlate of negative symptoms in schizophrenia. The simultaneous finding of reduced inferior parietal cortex activation was unexpected, but could reflect this region’s involvement in cognitive control, particularly the ‘regulative’ component of this.
Collapse
Affiliation(s)
- Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Barcelona, Spain
| | - Núria Ramiro
- Psychiatry department, Hospital Sant Rafael, Barcelona, Spain
| | - Llanos Torres
- Hospital Mare de Dèu de la Mercé, Unitat Polivalent, Barcelona, Spain
| | | | - Pilar Salgado-Pineda
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Barcelona, Spain
| | - Joan Soler-Vidal
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Barcelona, Spain; Benito Menni Complex Assistencial en Salut Mental, Sant Boi de Llobregat, Barcelona, Spain
| | - María Ángeles García-León
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Barcelona, Spain
| | - Auria Albacete
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Barcelona, Spain
| | - Clara Bosque
- Benito Menni Complex Assistencial en Salut Mental, Sant Boi de Llobregat, Barcelona, Spain
| | - Francesco Panicalli
- Benito Menni Complex Assistencial en Salut Mental, Sant Boi de Llobregat, Barcelona, Spain
| | - Ester Boix
- Mental Health Department, Hospital de Mataró, Mataró, Spain
| | - Josep Munuera
- Diagnostic Imaging Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Barcelona, Spain
| | - Miquel Bernardo
- CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Barcelona, Spain; Barcelona Clínic Schizophrenia Unit, Hospital Clínic of Barcelona, Institute of Neuroscience, Barcelona, Spain; Universitat de Barcelona, Barcelona, Spain; Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Barcelona, Spain
| | - Peter J McKenna
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Barcelona, Spain.
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Barcelona, Spain
| |
Collapse
|
9
|
Aberrant maturation and connectivity of prefrontal cortex in schizophrenia-contribution of NMDA receptor development and hypofunction. Mol Psychiatry 2022; 27:731-743. [PMID: 34163013 PMCID: PMC8695640 DOI: 10.1038/s41380-021-01196-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
The neurobiology of schizophrenia involves multiple facets of pathophysiology, ranging from its genetic basis over changes in neurochemistry and neurophysiology, to the systemic level of neural circuits. Although the precise mechanisms associated with the neuropathophysiology remain elusive, one essential aspect is the aberrant maturation and connectivity of the prefrontal cortex that leads to complex symptoms in various stages of the disease. Here, we focus on how early developmental dysfunction, especially N-methyl-D-aspartate receptor (NMDAR) development and hypofunction, may lead to the dysfunction of both local circuitry within the prefrontal cortex and its long-range connectivity. More specifically, we will focus on an "all roads lead to Rome" hypothesis, i.e., how NMDAR hypofunction during development acts as a convergence point and leads to local gamma-aminobutyric acid (GABA) deficits and input-output dysconnectivity in the prefrontal cortex, which eventually induce cognitive and social deficits. Many outstanding questions and hypothetical mechanisms are listed for future investigations of this intriguing hypothesis that may lead to a better understanding of the aberrant maturation and connectivity associated with the prefrontal cortex.
Collapse
|
10
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
11
|
Romero-Miguel D, Casquero-Veiga M, MacDowell KS, Torres-Sanchez S, Garcia-Partida JA, Lamanna-Rama N, Romero-Miranda A, Berrocoso E, Leza JC, Desco M, Soto-Montenegro ML. A Characterization of the Effects of Minocycline Treatment During Adolescence on Structural, Metabolic, and Oxidative Stress Parameters in a Maternal Immune Stimulation Model of Neurodevelopmental Brain Disorders. Int J Neuropsychopharmacol 2021; 24:734-748. [PMID: 34165516 PMCID: PMC8453277 DOI: 10.1093/ijnp/pyab036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/01/2021] [Accepted: 06/18/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Minocycline (MIN) is a tetracycline with antioxidant, anti-inflammatory, and neuroprotective properties. Given the likely involvement of inflammation and oxidative stress (IOS) in schizophrenia, MIN has been proposed as a potential adjuvant treatment in this pathology. We tested an early therapeutic window, during adolescence, as prevention of the schizophrenia-related deficits in the maternal immune stimulation (MIS) animal model. METHODS On gestational day 15, Poly I:C or vehicle was injected in pregnant Wistar rats. A total 93 male offspring received MIN (30 mg/kg) or saline from postnatal day (PND) 35-49. At PND70, rats were submitted to the prepulse inhibition test. FDG-PET and T2-weighted MRI brain studies were performed at adulthood. IOS markers were evaluated in frozen brain tissue. RESULTS MIN treatment did not prevent prepulse inhibition test behavioral deficits in MIS offspring. However, MIN prevented morphometric abnormalities in the third ventricle but not in the hippocampus. Additionally, MIN reduced brain metabolism in cerebellum and increased it in nucleus accumbens. Finally, MIN reduced the expression of iNOS (prefrontal cortex, caudate-putamen) and increased the levels of KEAP1 (prefrontal cortex), HO1 and NQO1 (amygdala, hippocampus), and HO1 (caudate-putamen). CONCLUSIONS MIN treatment during adolescence partially counteracts volumetric abnormalities and IOS deficits in the MIS model, likely via iNOS and Nrf2-ARE pathways, also increasing the expression of cytoprotective enzymes. However, MIN treatment during this peripubertal stage does not prevent sensorimotor gating deficits. Therefore, even though it does not prevent all the MIS-derived abnormalities evaluated, our results suggest the potential utility of early treatment with MIN in other schizophrenia domains.
Collapse
Affiliation(s)
| | - Marta Casquero-Veiga
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,CIBER de Salud Mental (CIBERSAM), Madrid, Spain
| | - Karina S MacDowell
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, Spain
| | - Sonia Torres-Sanchez
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain,Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - José Antonio Garcia-Partida
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain,Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | | | | | - Esther Berrocoso
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain,Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Juan C Leza
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain,Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain,Correspondence: Manuel Desco, PhD, Laboratorio de Imagen Médica, Unidad de Medicina y Cirugía Experimental, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46. E-28007 Madrid, Spain ()
| | - María Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,CIBER de Salud Mental (CIBERSAM), Madrid, Spain,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
| |
Collapse
|
12
|
Bryant JE, Lahti AC, Briend F, Kraguljac NV. White Matter Neurometabolic Signatures Support the Deficit and Nondeficit Distinction in Antipsychotic-Naïve First-Episode Psychosis Patients. Schizophr Bull 2021; 47:1068-1076. [PMID: 33693906 PMCID: PMC8266628 DOI: 10.1093/schbul/sbab014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The deficit syndrome is thought to be a more homogenous clinical subgroup within the syndrome of schizophrenia that is characterized by enduring negative symptoms. It is hypothesized that distinct pathophysiological processes underlie the subtypes, where the deficit syndrome reflects an early onset nonprogressive developmental process, and the nondeficit form of the illness is characterized by attenuated neuroplasticity secondary to elevated glutamate levels. We used single-voxel magnetic resonance spectroscopy (PRESS; TE: 30 ms) to measure left frontal white matter neurometabolite levels in 61 antipsychotic-naïve first-episode psychosis patients (39 who did not display deficit features, 22 who did display deficit features, assessed with the Schedule for the Deficit Syndrome) and 59 healthy controls. Metabolite levels were quantified with the LCModel. We used a MANCOVA to determine neurometabolite differences between healthy controls, deficit syndrome patients, and nondeficit patients. We report a significant group difference when all metabolites were considered jointly (F[10,208] = 2.16; P = .02). Post hoc analyses showed that patients presenting without deficit features had higher glutamate levels than patients with deficit features and controls. Patients presenting without deficit features also had significantly higher myoinositol levels than controls; myoinositol levels were trend-level higher in patients presenting with deficit features compared to controls. Our data support the idea that the pathophysiology of patients presenting without deficit features may differ from those presenting with deficit features.
Collapse
Affiliation(s)
- James Edward Bryant
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, Birmingham, AL, USA
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, Birmingham, AL, USA
| | - Frederic Briend
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, Birmingham, AL, USA,UMR1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, Birmingham, AL, USA,To whom correspondence should be addressed; tel: 205-996-7171, e-mail:
| |
Collapse
|
13
|
Egerton A, Grace AA, Stone J, Bossong MG, Sand M, McGuire P. Glutamate in schizophrenia: Neurodevelopmental perspectives and drug development. Schizophr Res 2020; 223:59-70. [PMID: 33071070 DOI: 10.1016/j.schres.2020.09.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/12/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
Research into the neurobiological processes that may lead to the onset of schizophrenia places growing emphasis on the glutamatergic system and brain development. Preclinical studies have shown that neurodevelopmental, genetic, and environmental factors contribute to glutamatergic dysfunction and schizophrenia-related phenotypes. Clinical research has suggested that altered brain glutamate levels may be present before the onset of psychosis and relate to outcome in those at clinical high risk. After psychosis onset, glutamate dysfunction may also relate to the degree of antipsychotic response and clinical outcome. These findings support ongoing efforts to develop pharmacological interventions that target the glutamate system and could suggest that glutamatergic compounds may be more effective in specific patient subgroups or illness stages. In this review, we consider the updated glutamate hypothesis of schizophrenia, from a neurodevelopmental perspective, by reviewing recent preclinical and clinical evidence, and discuss the potential implications for novel therapeutics.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - James Stone
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Matthijs G Bossong
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michael Sand
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
14
|
Wake R, Miyaoka T, Kawakami K, Tsuchie K, Inagaki T, Horiguchi J, Yamamoto Y, Hayashi T, Kitagaki H. Characteristic brain hypoperfusion by 99mTc-ECD single photon emission computed tomography (SPECT) in patients with the first-episode schizophrenia. Eur Psychiatry 2020; 25:361-5. [DOI: 10.1016/j.eurpsy.2009.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 12/14/2009] [Accepted: 12/14/2009] [Indexed: 11/29/2022] Open
Abstract
AbstractObjectiveIn this study, we evaluated brain perfusion in patients with first-episode medicated schizophrenia using the new analytical method, statistical parametric mapping (SPM) applied to single photon emission computed tomography (SPECT).MethodWe performed SPECT with 99-Tc-ethyl cysteinate dimer (99mTc-ECD) of the brain and magnetic resonance imaging (MRI) in patients with schizophrenia (n = 30) and control subjects matched for age and gender (n = 37). A voxel-by-voxel group analysis was performed using SPM2 (Z > 3.0, P < 0.001, uncorrected for multiple comparisons).ResultIn comparison with control subjects, the volumes of the bilateral frontal areas were found to be decreased on MRI. Blood flow was found to be reduced in the bilateral temporal areas in the patients with schizophrenia on SPECT.ConclusionIn this study, patients with first-episode schizophrenia appeared to have significant bilateral temporal hypoperfusion, although temporal volumes were not significantly decreased in comparison with control subjects. Abnormality of temporal lobe blood flow in schizophrenia may show that functional changes occur earlier than structural changes, and may assist in the diagnosis of schizophrenia.
Collapse
|
15
|
Impact of primary negative symptoms on functional outcomes in schizophrenia. Eur Psychiatry 2020; 29:449-55. [DOI: 10.1016/j.eurpsy.2014.01.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/03/2014] [Accepted: 01/26/2014] [Indexed: 11/23/2022] Open
Abstract
AbstractObjectiveNegative symptoms are known to undermine functional outcomes in people with schizophrenia; however, most studies have not accounted for whether these symptoms were primary or secondary to other psychopathological factors. The present study examined the impact of primary negative symptoms on functional outcomes in patients with schizophrenia.MethodThe sample included 1427 patients with schizophrenia who completed the baseline visit in the CATIE study. Symptoms were assessed with the Positive and Negative Syndrome Scale and Calgary Depression Scale, extrapyramidal side effects with the Simpson-Angus scale, and functional status with the Heinrichs-Carpenter Quality of Life Scale.ResultsNegative symptoms were significantly and inversely related to each domain of functioning examined. These relationships remained after statistically controlling for the influence of potential sources of secondary negative symptoms. In addition, the relationships between negative symptoms and specific domains of functioning remained in patients who had mild/absent positive, depressive, anxiety and extrapyramidal symptoms. Negative symptoms were associated with functional outcomes even in antipsychotic-free patients.ConclusionsPrimary negative symptoms significantly contribute to the functional impairment seen in people with schizophrenia. A better understanding of the etiology and pathobiology of these symptoms is required to guide the search for effective therapeutics that promote functional recovery.
Collapse
|
16
|
Casquero-Veiga M, García-García D, MacDowell KS, Pérez-Caballero L, Torres-Sánchez S, Fraguas D, Berrocoso E, Leza JC, Arango C, Desco M, Soto-Montenegro ML. Risperidone administered during adolescence induced metabolic, anatomical and inflammatory/oxidative changes in adult brain: A PET and MRI study in the maternal immune stimulation animal model. Eur Neuropsychopharmacol 2019; 29:880-896. [PMID: 31229322 DOI: 10.1016/j.euroneuro.2019.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 04/30/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022]
Abstract
Inflammation and oxidative stress (IOS) are considered key pathophysiological elements in the development of mental disorders. Recent studies demonstrated that the antipsychotic risperidone elicits an antiinflammatory effect in the brain. We administered risperidone for 2-weeks at adolescence to assess its role in preventing brain-related IOS changes in the maternal immune stimulation (MIS) model at adulthood. We also investigated the development of volumetric and neurotrophic abnormalities in areas related to the HPA-axis. Poly I:C (MIS) or saline (Sal) were injected into pregnant Wistar rats on GD15. Male offspring received risperidone or vehicle daily from PND35-PND49. We studied 4 groups (8-15 animals/group): Sal-vehicle, MIS-vehicle, Sal-risperidone and MIS-risperidone. [18F]FDG-PET and MRI studies were performed at adulthood and analyzed using SPM12 software. IOS and neurotrophic markers were measured using WB and ELISA assays in brain tissue. Risperidone elicited a protective function of schizophrenia-related IOS deficits. In particular, risperidone elicited the following effects: reduced volume in the ventricles and the pituitary gland; reduced glucose metabolism in the cerebellum, periaqueductal gray matter, and parietal cortex; higher FDG uptake in the cingulate cortex, hippocampus, thalamus, and brainstem; reduced NFκB activity and iNOS expression; and increased enzymatic activity of CAT and SOD in some brain areas. Our study suggests that some schizophrenia-related IOS changes can be prevented in the MIS model. It also stresses the need to search for novel strategies based on anti-inflammatory compounds in risk populations at early stages in order to alter the course of the disease.
Collapse
Affiliation(s)
- Marta Casquero-Veiga
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER de Salud Mental (CIBERSAM), Madrid, Spain
| | - David García-García
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Leganés, Spain; Facultad de Ciencia y Tecnología, Universidad Isabel I, Burgos, Spain
| | - Karina S MacDowell
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Department of Pharmacology & Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, Spain
| | - Laura Pérez-Caballero
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Neuropsychopharmacology & Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Sonia Torres-Sánchez
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain; Neuropsychopharmacology & Psychobiology Research Group, Universidad de Cádiz, Cádiz, Spain
| | - David Fraguas
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense (UCM), Madrid, Spain
| | - Esther Berrocoso
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Neuropsychopharmacology & Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Juan C Leza
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Department of Pharmacology & Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, Spain
| | - Celso Arango
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense (UCM), Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Leganés, Spain; CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain.
| | - María Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
17
|
Brady RO, Gonsalvez I, Lee I, Öngür D, Seidman LJ, Schmahmann JD, Eack SM, Keshavan MS, Pascual-Leone A, Halko MA. Cerebellar-Prefrontal Network Connectivity and Negative Symptoms in Schizophrenia. Am J Psychiatry 2019; 176:512-520. [PMID: 30696271 PMCID: PMC6760327 DOI: 10.1176/appi.ajp.2018.18040429] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The interpretability of results in psychiatric neuroimaging is significantly limited by an overreliance on correlational relationships. Purely correlational studies cannot alone determine whether behavior-imaging relationships are causal to illness, functionally compensatory processes, or purely epiphenomena. Negative symptoms (e.g., anhedonia, amotivation, and expressive deficits) are refractory to current medications and are among the foremost causes of disability in schizophrenia. The authors used a two-step approach in identifying and then empirically testing a brain network model of schizophrenia symptoms. METHODS In the first cohort (N=44), a data-driven resting-state functional connectivity analysis was used to identify a network with connectivity that corresponds to negative symptom severity. In the second cohort (N=11), this network connectivity was modulated with 5 days of twice-daily transcranial magnetic stimulation (TMS) to the cerebellar midline. RESULTS A breakdown of connectivity in a specific dorsolateral prefrontal cortex-to-cerebellum network directly corresponded to negative symptom severity. Restoration of network connectivity with TMS corresponded to amelioration of negative symptoms, showing a statistically significant strong relationship of negative symptom change in response to functional connectivity change. CONCLUSIONS These results demonstrate that a connectivity breakdown between the cerebellum and the right dorsolateral prefrontal cortex is associated with negative symptom severity and that correction of this breakdown ameliorates negative symptom severity, supporting a novel network hypothesis for medication-refractory negative symptoms and suggesting that network manipulation may establish causal relationships between network markers and clinical phenomena.
Collapse
Affiliation(s)
- Roscoe O. Brady
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA,Schizophrenia and Bipolar Disorders Program, McLean Hospital, Belmont, MA and Harvard Medical School, Boston, MA
| | | | - Ivy Lee
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Dost Öngür
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Belmont, MA and Harvard Medical School, Boston, MA
| | - Larry J. Seidman
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Jeremy D. Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Shaun M. Eack
- University of Pittsburgh, School of Social Work and Department of Psychiatry, Pittsburgh, PA, USA
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-invasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Mark A. Halko
- Berenson-Allen Center for Non-invasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA,Corresponding author
| |
Collapse
|
18
|
Affective modulation of target detection in deficit and non-deficit schizophrenia. Schizophr Res 2019; 204:138-145. [PMID: 30126815 PMCID: PMC6378118 DOI: 10.1016/j.schres.2018.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/20/2018] [Accepted: 08/13/2018] [Indexed: 11/22/2022]
Abstract
Emotional deficits are an integral feature of schizophrenia (SZ), but our understanding of these deficits is limited. In the present study, we examined whether the severity of emotional deficits reflects difficulty in the cognitive processing of affectively valenced stimuli. Healthy controls (HC; N = 170) and stable outpatients with SZ (N = 245), characterized as either deficit syndrome (DS; N = 62) or non-deficit syndrome (NDS; N = 183), completed an Affective Go/NoGo task requiring discrimination of positively, negatively or neutrally valenced words. Accuracy (d') and response bias (c) were calculated for each of the three conditions, and a series of ANOVAs were carried out to examine group differences. Examination of accuracy revealed significant main effects of group and valence and a significant valence × group interaction, indicating that while affective valence impacted accuracy for the HC and NDS groups, the DS group maintained the same low level of accuracy across all levels of affective valence. Examination of response bias also revealed significant main effects of group and valence and a significant valence × group interaction. Specifically, within the HC and NDS groups, response bias did not differ between negatively and positively valenced words while response bias in the DS group was lowest for neutral, higher for negatively valenced and higher still for positively valenced words. These results suggest that emotional deficits in DS may be directly related to deficits in processing affective information. Moreover, although this deficit is observed across both positively and negatively valenced stimuli, it is most pronounced for positively valenced material.
Collapse
|
19
|
Xie T, Zhang X, Tang X, Zhang H, Yu M, Gong G, Wang X, Evans A, Zhang Z, He Y. Mapping Convergent and Divergent Cortical Thinning Patterns in Patients With Deficit and Nondeficit Schizophrenia. Schizophr Bull 2019; 45:211-221. [PMID: 29272543 PMCID: PMC6293229 DOI: 10.1093/schbul/sbx178] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Deficit schizophrenia (DS) is a homogeneous subtype of schizophrenia characterized by primary and enduring negative symptoms. However, the underlying neuroanatomical substrate of DS remains poorly understood. Here, we collected high-resolution structural magnetic resonance images of 115 participants, including 33 DS patients, 41 nondeficit schizophrenia (NDS) patients, and 41 healthy controls (HCs), and calculated the cortical thickness and surface area for statistical comparisons among the 3 groups. Relative to the control group, both the DS and NDS groups exhibited convergent cortical thinning in the bilateral inferior frontal gyri and the left superior temporal gyrus. The cortical thinning in the right inferior frontal cortex in the patient group was significantly positively correlated with declines of cognitive flexibility and visuospatial memory. Importantly, compared to the NDS group, the DS group exhibited a more widespread cortical thinning pattern, with the most significant differences in the left temporo-parietal junction area. For the surface area measurement, no significant group differences were observed. Collectively, these results highlight the convergent and divergent cortical thinning patterns between patients with DS and NDS, which provide critical insights into the neuroanatomical substrate of DS and improve our understanding of the biological mechanism that contributes to the negative symptoms and cognitive impairments in DS.
Collapse
Affiliation(s)
- Teng Xie
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China,Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiaowei Tang
- Department of Psychiatry, Wutaishan Hospital of Yangzhou, Yangzhou, China
| | - Hongying Zhang
- Department of Radiology, Subei People’s Hospital of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Miao Yu
- Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Gaolang Gong
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiang Wang
- Medical Psychological Institute of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Alan Evans
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada
| | - Zhijun Zhang
- Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yong He
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,To whom correspondence should be addressed; National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Key Laboratory of Brain Imaging and Connectomics, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China. E-mail:
| |
Collapse
|
20
|
Jia S, Liu M, Huang P, Zhao Y, Tan S, Go R, Yan T, Wu J. Abnormal Alpha Rhythm During Self-Referential Processing in Schizophrenia Patients. Front Psychiatry 2019; 10:691. [PMID: 31632304 PMCID: PMC6779928 DOI: 10.3389/fpsyt.2019.00691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/27/2019] [Indexed: 11/17/2022] Open
Abstract
Schizophrenia patients exhibited a psychological abnormal appearance when they recognized objects related to themselves. This cognitive process is associated with self-referential processing. In this study, the self-referential memory (SRM) task was performed by 18 schizophrenia patients and 18 healthy controls. In the encoding stage of the SRM task, the behavioral experiment data and electroencephalogram (EEG) data were recorded in three experimental conditions (self-referential condition, other-referential condition, and physical condition). For data analysis, the electrophysiological performance of the time-frequency distribution, phase lag index (PLI) strengths, phase synchronization connectivity, and brain-network properties were assessed in schizophrenia patients compared to healthy controls. We found that schizophrenia patients exhibited abnormal alpha oscillation characteristics at the time of 100-300 ms poststimulus during the self-referential condition, which consisted of diminished time-frequency distributions over the prefrontal, parietal, and occipital regions; lower functional connectivity strengths of the PLI in the parietal and occipital areas; higher global efficiency and the lower characteristic path length; and nodal efficiency of local areas (increased nodal efficiency in temporal regions and decreased nodal efficiency in occipital region) for dynamic network topology properties. Furthermore, the evoked power of the alpha band during the self-referential condition was significantly correlated with the SRM bias score in the patients (r = 0.595, p = 0.009). These results provided electrophysiological evidence and supported the hypothesis that an abnormal alpha rhythm might be the principal factor of dysfunctional self-referential processing in schizophrenia patients.
Collapse
Affiliation(s)
- Shikui Jia
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Miaomiao Liu
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Peiwen Huang
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yanli Zhao
- Center for Psychiatric Research, Beijing Huilongguan Hospital, Beijing, China
| | - Shuping Tan
- Center for Psychiatric Research, Beijing Huilongguan Hospital, Beijing, China
| | - Ritsu Go
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jinglong Wu
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
21
|
Chen B. Abnormal cortical region and subsystem complexity in dynamical functional connectivity of chronic schizophrenia: A new graph index for fMRI analysis. J Neurosci Methods 2018; 311:28-37. [PMID: 30316890 DOI: 10.1016/j.jneumeth.2018.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Schizophrenia is a predominant product of pathological alterations distributed throughout interconnected neural systems. Designing new objectively diagnostic methods are burning questions. Dynamical functional connectivity (DFCs) methodology based on fMRI data is an effective lever to investigate changeability evolution in macroscopic neural activity patterns underlying critical aspects of cognition and behavior. However, region properties of brain architecture have been less investigated by special indexes of dynamical graph in general mental disorders. METHODS Embracing the network dynamics concept, we introduce topology entropy index (TE-scores) which is focused on time-varying aspects of FCs, hence develop a new framework for researching the dysfunctional roots of schizophrenia in holism significance. In this work, the important process is to uncover noticeable regions endowed with antagonistic stance in TE-scores of between morbid and normal DFCs of 63 healthy controls (HCs) and 57 chronic schizophrenia patients (SZs). RESULTS For the whole brain region levels, right olfactory, right hippocampus, left parahippocampal gyrus, right parahippocampal gyrus, left amygdala, and left cuneus in SZs are endowed with significantly different TE-scores. At brain subsystems level, TE-scores in DMN are abnormal in the SZs. Comparison with existing method(s): Topology entropy in DFCs is introduced to explore the dynamical information organization of diverse regions and their abnormal changes in mental illness. Several classical graph indexes (such as degree strength, betweenness, centrality) in the static brain network measure the region importance of FCs under senses of information integration and separation process. Although highly related to degree strength by comparing the corresponding values, topology entropy further explores the regions' aberrant adaptability of functional contact and function switching. CONCLUSION TE-scores of abnormal regions in SZs are associated to the passive apathetic social withdrawal, unusual thought content, disturbance of volition, preoccupation, active social avoidance and hallucinatory symptoms. Thought the strict contrastive study, it is worth stressing that topology entropy is a meaningful biological marker to excavating schizophrenic psychopathology.
Collapse
Affiliation(s)
- Bo Chen
- School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, PR China.
| |
Collapse
|
22
|
Modinos G, Egerton A, McMullen K, McLaughlin A, Kumari V, Barker GJ, Williams SCR, Zelaya F. Increased resting perfusion of the hippocampus in high positive schizotypy: A pseudocontinuous arterial spin labeling study. Hum Brain Mapp 2018; 39:4055-4064. [PMID: 29885018 PMCID: PMC6174983 DOI: 10.1002/hbm.24231] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 12/16/2022] Open
Abstract
Arterial spin labeling (ASL) provides absolute quantification of resting tissue cerebral blood flow (CBF) as an entirely noninvasive approach with good reproducibility. As a result of neurovascular coupling, ASL provides a useful marker of resting neuronal activity. Recent ASL studies in individuals at clinical high risk of psychosis (CHR) have reported increased resting hippocampal perfusion compared with healthy controls. Schizotypy refers to the presence of subclinical psychotic-like experiences in healthy individuals and represents a robust framework to study neurobiological mechanisms involved in the extended psychosis phenotype while avoiding potentially confounding effects of antipsychotic medications or disease comorbidity. Here we applied pseudo-continuous ASL to examine differences in resting CBF in 21 subjects with high positive schizotypy (HS) relative to 22 subjects with low positive schizotypy (LS), as determined by the Oxford and Liverpool Inventory of Feelings and Experiences. Based on preclinical evidence that hippocampal hyperactivity leads to increased activity in mesostriatal dopamine projections, CBF in hippocampus, midbrain, and striatum was assessed. Participants with HS showed higher CBF of the right hippocampus compared to those with LS (p = .031, family-wise error corrected). No differences were detected in the striatum or midbrain. The association between increased hippocampal CBF and HS supports the notion that hippocampal hyperactivity might be a central characteristic of the extended psychosis phenotype, while hyperactivity in subcortical dopamine pathways may only emerge at a higher intensity of psychotic experiences.
Collapse
Affiliation(s)
- Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Katrina McMullen
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Anna McLaughlin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Veena Kumari
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.,Centre for Cognitive Neuroscience, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Steve C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
23
|
Yamazaki M, Yamamoto N, Yarimizu J, Okabe M, Moriyama A, Furutani M, Marcus MM, Svensson TH, Harada K. Functional mechanism of ASP5736, a selective serotonin 5-HT 5A receptor antagonist with potential utility for the treatment of cognitive dysfunction in schizophrenia. Eur Neuropsychopharmacol 2018; 28:620-629. [PMID: 29571967 DOI: 10.1016/j.euroneuro.2018.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 02/17/2018] [Accepted: 03/02/2018] [Indexed: 10/17/2022]
Abstract
The 5-HT5A receptor is arguably the least understood 5-HT receptor. Despite widespread expression in human and rodent brains it lacks specific ligands. Our previous results suggest that 5-HT5A receptor antagonists may be effective against cognitive impairment in schizophrenia. In this study, using behavioral, immunohistochemical, electrophysiological and microdialysis techniques, we examined the mechanism by which ASP5736, a novel and selective 5-HT5A receptor antagonist, exerts a positive effect in animal models of cognitive impairment. We first confirmed the effect of ASP5736 on cognitive deficits in rats treated subchronically with phencyclidine hydrochloride (PCP) using an attentional set shifting task. Subsequently, we identified 5-HT5A receptors in dopaminergic (DAergic) neurons and parvalbumin (PV)-positive interneurons in the ventral tegmental area (VTA) and in PV-positive interneurons in the medial prefrontal cortex (mPFC). Burst firing of the DAergic cells in the parabrachial pigmental nucleus (PBP) in the VTA, which predominantly project to the mPFC, was significantly enhanced by treatment with ASP5736. In contrast, ASP5736 exerted no significant effect on either the firing rate or burst firing in the DA cells in the paranigral nucleus (PN), that project to the nucleus accumbens (N. Acc.). ASP5736 increased the release of DA and gamma-aminobutyric acid (GABA) in the mPFC of subchronically PCP-treated rats. These results support our hypothesis that ASP5736 might block the inhibitory 5-HT5A receptors on DAergic neurons in the VTA that project to the mPFC, and interneurons in the mPFC, and thereby improve cognitive impairment by preferentially enhancing DAergic and GABAergic neurons in the mPFC.
Collapse
Affiliation(s)
- Mayako Yamazaki
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan.
| | - Noriyuki Yamamoto
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Junko Yarimizu
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Mayuko Okabe
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Ai Moriyama
- Analysis & Pharmacokinetics Research, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Masako Furutani
- Analysis & Pharmacokinetics Research, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Monica M Marcus
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Torgny H Svensson
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Katsuya Harada
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| |
Collapse
|
24
|
Oishi K, Chang L, Huang H. Baby brain atlases. Neuroimage 2018; 185:865-880. [PMID: 29625234 DOI: 10.1016/j.neuroimage.2018.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/27/2018] [Accepted: 04/02/2018] [Indexed: 01/23/2023] Open
Abstract
The baby brain is constantly changing due to its active neurodevelopment, and research into the baby brain is one of the frontiers in neuroscience. To help guide neuroscientists and clinicians in their investigation of this frontier, maps of the baby brain, which contain a priori knowledge about neurodevelopment and anatomy, are essential. "Brain atlas" in this review refers to a 3D-brain image with a set of reference labels, such as a parcellation map, as the anatomical reference that guides the mapping of the brain. Recent advancements in scanners, sequences, and motion control methodologies enable the creation of various types of high-resolution baby brain atlases. What is becoming clear is that one atlas is not sufficient to characterize the existing knowledge about the anatomical variations, disease-related anatomical alterations, and the variations in time-dependent changes. In this review, the types and roles of the human baby brain MRI atlases that are currently available are described and discussed, and future directions in the field of developmental neuroscience and its clinical applications are proposed. The potential use of disease-based atlases to characterize clinically relevant information, such as clinical labels, in addition to conventional anatomical labels, is also discussed.
Collapse
Affiliation(s)
- Kenichi Oishi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Linda Chang
- Departments of Diagnostic Radiology and Nuclear Medicine, and Neurology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Hao Huang
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
25
|
Abstract
Most of the excitatory neurotransmission in the central nervous system (CNS) is mediated by the endogenous excitatory amino acids (EAAs) glutamate, aspartate and homocysteine. Most of the endogenous inhibitory neurotransmission is mediated by gamma-aminobutyric acid (GABA). EAAs modulate the firing of almost all neurons in the CNS, as excitatory neurotransmission can result in both neuronal inhibition and excitation. The glutamate system is the best characterised of the EAA systems (Box 1).
Collapse
|
26
|
Huang YC, Lin PY, Lee Y, Hung CF, Hsu ST, Wu CC, Wang LJ. Serum levels of β-hydroxybutyrate and pyruvate, metabolic changes and cognitive function in patients with schizophrenia during antipsychotic treatment: a preliminary study. Neuropsychiatr Dis Treat 2018; 14:799-808. [PMID: 29593413 PMCID: PMC5865581 DOI: 10.2147/ndt.s157055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND β-hydroxybutyrate (β-HB) and pyruvate have been associated with the brain energy utilization, which may play a role in the pathophysiology of schizophrenia. In this prospective study, we aim to investigate the trends of β-HB and pyruvate levels, metabolic changes, and cognitive function in schizophrenia patients receiving antipsychotic treatment. OBJECTIVE We recruited 38 schizophrenia patients who had been treated with antipsychotics for 12 weeks, as well as 38 healthy age- and gender-matched subjects. Blood samples were taken from the patients at baseline and week 12 to determine the serum levels of β-HB, pyruvate, and metabolic parameters, while blood samples of the healthy controls were taken at baseline. We evaluated the psychopathology using the Positive and Negative Syndrome Scale and cognitive function using the Brief Assessment of Cognition in Schizophrenia. RESULTS During the 12-week follow-up period, the β-HB levels in patients with schizophrenia showed a decreasing trend, particularly in those undergoing treatment with aripiprazole or ziprasidone. The serum levels of β-HB in patients at baseline and week 12 were both higher than the levels in the healthy controls. Among the schizophrenia patients, changes in β-HB were positively correlated with changes in executive function. On the other hand, serum pyruvate levels remained steady during the 12-week follow-up period, and we found no significant correlation between pyruvate changes and changes in cognitive function or clinical symptoms. CONCLUSION Our findings indicate that β-HB may possess a potential indicator of energy utilization and have a protective role in executive function in patients with schizophrenia. Additional longitudinal studies with a larger sample size and longer follow-up periods are necessary to identify the relationship of metabolite regulation and cognitive function during schizophrenia patients' exposure to antipsychotics.
Collapse
Affiliation(s)
- Yu-Chi Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Nursing, Meiho University, Pingtung, Taiwan.,Chung Shan Medical University School of Medicine, Taichung, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu Lee
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Fa Hung
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Su-Ting Hsu
- Department of Community Psychiatry, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung, Taiwan
| | - Chih-Ching Wu
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Tao-Yuan, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
27
|
Yu M, Dai Z, Tang X, Wang X, Zhang X, Sha W, Yao S, Shu N, Wang X, Yang J, Zhang X, Zhang X, He Y, Zhang Z. Convergence and Divergence of Brain Network Dysfunction in Deficit and Non-deficit Schizophrenia. Schizophr Bull 2017; 43:1315-1328. [PMID: 29036672 PMCID: PMC5737538 DOI: 10.1093/schbul/sbx014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Deficit schizophrenia (DS), characterized by primary and enduring negative symptoms, has been considered as a pathophysiologically distinct schizophrenic subgroup. Neuroimaging characteristics of DS, especially functional brain network architecture, remain largely unknown. Resting-state functional magnetic resonance imaging and graph theory approaches were employed to investigate the topological organization of whole-brain functional networks of 114 male participants including 33 DS, 41 non-deficit schizophrenia (NDS) and 40 healthy controls (HCs). At the whole-brain level, both the NDS and DS group exhibited lower local efficiency (Eloc) than the HC group, implying the reduction of local specialization of brain information processing (reduced functional segregation). The DS, but not NDS group, exhibited enhanced parallel information transfer (enhanced functional integration) as determined by smaller characteristic path length (Lp) and higher global efficiency (Eglob). The Lp and Eglob presented significant correlations with Brief Psychiatric Rating Scale (BPRS) total score in the DS group. At the nodal level, both the NDS and DS groups showed higher functional connectivity in the inferior frontal gyrus and hippocampus, and lower connectivity in the visual areas and striatum than the controls. The DS group exhibited higher nodal connectivity in the right inferior temporal gyrus than the NDS and HC group. The diminished expression of Scale for the Assessment of Negative Symptoms (SANS) subfactors negatively correlated with nodal connectivity of right putamen, while asociality/amotivation positively correlated with right hippocampus across whole patients. We highlighted the convergence and divergence of brain functional network dysfunctions in patients with DS and NDS, which provides crucial insights into pathophysiological mechanisms of the 2 schizophrenic subtypes.
Collapse
Affiliation(s)
- Miao Yu
- Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhengjia Dai
- Department of Psychology, Sun Yat-sen University, Guangzhou, China,State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiaowei Tang
- Department of Psychiatry, Wutaishan Hospital of Yangzhou, Yangzhou, China
| | - Xiang Wang
- Medical Psychological Institute of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobin Zhang
- Department of Psychiatry, Wutaishan Hospital of Yangzhou, Yangzhou, China
| | - Weiwei Sha
- Department of Psychiatry, Wutaishan Hospital of Yangzhou, Yangzhou, China
| | - Shuqiao Yao
- Medical Psychological Institute of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xindi Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jiaying Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Xiangyang Zhang
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX
| | - Xiangrong Zhang
- Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China,Department of Geriatric Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China,To whom correspondence should be addressed; Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No.87 DingJiaQiao Road, Nanjing 210009, China; tel: 0086-25-822906586, fax:0086-25-83719457, e-mail:
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Zhijun Zhang
- Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China,Beijing Institute for Brain Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Tyburski E, Pełka-Wysiecka J, Mak M, Samochowiec A, Bieńkowski P, Samochowiec J. Neuropsychological Profile of Specific Executive Dysfunctions in Patients with Deficit and Non-deficit Schizophrenia. Front Psychol 2017; 8:1459. [PMID: 28912737 PMCID: PMC5582382 DOI: 10.3389/fpsyg.2017.01459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/14/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives: Although it has been shown that there are more profound deficits present in deficit schizophrenia (DS) patients than in non-deficit schizophrenia (NDS) patients, there still remain some matters requiring further investigation. In this context, we formulated three research aims: (1) to compare executive functions between the investigated groups, (2) to determine the relationship between particular aspects of executive functions within the groups, and (3) to draw up a neuropsychological profile for executive functions. Methods: The study involved 148 schizophrenia patients divided into two groups on the basis of the Schedule for the Deficit Syndrome: DS (n = 70) and NDS (n = 78). Patients were matched for sex, age, years of education, and overall cognitive functioning. For assessing executive functions we used the Wisconsin Card Sorting Test (WCST), the Trail Making Test (TMT), the Phonemic Verbal Fluency Test (VFT P), the Stroop Color and Word Test (SCWT), and the Go/No Go task (GNG). Results: Deficit schizophrenia patients scored lower on the WCST and TMT (relative flexibility) than did the NDS patients. There were no inter-group differences in the VFT P, SCWT (relative inhibition), or GNG. There were significant correlations between WCST and TMT scores in both groups. The general neuropsychological profiles were similar in both groups. Conclusion: Deficit schizophrenia patients exhibited slightly greater interference with concept formation and non-verbal cognitive flexibility. Therefore, such problems may be specific to this particular type of schizophrenia. These results may be useful for the development of neuropsychological diagnostic methods for patients with schizophrenia.
Collapse
Affiliation(s)
- Ernest Tyburski
- Department of Clinical Psychology, Institute of Psychology, University of SzczecinSzczecin, Poland
| | | | - Monika Mak
- Independent Clinical Psychology Unit, Department of Psychiatry, Pomeranian Medical UniversitySzczecin, Poland
| | - Agnieszka Samochowiec
- Department of Clinical Psychology, Institute of Psychology, University of SzczecinSzczecin, Poland
| | | | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical UniversitySzczecin, Poland
| |
Collapse
|
29
|
Mucci A, Merlotti E, Üçok A, Aleman A, Galderisi S. Primary and persistent negative symptoms: Concepts, assessments and neurobiological bases. Schizophr Res 2017; 186:19-28. [PMID: 27242069 DOI: 10.1016/j.schres.2016.05.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/10/2016] [Accepted: 05/17/2016] [Indexed: 02/01/2023]
Abstract
Primary and persistent negative symptoms (PPNS) represent an unmet need in the care of people with schizophrenia. They have an unfavourable impact on real-life functioning and do not respond to available treatments. Underlying etiopathogenetic mechanisms of PPNS are still unknown. The presence of primary and enduring negative symptoms characterizes deficit schizophrenia (DS), proposed as a separate disease entity with respect to non-deficit schizophrenia (NDS). More recently, to reduce the heterogeneity of negative symptoms by using criteria easily applicable in the context of clinical trials, the concept of persistent negative symptoms (PNS) was developed. Both PNS and DS constructs include enduring negative symptoms (at least 6months for PNS and 12months for DS) that do not respond to available treatments. PNS exclude secondary negative symptoms based on a cross-sectional evaluation of severity thresholds on commonly used rating scales for positive symptoms, depression and extrapyramidal side effects; the DS diagnosis, instead, excludes all potential sources of secondary negative symptoms based on a clinical longitudinal assessment. In this paper we review the evolution of concepts and assessment modalities relevant to PPNS, data on prevalence of DS and PNS, as well as studies on clinical, neuropsychological, brain imaging electrophysiological and psychosocial functioning aspects of DS and PNS.
Collapse
Affiliation(s)
- Armida Mucci
- Department of Psychiatry, University of Naples SUN, Naples, Italy.
| | | | - Alp Üçok
- Department of Psychiatry, Psychotic Disorders Research Program, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - André Aleman
- University of Groningen, University Medical Center Groningen, Department of Neuroscience and Department of Psychology, Groningen, The Netherlands
| | | |
Collapse
|
30
|
Abe D, Arai M, Itokawa M. Music-evoked emotions in schizophrenia. Schizophr Res 2017; 185:144-147. [PMID: 28017493 DOI: 10.1016/j.schres.2016.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND/OBJECTIVES Previous studies have reported that people with schizophrenia have impaired musical abilities. Here we developed a simple music-based assay to assess patient's ability to associate a minor chord with sadness. We further characterize correlations between impaired musical responses and psychiatric symptoms. METHOD We exposed participants sequentially to two sets of sound stimuli, first a C-major progression and chord, and second a C-minor progression and chord. Participants were asked which stimulus they associated with sadness, the first set, the second set, or neither. The severity of psychiatric symptoms was assessed using the Positive and Negative Syndrome Scale (PANSS). Study participants were 29 patients diagnosed with schizophrenia and 29 healthy volunteers matched in age, gender and musical background. RESULT 37.9% (95% confidence interval [CI]:19.1-56.7) of patients with schizophrenia associated the minor chord set as sad, compared with 97.9% (95%CI: 89.5-103.6) of controls. Four patients were diagnosed with treatment-resistant schizophrenia, and all four failed to associate the minor chord with sadness. Patients who did not recognize minor chords as sad had significantly higher scores on all PANSS subscales. CONCLUSIONS A simple test allows music-evoked emotions to be assessed in schizophrenia patient, and may show potential relationships between music-evoked emotions and psychiatric symptoms.
Collapse
Affiliation(s)
- Daijyu Abe
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, 2-1-1 Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan; Schizophrenia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Makoto Arai
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, 2-1-1 Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan; Schizophrenia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Masanari Itokawa
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, 2-1-1 Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan; Schizophrenia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
31
|
Kim JH, Kim JH, Son YD, Joo YH, Lee SY, Kim HK, Woo MK. Altered interregional correlations between serotonin transporter availability and cerebral glucose metabolism in schizophrenia: A high-resolution PET study using [ 11C]DASB and [ 18F]FDG. Schizophr Res 2017; 182:55-65. [PMID: 27760700 DOI: 10.1016/j.schres.2016.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 11/19/2022]
Abstract
The purpose of the present study was to investigate the patterns of interregional correlations of serotonin transporter (SERT) availability with glucose metabolism using 7-Tesla magnetic resonance imaging (MRI) and high-resolution positron emission tomography (PET) with 11C-3-amino-4-(2-dimethylaminomethylphenylthio)benzonitrile ([11C]DASB) and [18F]fluorodeoxyglucose ([18F]FDG) in antipsychotic-free patients with schizophrenia in order to shed new light on the disrupted functional connectivity in schizophrenia. Nineteen patients with schizophrenia and 18 healthy controls underwent high-resolution PET and MRI. The binding potential (BPND) of [11C]DASB and standardized uptake value ratio (SUVR) of [18F]FDG were obtained. In SERT availability, the region of interest (ROI)-based analyses showed no significant group differences in any region, except for the anterior hippocampus where the SERT availability was lower in patients with schizophrenia than in controls. The ROI- and voxel-based analyses revealed that the [18F]FDG SUVR values were significantly lower in patients than in controls in the right superior frontal gyrus and medial part of the left superior frontal gyrus. Regarding the interregional correlations of [11C]DASB BPND with [18F]FDG SUVR, more widespread positive correlations across the brain regions were observed in control subjects than in patients with schizophrenia. Notably, the patients and control subjects showed statistically significant differences in correlations between the SERT availability in the parietal and temporal cortices and the glucose metabolism in the posterior cingulate cortex. These results suggest abnormal functional connectivity between the higher-order cortical regions in schizophrenia and a possible important role of the posterior cingulate gyrus and its related circuitry in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Jeong-Hee Kim
- Research Institute for Advanced Industrial Technology, Korea University, Sejong, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea; Department of Psychiatry, Gachon University Gil Medical Center, Gachon University School of Medicine, Incheon, Republic of Korea.
| | - Young-Don Son
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea; Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea
| | - Yo-Han Joo
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Sang-Yoon Lee
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea; Department of Radiological Science, College of Health Science, Gachon University, Incheon, Republic of Korea
| | - Hang-Keun Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea; Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea
| | - Myung-Kyun Woo
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea; Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, USA
| |
Collapse
|
32
|
Oishi K. Commentary: Microstructure, length, and connection of limbic tracts in normal human brain development. Front Neurosci 2017; 11:117. [PMID: 28348513 PMCID: PMC5346577 DOI: 10.3389/fnins.2017.00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/24/2017] [Indexed: 11/13/2022] Open
|
33
|
De Rossi P, Dacquino C, Piras F, Caltagirone C, Spalletta G. Left nucleus accumbens atrophy in deficit schizophrenia: A preliminary study. Psychiatry Res Neuroimaging 2016; 254:48-55. [PMID: 27322868 DOI: 10.1016/j.pscychresns.2016.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 06/02/2016] [Accepted: 06/04/2016] [Indexed: 01/21/2023]
Abstract
A question that remains to be answered is whether schizophrenia can be characterized by a single etiopathophysiology or whether separate sub-syndromes should be differentiated to define specific mechanisms for each sub-type. Individuals affected by the deficit subtype of schizophrenia (DSZ) display avolitional/amotivational features that respond poorly to conventional treatments. Characterizing DSZ from a neuroanatomical point of view may help clarify this issue and develop new treatment strategies. To determine if DSZ is associated with structural alterations in specific deep grey matter structures linked to its key clinical features, 22 DSZ patients, 22 non-deficit schizophrenia (NDSZ) patients and 22 healthy controls (HC) were recruited for a case-control cross-sectional study. High-resolution magnetic resonance imaging was performed in all subjects and volumes of deep grey matter structures were measured using FreeSurfer. DSZ patients displayed smaller left accumbens volumes compared to both NDSZ patients and HC. Moreover, age and duration of illness were significantly associated with lower volume of the left accumbens in DSZ but not in NDSZ. Findings indicate that DSZ is associated with lower volume of the nucleus accumbens in the dominant hemisphere. This is consistent with the psychopathological features and functional impairments present in DSZ and thus indicates a potential mechanism.
Collapse
Affiliation(s)
- Pietro De Rossi
- Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy; Department NESMOS, Faculty of Medicine and Psychology, University "Sapienza" of Rome, Rome, Italy; Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy.
| | - Claudia Dacquino
- Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy; Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Italy
| | - Fabrizio Piras
- Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy; Department of Neuroscience, "Tor Vergata" University, 00173, Rome, Italy
| | - Gianfranco Spalletta
- Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy; Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
34
|
Oestreich LKL, Pasternak O, Shenton ME, Kubicki M, Gong X, McCarthy-Jones S, Whitford TJ. Abnormal white matter microstructure and increased extracellular free-water in the cingulum bundle associated with delusions in chronic schizophrenia. NEUROIMAGE-CLINICAL 2016; 12:405-14. [PMID: 27622137 PMCID: PMC5008040 DOI: 10.1016/j.nicl.2016.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/01/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022]
Abstract
Background There is growing evidence to suggest that delusions associated with schizophrenia arise from altered structural brain connectivity. The present study investigated whether structural changes in three major fasciculi that interconnect the limbic system – the cingulum bundle, uncinate fasciculus and fornix – are associated with delusions in chronic schizophrenia patients. Methods Free-water corrected Diffusion Tensor Imaging was used to investigate the association between delusions and both microstructural changes within these three fasciculi and extracellular changes in the surrounding free-water. Clinical data and diffusion MRI scans were obtained from 28 healthy controls and 86 schizophrenia patients, of whom 34 had present state delusions, 35 had a lifetime history but currently remitted delusions, and 17 had never experienced delusions. Results While present state and remitted delusions were found to be associated with reduced free-water corrected fractional anisotropy (FAT) and increased free-water corrected radial diffusivity (RDT) in the cingulum bundle bilaterally, extracellular free-water (FW) in the left cingulum bundle was found to be specifically associated with present state delusions in chronic schizophrenia. No changes were observed in the remaining tracts. Conclusions These findings suggest that state and trait delusions in chronic schizophrenia are associated with microstructural processes, such as myelin abnormalities (as indicated by decreased FAT and increased RDT) in the cingulum bundle and that state delusions are additionally associated with extracellular processes such as neuroinflammation or atrophy (as indicated by increased FW) in the left cingulum bundle. Free-water imaging was used to differentiate microstructural and extracellular processes. Patients with delusions showed increased RDT and FW in the cingulum bundle. Myelin abnormalities and neuroinflammation may be involved in the manifestation of delusions.
Collapse
Affiliation(s)
- Lena K L Oestreich
- School of Psychology, UNSW Australia, NSW, Australia; Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| | - Ofer Pasternak
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xue Gong
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Simon McCarthy-Jones
- Department of Cognitive Science, Macquarie University, NSW, Australia; Department of Psychiatry, Trinity College Dublin, Ireland
| | | |
Collapse
|
35
|
Neurocognitive impairment in the deficit subtype of schizophrenia. Eur Arch Psychiatry Clin Neurosci 2016; 266:397-407. [PMID: 26260899 DOI: 10.1007/s00406-015-0629-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/03/2015] [Indexed: 12/26/2022]
Abstract
Schizophrenia is a heterogeneous disorder characterized by numerous diverse signs and symptoms. Individuals with prominent, persistent, and idiopathic negative symptoms are thought to encompass a distinct subtype of schizophrenia. Previous work, including studies involving neuropsychological evaluations, has supported this position. The present study sought to further examine whether deficit patients are cognitively distinct from non-deficit patients with schizophrenia. A comprehensive neurocognitive battery including tests of verbal memory, vigilance, processing speed, reasoning, and working memory was administered to 657 patients with schizophrenia. Of these, 144 (22 %) patients were classified as deficit patients using a proxy identification method based on severity, persistence over time, and possible secondary sources (e.g., depression) of negative symptoms. Deficit patients with schizophrenia performed worse on all tests of cognition relative to non-deficit patients. These patients were characterized by a generalized cognitive impairment on the order of about 0.4 standard deviations below that of non-deficit patients. However, when comparing deficit patients to non-deficit patients who also present with negative symptoms, albeit not enduring or primary, no group differences in cognitive performance were found. Furthermore, a discriminant function analysis classifying patients into deficit/non-deficit groups based on cognitive scores demonstrated only 62.3 % accuracy, meaning over one-third of individuals were misclassified. The deficit subtype of schizophrenia is not markedly distinct from non-deficit schizophrenia in terms of neurocognitive performance. While deficit patients tend to have poorer performance on cognitive tests, the magnitude of this effect is relatively modest, translating to over 70 % overlap in scores between groups.
Collapse
|
36
|
Landek-Salgado MA, Faust TE, Sawa A. Molecular substrates of schizophrenia: homeostatic signaling to connectivity. Mol Psychiatry 2016; 21:10-28. [PMID: 26390828 PMCID: PMC4684728 DOI: 10.1038/mp.2015.141] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SZ) is a devastating psychiatric condition affecting numerous brain systems. Recent studies have identified genetic factors that confer an increased risk of SZ and participate in the disease etiopathogenesis. In parallel to such bottom-up approaches, other studies have extensively reported biological changes in patients by brain imaging, neurochemical and pharmacological approaches. This review highlights the molecular substrates identified through studies with SZ patients, namely those using top-down approaches, while also referring to the fruitful outcomes of recent genetic studies. We have subclassified the molecular substrates by system, focusing on elements of neurotransmission, targets in white matter-associated connectivity, immune/inflammatory and oxidative stress-related substrates, and molecules in endocrine and metabolic cascades. We further touch on cross-talk among these systems and comment on the utility of animal models in charting the developmental progression and interaction of these substrates. Based on this comprehensive information, we propose a framework for SZ research based on the hypothesis of an imbalance in homeostatic signaling from immune/inflammatory, oxidative stress, endocrine and metabolic cascades that, at least in part, underlies deficits in neural connectivity relevant to SZ. Thus, this review aims to provide information that is translationally useful and complementary to pathogenic hypotheses that have emerged from genetic studies. Based on such advances in SZ research, it is highly expected that we will discover biomarkers that may help in the early intervention, diagnosis or treatment of SZ.
Collapse
Affiliation(s)
- M A Landek-Salgado
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - T E Faust
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Sarkar S, Hillner K, Velligan DI. Conceptualization and treatment of negative symptoms in schizophrenia. World J Psychiatry 2015; 5:352-361. [PMID: 26740926 PMCID: PMC4694548 DOI: 10.5498/wjp.v5.i4.352] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/07/2015] [Accepted: 10/13/2015] [Indexed: 02/05/2023] Open
Abstract
Negative symptoms of schizophrenia including social withdrawal, diminished affective response, lack of interest, poor social drive, and decreased sense of purpose or goal directed activity predict poor functional outcomes for patients with schizophrenia. They may develop and be maintained as a result of structural and functional brain abnormalities, particularly associated with dopamine reward pathways and by environmental and psychosocial factors such as self-defeating cognitions and the relief from overstimulation that accompanies withdrawal from social and role functioning. Negative symptoms are more difficult to treat than the positive symptoms of schizophrenia and represent an unmet therapeutic need for large numbers of patients with schizophrenia. While antipsychotic medications to treat the symptoms of schizophrenia have been around for decades, they have done little to address the significant functional impairments in the disorder that are associated with negative symptoms. Negative symptoms and the resulting loss in productivity are responsible for much of the world-wide personal and economic burden of schizophrenia. Pharmacologic treatments may be somewhat successful in treating secondary causes of negative symptoms, such as antipsychotic side effects and depression. However, in the United States there are no currently approved treatments for severe and persistent negative symptoms (PNS) that are not responsive to treatments for secondary causes. Pharmacotherapy and psychosocial treatments are currently being developed and tested with severe and PNS as their primary targets. Academia, clinicians, the pharmaceutical industry, research funders, payers and regulators will need to work together to pursue novel treatments to address this major public health issue.
Collapse
|
38
|
Khalil R, Abo Elfetoh N, Moftah MZ, Khedr EM. Acquired equivalence associative learning in GTC epileptic patients: experimental and computational study. Front Cell Neurosci 2015; 9:418. [PMID: 26578883 PMCID: PMC4621864 DOI: 10.3389/fncel.2015.00418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/02/2015] [Indexed: 12/24/2022] Open
Abstract
Previous cognitive behavioral studies based on Acquired Equivalence Associative learning Task (AEALT) showed a strong relation between hippocampus and basal ganglia in associative learning. However, experimental behavioral studies of patients with Generalized Tonic Clonic (GTC) epilepsy remained sparse. The aim of the present study is to integrate a classical behavioral cognitive analysis with a computational model approach to investigate cognitive associative learning impairments in patients with GTC epilepsy. We measured the accuracy of associative learning response performance in five GTC epileptic patients and five control subjects by using AEALT, all subjects were matched in age and gender. We ran the task using E-Prime, a neuropsychological software program, and SPSS for data statistical analysis. We tested whether GTC epileptic patients would have different learning performance than normal subjects, based on the degree and the location of impairment either in basal ganglia and/or hippocampus. With the number of patients that was available, our behavioral analysis showed no remarkable differences in learning performance of GTC patients as compared to their control subjects, both in the transfer and acquisition phases. In parallel, our simulation results confirmed strong connection and interaction between hippocampus and basal ganglia in our GTC and their control subjects. Nevertheless, the differences in neural firing rate of the connectionist model and weight update of basal ganglia were not significantly different between GTC and control subjects. Therefore, the behavioral analysis and the simulation data provided the same result, thus indicating that the computational model is likely to predict cognitive outcomes.
Collapse
Affiliation(s)
- Radwa Khalil
- Department of Cognitive Biology, Otto-von-Guericke Universität Magdeburg, Germany ; Department of Developmental Physiology, Institute of Physiology, Otto-von-Guericke Universität Magdeburg, Germany ; IMN - Institut des Maladies Neurodégénératives, University of Bordeaux Bordeaux, France
| | - Noha Abo Elfetoh
- Department of Neurology, Faculty of Medicine, Assiut University Assiut, Egypt
| | - Marie Z Moftah
- Department of Zoology, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Eman M Khedr
- Department of Neurology, Faculty of Medicine, Assiut University Assiut, Egypt
| |
Collapse
|
39
|
Galderisi S, Merlotti E, Mucci A. Neurobiological background of negative symptoms. Eur Arch Psychiatry Clin Neurosci 2015; 265:543-58. [PMID: 25797499 DOI: 10.1007/s00406-015-0590-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/15/2015] [Indexed: 01/29/2023]
Abstract
Studies investigating neurobiological bases of negative symptoms of schizophrenia failed to provide consistent findings, possibly due to the heterogeneity of this psychopathological construct. We tried to review the findings published to date investigating neurobiological abnormalities after reducing the heterogeneity of the negative symptoms construct. The literature in electronic databases as well as citations and major articles are reviewed with respect to the phenomenology, pathology, genetics and neurobiology of schizophrenia. We searched PubMed with the keywords "negative symptoms," "deficit schizophrenia," "persistent negative symptoms," "neurotransmissions," "neuroimaging" and "genetic." Additional articles were identified by manually checking the reference lists of the relevant publications. Publications in English were considered, and unpublished studies, conference abstracts and poster presentations were not included. Structural and functional imaging studies addressed the issue of neurobiological background of negative symptoms from several perspectives (considering them as a unitary construct, focusing on primary and/or persistent negative symptoms and, more recently, clustering them into factors), but produced discrepant findings. The examined studies provided evidence suggesting that even primary and persistent negative symptoms include different psychopathological constructs, probably reflecting the dysfunction of different neurobiological substrates. Furthermore, they suggest that complex alterations in multiple neurotransmitter systems and genetic variants might influence the expression of negative symptoms in schizophrenia. On the whole, the reviewed findings, representing the distillation of a large body of disparate data, suggest that further deconstruction of negative symptomatology into more elementary components is needed to gain insight into underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Silvana Galderisi
- Department of Psychiatry, Second University of Naples (SUN), L.go Madonna delle Grazie, 1, 80138, Naples, Italy.
| | - Eleonora Merlotti
- Department of Psychiatry, Second University of Naples (SUN), L.go Madonna delle Grazie, 1, 80138, Naples, Italy
| | - Armida Mucci
- Department of Psychiatry, Second University of Naples (SUN), L.go Madonna delle Grazie, 1, 80138, Naples, Italy
| |
Collapse
|
40
|
Roberts RC, Barksdale KA, Roche JK, Lahti AC. Decreased synaptic and mitochondrial density in the postmortem anterior cingulate cortex in schizophrenia. Schizophr Res 2015; 168:543-53. [PMID: 26210550 PMCID: PMC4591176 DOI: 10.1016/j.schres.2015.07.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/07/2015] [Accepted: 07/10/2015] [Indexed: 12/24/2022]
Abstract
Schizophrenia (SZ) is a mental illness characterized by psychosis, negative symptoms, and cognitive deficits. The anterior cingulate cortex (ACC), a structurally and functionally diverse region, is one of several brain regions that is abnormal in SZ. The present study compared synaptic organization and mitochondrial number and morphology in postmortem ACC in SZ versus normal control (NC). Total synaptic density in the combined ACC was decreased in SZ, to 72% of normal controls (NCs), due to selective decreases in axospinous synapses, both asymmetric (excitatory) and symmetric (inhibitory). These changes were present in layers 3 and 5/6. The density of mitochondria in all axon terminals combined in SZ was decreased to 64% of NC. In layer 3, mitochondrial density was decreased only in terminals forming asymmetric synapses with spines, while in layers 5/6 mitochondrial density was decreased in terminals forming symmetric synapses with spines and dendrites. The proportion of terminals making symmetric synapses that contained mitochondria was significantly lower in SZ than in NCs, especially for symmetric axospinous synapses. The number of mitochondria per neuronal somata was decreased in the ACC in SZ compared to NCs; this finding was present in layers 5-6. The size of mitochondria in neuronal somata and throughout the neuropil was similar in SZ and NCs. Our results, though preliminary, are well supported by the literature, and support an anatomical substrate for some of the altered executive functions found in SZ.
Collapse
Affiliation(s)
- R C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States.
| | - K A Barksdale
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States
| | - J K Roche
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States
| | - A C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States
| |
Collapse
|
41
|
Schizophrenia and bipolar disorder: The road from similarities and clinical heterogeneity to neurobiological types. Clin Chim Acta 2015; 449:49-59. [DOI: 10.1016/j.cca.2015.02.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 01/06/2023]
|
42
|
Heckers S, Konradi C. GABAergic mechanisms of hippocampal hyperactivity in schizophrenia. Schizophr Res 2015; 167:4-11. [PMID: 25449711 PMCID: PMC4402105 DOI: 10.1016/j.schres.2014.09.041] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 11/24/2022]
Abstract
Schizophrenia is associated with abnormalities of hippocampal structure and function. Neuroimaging studies have shown that the hippocampus is hyperactive in schizophrenia. Here we explore GABAergic mechanisms of this hippocampal hyperactivity. The initial evidence for GABAergic abnormalities of the hippocampus in schizophrenia came from post-mortem studies of interneuron number, protein expression, and gene expression. These studies revealed marked decreases in gene and protein expression of somatostatin-positive and parvalbumin-positive interneurons, and indicated reduced interneuron numbers. Animal studies of decreased parvalbumin and NMDA-receptor function have shown that selective abnormalities of hippocampal interneurons mimic some of the cognitive deficits and clinical features of schizophrenia. The post-mortem and animal studies are consistent with the neuroimaging finding of increased hippocampal activity in schizophrenia, which can explain some of the psychotic symptoms and cognitive deficits. Taken together, these findings may guide the development of biomarkers and the development of new treatments for psychosis.
Collapse
Affiliation(s)
- Stephan Heckers
- Department of Psychiatry, Vanderbilt University, 1601 23rd Avenue South, Room 3060, Nashville, TN 37212, United States.
| | - Christine Konradi
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
43
|
Tamminga CA, Zukin RS. Schizophrenia: Evidence implicating hippocampal GluN2B protein and REST epigenetics in psychosis pathophysiology. Neuroscience 2015. [PMID: 26211447 DOI: 10.1016/j.neuroscience.2015.07.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The hippocampus is strongly implicated in the psychotic symptoms of schizophrenia. Functionally, basal hippocampal activity (perfusion) is elevated in schizophrenic psychosis, as measured with positron emission tomography (PET) and with magnetic resonance (MR) perfusion techniques, while hippocampal activation to memory tasks is reduced. Subfield-specific hippocampal molecular pathology exists in human psychosis tissue which could underlie this neuronal hyperactivity, including increased GluN2B-containing NMDA receptors in hippocampal CA3, along with increased postsynaptic density protein-95 (PSD-95) along with augmented dendritic spines on the pyramidal neuron apical dendrites. We interpret these observations to implicate a reduction in the influence of a ubiquitous gene repressor, repressor element-1 silencing transcription factor (REST) in psychosis; REST is involved in the age-related maturation of the NMDA receptor from GluN2B- to GluN2A-containing NMDA receptors through epigenetic remodeling. These CA3 changes in psychosis leave the hippocampus liable to pathological increases in neuronal activity, feedforward excitation and false memory formation, sometimes with psychotic content.
Collapse
Affiliation(s)
- C A Tamminga
- UT Southwestern Medical School, Dallas, TX, United States.
| | - R S Zukin
- Albert Einstein School of Medicine, New York, NY, United States
| |
Collapse
|
44
|
Cacioppo JT, Amaral DG, Blanchard JJ, Cameron JL, Carter CS, Crews D, Fiske S, Heatherton T, Johnson MK, Kozak MJ, Levenson RW, Lord C, Miller EK, Ochsner K, Raichle ME, Shea MT, Taylor SE, Young LJ, Quinn KJ. Social Neuroscience: Progress and Implications for Mental Health. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2015; 2:99-123. [PMID: 26151956 DOI: 10.1111/j.1745-6916.2007.00032.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Social neuroscience is a new, interdisciplinary field devoted to understanding how biological systems implement social processes and behavior. Social neuroscience capitalizes on biological concepts and methods to inform and refine theories of social behavior, and it uses social and behavioral constructs and data to inform and refine theories of neural organization and function. We focus here on the progress and potential of social neuroscience in the area of mental health. Research in social neuroscience has grown dramatically in recent years. Among the most active areas of research we found are brain-imaging studies in normal children and adults; animal models of social behavior; studies of stroke patients; imaging studies of psychiatric patients; and research on social determinants of peripheral neural, neuroendocrine, and immunological processes. We also found that these areas of research are proceeding along largely independent trajectories. Our goals in this article are to review the development of this field, examine some currently promising approaches, identify obstacles and opportunities for future advances and integration, and consider how this research can inform work on the diagnosis and treatment of mental disorders.
Collapse
|
45
|
Talati P, Rane S, Skinner J, Gore J, Heckers S. Increased hippocampal blood volume and normal blood flow in schizophrenia. Psychiatry Res 2015; 232:219-25. [PMID: 25896442 PMCID: PMC4439302 DOI: 10.1016/j.pscychresns.2015.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/07/2015] [Accepted: 03/27/2015] [Indexed: 11/27/2022]
Abstract
Neuroimaging studies have provided compelling evidence for abnormal hippocampal activity in schizophrenia. Most studies made inferences about baseline hippocampal activity using a single hemodynamic parameter (e.g., blood volume or blood flow). Here we studied several hemodynamic measures in the same cohort to test the hypothesis of increased hippocampal activity in schizophrenia. We used dynamic susceptibility contrast- (DSC-) magnetic resonance imaging (MRI) to assess blood volume, blood flow, and mean transit time in the hippocampus of 15 patients with chronic schizophrenia and 15 healthy controls. Left and right hippocampal measurements were combined for absolute measures of cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT). We found significantly increased hippocampal CBV, but normal CBF and MTT, in schizophrenia. The uncoupling of CBV and CBF could be due to several factors, including antipsychotic medication, loss of cerebral perfusion pressure, or angiogenesis. Further studies need to incorporate several complementary imaging modalities to better characterize hippocampal dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Pratik Talati
- Vanderbilt Brain Institute, Department of Psychiatry, Vanderbilt University, Nashville, TN 37212 USA.
| | - Swati Rane
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232 USA.
| | - Jack Skinner
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232 USA
| | - John Gore
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232 USA
| | - Stephan Heckers
- Vanderbilt Brain Institute, Department of Psychiatry, Vanderbilt University, Nashville, TN, 37212 USA
| |
Collapse
|
46
|
Integration of neural networks activated by amphetamine in females with different estrogen levels: a functional imaging study in awake rats. Psychoneuroendocrinology 2015; 56:200-12. [PMID: 25827963 DOI: 10.1016/j.psyneuen.2015.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/10/2015] [Accepted: 02/24/2015] [Indexed: 01/15/2023]
Abstract
Previous studies demonstrate that schizophrenia symptomatology in women is dependent upon estrogen levels. Estrogen has beneficial properties when administered in conjunction with antipsychotics, and estrogen also alters, in rats, dopamine neurotransmission, which is a common target of all antipsychotic medications, suggesting a possible interaction between the two. The aim of the current study was to investigate this possible interaction using functional magnetic resonance imaging in awake, female rats. Amphetamine-sensitized, ovariectomized rats receiving no, chronic low, or phasic high levels of estradiol replacement were used, and changes in blood-oxygen-level-dependent (BOLD) signal were recorded over time in response to an acute amphetamine injection. Increasing levels of estradiol enhanced BOLD activation in pathways previously known to be implicated in schizophrenia symptomatology, such as the mesocorticolimbic, habenular and olfactory pathways, as well as more widespread areas. We propose here the first comprehensive "amphetamine activation map" integrating brain regions where amphetamine-related BOLD activity is influenced by estrogen levels in sensitized female rats.
Collapse
|
47
|
Spalletta G, De Rossi P, Piras F, Iorio M, Dacquino C, Scanu F, Girardi P, Caltagirone C, Kirkpatrick B, Chiapponi C. Brain white matter microstructure in deficit and non-deficit subtypes of schizophrenia. Psychiatry Res 2015; 231:252-61. [PMID: 25649975 DOI: 10.1016/j.pscychresns.2014.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/05/2014] [Accepted: 12/23/2014] [Indexed: 01/20/2023]
Abstract
Dividing schizophrenia into its deficit (SZD) and nondeficit (SZND) subtypes may help to identify specific and more homogeneous pathophysiological characteristics. Our aim was to define a whole brain voxelwise map specifically characterizing white matter tracts of schizophrenia patients with and without the deficit syndrome. We compared microstructural diffusion-related parameters as measured by diffusion tensor imaging in 21 SZD patients, 21 SZND patients, and 21 healthy controls, age- and gender-matched. Results showed that fractional anisotropy was reduced in the right precentral area in SZND patients, and in the left corona radiata of the schizophrenia group as a whole. Axial diffusivity was reduced in the left postcentral area of SZD patients and in the left cerebellum of the whole schizophrenia group. Radial diffusivity was increased in the left forceps minor of SZD patients, in the left internal capsule of SZND patients, and in the right inferior fronto-occipital fasciculus in the whole schizophrenia group. Mean diffusivity was increased from healthy controls to SZD patients to SZND patients in the right occipital lobe. In conclusion, SZD patients are not simply at the extreme end of a severity continuum of white matter disruption. Rather, the SZD and SZND subtypes are associated with distinct and specific brain microstructural anomalies that are consistent with their peculiar psychopathological dimensions.
Collapse
Affiliation(s)
- Gianfranco Spalletta
- Laboratory of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy.
| | - Pietro De Rossi
- Laboratory of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; NESMOS Department, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy
| | - Fabrizio Piras
- Laboratory of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Mariangela Iorio
- Laboratory of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Claudia Dacquino
- Laboratory of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesca Scanu
- Laboratory of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Neurology and Psychiatry, Faculty of Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Paolo Girardi
- NESMOS Department, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy
| | - Carlo Caltagirone
- Laboratory of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Neuroscience, "Tor Vergata" University, Rome, Italy
| | - Brian Kirkpatrick
- Department of Psychiatry and Behavioral Science, University of Nevada School of Medicine, Reno, NV, USA
| | - Chiara Chiapponi
- Laboratory of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
48
|
Pratt JA, Morris BJ. The thalamic reticular nucleus: a functional hub for thalamocortical network dysfunction in schizophrenia and a target for drug discovery. J Psychopharmacol 2015; 29:127-37. [PMID: 25586397 DOI: 10.1177/0269881114565805] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The thalamus (comprising many distinct nuclei) plays a key role in facilitating sensory discrimination and cognitive processes through connections with the cortex. Impaired thalamocortical processing has long been considered to be involved in schizophrenia. In this review we focus on the thalamic reticular nucleus (TRN) providing evidence for it being an important communication hub between the thalamus and cortex and how it may play a key role in the pathophysiology of schizophrenia. We first highlight the functional neuroanatomy, neurotransmitter localisation and physiology of the TRN. We then present evidence of the physiological roles of the TRN in relation to oscillatory activity, cognition and behaviour. Next we discuss the role of the TRN in rodent models of risk factors for schizophrenia (genetic and pharmacological) and provide evidence for TRN deficits in schizophrenia. Finally we discuss new drug targets for schizophrenia in relation to restoring TRN circuitry dysfunction.
Collapse
Affiliation(s)
- Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK Psychiatric Research Institute of Neuroscience in Glasgow (PsyRING), University of Glasgow and University of Strathclyde, Glasgow, UK
| | - Brian J Morris
- Psychiatric Research Institute of Neuroscience in Glasgow (PsyRING), University of Glasgow and University of Strathclyde, Glasgow, UK Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
49
|
Uehara T, Matsuoka T, Sumiyoshi T. Tandospirone, a 5-HT1A partial agonist, ameliorates aberrant lactate production in the prefrontal cortex of rats exposed to blockade of N-methy-D-aspartate receptors; Toward the therapeutics of cognitive impairment of schizophrenia. Front Behav Neurosci 2014; 8:291. [PMID: 25232308 PMCID: PMC4153291 DOI: 10.3389/fnbeh.2014.00291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 08/09/2014] [Indexed: 01/09/2023] Open
Abstract
Rationale: Augmentation therapy with serotonin-1A (5-HT1A) receptor partial agonists has been suggested to improve cognitive impairment in patients with schizophrenia. Decreased activity of prefrontal cortex may provide a basis for cognitive deficits of the disease. Lactate plays a significant role in the supply of energy to the brain, and glutamatergic neurotransmission contributes to lactate production. Objectives and methods: The purposes of this study were to examine the effect of repeated administration (once a daily for 4 days) of tandospirone (0.05 or 5 mg/kg) on brain energy metabolism, as represented by extracellular lactate concentration (eLAC) in the medial prefrontal cortex (mPFC) of a rat model of schizophrenia. Results: Four-day treatment with MK-801, an NMDA-R antagonist, prolonged eLAC elevation induced by foot-shock stress (FS). Co-administration with the high-dose tandospirone suppressed prolonged FS-induced eLAC elevation in rats receiving MK-801, whereas tandospirone by itself did not affected eLAC increment. Conclusions: These results suggest that stimulation of 5-HT1A receptors ameliorates abnormalities of energy metabolism in the mPFC due to blockade of NMDA receptors. These findings provide a possible mechanism, based on brain energy metabolism, by which 5-HT1A agonism improve cognitive impairment of schizophrenia and related disorders.
Collapse
Affiliation(s)
- Takashi Uehara
- Department of Neuropsychiatry, Kanazawa Medical University, Ucninada-cho Ishikawa, Japan
| | - Tadasu Matsuoka
- Department of Psychiatry, Matsuoka Hospital Oyabe, Toyama, Japan
| | - Tomiki Sumiyoshi
- Department of Clinical Research Promotion, National Center Hospital, National Center of Neurology and Psychiatry Tokyo, Japan
| |
Collapse
|
50
|
Talati P, Rane S, Kose S, Blackford JU, Gore J, Donahue MJ, Heckers S. Increased hippocampal CA1 cerebral blood volume in schizophrenia. NEUROIMAGE-CLINICAL 2014; 5:359-64. [PMID: 25161901 PMCID: PMC4141978 DOI: 10.1016/j.nicl.2014.07.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hippocampal hyperactivity has been proposed as a biomarker in schizophrenia. However, there is a debate whether the CA1 or the CA2/3 subfield is selectively affected. We studied 15 schizophrenia patients and 15 matched healthy control subjects with 3T steady state, gadolinium-enhanced, absolute cerebral blood volume (CBV) maps, perpendicular to the long axis of the hippocampus. The subfields of the hippocampal formation (subiculum, CA1, CA2/3, and hilus/dentate gyrus) were manually segmented to establish CBV values. Comparing anterior CA1 and CA2/3 CBV between patients and controls revealed a significant subfield-by-diagnosis interaction. This interaction was due to the combined effect of a trend of increased CA1 CBV (p = .06) and non-significantly decreased CA2/3 CBV (p = 0.14) in patients relative to healthy controls. These results support the emerging hypothesis of increased hippocampal activity as a biomarker of schizophrenia and highlight the importance of subfield-level investigations. Hippocampal hyperactivity has been proposed as a biomarker in schizophrenia Subfield-specificity hyperactivity (anterior CA1 versus CA2/3) is currently debated We used contrast-enhanced MRI to test hyperactivity in these two subfields We find a significant diagnosis by group interaction due to the combined effect of a trend of increased CA1 CBV and non-significantly decreased CA2/3 CBV in patients compared to healthy controls No significant group differences in the anterior subiculum and dentate gyrus CBV
Collapse
Affiliation(s)
- Pratik Talati
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA ; Department of Psychiatry, Vanderbilt University, Nashville, TN 37235, USA
| | - Swati Rane
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Samet Kose
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37235, USA
| | | | - John Gore
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Manus J Donahue
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37235, USA ; Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Stephan Heckers
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|