1
|
Fuhrmann L, Langer B, Topolsky I, Beerenwinkel N. VILOCA: sequencing quality-aware viral haplotype reconstruction and mutation calling for short-read and long-read data. NAR Genom Bioinform 2024; 6:lqae152. [PMID: 39633724 PMCID: PMC11616694 DOI: 10.1093/nargab/lqae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/15/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
RNA viruses exist as large heterogeneous populations within their host. The structure and diversity of virus populations affects disease progression and treatment outcomes. Next-generation sequencing allows detailed viral population analysis, but inferring diversity from error-prone reads is challenging. Here, we present VILOCA (VIral LOcal haplotype reconstruction and mutation CAlling for short and long read data), a method for mutation calling and reconstruction of local haplotypes from short- and long-read viral sequencing data. Local haplotypes refer to genomic regions that have approximately the length of the input reads. VILOCA recovers local haplotypes by using a Dirichlet process mixture model to cluster reads around their unobserved haplotypes and leveraging quality scores of the sequencing reads. We assessed the performance of VILOCA in terms of mutation calling and haplotype reconstruction accuracy on simulated and experimental Illumina, PacBio and Oxford Nanopore data. On simulated and experimental Illumina data, VILOCA performed better or similar to existing methods. On the simulated long-read data, VILOCA is able to recover on average [Formula: see text] of the ground truth mutations with perfect precision compared to only [Formula: see text] recall and [Formula: see text] precision of the second-best method. In summary, VILOCA provides significantly improved accuracy in mutation and haplotype calling, especially for long-read sequencing data, and therefore facilitates the comprehensive characterization of heterogeneous within-host viral populations.
Collapse
Affiliation(s)
- Lara Fuhrmann
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, Basel 4056, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge - Bâtiment Amphipôle, Lausanne 1015, Switzerland
| | - Benjamin Langer
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, Basel 4056, Switzerland
| | - Ivan Topolsky
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, Basel 4056, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge - Bâtiment Amphipôle, Lausanne 1015, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, Basel 4056, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge - Bâtiment Amphipôle, Lausanne 1015, Switzerland
| |
Collapse
|
2
|
Martin MA, Reynolds SJ, Foley BT, Nalugoda F, Quinn TC, Kemp SA, Nakalanzi M, Kankaka EN, Kigozi G, Ssekubugu R, Gupta RK, Abeler-Dörner L, Kagaayi J, Ratmann O, Fraser C, Galiwango RM, Bonsall D, Grabowski MK. Population dynamics of HIV drug resistance during treatment scale-up in Uganda: a population-based longitudinal study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.10.14.23297021. [PMID: 39417110 PMCID: PMC11482865 DOI: 10.1101/2023.10.14.23297021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Clinical studies have reported rising pre-treatment HIV drug resistance during antiretroviral treatment (ART) scale-up in Africa, but representative data are limited. We estimated population-level drug resistance trends during ART expansion in Uganda. Methods We analyzed data from the population-based open Rakai Community Cohort Study conducted at agrarian, trading, and fishing communities in southern Uganda between 2012 and 2019. Consenting participants aged 15-49 were HIV tested and completed questionnaires. Persons living with HIV (PLHIV) provided samples for viral load quantification and virus deep-sequencing. Sequence data were used to predict resistance. Population prevalence of class-specific resistance and resistance-conferring substitutions were estimated using robust log-Poisson regression. Findings Data from 93,622 participant-visits, including 4,702 deep-sequencing measurements, showed that the prevalence of NNRTI resistance among pre-treatment viremic PLHIV doubled between 2012 and 2017 (PR:1.98, 95%CI:1.34-2.91), rising to 9.61% (7.27-12.7%). The overall population prevalence of pre-treatment viremic NNRTI and NRTI resistance among all participants decreased during the same period, reaching 0.25% (0.18% - 0.33%) and 0.05% (0.02% - 0.10%), respectively (p-values for trend = 0.00015, 0.002), coincident with increasing treatment coverage and viral suppression. By the final survey, population prevalence of resistance contributed by treatment-experienced PLHIV exceeded that from pre-treatment PLHIV, with NNRTI resistance at 0.54% (0.44%-0.66%) and NRTI resistance at 0.42% (0.33%-0.53%). Overall, NNRTI and NRTI resistance was predominantly attributable to rtK103N and rtM184V. While 10.52% (7.97%-13.87%) and 9.95% (6.41%-15.43%) of viremic pre-treatment and treatment-experienced PLHIV harbored the inT97A mutation, no major dolutegravir resistance mutations were observed. Interpretation Despite rising NNRTI resistance among pre-treatment PLHIV, overall population prevalence of pre-treatment resistance decreased due to treatment uptake. Most NNRTI and NRTI resistance is now contributed by treatment-experienced PLHIV. The high prevalence of mutations conferring resistance to components of current first-line ART regimens among PLHIV with viremia is potentially concerning.
Collapse
Affiliation(s)
- Michael A. Martin
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Steven James Reynolds
- Rakai Health Sciences Program, Kalisizo, Uganda
- Division of Infectious Disease, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brian T. Foley
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Thomas C. Quinn
- Rakai Health Sciences Program, Kalisizo, Uganda
- Division of Infectious Disease, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven A. Kemp
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | - Ravindra K. Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK
- Africa Health Research Institute, KwaZulu-Natal, South Africa
| | - Lucie Abeler-Dörner
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joseph Kagaayi
- Rakai Health Sciences Program, Kalisizo, Uganda
- Makerere University School of Public Health, Kampala, Uganda
| | - Oliver Ratmann
- Department of Mathematics, Imperial College London, London, England, United Kingdom
| | - Christophe Fraser
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - David Bonsall
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M. Kate Grabowski
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Rakai Health Sciences Program, Kalisizo, Uganda
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
3
|
Vellas C, Doudou A, Mohamed S, Raymond S, Jeanne N, Latour J, Demmou S, Ranger N, Gonzalez D, Delobel P, Izopet J. Comparison of short-read and long-read next-generation sequencing technologies for determining HIV-1 drug resistance. J Med Virol 2024; 96:e29951. [PMID: 39387352 DOI: 10.1002/jmv.29951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Accurate HIV-1 genome sequencing is necessary to identify drug resistance mutations (DRMs) in people with HIV-1 (PWH). Next-generation-sequencing (NGS) allows the detection of minor variants and is now available in many laboratories. Our study aimed to compare two NGS approaches, a "short read" sequencing protocol using DeepChek® Whole Genome HIV-1 Assay on Illumina, and a "long read" sequencing protocol of HIV-1 pol and env single-molecule real-time sequencing (SMRT) on Pacific Biosciences (PacBio). We analyzed 16 plasma samples and 13 cellular samples from PWH. HIV-1 whole genome was amplified into five amplicons using DeepChek® Whole Genome HIV-1 Assay and sequenced on an iSeq. 100. In parallel, HIV-1 pol and env genes were separately amplified and sequenced using PacBio SMRT system with the circular consensus sequencing mode on a Sequel IIe. Concordance rates for determining DRMs with both approaches varied depending on the HIV-1 region, with higher concordance in the integrase region compared to the reverse transcriptase and protease regions. DeepChek® Whole Genome HIV-1 Assay exhibited better sensitivity in HIV-1 RNA sequencing of plasmas with lower viral loads. In cell HIV-1 DNA sequencing, the DeepChek® Whole Genome HIV-1 Assay performed better in pol and env sequencing but detected more APOBEC-induced DRMs, which can represent defective proviruses. Our findings indicate that both DeepChek® Whole Genome HIV-1 Assay and PacBio SMRT sequencing exhibit good performance for subtype determination, detection, and quantification of DRMs of the HIV-1 genome. However, some discrepancies were found in cellular samples, highlighting the challenges of interpreting HIV-1 DNA DRMs.
Collapse
Affiliation(s)
- Camille Vellas
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse, France
| | | | | | - Stéphanie Raymond
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse, France
| | - Nicolas Jeanne
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
| | - Justine Latour
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
| | - Sofia Demmou
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
| | - Noémie Ranger
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
| | | | - Pierre Delobel
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse, France
- CHU de Toulouse, Service de Maladies Infectieuses et Tropicales, Toulouse, France
| | - Jacques Izopet
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse, France
| |
Collapse
|
4
|
Nannyonjo M, Omooja J, Bugembe DL, Bbosa N, Lunkuse S, Nabirye SE, Nassolo F, Namagembe H, Abaasa A, Kazibwe A, Kaleebu P, Ssemwanga D. Next-Generation Sequencing Reveals a High Frequency of HIV-1 Minority Variants and an Expanded Drug Resistance Profile among Individuals on First-Line ART. Viruses 2024; 16:1454. [PMID: 39339930 PMCID: PMC11437406 DOI: 10.3390/v16091454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
We assessed the performance and clinical relevance of Illumina MiSeq next-generation sequencing (NGS) for HIV-1 genotyping compared with Sanger sequencing (SS). We analyzed 167 participants, 45 with virologic failure (VL ≥ 1000 copies/mL), i.e., cases, and 122 time-matched participants with virologic suppression (VL < 1000 copies/mL), i.e., controls, 12 months post-ART initiation. Major surveillance drug resistance mutations (SDRMs) detected by SS were all detectable by NGS. Among cases at 12 months, SS identified SDRMs in 32/45 (71.1%) while NGS identified SDRMs among 35/45 (77.8%), increasing the number of cases with SDRMs by 3/45 (6.7%). Participants identified with, and proportions of major SDRMs increased when NGS was used. NGS vs. SS at endpoint revealed for NNRTIs: 36/45 vs. 33/45; Y181C: 26/45 vs. 24/45; K103N: 9/45 vs. 6/45 participants with SDRMs, respectively. At baseline, NGS revealed major SDRMs in 9/45 (20%) cases without SDRMs by SS. Participant MBL/043, among the nine, the following major SDRMs existed: L90M to PIs, K65R and M184V to NRTIs, and Y181C and K103N to NNRTIs. The SDRMs among the nine increased SDRMs to NRTIs, NNRTIs, and PIs. Only 43/122 (25.7%) of participants had pre-treatment minority SDRMs. Also, 24.4% of the cases vs. 26.2 of controls had minority SDRMs (p = 0.802); minority SDRMs were not associated with virologic failure. NGS agreed with SS in HIV-1 genotyping but detected additional major SDRMs and identified more participants harboring major SDRMs, expanding the HIV DRM profile of this cohort. NGS could improve HIV genotyping to guide treatment decisions for enhancing ART efficacy, a cardinal pre-requisite in the pursuit of the UNAIDS 95-95-95 targets.
Collapse
Affiliation(s)
- Maria Nannyonjo
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
| | - Jonah Omooja
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
- Uganda Virus Research Institute, Entebbe P.O. Box 49, Uganda
| | - Daniel Lule Bugembe
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
| | - Nicholas Bbosa
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
| | - Sandra Lunkuse
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
| | - Stella Esther Nabirye
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
| | - Faridah Nassolo
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
| | - Hamidah Namagembe
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
| | - Andrew Abaasa
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
| | - Anne Kazibwe
- Department of Molecular Biology, College of Veterinary Medicine, Makerere University, Kampala P.O. Box 7072, Uganda
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
- Uganda Virus Research Institute, Entebbe P.O. Box 49, Uganda
| | - Deogratius Ssemwanga
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe P.O. Box 49, Uganda
- Uganda Virus Research Institute, Entebbe P.O. Box 49, Uganda
| |
Collapse
|
5
|
Wang H. Practical updates in clinical antiviral resistance testing. J Clin Microbiol 2024; 62:e0072823. [PMID: 39051778 PMCID: PMC11323466 DOI: 10.1128/jcm.00728-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
The laboratory diagnosis of antiviral resistance is a quickly changing field due to new drug availability, the sunsetting of older drugs, the development of novel technologies, rapid viral evolution, and the financial/logistic pressures of the clinical laboratory. This mini-review summarizes the current state of clinically available antiviral resistance testing in the United States in 2024, covering the most commonly used test methods, mechanisms, and clinical indications for herpes simplex virus, cytomegalovirus, human immunodeficiency virus, influenza, hepatitis B virus, and hepatitis C virus drug resistance testing. Common themes include the move away from phenotypic to genotypic methods for first-line clinical testing, as well as uncertainty surrounding the clinical meaningfulness of minority variant detection as next-generation sequencing methods have become more commonplace.
Collapse
Affiliation(s)
- Hannah Wang
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Burdorf RM, Zhou S, Amon C, Long N, Hill CS, Adams L, Tegha G, Chagomerana MB, Jumbe A, Maliwichi M, Wallie S, Li Y, Swanstrom R, Hosseinipour MC. Impact of Low-Frequency Human Immunodeficiency Virus Type 1 Drug Resistance Mutations on Antiretroviral Therapy Outcomes. J Infect Dis 2024; 230:86-94. [PMID: 39052733 PMCID: PMC11272071 DOI: 10.1093/infdis/jiae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND The association between low-frequency human immunodeficiency virus type 1 (HIV-1) drug resistance mutations (DRMs) and treatment failure (TF) is controversial. We explore this association using next-generation sequencing (NGS) methods that accurately sample low-frequency DRMs. METHODS We enrolled women with HIV-1 in Malawi who were either antiretroviral therapy (ART) naive (cohort A), had ART failure (cohort B), or had discontinued ART (cohort C). At entry, cohorts A and C began a nonnucleoside reverse transcriptase inhibitor-based regimen and cohort B started a protease inhibitor-based regimen. We used Primer ID MiSeq to identify regimen-relevant DRMs in entry and TF plasma samples, and a Cox proportional hazards model to calculate hazard ratios (HRs) for entry DRMs. Low-frequency DRMs were defined as ≤20%. RESULTS We sequenced 360 participants. Cohort B and C participants were more likely to have TF than cohort A participants. The presence of K103N at entry significantly increased TF risk among A and C participants at both high and low frequency, with HRs of 3.12 (95% confidence interval [CI], 1.58-6.18) and 2.38 (95% CI, 1.00-5.67), respectively. At TF, 45% of participants showed selection of DRMs while in the remaining participants there was an apparent lack of selective pressure from ART. CONCLUSIONS Using accurate NGS for DRM detection may benefit an additional 10% of patients by identifying low-frequency K103N mutations.
Collapse
Affiliation(s)
- Rachel M Burdorf
- Lineberger Comprehensive Cancer Center
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
| | | | - Nathan Long
- Lineberger Comprehensive Cancer Center
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
| | | | - Lily Adams
- Lineberger Comprehensive Cancer Center
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
| | | | - Maganizo B Chagomerana
- UNC Project–Malawi, Lilongwe
- Department of Medicine, University of North Carolina at Chapel Hill
| | | | | | | | - Yijia Li
- Department of Medicine, University of Pittsburgh Medical Center, Pennsylvania
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill
| | - Mina C Hosseinipour
- UNC Project–Malawi, Lilongwe
- Department of Medicine, University of North Carolina at Chapel Hill
| |
Collapse
|
7
|
Zhao Y, Voget J, Singini I, Omar Z, Mudaly V, Boulle A, Maartens G, Meintjes G. Virologic outcomes with tenofovir-lamivudine-dolutegravir in adults failing PI-based second-line ART. South Afr J HIV Med 2024; 25:1567. [PMID: 38725705 PMCID: PMC11079356 DOI: 10.4102/sajhivmed.v25i1.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/06/2024] [Indexed: 05/12/2024] Open
Abstract
Background In South African antiretroviral guidelines, selected patients failing second-line protease inhibitor (PI)-based therapy qualify for genotypic resistance testing - those with PI resistance receive darunavir-based third-line regimens; those without PI resistance continue current regimen with adherence support. The Western Cape province, from September 2020, implemented a strategy of tenofovir-lamivudine-dolutegravir (TLD) for patients, provided there was no tenofovir resistance, irrespective of PI resistance. Objectives To evaluate virologic outcomes with TLD among adults failing second-line PI regimens with no tenofovir resistance. Method An observational cohort study comparing outcomes in patients switched to TLD with those continuing the same PI or switched to darunavir-based regimens. Follow-up was until virologic suppression (HIV-1 RNA < 400 copies/mL), or at the point of censoring. Results One hundred and thirty-three patients switched to TLD, 101 to darunavir-based regimens, and 121 continued with the same PI. By 12 months, among patients with PI resistance, 42/47 (89%) in the TLD group had HIV-1 RNA < 400 copies/mL compared to 91/99 (92%) in the darunavir group (hazard ratio, 1.11; 95% confidence interval, 0.77-1.60). In patients without PI resistance, 66/86 (77%) in the TLD group had HIV-1 RNA < 400 copies/mL compared to 42/120 (35%) in those continuing with the same PI (hazard ratio, 4.03; 95% confidence interval, 2.71-5.98). Two patients receiving TLD developed virologic failure with high-level dolutegravir resistance. Conclusion Amongst patients failing second-line PI with no PI resistance, switching to TLD was associated with higher virologic suppression, likely due to improved adherence. Virologic outcomes were similar in patients with PI resistance switched to darunavir-based regimens or TLD.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Medicine, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Jacqueline Voget
- Western Cape Government Department of Health and Wellness, Cape Town, South Africa
| | - Isaac Singini
- Biostatistics Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Zaayid Omar
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Vanessa Mudaly
- Western Cape Government Department of Health and Wellness, Cape Town, South Africa
| | - Andrew Boulle
- Provincial Health Data Centre, Western Cape Department of Health and CIDER, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Gary Maartens
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Graeme Meintjes
- Department of Medicine, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Wu Y, Guo J, Li W, Xiu X, Thirunavukarasu D, Wang Y, Wang K, Chen W, Yu Zhang D, Yang X, Fan C, Song P. Enhanced Detection of Novel Low-Frequency Gene Fusions via High-Yield Ligation and Multiplexed Enrichment Sequencing. Angew Chem Int Ed Engl 2024; 63:e202316484. [PMID: 38494435 DOI: 10.1002/anie.202316484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Panel-based methods are commonly employed for the analysis of novel gene fusions in precision diagnostics and new drug development in cancer. However, these methods are constrained by limitations in ligation yield and the enrichment of novel gene fusions with low variant allele frequencies. In this study, we conducted a pioneering investigation into the stability of double-stranded adapter DNA, resulting in improved ligation yield and enhanced conversion efficiency. Additionally, we implemented blocker displacement amplification, achieving a remarkable 7-fold enrichment of novel gene fusions. Leveraging the pre-enrichment achieved with this approach, we successfully applied it to Nanopore sequencing, enabling ultra-fast analysis of novel gene fusions within one hour with high sensitivity. This method offers a robust and remarkably sensitive mean of analyzing novel gene fusions, promising the discovery of pivotal biomarkers that can significantly improve cancer diagnostics and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yi Wu
- School of Biomedical Engineering, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinxiao Guo
- Shanghai Sixth People's Hospital Affiliated to, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Wenjun Li
- NuProbe USA, Inc., 2575 West Bellfort Avenue, Ste. 200 Houston, TX 77054, USA
| | - Xuehao Xiu
- School of Biomedical Engineering, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Yudong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 322000, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 322000, China
| | - David Yu Zhang
- NuProbe USA, Inc., 2575 West Bellfort Avenue, Ste. 200 Houston, TX 77054, USA
| | - Xiurong Yang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Song
- School of Biomedical Engineering, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
9
|
Ouyang F, Yuan D, Zhai W, Liu S, Zhou Y, Yang H. HIV-1 Drug Resistance Detected by Next-Generation Sequencing among ART-Naïve Individuals: A Systematic Review and Meta-Analysis. Viruses 2024; 16:239. [PMID: 38400015 PMCID: PMC10893194 DOI: 10.3390/v16020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/31/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND There are an increasing number of articles focused on the prevalence and clinical impact of pretreatment HIV drug resistance (PDR) detected by Sanger sequencing (SGS). PDR may contribute to the increased likelihood of virologic failure and the emergence of new resistance mutations. As SGS is gradually replaced by next-generation sequencing (NGS), it is necessary to assess the levels of PDR using NGS in ART-naïve patients systematically. NGS can detect the viral variants (low-abundance drug-resistant HIV-1 variants (LA-DRVs)) of virus quasi-species at levels below 20% that SGS may fail to detect. NGS has the potential to optimize current HIV drug resistance surveillance methods and inform future research directions. As the NGS technique has high sensitivity, it is highly likely that the level of pretreatment resistance would be underestimated using conventional techniques. METHODS For the systematic review and meta-analysis, we searched for original studies published in PubMed, Web of Science, Scopus, and Embase before 30 March 2023 that focused exclusively on the application of NGS in the detection of HIV drug resistance. Pooled prevalence estimates were calculated using a random effects model using the 'meta' package in R (version 4.2.3). We described drug resistance detected at five thresholds (>1%, 2%, 5%, 10%, and 20% of virus quasi-species). Chi-squared tests were used to analyze differences between the overall prevalence of PDR reported by SGS and NGS. RESULTS A total of 39 eligible studies were selected. The studies included a total of 15,242 ART-naïve individuals living with HIV. The prevalence of PDR was inversely correlated with the mutation detection threshold. The overall prevalence of PDR was 29.74% at the 1% threshold, 22.43% at the 2% threshold, 15.47% at the 5% threshold, 12.95% at the 10% threshold, and 11.08% at the 20% threshold. The prevalence of PDR to INSTIs was 1.22% (95%CI: 0.58-2.57), which is the lowest among the values for all antiretroviral drugs. The prevalence of LA-DRVs was 9.45%. At the 2% and 20% detection threshold, the prevalence of PDR was 22.43% and 11.08%, respectively. Resistance to PIs and INSTIs increased 5.52-fold and 7.08-fold, respectively, in those with a PDR threshold of 2% compared with those with PDR at 20%. However, resistance to NRTIs and NNRTIs increased 2.50-fold and 2.37-fold, respectively. There was a significant difference between the 2% and 5% threshold for detecting HIV drug resistance. There was no statistically significant difference between the results reported by SGS and NGS when using the 20% threshold for reporting resistance mutations. CONCLUSION In this study, we found that next-generation sequencing facilitates a more sensitive detection of HIV-1 drug resistance than SGS. The high prevalence of PDR emphasizes the importance of baseline resistance and assessing the threshold for optimal clinical detection using NGS.
Collapse
Affiliation(s)
- Fei Ouyang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China; (F.O.); (D.Y.); (W.Z.); (S.L.)
| | - Defu Yuan
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China; (F.O.); (D.Y.); (W.Z.); (S.L.)
| | - Wenjing Zhai
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China; (F.O.); (D.Y.); (W.Z.); (S.L.)
| | - Shanshan Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China; (F.O.); (D.Y.); (W.Z.); (S.L.)
| | - Ying Zhou
- Department of HIV/STD Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Haitao Yang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China; (F.O.); (D.Y.); (W.Z.); (S.L.)
- Jiangsu Health Development Research Center, Nanjing 210029, China
| |
Collapse
|
10
|
Cozzi-Lepri A, Dunn D, Tostevin A, Marvig RL, Bennedbaek M, Sharma S, Kozal MJ, Gompels M, Pinto AN, Lundgren J, Baxter JD. Rate of response to initial antiretroviral therapy according to level of pre-existing HIV-1 drug resistance detected by next-generation sequencing in the strategic timing of antiretroviral treatment (START) study. HIV Med 2024; 25:212-222. [PMID: 37775947 PMCID: PMC10872720 DOI: 10.1111/hiv.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
OBJECTIVES The main objective of this analysis was to evaluate the impact of pre-existing drug resistance by next-generation sequencing (NGS) on the risk of treatment failure (TF) of first-line regimens in participants enrolled in the START study. METHODS Stored plasma from participants with entry HIV RNA >1000 copies/mL were analysed using NGS (llumina MiSeq). Pre-existing drug resistance was defined using the mutations considered by the Stanford HIV Drug Resistance Database (HIVDB v8.6) to calculate the genotypic susceptibility score (GSS, estimating the number of active drugs) for the first-line regimen at the detection threshold windows of >20%, >5%, and >2% of the viral population. Survival analysis was conducted to evaluate the association between the GSS and risk of TF (viral load >200 copies/mL plus treatment change). RESULTS Baseline NGS data were available for 1380 antiretroviral therapy (ART)-naïve participants enrolled over 2009-2013. First-line ART included a non-nucleoside reverse transcriptase inhibitor (NNRTI) in 976 (71%), a boosted protease inhibitor in 297 (22%), or an integrase strand transfer inhibitor in 107 (8%). The proportions of participants with GSS <3 were 7% for >20%, 10% for >5%, and 17% for the >2% thresholds, respectively. The adjusted hazard ratio of TF associated with a GSS of 0-2.75 versus 3 in the subset of participants with mutations detected at the >2% threshold was 1.66 (95% confidence interval 1.01-2.74; p = 0.05) and 2.32 (95% confidence interval 1.32-4.09; p = 0.003) after restricting the analysis to participants who started an NNRTI-based regimen. CONCLUSIONS Up to 17% of participants initiated ART with a GSS <3 on the basis of NGS data. Minority variants were predictive of TF, especially for participants starting NNRTI-based regimens.
Collapse
Affiliation(s)
| | - David Dunn
- Institute for Global Health, UCL, London, UK
| | | | - Rasmus L Marvig
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marc Bennedbaek
- Virus Research and Development Laboratory, Virus and Microbiological Special Diagnostics, Statens Serum Institute, Copenhagen, Denmark
| | - Shweta Sharma
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | - Angie N Pinto
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Jens Lundgren
- Copenhagen HIV Programme, Rigs Hospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John D Baxter
- Cooper Medical School of Rowan University and Cooper University Health Care, Camden, New Jersey, USA
| |
Collapse
|
11
|
Su Y, Cai R, Zhu Y, Zhong M, Qi M, Chen C, Ye Z, Zhang H, Wei H. Pre-existing low-frequency resistance mutations increase the risk of antiretroviral treatment failure in HIV-1 naïve patients. Chin Med J (Engl) 2023; 136:2756-2758. [PMID: 37914679 PMCID: PMC10684206 DOI: 10.1097/cm9.0000000000002901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 11/03/2023] Open
Affiliation(s)
- Yifan Su
- Department of Infectious Disease, The Second Hospital of Nanjing Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Rentian Cai
- Department of Infectious Disease, The Second Hospital of Nanjing Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yinyin Zhu
- Nanjing Center for Disease Control and Prevention Affiliated with Nanjing Medical University, Nanjing, Jiangsu 211103, China
| | - Mingli Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Mingxue Qi
- Department of Infectious Disease, The Second Hospital of Nanjing Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Chen Chen
- Department of Infectious Disease, The Second Hospital of Nanjing Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Zi Ye
- Department of Infectious Disease, The Second Hospital of Nanjing Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hongying Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hongxia Wei
- Department of Infectious Disease, The Second Hospital of Nanjing Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
12
|
Li M, Song C, Hu J, Dong A, Kang R, Feng Y, Xing H, Ruan Y, Shao Y, Hong K, Liao L. Impact of pretreatment low-abundance HIV-1 drug resistance on virological failure after 1 year of antiretroviral therapy in China. J Antimicrob Chemother 2023; 78:2743-2751. [PMID: 37769159 DOI: 10.1093/jac/dkad297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
OBJECTIVES To assess the impact of pretreatment low-abundance HIV drug-resistant variants (LA-DRVs) on virological outcomes among ART-naive HIV-1-infected Chinese people who initiated ART. METHODS A nested case-control study was conducted among HIV-1-infected individuals who had pretreatment drug resistance (PDR) genotypic results. Cases were defined as individuals with virological failure (HIV-1 RNA viral load ≥1000 copies/mL) after 1 year of ART, and controls were individuals from the same cohort whose viral load was less than 1000 copies/mL. Next-generation sequencing was used to identify low-abundance PDR mutations at detection thresholds of 10%, 2% and 1%. The mutant load was calculated by multiplying the abundance of HIV-1 drug-resistant variants by the pretreatment viral load. The impact of pretreatment low-abundance mutations on virological failure was estimated in logistic regression models. RESULTS Participants (43 cases and 100 controls) were included in this study for the analysis. The proportion of participants with PDR was higher in cases than in controls at different detection thresholds (44.2% versus 22.0%, P = 0.007 at 10% threshold; 58.1% versus 31.0%, P = 0.002 at 2% threshold; 90.7% versus 69.0%, P = 0.006 at 1% threshold). Compared with participants without PDR, participants with ≥10% detectable PDR mutations were associated with an increased risk of virological failure (adjusted OR 8.0, 95% CI 2.4-26.3, P = 0.001). Besides this, individuals with pretreatment LA-DRVs (2%-9% abundance range) had 5-fold higher odds of virological failure (adjusted OR 5.0, 95% CI 1.3-19.6, P = 0.021). Furthermore, LA-DRVs at 2%-9% abundance resistant to NRTIs and mutants with abundance of ≥10% resistant to NNRTIs had a 4-fold and 8-fold risk of experiencing virological failure, respectively. It was also found that a mutant load of more than 1000 copies/mL was predictive of virological failure (adjusted OR 7.2, 95% CI 2.5-21.1, P = 0.0003). CONCLUSIONS Low-abundance PDR mutations ranging from 2% to 9% of abundance can increase the risk of virological failure. Further studies are warranted to define a clinically relevant threshold of LA-DRVs and the role of NRTI LA-DRVs.
Collapse
Affiliation(s)
- Miaomiao Li
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Chang Song
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Jing Hu
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Aobo Dong
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Ruihua Kang
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Yi Feng
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Hui Xing
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Yuhua Ruan
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Yiming Shao
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Kunxue Hong
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Lingjie Liao
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| |
Collapse
|
13
|
Parkin N, Harrigan PR, Inzaule S, Bertagnolio S. Need assessment for HIV drug resistance testing and landscape of current and future technologies in low- and middle-income countries. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001948. [PMID: 37851634 PMCID: PMC10584185 DOI: 10.1371/journal.pgph.0001948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Resistance to antiretroviral drugs used to treat HIV is an important and evolving concern, particularly in low- and middle-income countries (LMICs) which have been impacted to the greatest extent by the HIV pandemic. Efforts to monitor the emergence and transmission of resistance over the past decade have shown that drug resistance-especially to the nucleoside analogue and non-nucleoside reverse transcriptase inhibitors-can (and have) increased to levels that can jeopardize the efficacy of available treatment options at the population level. The global shift to integrase-based regimens as the preferred first-line therapy as well as technological advancements in the methods for detecting resistance have had an impact in broadening and diversifying the landscape of and use case for HIV drug resistance testing. This review estimates the potential demand for HIV drug resistance tests, and surveys current testing methodologies, with a focus on their application in LMICs.
Collapse
Affiliation(s)
- Neil Parkin
- Data First Consulting, Sebastopol, CA, United States of America
| | - P. Richard Harrigan
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Seth Inzaule
- Amsterdam Institute for Global Health and Development, and Department of Global Health, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
14
|
Botha JC, Byott M, Spyer MJ, Grant PR, Gärtner K, Chen WX, Burton J, Bamford A, Waters LJ, Giaquinto C, Turkova A, Vavro CL, Nastouli E. Sensitive HIV-1 DNA Pol Next-Generation Sequencing for the Characterisation of Archived Antiretroviral Drug Resistance. Viruses 2023; 15:1811. [PMID: 37766218 PMCID: PMC10536450 DOI: 10.3390/v15091811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Modern HIV-1 treatment effectively suppresses viral amplification in people living with HIV. However, the persistence of HIV-1 DNA as proviruses integrated into the human genome remains the main barrier to achieving a cure. Next-generation sequencing (NGS) offers increased sensitivity for characterising archived drug resistance mutations (DRMs) in HIV-1 DNA for improved treatment options. In this study, we present an ultra-sensitive targeted PCR assay coupled with NGS and a robust pipeline to characterise HIV-1 DNA DRMs from buffy coat samples. Our evaluation supports the use of this assay for Pan-HIV-1 analyses with reliable detection of DRMs across the HIV-1 Pol region. We propose this assay as a new valuable tool for monitoring archived HIV-1 drug resistance in virologically suppressed individuals, especially in clinical trials investigating novel therapeutic approaches.
Collapse
Affiliation(s)
- Johannes C. Botha
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK (E.N.)
- Advanced Pathogen Diagnostics Unit, University College London Hospitals NHS Trust, London NW1 2PG, UK
| | - Matthew Byott
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK (E.N.)
- Advanced Pathogen Diagnostics Unit, University College London Hospitals NHS Trust, London NW1 2PG, UK
| | - Moira J. Spyer
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK (E.N.)
- Advanced Pathogen Diagnostics Unit, University College London Hospitals NHS Trust, London NW1 2PG, UK
| | | | - Kathleen Gärtner
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK (E.N.)
| | | | - James Burton
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Alasdair Bamford
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK (E.N.)
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- Medical Research Council Clinical Trials Unit, University College London, London WC1E 6BT, UK
| | - Laura J. Waters
- Central and North West London NHS Foundation Trust, Mortimer Market, London WC1E 6JB, UK
| | - Carlo Giaquinto
- Department of Women and Child Health, University of Padova, 35122 Padova, Italy
- Fondazione Penta ETS, 35127 Padova, Italy
| | - Anna Turkova
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- Medical Research Council Clinical Trials Unit, University College London, London WC1E 6BT, UK
| | | | - Eleni Nastouli
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK (E.N.)
- Advanced Pathogen Diagnostics Unit, University College London Hospitals NHS Trust, London NW1 2PG, UK
| |
Collapse
|
15
|
Moreno A, González C, Góndola J, Chavarría O, Ortiz A, Castillo J, Castillo Mewa J, Pascale JM, Martínez AA. HIV-1 Low-Frequency Variants Identified in Antiretroviral-Naïve Subjects with Virologic Failure after 12 Months of Follow-Up in Panama. Infect Dis Rep 2023; 15:436-444. [PMID: 37623048 PMCID: PMC10454674 DOI: 10.3390/idr15040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 08/26/2023] Open
Abstract
Low-frequency mutations associated with drug resistance have been related to virologic failure in subjects with no history of pre-treatment and recent HIV diagnosis. In total, 78 antiretroviral treatment (ART)-naïve subjects with a recent HIV diagnosis were selected and followed by CD4+ T lymphocytes and viral load tests to detect virologic failure. We sequenced the basal samples retrospectively using next-generation sequencing (NGS), looking for low-frequency mutations that had not been detected before using the Sanger sequencing method (SSM) and describing the response to ART. Twenty-two subjects developed virologic failure (VF), and thirteen of them had at least one drug-resistance mutation associated with Reverse Transcriptase Inhibitors (RTI) and Protease Inhibitors (PIs) at frequency levels ≤ 1%, not detected previously in their basal genotyping test. No resistance mutations were observed to Integrase Strand Transfer Inhibitors (INSTIs). We identified a possible cause of VF in ART-naïve subjects with low-frequency mutations detected. To our knowledge, this is the first evaluation of pre-existing drug resistance for HIV-1 minority variants carried out on ART-naïve people living with HIV/AIDS (PLWHA) by analyzing the HIV-1 pol gene using NGS in the country.
Collapse
Affiliation(s)
- Ambar Moreno
- Department of Research in Genomics and Proteomics, Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama; (A.M.)
| | - Claudia González
- Department of Research in Genomics and Proteomics, Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama; (A.M.)
- Department of Microbiology and Immunology, University of Panama, Panama City 3366, Panama
| | - Jessica Góndola
- Department of Research in Genomics and Proteomics, Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama; (A.M.)
| | - Oris Chavarría
- Department of Research in Genomics and Proteomics, Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama; (A.M.)
| | - Alma Ortiz
- Department of Research in Genomics and Proteomics, Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama; (A.M.)
| | - Jorge Castillo
- Department of Research in Genomics and Proteomics, Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama; (A.M.)
| | - Juan Castillo Mewa
- Department of Research in Genomics and Proteomics, Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama; (A.M.)
| | - Juan Miguel Pascale
- Department of Research in Genomics and Proteomics, Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama; (A.M.)
- Department of Microbiology and Immunology, University of Panama, Panama City 3366, Panama
| | - Alexander Augusto Martínez
- Department of Research in Genomics and Proteomics, Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama; (A.M.)
- Department of Microbiology and Immunology, University of Panama, Panama City 3366, Panama
| |
Collapse
|
16
|
Novitsky V, Nyandiko W, Vreeman R, DeLong AK, Howison M, Manne A, Aluoch J, Chory A, Sang F, Ashimosi C, Jepkemboi E, Orido M, Hogan JW, Kantor R. Added Value of Next Generation Sequencing in Characterizing the Evolution of HIV-1 Drug Resistance in Kenyan Youth. Viruses 2023; 15:1416. [PMID: 37515104 PMCID: PMC10383797 DOI: 10.3390/v15071416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Drug resistance remains a global challenge in children and adolescents living with HIV (CALWH). Characterizing resistance evolution, specifically using next generation sequencing (NGS) can potentially inform care, but remains understudied, particularly in antiretroviral therapy (ART)-experienced CALWH in resource-limited settings. We conducted reverse-transcriptase NGS and investigated short-and long-term resistance evolution and its predicted impact in a well-characterized cohort of Kenyan CALWH failing 1st-line ART and followed for up to ~8 years. Drug resistance mutation (DRM) evolution types were determined by NGS frequency changes over time, defined as evolving (up-trending and crossing the 20% NGS threshold), reverting (down-trending and crossing the 20% threshold) or other. Exploratory analyses assessed potential impacts of minority resistance variants on evolution. Evolution was detected in 93% of 42 participants, including 91% of 22 with short-term follow-up, 100% of 7 with long-term follow-up without regimen change, and 95% of 19 with long-term follow-up with regimen change. Evolving DRMs were identified in 60% and minority resistance variants evolved in 17%, with exploratory analysis suggesting greater rate of evolution of minority resistance variants under drug selection pressure and higher predicted drug resistance scores in the presence of minority DRMs. Despite high-level pre-existing resistance, NGS-based longitudinal follow-up of this small but unique cohort of Kenyan CALWH demonstrated continued DRM evolution, at times including low-level DRMs detected only by NGS, with predicted impact on care. NGS can inform better understanding of DRM evolution and dynamics and possibly improve care. The clinical significance of these findings should be further evaluated.
Collapse
Affiliation(s)
- Vlad Novitsky
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Winstone Nyandiko
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret 30100, Kenya
- College of Health Sciences, Moi University, Eldoret 30100, Kenya
| | - Rachel Vreeman
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret 30100, Kenya
- Department of Global Health and Health System Design, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Arnhold Institute for Global Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Allison K DeLong
- School of Public Health, Brown University, Providence, RI 02912, USA
| | - Mark Howison
- Research Improving People's Lives, Providence, RI 02903, USA
| | - Akarsh Manne
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Josephine Aluoch
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret 30100, Kenya
| | - Ashley Chory
- Department of Global Health and Health System Design, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Festus Sang
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret 30100, Kenya
| | - Celestine Ashimosi
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret 30100, Kenya
| | - Eslyne Jepkemboi
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret 30100, Kenya
| | - Millicent Orido
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret 30100, Kenya
| | - Joseph W Hogan
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret 30100, Kenya
- School of Public Health, Brown University, Providence, RI 02912, USA
| | - Rami Kantor
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| |
Collapse
|
17
|
Raymond S, Jeanne N, Nicot F, Dimeglio C, Carcenac R, Harter A, Ranger N, Martin-Blondel G, Delobel P, Izopet J. HIV-1 resistance genotyping by ultra-deep sequencing and 6-month virological response to first-line treatment. J Antimicrob Chemother 2023; 78:346-353. [PMID: 36449383 DOI: 10.1093/jac/dkac391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES To evaluate the routine use of the Sentosa ultra-deep sequencing (UDS) system for HIV-1 polymerase resistance genotyping in treatment-naïve individuals and to analyse the virological response (VR) to first-line antiretroviral treatment. METHODS HIV drug resistance was determined on 237 consecutive samples from treatment-naïve individuals using the Sentosa UDS platform with two mutation detection thresholds (3% and 20%). VR was defined as a plasma HIV-1 virus load <50 copies/mL after 6 months of treatment. RESULTS Resistance to at least one antiretroviral drug with a mutation threshold of 3% was identified in 29% and 16% of samples according to ANRS and Stanford algorithms, respectively. The ANRS algorithm also revealed reduced susceptibility to at least one protease inhibitor (PI) in 14.3% of samples, to one reverse transcriptase inhibitor in 12.7%, and to one integrase inhibitor (INSTI) in 5.1%. For a mutation threshold of 20%, resistance was identified in 24% and 13% of samples according to ANRS and Stanford algorithms, respectively. The 6 months VR was 87% and was similar in the 58% of patients given INSTI-based treatment, in the 16% given PI-based treatment and in the 9% given NNRTI-based treatment. Multivariate analysis indicated that the VR was correlated with the baseline HIV virus load and resistance to at least one PI at both 3% and 20% mutation detection thresholds (ANRS algorithm). CONCLUSIONS The Vela UDS platform is appropriate for determining antiretroviral resistance in patients on a first-line antiretroviral treatment. Further studies are needed on the use of UDS for therapeutic management.
Collapse
Affiliation(s)
- Stéphanie Raymond
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR 1291 - CNRS UMR 5051, Toulouse, France.,CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, F-31300France
| | - Nicolas Jeanne
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, F-31300France
| | - Florence Nicot
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, F-31300France
| | - Chloé Dimeglio
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, F-31300France
| | - Romain Carcenac
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, F-31300France
| | - Agnès Harter
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, F-31300France
| | - Noémie Ranger
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, F-31300France
| | - Guillaume Martin-Blondel
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR 1291 - CNRS UMR 5051, Toulouse, France.,CHU de Toulouse, Hôpital Purpan, Service des Maladies Infectieuses et Tropicales, Toulouse, F-31300France
| | - Pierre Delobel
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR 1291 - CNRS UMR 5051, Toulouse, France.,CHU de Toulouse, Hôpital Purpan, Service des Maladies Infectieuses et Tropicales, Toulouse, F-31300France
| | - Jacques Izopet
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR 1291 - CNRS UMR 5051, Toulouse, France.,CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, F-31300France
| |
Collapse
|
18
|
In Vitro Susceptibility of HIV Isolates with High Growth Capability to Antiretroviral Drugs. Int J Mol Sci 2022; 23:ijms232315380. [PMID: 36499705 PMCID: PMC9737537 DOI: 10.3390/ijms232315380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
It has been considered that reduced susceptibility to antiretroviral drugs is influenced by drug adherence, drug tolerance and drug-resistance-related mutations in the HIV genome. In the present study, we assessed the intrinsic high viral growth capability as a potential viral factor that may influence their susceptibility to antiretroviral drugs using an in vitro model. Phytohemagglutinin-activated peripheral blood mononuclear cells (1.5 × 106 cells) were infected with HIV isolates (106 copies/mL). The culture was carried out at different concentrations (0.001-20 μM) of 13 synthetic antiretroviral compounds (six nucleoside/nucleotide reverse transcriptase inhibitors, one non-nucleoside reverse transcriptase inhibitor, four integrase inhibitors, and two protease inhibitors), and HIV production was assessed using HIV-RNA copies in culture. The 90% inhibitory concentration (IC90) and pharmacokinetics of an antiretroviral agent were used as parameters to determine the reduced antiretroviral drug susceptibility of HIV isolates with high growth capability to synthetic antiretroviral compounds. The high growth capability of HIV isolates without any known drug resistance-related mutation affected their susceptibility to tenofovir (IC90 = 2.05 ± 0.40 μM), lamivudine (IC90 = 6.83 ± 3.96 μM), emtricitabine (IC90 = 0.68 ± 0.37 μM), and efavirenz (IC90 = 3.65 ± 0.77 μM). These antiretroviral drugs showed IC90 values close to or above the maximum plasma concentration against HIV isolates with high growth capability without any known drug resistance-related mutation. Our results may contribute to the development of effective strategies to tailor and individualize antiretroviral therapy in patients harboring HIV isolates with high growth capability.
Collapse
|
19
|
MILNE RS, BECK IA, LEVINE M, SO I, ANDERSEN N, DENG W, PANPRADIST N, KINGOO J, KIPTINNESS C, YATICH N, KIARIE JN, SAKR SR, CHUNG MH, FRENKEL LM. Low-frequency pre-treatment HIV drug resistance: effects on 2-year outcome of first-line efavirenz-based antiretroviral therapy. AIDS 2022; 36:1949-1958. [PMID: 36305180 PMCID: PMC9623471 DOI: 10.1097/qad.0000000000003361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Assess the impact of pre-treatment high-frequency and low-frequency drug-resistant HIV variants on long-term outcomes of first-line efavirenz-based antiretroviral therapy (ART). DESIGN Prospective observational study. METHODS Participants' pre-treatment plasma RNA had two sections of HIV pol encoding reverse transcriptase sequenced (Illumina, MiSeq) using unique molecular identifiers to detect wild-type (pre-treatment drug-resistant variants less than 1% of viral quasispecies), low-frequency (1-9%) or high-frequency drug-resistant variants (10-100%). Associations between pre-treatment drug resistance and virologic outcomes over 24 months of efavirenz-based ART were assessed for the number and frequency of mutations by drug class and other resistance parameters. RESULTS Virologic failure was detected in 30 of 352 (9%) and pre-treatment drug-resistant variants were detected in the viral quasispecies of 31 of 352 (9%) participants prescribed efavirenz-based ART. Survival analyses revealed statistically significant associations between pre-treatment drug resistance at low (P < 0.0001) and high (P < 0.001) frequencies, at oligonucleotide ligation assay (OLA) (P < 0.00001) and non-OLA (P < 0.01) codons, to a single-antiretroviral class (P < 0.00001), and a shorter time to virologic failure of efavirenz-based ART. Regression analyses detected independent effects across resistance categories, including both low-frequency (P < 0.01) and high-frequency (P < 0.001) drug-resistant variants. CONCLUSION We observed that pre-treatment HIV drug resistance detected at low frequencies increased the risk of virologic failure over 24 months of efavirenz-based ART, but that most failures, regardless of drug-resistant variants' frequencies, were detected within a year of ART initiation. These observations suggest that when efavirenz-based ART is prescribed, screening for pre-treatment drug resistance by an assay capable of detecting low-frequency variants, including OLA, may guide clinicians to prescribe more effective ART.
Collapse
Affiliation(s)
- Ross S. MILNE
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Ingrid A. BECK
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Molly LEVINE
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Isaac SO
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Nina ANDERSEN
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Wenjie DENG
- University of Washington, Seattle, Washington, USA
| | | | - James KINGOO
- University of Washington, Seattle, Washington, USA
- Coptic Hospital, Nairobi, Kenya
| | | | - Nelly YATICH
- University of Washington, Seattle, Washington, USA
| | | | | | | | - Lisa M. FRENKEL
- Seattle Children’s Research Institute, Seattle, Washington, USA
- University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
Li Y, Han L, Wang Y, Wang X, Jia L, Li J, Han J, Zhao J, Li H, Li L. Establishment and application of a method of tagged-amplicon deep sequencing for low-abundance drug resistance in HIV-1. Front Microbiol 2022; 13:895227. [PMID: 36071961 PMCID: PMC9444182 DOI: 10.3389/fmicb.2022.895227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
In the latest HIV-1 global drug resistance report released by WHO, countries are advised to strengthen pre-treatment monitoring of drug resistance in AIDS patients. In this study, we established an NGS-based segmented amplification HIV-1 drug resistance mutation detection method. The pol region of HIV-1 was divided into three short fragments for NGS. The entire amplification and sequencing panel were more cost-effective and batched by using the barcode sequence corresponding to the sample. Each parameter was evaluated using samples with known resistance variants frequencies. The nucleotide sequence error rate, amino acid error rate, and noise value of the NGS-based segmented amplification method were both less than 1%. When the threshold was 2%, the consensus sequences of the HIV-1 NL4-3 strain were completely consistent with the Sanger sequences. This method can detect the minimum viral load of the sample at 102 copies/ml, and the input frequency and detection frequency of HIV-1 resistance mutations within the range of 1%–100% had good conformity (R2 = 0.9963; R2 = 0.9955). This method had no non-specific amplification for Hepatitis B and C. Under the 2% threshold, the incidence of surveillance drug resistance mutations in ART-naive HIV-infected patients was 20.69%, among which NRTIs class resistance mutations were mainly.
Collapse
Affiliation(s)
- Yang Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Leilei Han
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yanglan Wang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaolin Wang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Jia
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingyun Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingwan Han
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jin Zhao
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Hanping Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- *Correspondence: Hanping Li,
| | - Lin Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Lin Li,
| |
Collapse
|
21
|
Maruapula D, Seatla KK, Morerinyane O, Molebatsi K, Giandhari J, de Oliveira T, Musonda RM, Leteane M, Mpoloka SW, Rowley CF, Moyo S, Gaseitsiwe S. Low-frequency HIV-1 drug resistance mutations in antiretroviral naïve individuals in Botswana. Medicine (Baltimore) 2022; 101:e29577. [PMID: 35838991 PMCID: PMC11132386 DOI: 10.1097/md.0000000000029577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Individuals living with human immunodeficiency virus (HIV) who experience virological failure (VF) after combination antiretroviral therapy (cART) initiation may have had low-frequency drug resistance mutations (DRMs) at cART initiation. There are no data on low-frequency DRMs among cART-naïve HIV-positive individuals in Botswana. METHODS We evaluated the prevalence of low-frequency DRMs among cART-naïve individuals previously sequenced using Sanger sequencing. The generated pol amplicons were sequenced by next-generation sequencing. RESULTS We observed low-frequency DRMs (detected at <20% in 33/103 (32%) of the successfully sequenced individuals, of whom four also had mutations detected at >20%. K65R was the most common low-frequency DRM detected in 8 individuals. Eighty-two of the 103 individuals had follow-up viral load data while on cART. Twenty-seven of the 82 individuals harbored low-frequency DRMs. Only 12 of 82 individuals experienced VF. The following low-frequency DRMs were observed in four individuals experiencing VF: K65R, K103N, V108I, and Y188C. No statistically significant difference was observed in the prevalence of low-frequency DRMs between individuals experiencing VF (4/12) and those not experiencing VF (23/70) (P = .97). However, individuals with non-nucleoside reverse transcriptase inhibitors-associated low-frequency DRMs were 2.68 times more likely to experience VF (odds ratio, 2.68; 95% confidential interval, 0.4-13.9) compared with those without (P = .22). CONCLUSION Next-generation sequencing was able to detect low-frequency DRMs in this cohort in Botswana, but these DRMs did not contribute significantly to VF.
Collapse
Affiliation(s)
- Dorcas Maruapula
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Kaelo K. Seatla
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- School of Allied Health Professions, University of Botswana, Gaborone, Botswana
| | | | - Kesaobaka Molebatsi
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Statistics, University of Botswana, Gaborone, Botswana
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rosemary M. Musonda
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Melvin Leteane
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Sununguko W Mpoloka
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Christopher F. Rowley
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
22
|
Munyuza C, Ji H, Lee ER. Probe Capture Enrichment Methods for HIV and HCV Genome Sequencing and Drug Resistance Genotyping. Pathogens 2022; 11:693. [PMID: 35745547 PMCID: PMC9228464 DOI: 10.3390/pathogens11060693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 01/01/2023] Open
Abstract
Human immunodeficiency virus (HIV) infections remain a significant public health concern worldwide. Over the years, sophisticated sequencing technologies such as next-generation sequencing (NGS) have emerged and been utilized to monitor the spread of HIV drug resistance (HIVDR), identify HIV drug resistance mutations, and characterize transmission dynamics. Similar applications also apply to the Hepatitis C virus (HCV), another bloodborne viral pathogen with significant intra-host genetic diversity. Several advantages to using NGS over conventional Sanger sequencing include increased data throughput, scalability, cost-effectiveness when batched sample testing is performed, and sensitivity for quantitative detection of minority resistant variants. However, NGS alone may fail to detect genomes from pathogens present in low copy numbers. As with all sequencing platforms, the primary determinant in achieving quality sequencing data is the quality and quantity of the initial template input. Samples containing degraded RNA/DNA and/or low copy number have been a consistent sequencing challenge. To overcome this limitation probe capture enrichment is a method that has recently been employed to target, enrich, and sequence the genome of a pathogen present in low copies, and for compromised specimens that contain poor quality nucleic acids. It involves the hybridization of sequence-specific DNA or RNA probes to a target sequence, which is followed by an enrichment step via PCR to increase the number of copies of the targeted sequences after which the samples are subjected to NGS procedures. This method has been performed on pathogens such as bacteria, fungus, and viruses and allows for the sequencing of complete genomes, with high coverage. Post NGS, data analysis can be performed through various bioinformatics pipelines which can provide information on genetic diversity, genotype, virulence, and drug resistance. This article reviews how probe capture enrichment helps to increase the likelihood of sequencing HIV and HCV samples that contain low viral loads and/or are compromised.
Collapse
Affiliation(s)
- Chantal Munyuza
- National HIV and Retrovirology Laboratories, National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (C.M.); (H.J.)
| | - Hezhao Ji
- National HIV and Retrovirology Laboratories, National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (C.M.); (H.J.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Emma R. Lee
- National HIV and Retrovirology Laboratories, National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (C.M.); (H.J.)
| |
Collapse
|
23
|
Tisthammer KH, Solis C, Orcales F, Nzerem M, Winstead R, Dong W, Joy JB, Pennings PS. Assessing in vivo mutation frequencies and creating a high-resolution genome-wide map of fitness costs of Hepatitis C virus. PLoS Genet 2022; 18:e1010179. [PMID: 35500034 PMCID: PMC9113599 DOI: 10.1371/journal.pgen.1010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/17/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Like many viruses, Hepatitis C Virus (HCV) has a high mutation rate, which helps the virus adapt quickly, but mutations come with fitness costs. Fitness costs can be studied by different approaches, such as experimental or frequency-based approaches. The frequency-based approach is particularly useful to estimate in vivo fitness costs, but this approach works best with deep sequencing data from many hosts are. In this study, we applied the frequency-based approach to a large dataset of 195 patients and estimated the fitness costs of mutations at 7957 sites along the HCV genome. We used beta regression and random forest models to better understand how different factors influenced fitness costs. Our results revealed that costs of nonsynonymous mutations were three times higher than those of synonymous mutations, and mutations at nucleotides A or T had higher costs than those at C or G. Genome location had a modest effect, with lower costs for mutations in HVR1 and higher costs for mutations in Core and NS5B. Resistance mutations were, on average, costlier than other mutations. Our results show that in vivo fitness costs of mutations can be site and virus specific, reinforcing the utility of constructing in vivo fitness cost maps of viral genomes.
Collapse
Affiliation(s)
- Kaho H. Tisthammer
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
- * E-mail:
| | - Caroline Solis
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Faye Orcales
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Madu Nzerem
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Ryan Winstead
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Weiyan Dong
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Colombia, Canada
| | - Jeffrey B. Joy
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Colombia, Canada
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Bioinformatics Programme, University of British Columbia, Vancouver, British Colombia, Canada
| | - Pleuni S. Pennings
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| |
Collapse
|
24
|
Waddington C, Carey ME, Boinett CJ, Higginson E, Veeraraghavan B, Baker S. Exploiting genomics to mitigate the public health impact of antimicrobial resistance. Genome Med 2022; 14:15. [PMID: 35172877 PMCID: PMC8849018 DOI: 10.1186/s13073-022-01020-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is a major global public health threat, which has been largely driven by the excessive use of antimicrobials. Control measures are urgently needed to slow the trajectory of AMR but are hampered by an incomplete understanding of the interplay between pathogens, AMR encoding genes, and mobile genetic elements at a microbial level. These factors, combined with the human, animal, and environmental interactions that underlie AMR dissemination at a population level, make for a highly complex landscape. Whole-genome sequencing (WGS) and, more recently, metagenomic analyses have greatly enhanced our understanding of these processes, and these approaches are informing mitigation strategies for how we better understand and control AMR. This review explores how WGS techniques have advanced global, national, and local AMR surveillance, and how this improved understanding is being applied to inform solutions, such as novel diagnostic methods that allow antimicrobial use to be optimised and vaccination strategies for better controlling AMR. We highlight some future opportunities for AMR control informed by genomic sequencing, along with the remaining challenges that must be overcome to fully realise the potential of WGS approaches for international AMR control.
Collapse
Affiliation(s)
- Claire Waddington
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Megan E Carey
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Ellen Higginson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Balaji Veeraraghavan
- Department of Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK. .,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
25
|
Mills A, Richmond GJ, Newman C, Osiyemi O, Cade J, Brinson C, De Vente J, Margolis DA, Sutton KC, Wilches V, Hatch S, Roberts J, McCoig C, Garris C, Vandermeulen K, Spreen WR. Long-acting cabotegravir and rilpivirine for HIV-1 suppression: switch to 2-monthly dosing after 5 years of daily oral therapy. AIDS 2022; 36:195-203. [PMID: 34652287 PMCID: PMC8711606 DOI: 10.1097/qad.0000000000003085] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Long-acting formulations of cabotegravir (CAB) and rilpivirine (RPV) have demonstrated efficacy in Phase 3 studies. POLAR (NCT03639311) assessed antiviral activity and safety of CAB+RPV long-acting administered every 2 months (Q2M) in adults living with HIV-1 who previously received daily oral CAB+RPV in LATTE (NCT01641809). DESIGN A Phase 2b, multicenter, open-label, rollover study. METHODS LATTE participants with plasma HIV-1 RNA less than 50 copies/ml who completed at least 300 weeks on study were eligible. Participants elected to switch to either CAB+RPV long-acting Q2M or daily oral dolutegravir/RPV for maintenance of virologic suppression. The primary endpoint was the proportion of participants with HIV-1 RNA greater than or equal to 50 copies/ml at Month 12 (M12) per the Food and Drug Administration Snapshot algorithm. The incidence of confirmed virologic failure (CVF, two consecutive HIV-1 RNA measurements greater than or equal to 200 copies/ml), as well as safety, laboratory, and patient-reported outcomes (HIV Treatment Satisfaction and preference questionnaires) were also assessed. RESULTS Of 97 participants enrolled, 90 chose to receive CAB+RPV long-acting and seven chose dolutegravir/RPV. At M12, no participant had HIV-1 RNA greater than or equal to 50 copies/ml or met the CVF criterion in either treatment group. No new safety signals were identified. Total treatment satisfaction was high at Baseline and remained stable through M12 across both treatment groups. Overall, 88% (n = 77/88) of long-acting arm participants preferred CAB+RPV long-acting to oral CAB+RPV. CONCLUSION CAB+RPV long-acting maintained virologic suppression in participants who had previously received daily oral CAB+RPV for at least 5 years in LATTE, with a favorable safety profile. Most participants preferred CAB+RPV long-acting to their prior oral CAB+RPV regimen at M12.
Collapse
Affiliation(s)
| | | | | | | | - Jerry Cade
- Wellness Center UMC of Southern Nevada, Las Vegas, Nevada
| | | | - Jerome De Vente
- Long Beach Education and Research Consultants, Long Beach, California
| | - David A. Margolis
- Brii Biosciences, Durham
- ViiV Healthcare, Research Triangle Park, North Carolina
| | | | | | - Sarah Hatch
- GlaxoSmithKline, Upper Providence, Pennsylvania, USA
| | | | | | - Cindy Garris
- ViiV Healthcare, Research Triangle Park, North Carolina
| | | | | |
Collapse
|
26
|
High Level of Pre-Treatment HIV-1 Drug Resistance and Its Association with HLA Class I-Mediated Restriction in the Pumwani Sex Worker Cohort. Viruses 2022; 14:v14020273. [PMID: 35215866 PMCID: PMC8879707 DOI: 10.3390/v14020273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/08/2023] Open
Abstract
Background: We analyzed the prevalence of pre-antiretroviral therapy (ART) drug resistance mutations (DRMs) in a Kenyan population. We also examined whether host HLA class I genes influence the development of pre-ART DRMs. Methods: The HIV-1 proviral DNAs were amplified from blood samples of 266 ART-naïve women from the Pumwani Sex Worker cohort of Nairobi, Kenya using a nested PCR method. The amplified HIV genomes were sequenced using next-generation sequencing technology. The prevalence of pre-ART DRMs was investigated. Correlation studies were performed between HLA class I alleles and HIV-1 DRMs. Results: Ninety-eight percent of participants had at least one DRM, while 38% had at least one WHO surveillance DRM. M184I was the most prevalent clinically important variant, seen in 37% of participants. The DRMs conferring resistance to one or more integrase strand transfer inhibitors were also found in up to 10% of participants. Eighteen potentially relevant (p < 0.05) positive correlations were found between HLA class 1 alleles and HIV drug-resistant variants. Conclusions: High levels of HIV drug resistance were found in all classes of antiretroviral drugs included in the current first-line ART regimens in Africa. The development of DRMs may be influenced by host HLA class I-restricted immunity.
Collapse
|
27
|
Guo C, Wu Y, Zhang Y, Liu X, Li A, Gao M, Zhang T, Wu H, Chen G, Huang X. Transmitted Drug Resistance in Antiretroviral Therapy-Naive Persons With Acute/Early/Primary HIV Infection: A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:718763. [PMID: 34899288 PMCID: PMC8652085 DOI: 10.3389/fphar.2021.718763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
Background: The widespread use of antiretroviral therapy (ART) has raised concerns about the emergence of HIV transmitted drug resistance (TDR). Acute HIV infection (AHI) was the most appropriate time to detect the spread of TDR. In this meta-analysis, our purpose was to evaluate the level of TDR in ART-naive patients with primary HIV infection (PHI)/AHI/early HIV infection (EHI) and to describe the critical drug-resistant mutations. Methods: We systematically searched the literature between January 1, 2008, and April 30, 2021, in PubMed, Web of Science, Embase, and the Cochrane Library. To evaluate the overall prevalence of TDR, we extracted raw data and analyzed prevalence estimates using Stata SE. Results: The data of this meta-analysis come from 12 observational studies, covering 3,558 ART-naive individuals with PHI, AHI, or EHI. The overall prevalence of HIV-TDR is 9.3% (95% CI: 6.8%–11.8%, I2 = 81.1%, in 11 studies). The prevalence of resistance by drug class is the highest for the nonnucleoside reverse transcriptase inhibitors (NNRTIs) at 5.7% (95% CI: 2.9%–8.5%, I2 = 96.6%, in 11 studies), followed by nucleoside reverse transcriptase inhibitors (NRTIs) at 3.4% (95% CI: 1.8%–5.0%, I2 = 86.3%, in 10 studies) and protease inhibitors (PIs) at 3.3% (95% CI: 2.7%–3.9%, I2 = 15.6%, in 10 studies). The prevalence of TDR to integrase inhibitors (INIs) is 0.3% (95% CI: 0.1%–0.7%, I2 = 95.9%, in three studies), which is the lowest among all antiretroviral drugs. Conclusion: The overall prevalence of TDR is at a moderate level among AHI patients who have never received ART. This emphasizes the importance of baseline drug resistance testing for public health surveillance and guiding the choice of ART. In addition, the prevalence of TDR to NNRTIs is the highest, while the TDR to INIs is the lowest. This may guide the selection of clinical antiretroviral drugs.
Collapse
Affiliation(s)
- Chunxiang Guo
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaxin Wu
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xinchao Liu
- Department of Infectious Disease, Peking Union Medical College Hospital, Beijing, China
| | - Aixin Li
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Meixia Gao
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaojie Huang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Sarinoglu RC, Sili U, Hasdemir U, Aksu B, Soyletir G, Korten V. Diversity of HIV-1 subtypes and transmitted drug-resistance mutations among minority HIV-1 variants in a Turkish cohort. Curr HIV Res 2021; 20:54-62. [PMID: 34802406 DOI: 10.2174/1570162x19666211119111740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The World Health Organization (WHO) recommends the surveillance of transmitted drug resistance mutations (TDRMs) to ensure the effectiveness and sustainability of HIV treatment programs. OBJECTIVE Our aim was to determine the TDRMs and evaluate the distribution of HIV-1 subtypes using and compared next-generation sequencing (NGS) and Sanger-based sequencing (SBS) in a cohort of 44 antiretroviral treatment-naïve patients. METHODS All samples that were referred to the microbiology laboratory for HIV drug resistance analysis between December 2016 and February 2018 were included in the study. After exclusions, 44 treatment-naive adult patients with a viral load of >1000 copies/mL were analyzed. DNA sequencing for reverse transcriptase and protease regions was performed using both DeepChek ABL single round kit and Sanger-based ViroSeq HIV-1 Genotyping System. The mutations and HIV-1 subtypes were analyzed using the Stanford HIVdb version 8.6.1 Genotypic Resistance software, and TDRMs were assessed using the WHO surveillance drug-resistance mutation database. HIV-1 subtypes were confirmed by constructing a maximum-likelihood phylogenetic tree using Los Alamos IQ-Tree software. RESULTS NGS identified nucleos(t)ide reverse transcriptase inhibitor (NRTI)-TDRMs in 9.1% of the patients, non-nucleos(t)ide reverse transcriptase inhibitor (NNRTI)-TDRMs in 6.8% of the patients, and protease inhibitor (PI)-TDRMs in 18.2% of the patients at a detection threshold of ≥1%. Using SBS, 2.3% and 6.8% of the patients were found to have NRTI- and NNRTI-TDRMs, respectively, but no major PI mutations were detected. M41L, L74I, K65R, M184V, and M184I related to NRTI, K103N to NNRTI, and N83D, M46I, I84V, V82A, L24I, L90M, I54V to the PI sites were identified using NGS. Most mutations were found in low-abundance (frequency range: 1.0% - 4.7%) HIV-1 variants, except M41L and K103N. The subtypes of the isolates were found as follows; 61.4% subtype B, 18.2% subtype B/CRF02_AG recombinant, 13.6% subtype A, 4.5% CRF43_02G, and 2.3% CRF02_AG. All TDRMs, except K65R, were detected in HIV-1 subtype B isolates. CONCLUSION The high diversity of protease site TDRMs in the minority HIV-1 variants and prevalence of CRFs were remarkable in this study. All minority HIV-1 variants were missed by conventional sequencing. TDRM prevalence among minority variants appears to be decreasing over time at our center.
Collapse
Affiliation(s)
- Rabia Can Sarinoglu
- Marmara University School of Medicine, Pendik Training and Research Hospital, Department of Medical Microbiology, Istanbul. Turkey
| | - Uluhan Sili
- Marmara University School of Medicine, Pendik Training and Research Hospital, Department of Infectious Diseases and Clinical Microbiology, Istanbul. Turkey
| | - Ufuk Hasdemir
- Marmara University School of Medicine, Pendik Training and Research Hospital, Department of Medical Microbiology, Istanbul. Turkey
| | - Burak Aksu
- Marmara University School of Medicine, Pendik Training and Research Hospital, Department of Medical Microbiology, Istanbul. Turkey
| | - Guner Soyletir
- Marmara University School of Medicine, Pendik Training and Research Hospital, Department of Medical Microbiology, Istanbul. Turkey
| | - Volkan Korten
- Marmara University School of Medicine, Pendik Training and Research Hospital, Department of Infectious Diseases and Clinical Microbiology, Istanbul. Turkey
| |
Collapse
|
29
|
Abstract
HIV-1 is genetically heterogeneous, having different subtypes and circulating recombinant forms (CRFs). HIV-1 genotyping is used to determine drug resistance profiles and is based on the use of a mixture of consensus and degenerate primers targeting the pol gene. However, the use of this type of primers is associated with either PCR bias or PCR failure. Consensus-degenerate hybrid oligonucleotide primers (CODEHOPs) can detect and identify unknown and distantly related gene sequences by PCR. CODEHOPs designed using different HIV-1 subtypes and CRFs were evaluated for HIV-1 genotyping by Sanger and MinION sequencing. A total of 321 plasma samples were used for the validation of CODEHOP-mediated HIV-1 genotyping. CODEHOP-mediated PCR showed 100% sensitivity and specificity, with limits of detection and genotyping below 200 copies/ml. The head-to-head evaluation of CODEHOP-mediated PCR and standard PCR showed 97 to 98% and 82 to 84% PCR success rates, respectively. There was 100% agreement between the CODEHOP and the reference method in the drug resistance profiles determined by Sanger-based sequencing. Using MinION sequencing, the CODEHOP-mediated PCR scheme resulted in better depth of genome coverage and detection of more drug resistance variants in the protease and reverse transcriptase genes than the standard amplification scheme. The overall prevalences of drug resistance mutations were 17.1% in treatment-experienced patients and 1.2% in treatment-naive patients. They were mainly associated with resistance to reverse transcriptase inhibitors and were linked to virological failure and the patient’s treatment history. Findings from this study suggest that the performance of HIV-1 genotyping is improved by using CODEHOP-mediated PCR. IMPORTANCE HIV-1 drug resistance is the main cause of treatment failure. Regular surveillance of resistance-associated mutations in HIV-1 genomes is essential for the optimal management of HIV-1 infections. Due to HIV-1’s genetic diversity, different HIV-1 genotypes are circulating worldwide. Standard primers used in the amplification of HIV-1 RNA have not been designed to cover all HIV-1 genotypes and are the main cause of amplification and drug resistance test failure. In this study, new sets of PCR primers targeting the protease, reverse transcriptase, and integrase genes were designed using the CODEHOP approach. They were compared to primers recommended in part by WHO for drug resistance testing using in-house PCR. Unsuccessful HIV-1 RNA amplification was less likely to occur with CODEHOP primers, leading to fewer test failures and lower cost. Furthermore, CODEHOP primers were more effective than standard primers for the detection of minority resistant variants by MinION sequencing.
Collapse
|
30
|
Palich R, Teyssou E, Sayon S, Abdi B, Soulie C, Cuzin L, Tubiana R, Valantin MA, Schneider L, Seang S, Wirden M, Pourcher V, Katlama C, Calvez V, Marcelin AG. Kinetics of archived M184V mutation in treatment-experienced virally suppressed HIV-infected patients. J Infect Dis 2021; 225:502-509. [PMID: 34415048 DOI: 10.1093/infdis/jiab413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/17/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We aimed to assess the kinetics of drug-resistant viral variants (DRVs) harboring the M184V mutation in the proviral DNA of long-term virally suppressed patients, and factors associated with DRV persistence. METHODS HIV-DNA from blood cells stored in 2019 and 2016 was sequenced using both Sanger and ultradeep sequencing (SS and UDS, with a detection threshold of 1%) in ART-treated patients with HIV-RNA <50 copies/mL for at least 5 years, with past M184V mutation documented in HIV-RNA. RESULTS Among the 79 tested patients, by combining SS and UDS, the M184V was found to be absent in 26/79 (33%) patients (M184V- patients), and persisted in 53/79 (67%) (M184V+ patients). The M184V+ patients had a longer history of ART, a lower CD4 nadir and higher pretherapeutic HIV-RNA. Among the 37 patients with viral sequences assessed by UDS, the proportion of M184V+ DRVs significantly decreased between 2016 and 2019 (40% versus 14%, p=0.005). The persistence of M184V was associated with the duration and level of HIV-RNA replication under 3TC/FTC (p=0.0009 and p=0.009, respectively). CONCLUSION While it decreased over time in HIV-DNA, the M184V mutation was more frequently persistent in the HIV-DNA of more experienced patients with longer past replication under 3TC/FTC.
Collapse
Affiliation(s)
- Romain Palich
- Sorbonne University, Infectious Diseases Department, Pitié-Salpêtrière Hospital, AP-HP, Pierre Louis Epidemiology and Public Health Institute (iPLESP), INSERM, Paris, France.,Sorbonne University, Virology Department, Pitié-Salpêtrière Hospital, AP-HP, Pierre Louis Epidemiology and Public Health Institute (iPLESP), INSERM, Paris, France
| | - Elisa Teyssou
- Sorbonne University, Virology Department, Pitié-Salpêtrière Hospital, AP-HP, Pierre Louis Epidemiology and Public Health Institute (iPLESP), INSERM, Paris, France
| | - Sophie Sayon
- Sorbonne University, Virology Department, Pitié-Salpêtrière Hospital, AP-HP, Pierre Louis Epidemiology and Public Health Institute (iPLESP), INSERM, Paris, France
| | - Basma Abdi
- Sorbonne University, Virology Department, Pitié-Salpêtrière Hospital, AP-HP, Pierre Louis Epidemiology and Public Health Institute (iPLESP), INSERM, Paris, France
| | - Cathia Soulie
- Sorbonne University, Virology Department, Pitié-Salpêtrière Hospital, AP-HP, Pierre Louis Epidemiology and Public Health Institute (iPLESP), INSERM, Paris, France
| | - Lise Cuzin
- CERPOP, Toulouse University, Inserm UMR, UPS, Toulouse, France.,Martinique University Hospital, Infectious Diseases Department, Fort-de-France, France
| | - Roland Tubiana
- Sorbonne University, Infectious Diseases Department, Pitié-Salpêtrière Hospital, AP-HP, Pierre Louis Epidemiology and Public Health Institute (iPLESP), INSERM, Paris, France
| | - Marc-Antoine Valantin
- Sorbonne University, Infectious Diseases Department, Pitié-Salpêtrière Hospital, AP-HP, Pierre Louis Epidemiology and Public Health Institute (iPLESP), INSERM, Paris, France
| | - Luminita Schneider
- Sorbonne University, Infectious Diseases Department, Pitié-Salpêtrière Hospital, AP-HP, Pierre Louis Epidemiology and Public Health Institute (iPLESP), INSERM, Paris, France
| | - Sophie Seang
- Sorbonne University, Infectious Diseases Department, Pitié-Salpêtrière Hospital, AP-HP, Pierre Louis Epidemiology and Public Health Institute (iPLESP), INSERM, Paris, France
| | - Marc Wirden
- Sorbonne University, Virology Department, Pitié-Salpêtrière Hospital, AP-HP, Pierre Louis Epidemiology and Public Health Institute (iPLESP), INSERM, Paris, France
| | - Valérie Pourcher
- Sorbonne University, Infectious Diseases Department, Pitié-Salpêtrière Hospital, AP-HP, Pierre Louis Epidemiology and Public Health Institute (iPLESP), INSERM, Paris, France
| | - Christine Katlama
- Sorbonne University, Infectious Diseases Department, Pitié-Salpêtrière Hospital, AP-HP, Pierre Louis Epidemiology and Public Health Institute (iPLESP), INSERM, Paris, France
| | - Vincent Calvez
- Sorbonne University, Virology Department, Pitié-Salpêtrière Hospital, AP-HP, Pierre Louis Epidemiology and Public Health Institute (iPLESP), INSERM, Paris, France
| | - Anne-Geneviève Marcelin
- Sorbonne University, Virology Department, Pitié-Salpêtrière Hospital, AP-HP, Pierre Louis Epidemiology and Public Health Institute (iPLESP), INSERM, Paris, France
| |
Collapse
|
31
|
Comas I, Cancino-Muñoz I, Mariner-Llicer C, Goig GA, Ruiz-Hueso P, Francés-Cuesta C, García-González N, González-Candelas F. Use of next generation sequencing technologies for the diagnosis and epidemiology of infectious diseases. Enferm Infecc Microbiol Clin 2021; 38 Suppl 1:32-38. [PMID: 32111363 DOI: 10.1016/j.eimc.2020.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the first time, next generation sequencing technologies provide access to genomic information at a price and scale that allow their implementation in routine clinical practice and epidemiology. While there are still many obstacles to their implementation, there are also multiple examples of their major advantages compared with previous methods. Their main advantage is that a single determination allows epidemiological information on the causative microorganism to be obtained simultaneously, as well as its resistance profile, although these advantages vary according to the pathogen under study. This review discusses several examples of the clinical and epidemiological use of next generation sequencing applied to complete genomes and microbiomes and reflects on its future in clinical practice.
Collapse
Affiliation(s)
- Iñaki Comas
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, España; CIBER en Epidemiología y Salud Pública, Valencia, España.
| | | | | | - Galo A Goig
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, España
| | - Paula Ruiz-Hueso
- Unidad Mixta "Infección y Salud Pública" FISABIO-Universitat de València, Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, España
| | - Carlos Francés-Cuesta
- Unidad Mixta "Infección y Salud Pública" FISABIO-Universitat de València, Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, España
| | - Neris García-González
- Unidad Mixta "Infección y Salud Pública" FISABIO-Universitat de València, Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, España
| | - Fernando González-Candelas
- CIBER en Epidemiología y Salud Pública, Valencia, España; Unidad Mixta "Infección y Salud Pública" FISABIO-Universitat de València, Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, España
| |
Collapse
|
32
|
Bendall ML, Gibson KM, Steiner MC, Rentia U, Pérez-Losada M, Crandall KA. HAPHPIPE: Haplotype Reconstruction and Phylodynamics for Deep Sequencing of Intrahost Viral Populations. Mol Biol Evol 2021; 38:1677-1690. [PMID: 33367849 PMCID: PMC8042772 DOI: 10.1093/molbev/msaa315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Deep sequencing of viral populations using next-generation sequencing (NGS) offers opportunities to understand and investigate evolution, transmission dynamics, and population genetics. Currently, the standard practice for processing NGS data to study viral populations is to summarize all the observed sequences from a sample as a single consensus sequence, thus discarding valuable information about the intrahost viral molecular epidemiology. Furthermore, existing analytical pipelines may only analyze genomic regions involved in drug resistance, thus are not suited for full viral genome analysis. Here, we present HAPHPIPE, a HAplotype and PHylodynamics PIPEline for genome-wide assembly of viral consensus sequences and haplotypes. The HAPHPIPE protocol includes modules for quality trimming, error correction, de novo assembly, alignment, and haplotype reconstruction. The resulting consensus sequences, haplotypes, and alignments can be further analyzed using a variety of phylogenetic and population genetic software. HAPHPIPE is designed to provide users with a single pipeline to rapidly analyze sequences from viral populations generated from NGS platforms and provide quality output properly formatted for downstream evolutionary analyses.
Collapse
Affiliation(s)
- Matthew L Bendall
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Keylie M Gibson
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Margaret C Steiner
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Uzma Rentia
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA.,Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA.,CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Keith A Crandall
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA.,Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| |
Collapse
|
33
|
Li JZ, Stella N, Choudhary MC, Javed A, Rodriguez K, Ribaudo H, Moosa MY, Brijkumar J, Pillay S, Sunpath H, Noguera-Julian M, Paredes R, Johnson B, Edwards A, Marconi VC, Kuritzkes DR. Impact of pre-existing drug resistance on risk of virological failure in South Africa. J Antimicrob Chemother 2021; 76:1558-1563. [PMID: 33693678 DOI: 10.1093/jac/dkab062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/10/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES There is conflicting evidence on the impact of pre-existing HIV drug resistance mutations (DRMs) in patients infected with non-B subtype virus. METHODS We performed a case-cohort substudy of the AIDS Drug Resistance Surveillance Study, which enrolled South African patients initiating first-line efavirenz/emtricitabine/tenofovir. Pre-ART DRMs were detected by Illumina sequencing of HIV pol and DRMs present at <20% of the viral population were labelled as minority variants (MVs). Weighted Cox proportional hazards models estimated the association between pre-ART DRMs and risk of virological failure (VF), defined as confirmed HIV-1 RNA ≥1000 copies/mL after ≥5 months of ART. RESULTS The evaluable population included 178 participants from a randomly selected subcohort (16 with VF, 162 without VF) and 83 additional participants with VF. In the subcohort, 16% of participants harboured ≥1 majority DRM. The presence of any majority DRM was associated with a 3-fold greater risk of VF (P = 0.002), which increased to 9.2-fold (P < 0.001) in those with <2 active drugs. Thirteen percent of participants harboured MV DRMs in the absence of majority DRMs. Presence of MVs alone had no significant impact on the risk of VF. Inclusion of pre-ART MVs with majority DRMs improved the sensitivity but reduced the specificity of predicting VF. CONCLUSIONS In a South African cohort, the presence of majority DRMs increased the risk of VF, especially for participants receiving <2 active drugs. The detection of drug-resistant MVs alone did not predict an increased risk of VF, but their inclusion with majority DRMs affected the sensitivity/specificity of predicting VF.
Collapse
Affiliation(s)
- Jonathan Z Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Natalia Stella
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Aneela Javed
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | | | | | | | | | | | | | | | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Badalona, Catalonia, Spain
| | | | - Alex Edwards
- Emory University School of Medicine and Rollins School of Public Health, Atlanta, GA, USA
| | - Vincent C Marconi
- Emory University School of Medicine and Rollins School of Public Health, Atlanta, GA, USA
| | | |
Collapse
|
34
|
Mbisa JL, Ledesma J, Kirwan P, Bibby DF, Manso C, Skingsley A, Murphy G, Brown A, Dunn DT, Delpech V, Geretti AM. Surveillance of HIV-1 transmitted integrase strand transfer inhibitor resistance in the UK. J Antimicrob Chemother 2021; 75:3311-3318. [PMID: 32728703 PMCID: PMC7566560 DOI: 10.1093/jac/dkaa309] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Background HIV treatment guidelines have traditionally recommended that all HIV-positive individuals are tested for evidence of drug resistance prior to starting ART. Testing for resistance to reverse transcriptase inhibitors and PIs is well established in routine care. However, testing for integrase strand transfer inhibitor (InSTI) resistance is less consistent. Objectives To inform treatment guidelines by determining the prevalence of InSTI resistance in a national cohort of recently infected individuals. Patients and methods Recent (within 4 months) HIV-1 infections were identified using a Recent Infection Testing Algorithm of new HIV-1 diagnoses in the UK. Resistance-associated mutations (RAMs) in integrase, protease and reverse transcriptase were detected by ultradeep sequencing, which allows for the sensitive estimation of the frequency of each resistant variant in a sample. Results The analysis included 655 randomly selected individuals (median age = 33 years, 95% male, 83% MSM, 78% white) sampled in the period 2014 to 2016 and determined to have a recent infection. These comprised 320, 138 and 197 samples from 2014, 2015 and 2016, respectively. None of the samples had major InSTI RAMs occurring at high variant frequency (≥20%). A subset (25/640, 3.9%) had major InSTI RAMs occurring only as low-frequency variants (2%–20%). In contrast, 47/588 (8.0%) had major reverse transcriptase inhibitor and PI RAMs at high frequency. Conclusions Between 2014 and 2016, major InSTI RAMs were uncommon in adults with recent HIV-1 infection, only occurring as low-frequency variants of doubtful clinical significance. Continued surveillance of newly diagnosed patients for evidence of transmitted InSTI resistance is recommended to inform clinical practice.
Collapse
Affiliation(s)
- Jean L Mbisa
- National Infection Service, Public Health England, London, UK.,National Institute for Health Research (NIHR) Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, London, UK
| | - Juan Ledesma
- National Infection Service, Public Health England, London, UK.,National Institute for Health Research (NIHR) Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, London, UK
| | - Peter Kirwan
- National Infection Service, Public Health England, London, UK
| | - David F Bibby
- National Infection Service, Public Health England, London, UK
| | - Carmen Manso
- National Infection Service, Public Health England, London, UK
| | | | - Gary Murphy
- National Infection Service, Public Health England, London, UK
| | - Alison Brown
- National Infection Service, Public Health England, London, UK
| | - David T Dunn
- Institute for Global Health, University College London, London, UK
| | - Valerie Delpech
- National Infection Service, Public Health England, London, UK.,National Institute for Health Research (NIHR) Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, London, UK
| | - Anna Maria Geretti
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
35
|
Tekin D, Gokengin D, Onay H, Erensoy S, Sertoz R. Investigation of drug resistance against protease, reverse transcriptase, and integrase inhibitors by next-generation sequencing in HIV-positive patients. J Med Virol 2021; 93:3627-3633. [PMID: 33026651 DOI: 10.1002/jmv.26582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Our aim was to investigate the mutations in protease (PR), reverse transcriptase (RT), and integrase (IN) gene regions in human immunodeficiency virus (HIV) using a single amplicon via next-generation sequencing (NGS). The study included plasma samples from 49 HIV-1-positive patients, which were referred for HIV-1 drug resistance testing during 2017. A nested polymerase chain reaction (PCR) was performed after the RNA extraction and one-step reverse transcription stages. The sequencing of the HIV genome in the PR, RT, and IN gene regions was carried out using MiSeq NGS technology. Sanger sequencing (SS) was used to analyze resistance mutations in the PR and RT gene regions using a ViroSeq HIV-1 Genotyping System. PCR products were analyzed with an ABI3500 GeneticAnalyzer (Applied Biosystems). Resistance mutations detected with NGS at frequencies above 20% were identical to the SS results. Resistance to at least one antiretroviral (ARV) drug was 22.4% (11 of 49) with NGS and 10.2% (5 of 49) with SS. At least one low-frequency resistance mutation was detected in 18.3% (9 of 49) of the samples. Low-frequency resistance mutations resulted in virological failure in only one patient. The cost of the analyses was reduced by sample pooling and multiplex analysis using the MiSeq system. This is the first study in Turkey to use NGS technologies for the detection of resistance mutations in all three gene (PR, RT, IN) regions using a single amplicon. Our findings suggest that NGS is more sensitive and cost-effective than the SS method.
Collapse
Affiliation(s)
- Duygu Tekin
- Department of Medical Microbiology, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Deniz Gokengin
- Department of Clinical Microbiology and Infectious Diseases, Ege University Medical School, Izmir, Turkey
| | - Huseyin Onay
- Department of Medical Genetics, Ege University Medical School, Izmir, Turkey
| | - Selda Erensoy
- Department of Medical Microbiology, Ege University Medical School, Izmir, Turkey
| | - Ruchan Sertoz
- Department of Medical Microbiology, Ege University Medical School, Izmir, Turkey
| |
Collapse
|
36
|
Drug resistance mutations in HIV provirus are associated with defective proviral genomes with hypermutation. AIDS 2021; 35:1015-1020. [PMID: 33635848 PMCID: PMC8102365 DOI: 10.1097/qad.0000000000002850] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND HIV proviral sequencing overcomes the limit of plasma viral load requirement by detecting all the 'archived mutations', but the clinical relevance remains to be evaluated. METHODS We included 25 participants with available proviral sequences (both intact and defective sequences available) and utilized the genotypic sensitivity score (GSS) to evaluate the level of resistance in their provirus and plasma virus. Defective sequences were further categorized as sequences with and without hypermutations. Personalized GSS score and total GSS score were calculated to evaluate the level of resistance to a whole panel of antiretroviral therapies and to certain antiretroviral therapy that a participant was using. The rate of sequences with drug resistance mutations (DRMs) within each sequence compartment (intact, defective and plasma viral sequences) was calculated for each participant. RESULTS Defective proviral sequences harbored more DRMs than other sequence compartments, with a median DRM rate of 0.25 compared with intact sequences (0.0, P = 0.014) and plasma sequences (0.095, P = 0.30). Defective sequences with hypermutations were the major source of DRMs, with a median DRM rate of 1.0 compared with defective sequences without hypermutations (0.042, P < 0.001). Certain Apolipoprotein B Editing Complex 3-related DRMs including reverse transcriptase gene mutations M184I, E138K, M230I, G190E and protease gene mutations M46I, D30N were enriched in hypermutated sequences but not in intact sequences or plasma sequences. All the hypermutated sequences had premature stop codons due to Apolipoprotein B Editing Complex 3. CONCLUSION Proviral sequencing may overestimate DRMs as a result of hypermutations. Removing hypermutated sequences is essential in the interpretation of proviral drug resistance testing.
Collapse
|
37
|
Chounta V, Overton ET, Mills A, Swindells S, Benn PD, Vanveggel S, van Solingen-Ristea R, Wang Y, Hudson KJ, Shaefer MS, Margolis DA, Smith KY, Spreen WR. Patient-Reported Outcomes Through 1 Year of an HIV-1 Clinical Trial Evaluating Long-Acting Cabotegravir and Rilpivirine Administered Every 4 or 8 Weeks (ATLAS-2M). PATIENT-PATIENT CENTERED OUTCOMES RESEARCH 2021; 14:849-862. [PMID: 34056699 PMCID: PMC8563641 DOI: 10.1007/s40271-021-00524-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Advances in HIV-1 therapeutics have led to the development of a range of daily oral treatment regimens, which share similar high efficacy rates. Consequently, more emphasis is being placed upon the individual's experience of treatment and impact on quality of life. The first long-acting injectable antiretroviral therapy for HIV-1 (long-acting cabotegravir + rilpivirine [CAB + RPV LA]) may address challenges associated with oral treatment for HIV-1, such as stigma, pill burden/fatigue, drug-food interactions, and adherence. Patient-reported outcomes (PROs) collected in an HIV-1 clinical trial (ATLAS-2M; NCT03299049) comparing participants' experience with two dosing regimens (every 4 weeks [Q4W] vs. every 8 weeks [Q8W]) of CAB + RPV LA are presented herein. METHODS PRO endpoints evaluated through 48 weeks of therapy included treatment satisfaction (HIV Treatment Satisfaction Questionnaire [HIVTSQ]), treatment acceptance ("General Acceptance" domain of the Chronic Treatment Acceptance [ACCEPT®] questionnaire), acceptability of injections (Perception of Injection [PIN] questionnaire), treatment preference (questionnaire), and reasons for switching to/continuing long-acting therapy (exploratory endpoint; questionnaire). Participants were randomized 1:1 to receive CAB + RPV LA Q8W or Q4W. Results were stratified by prior CAB + RPV exposure in either preplanned or post hoc analyses. RESULTS Overall, 1045 participants were randomized to the Q8W (n = 522) and Q4W (n = 523) regimens; 37% (n = 391/1045) had previously received CAB + RPV in ATLAS. For participants without prior CAB + RPV exposure, large increases from baseline were reported in treatment satisfaction in both long-acting arms (HIVTSQ status version), with Q8W dosing statistically significantly favored at Weeks 24 (p = 0.036) and 48 (p = 0.004). Additionally, improvements from baseline were also observed in the "General Acceptance" domain of the ACCEPT questionnaire in both long-acting arms for participants without prior CAB + RPV exposure; however, no statistically significant difference was observed between arms at either timepoint (Week 24, p = 0.379; Week 48, p = 0.525). Significant improvements (p < 0.001) in the "Acceptance of Injection Site Reactions" domain of the PIN questionnaire were observed from Week 8 to Weeks 24 and 48 in both arms for participants without prior CAB + RPV exposure. Participants with prior CAB + RPV exposure reported high treatment satisfaction (mean [HIVTSQ status version]: Q8W 62.2/66.0; Q4W 62.0/66.0), treatment acceptance (mean: Q8W 89.3/100; Q4W 91.2/100), and acceptance of injection site reactions (mean [5 = not at all acceptable; 1 = totally acceptable]: Q8W 1.72; Q4W 1.59) at baseline/Week 8 that were maintained over time. Participants without prior CAB + RPV exposure who received Q8W dosing preferred this regimen over oral CAB + RPV (98%, n = 300/306). Among those with prior Q4W exposure, 94% (n = 179/191) preferred Q8W dosing versus Q4W dosing (3%, n = 6/191) or oral CAB + RPV (2%, n = 4/191). CONCLUSIONS Both long-acting regimens provided high treatment satisfaction and acceptance, irrespective of prior CAB + RPV exposure, with most participants preferring Q8W dosing over both the Q4W regimen and their previous daily oral regimen. The PRO data collected at Week 48 support the therapeutic potential of CAB + RPV LA. FUNDING ViiV Healthcare and Janssen. TRIAL REGISTRATION ATLAS-2M: ClinicalTrials.gov NCT03299049, registered October 2, 2017.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Krischan J Hudson
- ViiV Healthcare, Research Triangle Park, NC, USA.,Horizon Therapeutics, Lake Forest, IL, USA
| | - Mark S Shaefer
- ViiV Healthcare, Research Triangle Park, NC, USA.,Hengrui USA, East Windsor, NJ, USA
| | - David A Margolis
- ViiV Healthcare, Research Triangle Park, NC, USA.,Brii Biosciences, Durham, NC, USA
| | | | | |
Collapse
|
38
|
Baxter JD, Dunn D, Tostevin A, Marvig RL, Bennedbaek M, Cozzi-Lepri A, Sharma S, Kozal MJ, Gompels M, Pinto AN, Lundgren J. Transmitted HIV-1 drug resistance in a large international cohort using next-generation sequencing: results from the Strategic Timing of Antiretroviral Treatment (START) study. HIV Med 2021; 22:360-371. [PMID: 33369017 PMCID: PMC8049964 DOI: 10.1111/hiv.13038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/11/2020] [Accepted: 11/10/2020] [Indexed: 01/13/2023]
Abstract
OBJECTIVES The aim of this analysis was to characterize transmitted drug resistance (TDR) in Strategic Timing of Antiretroviral Treatment (START) study participants by next-generation sequencing (NGS), a sensitive assay capable of detecting low-frequency variants. METHODS Stored plasma from participants with entry HIV RNA > 1000 copies/mL were analysed by NGS (Illumina MiSeq). TDR was based on the WHO 2009 surveillance definition with the addition of reverse transcriptase (RT) mutations T215N and E138K, and integrase strand transfer inhibitor (INSTI) surveillance mutations (Stanford HIVdb). Drug resistance mutations (DRMs) detected at three thresholds are reported: > 2%, 5% and 20% of the viral population. RESULTS Between 2009 and 2013, START enrolled 4684 antiretroviral therapy (ART)-naïve individuals in 35 countries. Baseline NGS data at study entry were available for 2902 participants. Overall prevalence rates of TDR using a detection threshold of 2%/5%/20% were 9.2%/5.6%/3.2% for nucleoside reverse transcriptase inhibitors (NRTIs), 9.2%/6.6%/4.9% for non-NRTIs, 11.4%/5.5%/2.4% for protease inhibitors (PIs) and 3.5%/1.6%/0.1% for INSTI DRMs and varied by geographic region. Using the 2% detection threshold, individual DRMs with the highest prevalence were: PI M46IL (5.5%), RT K103NS (3.5%), RT G190ASE (3.1%), T215ISCDVEN (2.5%), RT M41L (2.2%), RT K219QENR (1.7%) and PI D30N (1.6%). INSTI DRMs were detected almost exclusively below the 20% detection threshold, most commonly Y143H (0.4%), Q148R (0.4%) and T66I (0.4%). CONCLUSIONS Use of NGS in this study population resulted in the detection of a large proportion of low-level variants which would not have been detected by traditional Sanger sequencing. Global surveillance studies utilizing NGS should provide a more comprehensive assessment of TDR prevalence in different regions of the world.
Collapse
Affiliation(s)
- J D Baxter
- Cooper University Hospital/Cooper Medical School of Rowan University, Camden, NJ, USA
| | - D Dunn
- Institute for Global Health, UCL, London, UK
| | - A Tostevin
- Institute for Global Health, UCL, London, UK
| | - R L Marvig
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - M Bennedbaek
- Copenhagen HIV Programme, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - S Sharma
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - M J Kozal
- Yale University School of Medicine, New Haven, CT, USA
| | - M Gompels
- North Bristol NHS Trust, Westbury on Trym, UK
| | - A N Pinto
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - J Lundgren
- Copenhagen HIV Programme, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Young N, Hobbs M, Rahnama F, Shi J, Briggs S. An observational study of high- and low-abundance anti-retroviral resistance mutations among treatment-naïve people living with HIV in New Zealand between 2012 and 2017. Intern Med J 2021; 50:872-876. [PMID: 32656973 DOI: 10.1111/imj.14899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 11/29/2022]
Abstract
HIV resistance genotyping detects drug resistance mutations (DRMs) in ≥20% of circulating virus within an infected individual (high-abundance DRMs). Deep sequencing also detects DRMs in smaller viral subpopulations (low-abundance DRMs), although these are of uncertain importance. In this retrospective analysis of 292 treatment-naïve patients, high-abundance DRMs were present in 30/292 (10%) patients, but only one (0.3%) had resistance to first-line anti-retrovirals. Low-abundance DRMs were present in 36/247 (15%) patients, but none who received anti-retrovirals for which these were present had virologic failure. These findings demonstrate that starting first-line therapy in treatment-naïve patients need not be delayed while awaiting resistance testing.
Collapse
Affiliation(s)
- Nicholas Young
- Infectious Diseases Service, Auckland City Hospital, Auckland, New Zealand
| | - Mark Hobbs
- Infectious Diseases Service, Auckland City Hospital, Auckland, New Zealand
| | - Fahimeh Rahnama
- Virology Laboratory, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | - Jinyang Shi
- Virology Laboratory, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | - Simon Briggs
- Infectious Diseases Service, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
40
|
Maseng MJ, Tawe L, Thami PK, Seatla KK, Moyo S, Martinelli A, Kasvosve I, Novitsky V, Essex M, Russo G, Gaseitsiwe S, Paganotti GM. Association of CYP2B6 Genetic Variation with Efavirenz and Nevirapine Drug Resistance in HIV-1 Patients from Botswana. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:335-347. [PMID: 33758532 PMCID: PMC7981136 DOI: 10.2147/pgpm.s289471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
Purpose CYP2B6 liver enzyme metabolizes the two non-nucleoside reverse transcriptase inhibitors Efavirenz (EFV) and Nevirapine (NVP) used in the antiretroviral therapy (ART) regimens for HIV-infected individuals. Polymorphisms of the CYP2B6 gene influence drug levels in plasma and possibly virological outcomes. The aim of this study was to explore the potential impact of CYP2B6 genotype and haplotype variation on the risk of developing EFV/NVP drug resistance mutations (DRMs) in HIV-1 patients receiving EFV-/NVP-containing regimens in Botswana. Patients and Methods Participants were a sub-sample of a larger study (Tshepo study) conducted in Gaborone, Botswana, among HIV-infected individuals taking EFV/NVP containing ART. Study samples were retrieved and assigned to cases (with DRMs) and controls (without DRMs). Four single-nucleotide polymorphisms (SNPs) in the CYP2B6 gene (−82T>C; 516G>T; 785A>G; 983T>C) were genotyped, the haplotypes reconstructed, and the metabolic score assigned. The possible association between drug resistance and several independent factors (baseline characteristics and CYP2B6 genotypes) was assessed by Binary Logistic Regression (BLR) analysis. EFV/NVP resistance status and CYP2B6 haplotypes were also analyzed using Z-test, chi-square and Fisher’s exact test statistics. Results Two hundred and twenty-seven samples were analysed (40 with DRMs, 187 without DRMs). BLR analysis showed an association between EFV/NVP resistance and CYP2B6 516G allele (OR: 2.26; 95% CI: 1.27–4.01; P=0.005). Moreover, haplotype analysis revealed that the proportion of EFV/NVP-resistant infections was higher among CYP2B6 fast than extensive/slow metabolizers (30.8% vs 16.8%; P=0.035), with the 516G allele more represented in the haplotypes of fast than extensive/slow metabolizers (100.0% vs 53.8%; P<0.001). Conclusion We demonstrated that the CYP2B6 516G allele, and even more when combined in fast metabolic haplotypes, is associated with the presence of EFV/NVP resistance, strengthening the need to assess the CYP2B6 genetic profiles in HIV-infected patients in order to improve the virologic outcomes of NNRTI containing ART.
Collapse
Affiliation(s)
- Monkgomotsi J Maseng
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana.,Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Leabaneng Tawe
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana.,Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - Prisca K Thami
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kaelo K Seatla
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana.,Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | | | - Ishmael Kasvosve
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Vladimir Novitsky
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Max Essex
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Gianluca Russo
- Department of Public Health and Infectious Disease, Faculty of Medicine, Sapienza University of Rome, Rome, Italy
| | - Simani Gaseitsiwe
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Giacomo M Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana.,Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| |
Collapse
|
41
|
Obasa AE, Ambikan AT, Gupta S, Neogi U, Jacobs GB. Increased acquired protease inhibitor drug resistance mutations in minor HIV-1 quasispecies from infected patients suspected of failing on national second-line therapy in South Africa. BMC Infect Dis 2021; 21:214. [PMID: 33632139 PMCID: PMC7908688 DOI: 10.1186/s12879-021-05905-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND HIV-1C has been shown to have a greater risk of virological failure and reduced susceptibility towards boosted protease inhibitors (bPIs), a component of second-line combination antiretroviral therapy (cART) in South Africa. This study entailed an evaluation of HIV-1 drug resistance-associated mutations (RAMs) among minor viral populations through high-throughput sequencing genotypic resistance testing (HTS-GRT) in patients on the South African national second-line cART regimen receiving bPIs. METHODS During 2017 and 2018, 67 patient samples were sequenced using high-throughput sequencing (HTS), of which 56 samples were included in the final analysis because the patient's treatment regimen was available at the time of sampling. All patients were receiving bPIs as part of their cART. Viral RNA was extracted, and complete pol genes were amplified and sequenced using Illumina HiSeq2500, followed by bioinformatics analysis to quantify the RAMs according to the Stanford HIV Drug Resistance Database. RESULTS Statistically significantly higher PI RAMs were observed in minor viral quasispecies (25%; 14/56) compared to non-nucleoside reverse transcriptase inhibitors (9%; 5/56; p = 0.042) and integrase inhibitor RAM (4%; 2/56; p = 0.002). The majority of the drug resistance mutations in the minor viral quasispecies were observed in the V82A mutation (n = 13) in protease and K65R (n = 5), K103N (n = 7) and M184V (n = 5) in reverse transcriptase. CONCLUSIONS HTS-GRT improved the identification of PI and reverse transcriptase inhibitor (RTI) RAMs in second-line cART patients from South Africa compared to the conventional GRT with ≥20% used in Sanger-based sequencing. Several RTI RAMs, such as K65R, M184V or K103N and PI RAM V82A, were identified in < 20% of the population. Deep sequencing could be of greater value in detecting acquired resistance mutations early.
Collapse
Affiliation(s)
- Adetayo Emmanuel Obasa
- Department of Pathology, Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa.
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden.
| | - Anoop T Ambikan
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden
| | - Soham Gupta
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden
| | - Ujjwal Neogi
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden
| | - Graeme Brendon Jacobs
- Department of Pathology, Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa
| |
Collapse
|
42
|
Mbunkah HA, Bertagnolio S, Hamers RL, Hunt G, Inzaule S, Rinke De Wit TF, Paredes R, Parkin NT, Jordan MR, Metzner KJ. Low-Abundance Drug-Resistant HIV-1 Variants in Antiretroviral Drug-Naive Individuals: A Systematic Review of Detection Methods, Prevalence, and Clinical Impact. J Infect Dis 2021; 221:1584-1597. [PMID: 31809534 DOI: 10.1093/infdis/jiz650] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The presence of high-abundance drug-resistant HIV-1 jeopardizes success of antiretroviral therapy (ART). Despite numerous investigations, the clinical impact of low-abundance drug-resistant HIV-1 variants (LA-DRVs) at levels <15%-25% of the virus population in antiretroviral (ARV) drug-naive individuals remains controversial. METHODS We systematically reviewed 103 studies assessing prevalence, detection methods, technical and clinical detection cutoffs, and clinical significance of LA-DRVs in antiretroviral drug-naive adults. RESULTS In total, 14 919 ARV drug-naive individuals were included. Prevalence of LA-DRVs (ie, proportion of individuals harboring LA-DRVs) was 0%-100%. Technical detection cutoffs showed a 4 log range (0.001%-10%); 42/103 (40.8%) studies investigating the impact of LA-DRVs on ART; 25 studies included only individuals on first-line nonnucleoside reverse transcriptase inhibitor-based ART regimens. Eleven of those 25 studies (44.0%) reported a significantly association between preexisting LA-DRVs and risk of virological failure whereas 14/25 (56.0%) did not. CONCLUSIONS Comparability of the 103 studies is hampered by high heterogeneity of the studies' designs and use of different methods to detect LA-DRVs. Thus, evaluating clinical impact of LA-DRVs on first-line ART remains challenging. We, the WHO HIVResNet working group, defined central areas of future investigations to guide further efforts to implement ultrasensitive resistance testing in routine settings.
Collapse
Affiliation(s)
- Herbert A Mbunkah
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zürich, Switzerland.,Institute of Medical Virology, University of Zurich, Zürich, Switzerland.,Paul-Ehrlich-Institut, Langen, Germany
| | | | - Raph L Hamers
- Amsterdam Institute for Global Health and Development, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Eijkman-Oxford Clinical Research Unit, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gillian Hunt
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Seth Inzaule
- Amsterdam Institute for Global Health and Development, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tobias F Rinke De Wit
- Amsterdam Institute for Global Health and Development, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Roger Paredes
- Infectious Diseases Service and IrsiCaixa AIDS Research Institute for AIDS Research, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| | | | - Michael R Jordan
- Division of Geographic Medicine and Infectious Disease, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Karin J Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zürich, Switzerland.,Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | | |
Collapse
|
43
|
Lake J, Lawrence KA, Martinez Alonso E, Gonzales V, LaFleur J. Quality of systematic reviews in HIV: The case of clinical outcomes associated with patient medication adherence. J Evid Based Med 2021; 14:7-16. [PMID: 33528882 DOI: 10.1111/jebm.12423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
AIM Use of systematic reviews (SRs) as first-level evidence for guideline recommendations hinges on review quality. In particular, US guidelines for adherence-related recommendations in the treatment of human immunodeficiency virus (HIV) are not based on available SRs of adherence-outcome relationships; it is unclear why. No published studies report on the quality of SRs on HIV adherence and outcomes, which may be driving the lack of use. We describe the quality of this body of literature. METHODS Literature searches were conducted in Ovid MEDLINE, EMBASE, CINAHL, PubMed Central, the Cochrane Library, Science Citation Index, Web of Science, ScIELO Citation Index, and Ovid Emcare. Screening and quality assessments were performed in duplicate using AMSTAR 2. Funding sources and impact factors of publishing journals were also extracted, and correlations between quality rankings and numbers of critical weaknesses versus impact factors were assessed using Spearman's rank correlation coefficient. RESULTS Nine SRs of 1141 records met eligibility criteria. Overall confidence in the results was critically low for most (78%) SRs. Underperformance was found across all AMSTAR 2 domains. Impact factor (a surrogate or journal reputation) did not correlate with quality. CONCLUSIONS SRs do not necessarily comprise top-level evidence despite the availability of quality appraisal tools and reporting guidance, which could explain the lack of SR evidence in US HIV medication adherence-related guideline recommendations. All parties to evidence synthesis publication should require quality assessment of studies.
Collapse
Affiliation(s)
- Joanita Lake
- Department of Pharmacotherapy, University of Utah, Salt Lake City, Utah, USA
- Salt Lake City Veterans Affairs Health Care Center, Salt Lake City, Utah, USA
| | - Kendra A Lawrence
- Department of Pharmacotherapy, University of Utah, Salt Lake City, Utah, USA
| | | | - Valerie Gonzales
- Department of Pharmacotherapy, University of Utah, Salt Lake City, Utah, USA
| | - Joanne LaFleur
- Department of Pharmacotherapy, University of Utah, Salt Lake City, Utah, USA
- Salt Lake City Veterans Affairs Health Care Center, Salt Lake City, Utah, USA
| |
Collapse
|
44
|
Tsai HC, Chen IT, Tsai KW, Lee SSJ, Chen YS. Prevalence of HIV-1 Integrase Strand Transfer Inhibitor Resistance in Treatment-Naïve Voluntary Counselling and Testing Clients by Population Sequencing and Illumina Next-Generation Sequencing in Taiwan. Infect Drug Resist 2020; 13:4519-4529. [PMID: 33364799 PMCID: PMC7751586 DOI: 10.2147/idr.s273704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/01/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Integrase strand transfer inhibitors (INSTIs) are used as first-line therapy for HIV-1-infected patients. Next-generation sequencing (NGS) can detect low-frequency mutants; however, the clinical value of NGS to detect resistance variants is unknown. This study aimed to evaluate the prevalence of INSTI resistance in southern Taiwan and determine the clinical implications of using NGS to detect integrase region low-level resistant variants. Patients and Methods This retrospective cohort study included antiretroviral therapy-naïve HIV-1-infected individuals at Kaohsiung Veterans General Hospital, Taiwan, from 2013 to 2017. Drug-resistance mutations were determined, and an in-house polymerase chain reaction was used for genotyping INSTI resistance. NGS was used to assess INSTI resistance (≧1%), and the results were compared with those from population sequencing. Drug resistance-associated mutations were defined according to the 2019 IAS-USA HIV drug resistance-associated mutations list, and accessory mutations by a Stanford HIVdb score ≥10 to at least one INSTI. Results A total of 224 patients were included. Subtype B HIV-1 strains were found in 96% of the individuals and subtype CRF01_AE in 4%. The prevalence rates for nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitors and INSTI resistance were 4%, 5.8%, 0.4% and 0.9%, respectively. The most common INSTI resistance-associated mutations were G163K (0.4%) and E138A (0.4%). Of the 38 patients diagnosed in 2017 who had both NGS and population sequencing data, none had INSTI resistance-associated mutations by population sequencing; however, NGS detected four more INSTI resistance-associated mutations with low frequencies (G163R 3.25%, S153F 3.21%, S153Y 1.36% and Y143H 2.06%). Two patients with S153F and S153Y low frequencies mutations started INSTI-based highly active antiretroviral therapy, and none had virological failure by week 48. Conclusion Our findings showed a low rate of HIV drug resistance to INSTIs (0.9%) in treatment-naïve patients. NGS detected more INSTI resistance-associated mutations at a low frequency. Low-level drug resistance-associated mutations to INSTIs identified by NGS did not have an impact on the treatment response to INSTI-based first-line therapy.
Collapse
Affiliation(s)
- Hung-Chin Tsai
- Division of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Parasitology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - I-Tzu Chen
- Division of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Susan Shin-Jung Lee
- Division of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yao-Shen Chen
- Division of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
45
|
Grant-McAuley W, Fogel JM, Galai N, Clarke W, Breaud A, Marzinke MA, Mbwambo J, Likindikoki S, Aboud S, Donastorg Y, Perez M, Barrington C, Davis W, Kerrigan D, Eshleman SH. Antiretroviral drug use and HIV drug resistance in female sex workers in Tanzania and the Dominican Republic. PLoS One 2020; 15:e0240890. [PMID: 33119663 PMCID: PMC7595323 DOI: 10.1371/journal.pone.0240890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/05/2020] [Indexed: 02/04/2023] Open
Abstract
Objective Female sex workers (FSW) have increased risk of HIV infection. Antiretroviral treatment (ART) can improve HIV outcomes and prevent HIV transmission. We analyzed antiretroviral (ARV) drug use and HIV drug resistance among HIV-positive FSW in the Dominican Republic and Tanzania. Methods Plasma samples collected at study entry with viral loads >1,000 copies/mL were tested for ARV drugs and HIV drug resistance. ARV drug testing was performed using a qualitative assay that detects 22 ARV drugs in five classes. HIV genotyping was performed using the ViroSeq HIV-1 Genotyping System. Phylogenetic analyses were performed to determine HIV subtype and assess transmission clusters. Results Among 410 FSW, 144 (35.1%) had viral loads >1,000 copies/mL (DR: n = 50; Tanzania: n = 94). ARV drugs were detected in 36 (25.0%) of 144 samples. HIV genotyping results were obtained for 138 (95.8%) cases. No transmission clusters were observed in either country. HIV drug resistance was detected in 54 (39.1%) of 138 samples (31/35 [88.6%] with drugs detected; 23/103 [22.3%] without drugs detected); 29/138 (21.0%) had multi-class resistance (MCR). None with MCR had integrase strand transfer inhibitor resistance. In eight cases, one or more ARV drug was detected without corresponding resistance mutations; those women were at risk of acquiring additional drug resistance. Using multivariate logistic regression, resistance was associated with ARV drug detection (p<0.001), self-reported ART (full adherence [p = 0.034]; partial adherence [p<0.001]), and duration of HIV infection (p = 0.013). Conclusions In this cohort, many women were on ART, but were not virally suppressed. High levels of HIV drug resistance, including MCR, were observed. Resistance was associated with detection of ARV drugs, self-report of ART with full or partial adherence, and duration of HIV infection. These findings highlight the need for better HIV care among FSW to improve their health, reduce HIV drug resistance, and decrease risk of transmission to others.
Collapse
Affiliation(s)
- Wendy Grant-McAuley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jessica M. Fogel
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Noya Galai
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, Maryland, United States of America
- Department of Statistics, University of Haifa, Mt Carmel, Israel
| | - William Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Autumn Breaud
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mark A. Marzinke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jessie Mbwambo
- Department of Psychiatry, Muhimibili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Samuel Likindikoki
- Department of Psychiatry, Muhimibili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Said Aboud
- Department of Microbiology and Immunology, Muhimibili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Yeycy Donastorg
- Unidad de Investigacion de Vacunas, Instituto Dermatologico y Cirugia de la Piel, Santo Domingo, Dominican Republic
| | - Martha Perez
- Unidad de Investigacion de Vacunas, Instituto Dermatologico y Cirugia de la Piel, Santo Domingo, Dominican Republic
| | - Clare Barrington
- Department of Health Behavior, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Wendy Davis
- Center on Health, Risk and Society, American University, Washington, District of Columbia, United States of America
| | - Deanna Kerrigan
- Center on Health, Risk and Society, American University, Washington, District of Columbia, United States of America
| | - Susan H. Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
46
|
Cevallos C, Culasso ACA, Urquiza J, Ojeda D, Sued O, Figueroa MI, Avila MM, Delpino MV, Quarleri JF. In vivo drug resistance mutation dynamics from the early to chronic stage of infection in antiretroviral-therapy-naïve HIV-infected men who have sex with men. Arch Virol 2020; 165:2915-2919. [PMID: 32978684 DOI: 10.1007/s00705-020-04823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/25/2020] [Indexed: 01/18/2023]
Abstract
Human immunodeficiency virus type 1 (HIV) primary drug resistance mutations (DRMs) influence the long-term therapeutic effects of antiretroviral treatment (ART). Drug-resistance genotyping based on polymerase gene sequences obtained by next-generation sequencing (NGS) was performed using samples from 10 ART-naïve HIV-infected men who have sex with men (MSM; P1-P10) from the acute/early to chronic stage of infection. Three of the 10 subjects exhibited the presence of major (abundance, ≥ 20%) viral populations carrying DRM at early/acute stage that later, at the chronic stage, dropped drastically (V106M) or remained highly abundant (E138A). Four individuals exhibited additional DRMs (M46I/L; I47A; I54M, L100V) as HIV minority populations (abundance, 2-20%) that emerged during the chronic stage but ephemerally.
Collapse
Affiliation(s)
- Cintia Cevallos
- Instituto de Investigaciones Biomédicas en Retrovirus Y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155-Piso 11 (1121), Buenos Aires, Argentina
| | - Andrés C A Culasso
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET) Instituto de Bacteriología Y Virología Molecular (IBaViM) Facultad de Farmacia Y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - Javier Urquiza
- Instituto de Investigaciones Biomédicas en Retrovirus Y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155-Piso 11 (1121), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Ojeda
- Instituto de Investigaciones Biomédicas en Retrovirus Y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155-Piso 11 (1121), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - Omar Sued
- Fundación Huésped, Pasaje Angel Peluffo 3932 (C1202ABB), Ciudad Autónoma de Buenos Aires, Argentina
| | - María I Figueroa
- Fundación Huésped, Pasaje Angel Peluffo 3932 (C1202ABB), Ciudad Autónoma de Buenos Aires, Argentina
| | - María M Avila
- Instituto de Investigaciones Biomédicas en Retrovirus Y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155-Piso 11 (1121), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - M Victoria Delpino
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Inmunología, Genética Y Metabolismo (INIGEM), Universidad de Buenos Aires. CONICET, Buenos Aires, Argentina
| | - Jorge F Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus Y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155-Piso 11 (1121), Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
47
|
Mbisa JL, Kirwan P, Tostevin A, Ledesma J, Bibby DF, Brown A, Myers R, Hassan AS, Murphy G, Asboe D, Pozniak A, Kirk S, Gill ON, Sabin C, Delpech V, Dunn DT. Determining the Origins of Human Immunodeficiency Virus Type 1 Drug-resistant Minority Variants in People Who Are Recently Infected Using Phylogenetic Reconstruction. Clin Infect Dis 2020; 69:1136-1143. [PMID: 30534981 PMCID: PMC6743824 DOI: 10.1093/cid/ciy1048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 12/06/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Drug-resistant minority variants (DRMinVs) detected in patients who recently acquired human immunodeficiency virus type 1 (HIV-1) can be transmitted, generated de novo through virus replication, or technical errors. The first form is likely to persist and result in treatment failure, while the latter two could be stochastic and transient. METHODS Ultradeep sequencing of plasma samples from 835 individuals with recent HIV-1 infection in the United Kingdom was performed to detect DRMinVs at a mutation frequency between 2% and 20%. Sequence alignments including >110 000 HIV-1 partial pol consensus sequences from the UK HIV Drug Resistance Database (UK-HDRD), linked to epidemiological and clinical data from the HIV and AIDS Reporting System, were used for transmission cluster analysis. Transmission clusters were identified using Cluster Picker with a clade support of >90% and maximum genetic distances of 4.5% or 1.5%, the latter to limit detection to likely direct transmission events. RESULTS Drug-resistant majority variants (DRMajVs) were detected in 66 (7.9%) and DRMinVs in 84 (10.1%) of the recently infected individuals. High levels of clustering to sequences in UK-HDRD were observed for both DRMajV (n = 48; 72.7%) and DRMinV (n = 63; 75.0%) sequences. Of these, 43 (65.2%) with DRMajVs were in a transmission cluster with sequences that harbored the same DR mutation compared to only 3 (3.6%) sequences with DRMinVs (P < .00001, Fisher exact test). Evidence of likely direct transmission of DRMajVs was observed for 25/66 (37.9%), whereas none were observed for the DRMinVs (P < .00001). CONCLUSIONS Using a densely sampled HIV-infected population, we show no evidence of DRMinV transmission among recently infected individuals.
Collapse
Affiliation(s)
- Jean L Mbisa
- National Infection Service, Public Health England, London, United Kingdom.,National Institute for Health Research Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, London, United Kingdom
| | - Peter Kirwan
- National Infection Service, Public Health England, London, United Kingdom
| | - Anna Tostevin
- Institute for Global Health, University College London, London, United Kingdom
| | - Juan Ledesma
- National Infection Service, Public Health England, London, United Kingdom.,National Institute for Health Research Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, London, United Kingdom
| | - David F Bibby
- National Infection Service, Public Health England, London, United Kingdom
| | - Alison Brown
- National Infection Service, Public Health England, London, United Kingdom
| | - Richard Myers
- National Infection Service, Public Health England, London, United Kingdom
| | - Amin S Hassan
- HIV/STI Group, Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Gary Murphy
- National Infection Service, Public Health England, London, United Kingdom
| | - David Asboe
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Anton Pozniak
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Stuart Kirk
- University College London Hospital, London, United Kingdom
| | - O Noel Gill
- National Infection Service, Public Health England, London, United Kingdom.,National Institute for Health Research Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, London, United Kingdom
| | - Caroline Sabin
- National Institute for Health Research Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, London, United Kingdom.,Institute for Global Health, University College London, London, United Kingdom
| | - Valerie Delpech
- National Infection Service, Public Health England, London, United Kingdom.,National Institute for Health Research Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, London, United Kingdom
| | - David T Dunn
- Institute for Global Health, University College London, London, United Kingdom
| | | |
Collapse
|
48
|
Ultradeep sequencing reveals HIV-1 diversity and resistance compartmentalization during HIV-encephalopathy. AIDS 2020; 34:1609-1614. [PMID: 32701585 DOI: 10.1097/qad.0000000000002616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To examine viral diversity and resistance mutations in different brain areas in cases of HIV-encephalopathy. DESIGN Twelve postmortem brain areas from three cases of possible or certain HIV-encephalopathy were analyzed. METHODS After amplification of the reverse transcriptase and the V3 loop region of the gp120 protein, ultradeep sequencing was performed with Illumina technology. Phylogenetic analysis was performed with Fastree v2.1 using the generalized time-reversible (GTR) model. Identification of resistant viral variants was performed on Geneious software, according to HIV-1 genotypic drug resistance interpretation's algorithms, 2018 administered by the French Agency for Research on AIDS and Viral Hepatitis. RESULTS Phylogenetic analysis revealed significant inter-regional and intra-regional diversity reflecting persistent HIV-1 viral replication in the different brain areas. Although some cerebral regions shared HIV-variants, most of them harbored a specific HIV-subpopulation reflecting HIV compartmentalization in the central nervous system. Furthermore, proportion and distribution of resistance mutations to nucleoside and non-nucleoside reverse transcriptase inhibitors differed among different brain areas of the same case suggesting that penetration of antiretroviral treatment may differ from one compartment to another. CONCLUSION This study, performed with a powerful sequencing technique, confirmed HIV compartmentalization in the central nervous system already shown by classical sequencing, suggesting that there are several reservoirs within the brain.
Collapse
|
49
|
Kouamou V, Manasa J, Katzenstein D, McGregor AM, Ndhlovu CE, Makadzange T. Diagnostic Accuracy of Pan-Degenerate Amplification and Adaptation Assay for HIV-1 Drug Resistance Mutation Analysis in Low- and Middle-Income Countries. J Clin Microbiol 2020; 58:e01045-20. [PMID: 32522826 PMCID: PMC7448631 DOI: 10.1128/jcm.01045-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/07/2020] [Indexed: 11/20/2022] Open
Abstract
HIV drug resistance (HIVDR) is a barrier to sustained virologic suppression in low- and middle-income countries (LMICs). Point mutation assays targeting priority drug resistance mutations (DRMs) are being evaluated to improve access to HIVDR testing. In a cross-sectional study (June 2018 to September 2019), we evaluated the diagnostic accuracy of a simple and rapid HIVDR assay (the pan-degenerate amplification and adaptation [PANDAA] assay targeting the mutations K65R, K103NS, M184VI, Y181C, and G190A) compared to Sanger sequencing and next-generation sequencing (NGS). Plasma samples from adolescents and young adults (aged 10 to 24 years) failing antiretroviral therapy (viral load, >1,000 copies/ml on 2 consecutive occasions 1 month apart) were analyzed. Sensitivity and specificity of the PANDAA assay were determined by a proprietary application designed by Aldatu Biosciences. Agreement between genotyping methods was evaluated using Cohen's kappa coefficient. One hundred fifty samples previously characterized by Sanger sequencing were evaluated using PANDAA. For all DRMs detected, PANDAA showed a sensitivity and specificity of 98% and 94%, respectively. For nucleotide reverse transcriptase inhibitor DRMs, sensitivity and specificity were 98% (95% confidence interval [CI], 92% to 100%) and 100% (94% to 100%), respectively. For non-nucleotide reverse transcriptase inhibitor DRMs, sensitivity and specificity were 100% (97% to 100%) and 76% (61% to 87%), respectively. PANDAA showed strong agreement with Sanger sequencing for K65R, K103NS, M184VI, and G190A (kappa > 0.85) and substantial agreement for Y181C (kappa = 0.720). Of the 21 false-positive samples genotyped by PANDAA, only 6 (29%) were identified as low-abundance variants by NGS. With the high sensitivity and specificity to detect major DRMs, PANDAA could represent a simple and rapid alternative HIVDR assay in LMICs.
Collapse
Affiliation(s)
- Vinie Kouamou
- Department of Medicine, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Justen Manasa
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - David Katzenstein
- Department of Molecular Biology, Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Alan M McGregor
- Department of Medicine, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Chiratidzo E Ndhlovu
- Department of Medicine, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Tariro Makadzange
- Department of Medicine, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
50
|
Su B, Zheng X, Liu Y, Liu L, Xin R, Lu H, Huang C, Bai L, Mammano F, Zhang T, Wu H, Sun L, Dai L. Detection of pretreatment minority HIV-1 reverse transcriptase inhibitor-resistant variants by ultra-deep sequencing has a limited impact on virological outcomes. J Antimicrob Chemother 2020; 74:1408-1416. [PMID: 30668734 DOI: 10.1093/jac/dky561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/24/2018] [Accepted: 12/10/2018] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Ultra-deep sequencing (UDS) is a powerful tool for exploring the impact on virological outcome of minority variants with low frequencies, some even <1% of the virus population. Here, we compared HIV-1 minority variants at baseline, through plasma RNA and PBMC DNA analyses, and the dominant variants at the virological failure (VF) point, to evaluate the impact of minority drug-resistant variants (MDRVs) on virological outcomes. METHODS Single-molecule real-time sequencing (SMRTS) was performed on baseline RNA and DNA. The Stanford HIV-1 drug resistance database was used for the identification and evaluation of drug resistance-associated mutations (DRAMs). RESULTS We classified 50 patients into virological success (VS) and VF groups. We found that the rates of reverse transcriptase inhibitor (RTI) DRAMs determined by SMRTS did not differ significantly within or between groups, whether based on RNA or DNA analyses. There was no significant difference in the level of resistance to specific drugs between groups, in either DNA or RNA analyses, except for the DNA-based analysis of lamivudine, for which there was a trend towards a higher prevalence of intermediate/high-level resistance in the VF group. The RNA MDRVs corresponded to DNA MDRVs, except for M100I and Y188H. Sequencing from DNA appeared to be more sensitive than from RNA to detect MDRVs. CONCLUSIONS Detection of pretreatment minority HIV-1 RTI-resistant variants by UDS showed that MDRVs at baseline were not significantly associated with virological outcome. However, HIV-1 DNA sequencing by UDS was useful for detecting pretreatment drug resistance mutations in patients, potentially affecting virological responses, suggesting a potential clinical relevance for ultra-deep DNA sequencing.
Collapse
Affiliation(s)
- Bin Su
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | | | - Yan Liu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Lifeng Liu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Ruolei Xin
- Institute for AIDS/STD Control and Prevention, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Hongyan Lu
- Institute for AIDS/STD Control and Prevention, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Chun Huang
- Institute for AIDS/STD Control and Prevention, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Lishi Bai
- Institute for AIDS/STD Control and Prevention, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Fabrizio Mammano
- INSERM U941, Genetics and Ecology of Viruses, Hospital Saint Louis, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Lijun Sun
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lili Dai
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|